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Abstract

The penetration of renewable energies requires additional storages to deal with in-
termittency. Accordingly, there is growing interest in evaluating the opportunity cost
(usage value) associated with stored energy in large storages, a cost obtained by solving
a multistage stochastic optimization problem. Today, to compute usage values under
uncertainties, an adequacy resource problem is solved using stochastic dynamic pro-
gramming assuming a hazard-decision information structure. This modelling assumes
complete knowledge of the coming week uncertainties, which is not adapted to the
system operation as the intermittency occurs at smaller timescale. We equip the two-
timescale problem with a new information structure considering planning and recourse
decisions: decision-hazard-decision. This structure is used to decompose the multi-
stage decision-making process into a nonanticipative planning step in which the on/off
decisions for the thermal units are made, and a recourse step in which the power mod-
ulation decisions are made once the uncertainties have been disclosed. In a numerical
case, we illustrate how usage values are sensitive as how the disclosure of information
is modelled.

Keywords.Energy system modelling, information structure, stochastic multistage optimiza-
tion, dynamic programming

1 Introduction

To conduct prospective studies in energy systems under uncertainty, the operation is simu-
lated for one year in the future considering different hypothesis of evolution of the electricity
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production mix, demand and production technologies. In this article, we aim to study
whether the information structure choice when computing usage values (used to design
policies) has an impact on the simulation of the storage facilities operation in prospectives
studies.

1.1 Context

The simulation of an energy system operation is carried out by solving its associated ad-
equacy resource problem. Mathematically, the adequacy resource problem is a multistage
optimization problem that aims to allocate, hour by hour, the production means such that
the demand is met while minimizing the overall production cost. The problem is formulated
from the point of view of a central planner which takes all decisions in the system. In such
case, the production means costs are fixed and resources are allocated by merit order, i.e.
the cheapest units are used before the most expensive ones. Since the demand and the
availability of the thermal units are uncertain, the adequacy resource problem is stochastic.
This problem is naturally formulated using two timescales where the planning is done for the
week ahead but the hourly energy balance has to be met. When uncertainties are supposed
probabilistic independent, it is a strong incentive to break down the annual problem week by
week, and therefore to consider, in addition to the hourly (short) timescale, a weekly (long)
timescale.

In this context, the question of when the energy in storages is going to be used arises.
Usage values are the storages’ prices — a price signal that makes it possible to choose when
and how much of its energy is used — that depend on the energy system setting. We
address the usage value computation problem for a uni-nodal system composed of several
thermal units, a single storage unit and a residual demand. Stochasticity is introduced
by the residual demand of the system (difference between demand and non-dispatchable
production) and the availability of the thermal units that are uncertain. We do not focus
on how the uncertainty scenarios are generated, but on how the available information about
these scenarios is modelled throughout the decision-making process. More precisely, we define
the information structure associated with a decision variable to be taken at a given instant t
as the quantity of information, that is, which uncertainty variables have been revealed up to
time t. The dynamics in the storage introduces a temporal coupling of the problem and, to
be able to perform weekly decomposition, we turn to dynamic programming. This technique
provides optimal solutions under certain hypothesis of uncertainties’ independence. In this
case, to perform a weekly decomposition of the yearly problem keeping the optimality, it is
that weekly uncertainty sequences be statistically independent between weeks.

Usage values can be obtained from the resolution of the two-timescale stochastic mul-
tistage optimization problem (that models the adequacy resource problem), through the
Bellman functions resulting from the dynamic programming at the weekly timescale. Once
the usage values are calculated, one can compute a storage’s management policy to be used
in the resolution of the adequacy resource problem when carrying out prospectives studies
(simulation).

It is important to highlight that the adequacy resource problem studied here does not
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intend to yield an implementable operational schedule for the system, but to give a realistic
overview of the system operation. Our aim is to develop a framework that enables to identify
possible curtailment in demand or production, network congestions, or the non-satisfaction
of greenhouse gas emission targets.

1.2 Structure of the paper

The paper is organized as follows.
In Section 2, we present the physical modelling of the problem. First we introduce the

two-timescale timeline, made of hours (because of hourly energy balance constraints) and
weeks (because of weekly planning of decisions). Second, we define the physical variables
needed to describe the system operation as well as the linking constraints and the economical
cost functions.

In Section 3, once the physical model is set, we move on to the mathematical formulation
of the adequacy resource problem as a multistage stochastic optimisation problem, focusing
on the information structure study. Information structures are used to model the information
available at each stage of the decision-making process. In practice, the tools used to carry
out prospective studies perform the resolution of a deterministic multistage optimization
problem at each stage, anticipating the coming uncertainties. For example, in the open-
source tool Antares [6], developed by the French TSO Réseau de Transport d’Electricité
(RTE)1, daily or weekly deterministic problems are solved assuming perfect information.
We present the current practice for the information structure modelling when computing
the usage values: weekly hazard-decision. This structure assumes that all the decisions in
a week are made with full knowledge of the uncertainties of the week. For instance, it is
the information structure considered in the SDDP algorithm in [8]. When the dispatchable
units are “fast” to start, we assume that we can “wait-and-see” the uncertainties to make the
decisions, in which case a hazard-decision structure is not far from reality. On the contrary,
as “slow” dispatchable units (nuclear or coal) need more time to start producing, “wait-and-
see” decisions are not adapted. The suitable structure for this type of unit is decision-hazard
that considers “here-and-now” decisions as presented in [10] for the hydrothermal scheduling
problem.

In Section 4, we present an innovative decision-hazard-decision structure that considers
both “here-and-now” and “wait-and-see” decisions in the context of prospective studies. To
our knowledge, such structure has never been used in prospective studies, but it has been
theoretically studied in [4]. The decision-hazard-decision structure is used to solve the ad-
equacy problem with two timescales. The decision stages in the decision-making process
are separated into a nonanticipative planning step and a recourse corrective step. As a
consequence, the resolution of each stage in the multistage stochastic optimisation problem
becomes a two-stage problem in which the first stage decisions (slow decisions) are made
before knowing the uncertainties, and the second stage or recourse decisions (fast decisions)
are made once the weekly block of uncertainties is known. It can be interpreted that the

1https://www.rte-france.com/
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slow decisions are associated with the unit commitment step and that the fast decisions
are associated with the unit modulation. We obtain as a result a problem formulation that
improves the information model by being less anticipative but still allows us to apply tem-
poral decomposition methods. Once the new information structure is described, we present
the corresponding mathematical formulation of the problem and the associated Bellman
equations giving the usage values.

In Section 5, we present numerical results for a case study comparing both information
structures: hazard-decision and decision-hazard-decison in the context of prospective studies.
We observe that the choice of the information structure when computing usage values can
modify the merit order in the system, that is, the order of the storage usage values with
respect to the thermal units prices.

Finally, in Section 6, we conclude on the relevance of the choice of information structures
in the computation of usage values, hence on the optimal allocation of resources.

In Appendices A and B we relegate some technical results.

2 Physical and economical model of the energy system

In this Section 2, we describe the physical and economical model of the energy system we
consider. In §2.1, we present the timeline with two timescales. In §2.2, we define the variables
to model the system. In §2.3, we introduce the system dynamics and energy balance. Finally,
in §2.4, we present the cost function modelling.

2.1 Timeline definition

We consider a timeline with a long timescale and a short timescale. The short and long
timescales could be any two scales, as long as one is larger than the other. In this work, the
long timescale is given by weeks that are represented by a finite totally ordered set (S,⪯),
where s+ is the successor of s ∈ S and s its predecessor: s ≺ · · · ≺ s ≺ s ≺ s+ ≺ · · · ≺ s
(where ≺ is the strict order associated to the order ⪯). Then, S = [s, s]. The short timescale,
hours in this case, is represented by a finite totally ordered set (H,⪯): h ≺ · · · ≺ h ≺ h ≺
h+ ≺ · · · ≺ h. Then, H = [h, h].

To unify the timescale we consider the product set S×H ordered as follows:

(s, h) ≺ · · · ≺ (s , h) ≺ (s, h) ≺ (s, h+) ≺ · · ·
· · ·(s, h ) ≺ (s, h) ≺ (s+, h) ≺ · · · ≺ (s, h) . (1)

We consider a period of one year, and (s, h) is the instant corresponding to the first hour
of the first week of the period, and (s, h) is the last hour of the last week of the period.
We need to define an extra time (s+, h) at its end to handle the resulting state of the last
decision. The extended unified timeline S×H is defined as S×H ∪ {(s+, h)}.

We define JsJ=
(
(s, h), (s, h+), . . . , (s, h)

)
and KsK =

(
(s, h+), . . . , (s, h), (s+, h)). Thus,

we use a simple bracket [ or ] to denote intervals of the elementary timelines (H,⪯) and

4



(S,⪯). By contrast, we use double brackets J or K for the composite (product) timeline
(S×H,⪯).

The different possibilities to index a variable (respectively a function) by time are detailed
in Table 1 (respectively in Table 2).

Table 1: Variables notation

Index Notation Description

(s, h) z(s,h) Variable at (s, h)

s zs
Representative variable for the week s

corresponding to the variable at (s, h)

JsJ zJsJ
Sequence of hourly variables given by(

z(s,h), z(s,h+), . . . , z(s,h)
)

KsK zKsK
Sequence of hourly variables given by(

z(s,h+), . . . , z(s,h), z(s+,h)
)

Table 2: Functions notation

Index Notation Description

(s, h) ϕ(s,h) Function expression at (s, h)

s ϕs
Characteristic aggregation of the hourly functions

ϕ(s,h) for the week s

JsJ ϕJsJ
Sequence of hourly functions ϕ(s,h) given by(

ϕ(s,h), ϕ(s,h+), . . . , ϕ(s,h)

)
KsK ϕKsK

Sequence of hourly functions ϕ(s,h) given by(
ϕ(s,h+), . . . , ϕ(s,h), ϕ(s+,h)

)
The characteristic aggregation in Table 2 could be a sum in h ∈ H, a composition with

respect of the state or a combination of both (see Appendix A for further details).

2.2 Physical variables

The following is a description of the system components. We classify the variables accordingly
to their type: decision (in the hand of the decision-maker), uncertainty (exogenous), state
(storage) and slack (energy not supplied in the system).

5



2.2.1 Thermal units modelling

We consider a thermal fleet composed of thermal units whose variables are detailed in Table 3
for the units indexed by i ∈ I. The “On” decision is associated with yth,i = 1 and the “Off”

Table 3: Thermal units variables

Description Type Notation

On/Off Decision yth,i ∈ {0, 1}

Modulation Decision θi ∈ {0} ∪
[
θi, θ

i]
Availability Uncertainty wth,i ∈ {0, 1}

decision with yth,i = 0. Observe that the decision yth,i is taken at each hour and does not
represent a change in the state of the unit. The decision θi denotes the power modulation
once the unit is on. The availability of the thermal units is modelled with the (uncertainty)
variable wth,i: when it is equal to 0 the unit is not available to use, and when it is equal to
1 the unit is available to use.

The collections of on/off decisions, modulation decisions and availabilities variables of all
thermal units are denoted by yth = (yth,i)i∈I, θ = (θi)i∈I and w

th = (wth,i)i∈I respectively.

2.2.2 Storage modelling

In Table 4, we introduce the variables related to the storage management. We consider
different variables for pumping (rp) and turbining (rt) decisions so that we take into account
the pumping efficiency in the storage. The variable q denotes the level of stock in the
reservoir, that is, the physical state of the reservoir.

Table 4: Storage variables

Description Type Notation

Pumping Decision rp ∈
[
0, rp

]
Turbining Decision rt ∈

[
0, rt

]
Level of stock Physical state q ∈

[
q, q

]

2.2.3 Residual demand modelling

The residual demand (wd) is the difference between demand and non-dispatchable produc-
tion. This allows to group in one variable several uncertainty sources such as the wind
production, the solar production, the demand, etc. The variable wd is classified as uncer-
tainty.

6



2.2.4 Slack variables

We introduce a variable ψens, classed as slack, to model the energy not supplied in the system.
This variable will appear in the forthcoming energy balance (6) and cost function (7).

2.3 System dynamics and energy balance

We present now the linking constraints between variables.

2.3.1 Storage dynamics

The dynamics function

f(q, rp, rt) = q + ηrp − rt (2)

describes the evolution of the level of stock — as a function of the current level of stock q
and the pumping rp and turbining rt decisions — from one short time stage to the next.
The parameter η ∈ [0, 1] is the pumping efficiency of the storage.

The hourly dynamics f induces a weekly temporal coupling linking the stock’s level at
the beginning of a week s with the stock level at the beginning of the following week s+.
Therefore, we also consider a weekly dynamics fs given by the hourly composition of the
dynamics in (2). The composition is detailed in Appendix A. It gives, as a result, the level of
stock q(s+,h) at the beginning of the following week, by summing the total difference between
pumping (positive taking into account its efficiency) and turbining (negative) during the
week to the stock’s level at the beginning of the current week q(s,h).

2.3.2 Thermal units’ production output

The effective output of the unit is constrained by its availability and the on/off decision.

More precisely, the output production θ̂i of the i-th thermal unit not only depends on the
decision θi but also on the on/off decision yth,i and on the availability uncertainty wth,i as
follows

θ̂i(yth,i, θi, wth,i) = θi ×min{yth,i, wth,i} . (3)

As defined, the production of the i-th unit belongs to the same set as θi, that is,

θ̂i(yth,i, θi, wth,i) ∈ {0} ∪
[
θi, θ

i]
, (4)

taking the value zero whenever the off decision is made (yth,i = 0) or the unit is not available

(wth,i = 0). The collection of output production of all thermal units is denoted by θ̂ = (θ̂i)i∈I.
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2.3.3 Balance equation

Satisfying the energy balance equation is the main goal of the adequacy resource problem.
That is, at every hour, the total energy production in the system should be equal to the total
energy consumed in the system (which includes the pumping). Ideally, the energy balance
constraint is written as the equality

total
production︷ ︸︸ ︷
rt +

∑
i∈I

θ̂i+

energy not
supplied︷︸︸︷
ψens =

pumping demand +
residual demand︷ ︸︸ ︷
rp + wd . (5)

We rather formulate this balance equation as an inequality constraint to avoid infeasibility
problems due to the thermal units’ minimum power constraints: indeed, infeasibility could
happen when less energy is required than the minimum power of the last (or more expensive)
unit on to meet the demand. If the cause of the balance infeasibility is the lack of available
production, the slack variable ψens will take positive values, measuring how far from meeting
the demand the system is. Thus, the hourly balance equation is given by

g(rt, rp, θ̂, wd, ψens) ≥ 0 , (6a)

with g
(
rt, rp, θ̂, wd, ψens

)
=

(
rt +

∑
i∈I

θ̂i + ψens
)
−
(
rp + wd

)
. (6b)

2.4 Cost functions

The cost of meeting the demand is the operating cost of the thermal units. In addition, we
model the penalization on the energy not supplied as a cost. This penalization cost is much
higher than the thermal units’ cost to ensure that the energy demand is not provided only
in cases where there is no other solution.

We model the thermal cost with two components for each unit. The first one is associated
with decision of switching on a unit, that is, when at one hour yth,i = 0 and in the following
hour yth,i = 1. The second component corresponds to the variable cost, and is proportional
to the power modulation θi of the unit.

We now introduce the hourly cost function ℓ(yth, zth, θ̂, wth, ψens) as

ℓ(yth, zth, θ̂, wth, ψens) =
∑
i∈I

(
sci ×max

{
yth,i − zth,i, 0

}
+ vci × θ̂i

)
+ pc× ψens , (7)

The parameters sci and vci correspond to the unit’s start-up and modulation costs and pc
is the penalization parameter for the not supplied energy in the system. The variable zth is
introduced to take into account a temporal shift of the on/off decision yth,i since the start
up cost is associated with a change from off to on between two consecutive hours (see Tables
5 and 6).
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The weekly cost ℓs will be defined as the sum of the hourly costs ℓ within the week in
Tables 5 and 6.

Up to now, we have introduced the physical and economical modelling of the problem.
In Section 3, we will present the current practice for the adequacy problem mathematical
formulation to compute usage values focusing on the information structure modelling.

3 Current information modelling in weekly hazard-decision

When modelling a stochastic multistage optimization problem, it is necessary to define the
information structure, that is, a model that describes the information available at each stage
of the decision-making process.

In §3.1, we introduce notations for random variables and measurability constraints. In
§3.2, we present the weekly hazard-decision information structure. In §3.3, we formulate the
multistage stochastic optimization problem. In §3.4, we deduce the corresponding Bellman
equations in hazard-decision.

3.1 Notation for random variables and measurability constraints

To formulate the multistage stochastic optimization problem, we model the uncertainties
as random variables and, as a consequence, the states and controls are random variables
as well. For this purpose, we consider a probability space (Ω,F ,P). Random variables are
denoted by bold letters like Z. The information structures are mathematically modelled as
measurability constraints. We say that Z1 is measurable with respect to Z2 if σ(Z1) ⊂ σ(Z2),
that is, the σ-field generated by Z1 is included in (less rich than) the σ-field generated by Z2.
Under technical assumptions in Doob Theorem [5], measurability constraints are equivalently
expressed by means of functions as follows

σ(Z1) ⊂ σ(Z2) ⇐⇒ ∃φ : (Z2,Z2) → (Z1,Z1) measurable

s.t. Z1 = φ(Z2) . (8)

Practically, the function φ is what we call policy or strategy, when Z2 represents the infor-
mation disclosed when making a decision.

3.2 Weekly hazard-decision information structure (HD)

In this section, we consider information structures that assume a weekly disclosure of the
information: once the uncertainty of the first hour of the week is known, the whole collection
of uncertainties for the week is also known. The weekly vectors presented hereafter follow
the notation given in Table 1. Let wKsK = (wd

KsK, w
th
KsK) be the vector composed of the weekly

demand and weekly availabilities. In the same way, the vector composed of the collection of
weekly controls is denoted by vKsK = (ythKsK, θKsK, r

p
KsK, r

t
KsK, ψ

ens
KsK ).

The current practice to model the information structure is a hazard-decision (HD) struc-
ture in the weekly timescale as illustrated in Fig. 1.
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(s, h) (s, h) (s, h+) (s, h) (s, h) (s, h)+ (s, h) (s+, h)

vKsK

Uncertainty wKsK of the week s(
w(s,h+), . . . , w(s,h), . . . , w(s+,h)

)

Span of available information before making decision vKsK

Figure 1: Weekly hazard-decision information structure

The collection vKsK =
(
v(s,h+), . . . , v(s+,h)

)
of hourly decisions for the week is made once

the block wKsK =
(
w(s,h+), . . . , w(s+,h)

)
of uncertainties for the week is disclosed. In other

words, when making the decisions for any hour of the week, the demand and the availability
of thermal units for every hour in the week are already known (in advance). We can also
interpret this structure as if the hourly decisions can wait until knowing all the uncertainties
of the week to be made. In this context, all the hourly decisions within the week are
anticipative since, when making them, the uncertainties until the end of the week are already
known.

Finally, for the weekly hazard-decision structure, the information constraint is represented
by the following measurability constraints

σ(VKsK) ⊂ σ(W(s,h),WKsK, . . . ,WKsK) , ∀s ∈ S . (9)

3.3 Multistage stochastic optimization problem formulation

In Section 2, we have presented the physical and economical model of the energy system.
With the new notation in §3.2, we present in Table 5 the corresponding expressions and their
compact mathematical versions.

The weekly cost function ℓs is obtained as the sum of the hourly cost functions within
the week. When computing the hourly cost at (s, h) with Equation (7), the variable zth

correspond to the on/off decision yth(s,h) at the previous hour. For simplicity, we neglect the
temporal coupling of thermal units from the last hour of one week to the first hour of the
next week. This explains the presence of a zero as second entry in the first term in the
expression of the weekly cost in the last line of Table 5.

Considering the definitions in Table 5, we formulate the physical adequacy problem as
a stochastic multistage optimization problem using the weekly hazard-decision information
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Table 5: Correspondence between mathematical and physical and economical notations in
the weekly hazard-decision framework

Notation

Function Mathematical Physical-Economical

Storage

dynamics
Fs

(
q(s,h),vKsK

)
fs

(
q(s,h),r

p
KsK,r

t
KsK

)
Thermal

production
Θ̂KsK

(
wKsK,vKsK

) {
θ̂(s,h)+

(
yth
(s,h)+

,θ(s,h)+ ,w
th
(s,h)+

)}
h∈H

Energy

balance
GJsJ

(
wKsK,vKsK

)
{
g

(
rt
(s,h)+

,rp
(s,h)+

,

θ̂(s,h)+

(
yth
(s,h)+

,θ(s,h)+ ,w
th
(s,h)+

)
,

wd
(s,h)+

,ψens
(s,h)+

)}
h∈H

Weekly

cost
Ls

(
wKsK,vKsK

) ℓs

(
ythKsK,θ̂KsK,w

th
KsK,ψ

ens
KsK

)
=

ℓ
(
yth
(s,h)+

,0,θ̂(s,h)+ ,w
th
(s,h)+

,ψens
(s,h)+

)
+∑

h∈H\{h}

ℓ
(
yth
(s,h)+

,yth
(s,h)

,θ̂(s,h)+ ,

wth
(s,h)+

,ψens
(s,h)+

)
structure:

min
Q,V

E

[∑
s∈S

Ls(Q(s,h),VKsK,WKsK) +K(Q(s+,h))

]
(10a)

such that , ∀s ∈ S
Q(s,h) = W(s,h) , (10b)

Q(s+,h) = Fs(Q(s,h),VKsK) , (10c)

GJsJ(VKsK,WKsK) ≥ 0 , (10d)

σ(VKsK) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs K,WKsK

)
. (10e)

The final cost K(Q(s+,h)) is used to give value to the energy in the storage at the end of the
yearly period.

11



3.4 Bellman equations in hazard-decision

Defining the weekly state xs = q(s,h) (level of stock in the storage at the beginning of the
week), we write the weekly Bellman equations (see [1] for further details)

BHD
s+ (xs+) = K(xs+) , (11a)

BHD
s (xs) = E

[
min
vKsK

Ls
(
xs, vKsK,WKsK

)
+BHD

s+

(
Fs(xs, vKsK)

)]
, (11b)

where the minimum inside Equation(11b) is computed subject to the constraint (10d).
If the sequence

(
WKsK, . . . ,WKsK, . . . ,WKsK

)
of uncertainties is weekly independent, the

weekly Bellman equations provide an optimal solution for Problem (10). We highlight that,
to get the optimal solution, the hourly uncertaintiesWKsK =

(
W(s,h+), . . . ,W(s,h)+ , . . . ,W(s+,h)

)
within the week do not need to be assumed to be independent (from one hour to another).

It is well known that, for all s ∈ S, the function BHD
s satisfies

BHD
s (xs) = min

VKsK,...,VKsK
E

[
s∑

s′=s

Ls′(Q(s′,h),VKs′K,WKs′K) +K(Q(s+,h))

]
(12a)

such that , ∀s′ ∈ [s, . . . , s]

Q(s′,h) = xs , (12b)

Q(s′+,h) = Fs′(Q(s′,h),VKs′K) , (12c)

GJs′J(VKs′K,WKs′K) ≥ 0 , (12d)

σ(VKs′K) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K,WKs′K

)
, (12e)

so that the value BHD
s (xs) of the Bellman function is interpreted as the future optimal cost

when, at week s, the level of stock is xs and the weekly hazard-decision information structure
is considered.

The need for a new information structure arises out of the fact that the current approach
is fully anticipative in the week, as illustrated in the minimum inside the expectation on the
right hand side of the Bellman equation (11b). When assuming that all the uncertainties
for the week are known at the moment of making a decision, we implicitly suppose that all
decisions are flexible and can wait until knowing the uncertainties to be made. But it is
known that certain on/off decisions cannot be made instantaneously and need to be planned
in advance. For this purpose, we introduce a new information structure in Section 4.

4 New information modelling in weekly decision-hazard-

decision

In the new weekly decision-hazard-decision (DHD) information structure, there are decisions
that cannot be modelled as (weekly) anticipative.

We classify the decisions in the system modelling between:
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• planning or decision-hazard (here-and-now) decisions: denoted by ũ,

• recourse or hazard-decision (wait-and-see) decisions: denoted by ṽ

Ideally, we should consider an information structure in which at the beginning of the week the
planning for the nonanticipative decisions ũJsJ is made knowing only the past uncertainties,
that is, the uncertainties up to (s, h). Then, when the uncertainties w(s,h) begin to be
disclosed hour by hour, there are so-called hourly recourse decisions ṽ(s,h) that are also made
hour by hour knowing the uncertainties up to (s, h). Such information structure is illustrated
in Fig. 2.

(s, h)

ũJsJ

Span of available information

before making the nonanticipative

decision ũJsJ

(s, h) (s, h+) (s, h) (s, h) (s, h)+ (s, h) (s+, h)

Uncertainties(
w(s,h+), . . . , w(s,h) , w(s,h), w(s,h)+

)

ṽ(s,h+) ṽ(s,h) ṽ(s,h) ṽ(s,h)+

Span of available information before

making the recourse decision ṽ(s,h)+

Figure 2: Decision-hazard-decision information structure with hourly recourse

This structure leads to Bellman equations (see Appendix B) with 168 nested mathemat-
ical expectations and minimizations, hence out of reach to compute. This is why we opt for
a compromise solution, detailed in this section.

Remark 1 In real operation it is possible to adjust the production “in real time” to meet
demand, that is, there is some anticipativity at the fast timescale for the hourly recourse
decision ṽ(s,h). Therefore, it is not unrealistic to consider the ideal model described above.
Note that, it is not possible to consider a fully nonanticipative (or decision-hazard) structure,
in which the hourly recourse decisions ṽ(s,h) are made knowing the uncertainties up to (s, h)
(instead of (s, h)), because it would lead to an excessive usage of the slack variable ψens in
the energy balance equation (6).

In §4.1, we present the weekly decision-hazard-decision information structure. In §4.2, we
formulate the multistage stochastic optimization problem. In §4.3, we give the correspond-
ing Bellman equations in decision-hazard-decision. In §4.4, we compare Bellman function
according to the underlying information structures, namely HD and DHD.
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4.1 Weekly decision-hazard-decision information structure (DHD)

As shown in Fig. 3, the planning decisions ũJsJ are made before knowing the uncertainties wKsK

for the week (knowing only the past uncertainties); then, the weekly block of uncertainties
is disclosed, and the corrective actions are made, that is, the recourse controls ṽKsK.

(s, h)

ũJsJ

Span of available information

before making the nonanticipative

decision ũJsJ

(s, h) (s, h+) (s, h) (s, h) (s, h)+ (s, h) (s+, h)

ṽKsK

Uncertainty wKsK of the week s(
w(s,h+), . . . , w(s,h), . . . , w(s+,h)

)

Span of available information before making the recourse decision ṽKsK

Figure 3: Weekly decision-hazard-decision information structure

Since the recourse decisions for the beginning of the week are made knowing the uncer-
tainties for the whole week, they are anticipative.

For the weekly decision-hazard-decision structure, the information constrains are given
by the σ-fields inclusions

σ(ŨJsJ) ⊂ σ(W(s,h),WKsK, . . . ,WKs K) , ∀s ∈ S , (13a)

σ(ṼKsK) ⊂ σ(W(s,h),WKsK, . . . ,WKs K,WKsK) , ∀s ∈ S . (13b)

4.2 Multistage stochastic optimization problem formulation

Now we classify the physical controls described in §2.2 into planning controls ũJsJ and recourse
controls ṽKsK as follows

ũJsJ = yth,slowJsJ (14a)

ṽKsK = (yth,fastKsK , θKsK, r
p
KsK, r

t
KsK, ψ

ens
KsK ) . (14b)

We model as planning decisions the on and off decisions for the “slow” thermal units,
and as recourse decisions all the remaining ones. We consider this classification to, in a way,
model the rigidity of some thermal units, i.e. to model the fact that they cannot be switched
on instantaneously. Now the collection of on/off decisions for the thermals is composed of
yth = (yth,slow, yth,fast).
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In Section 2, we have presented the physical and economical model of the energy system.
With the new notation in §4.2, we present in Table 6 the corresponding expressions and
their compact mathematical versions. As already explained in §3.3, we neglect the temporal

Table 6: Correspondence between mathematical and physical and economical notations in
the weekly decision-hazard-decision framework

Notation

Function Mathematical Physical-Economical

Storage

dynamics
F̃s

(
q(s,h),ṽKsK

)
fs

(
q(s,h),r

p
KsK,r

t
KsK

)
Thermal

production
Θ̃KsK

(
ũJsJ,wKsK,ṽKsK

) {
θ̂(s,h)+

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,θ(s,h)+ ,w

th
(s,h)+

)}
h∈H

Energy

balance
G̃JsJ

(
ũJsJ,wKsK,ṽKsK

)
{
g

(
rt
(s,h)+

,rp
(s,h)+

,

θ̂(s,h)+

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,θ(s,h)+ ,w

th
(s,h)+

)
,

wd
(s,h)+

,ψens
(s,h)+

)}
h∈H

Weekly

cost
L̃s

(
ũJsJ,wKsK,ṽKsK

)
ℓs

((
yth,slowJsJ ,yth,fastKsK

)
,θKsK,w

th
KsK,ψ

ens
KsK

)
=

ℓ

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,0,θ̂(s,h)+ ,w

th
(s,h)+

,ψens
(s,h)+

)
+∑

h∈H\{h}

ℓ

((
yth,slow
(s,h)

,yth,fast
(s,h)+

)
,
(
yth,slow
(s,h)

,yth,fast
(s,h)

)
+

θ̂(s,h)+ ,w
th
(s,h)+

,ψens
(s,h)+

)
coupling of thermal units from the last hour of one week to the first hour of the next
week. Considering the definitions in Table 6, we formulate the physical adequacy problem
as a stochastic multistage optimization problem using the weekly decision-hazard-decision
information structure:

min
Q,Ũ,Ṽ

E

[∑
s∈S

L̃s(Q(s,h), ŨJsJ,WKsK, ṼKsK) +K(Q(s+,h))

]
(15a)

such that , ∀s ∈ S
Q(s,h) = W(s,h) , (15b)

Q(s+,h) = F̃s(Q(s,h), ṼKsK) , (15c)

G̃JsJ(ŨJsJ,WKsK, ṼKsK) ≥ 0 , (15d)

σ(ŨJsJ) ⊂ σ(W(s,h),WKsK, . . . ,WKs K) , (15e)

σ(ṼKsK) ⊂ σ(W(s,h),WKsK, . . . ,WKs K,WKsK) . (15f)
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The final cost K(Q(s+,h)) is used to give value to the energy in the storage at the end of the
yearly period.

4.3 Bellman equations in decision-hazard-decision

Defining the weekly state xs = q(s,h), that is, the level of stock in the storage at the beginning
of the week, we write the weekly Bellman equations (16) using [4, Proposition 13]

BDHD
s+ (xs+) = K(xs+) , (16a)

BDHD
s (xs) = min

ũJsJ

E
[
min
ṽKsK

L̃s(xs, ũJsJ,WKsK, ṽKsK) +BDHD
s+

(
F̃s(xs, ṽKsK)

)]
, (16b)

where the minimum inside the expectation term of Equation (16b) is computed subject to
the constraint (15d).

If the sequence
(
WKsK, . . . ,WKsK, . . . ,WKsK

)
of uncertainties is weekly independent, the

weekly Bellman equations provide an optimal solution for Problem (15). We highlight that,
to get the optimal solution, the hourly uncertaintiesWKsK =

(
W(s,h+), . . . ,W(s,h)+ , . . . ,W(s+,h)

)
within the week do not need to be assumed to be independent (from one hour to another).

It is well known that, for all s ∈ S, the function BDHD
s satisfies

BDHD
s (xs) = min

ŨJsJ,...,ŨJsJ

ṼKsK,...,ṼKsK

E

[
s∑

s′=s

Ls′(Q(s′,h), ŨJs′J,WKs′K, ṼKs′K) +K(Q(s+,h))

]
(17a)

such that , ∀s′ ∈ [s, . . . , s]

Q(s′,h) = xs , (17b)

Q(s′+,h) = Fs′(Q(s′,h), ṼKs′K) , (17c)

GJs′J(ŨJs′J,WKs′K, ṼKs′K) ≥ 0 , (17d)

σ(ŨJs′J) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K

)
, (17e)

σ(ṼKs′K) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K,WKs′K

)
, (17f)

so that, the value BDHD
s (xs) of Bellman function is interpreted as the future optimal cost

when at week s the level of stock is xs and the weekly decison-hazard-decision information
structure is considered.

4.4 Theoretical comparison between Bellman functions in HD and
DHD

When we compare theoretically the Bellman functions BHD
s and BDHD

s , given by the Bellman
equations (11) and (16), we observe that the weekly hazard-decision approach is a relaxation
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of the weekly decision-hazard-decision approach with respect to the information constraint,
as sketched below

weekly
hazard-decision︷ ︸︸ ︷
E min

vKsK︸︷︷︸
slow
fast

versus

weekly decision-
hazard-decision︷ ︸︸ ︷
min
ũJsJ︸︷︷︸
slow

E min
ṽKsK︸︷︷︸
fast

(18)

In other words, at each stage of the stochastic multistage optimization problem, the decision
maker has more information when making the decision in the HD case. Therefore, we have
the following relation for all s ∈ S:

BHD
s ≤ BDHD

s . (19)

The usage values — or prices p — are defined as the opposite of the derivative of the
Bellman functions with respect to the level of stock [9]:

pHDs = − d

dx
BHD
s (x) , (20a)

pDHD
s = − d

dx
BDHD
s (x) . (20b)

Whereas we have established an inequality between Bellman functions in Equation (19), it
is impossible to do so for the usage values (as they are derivatives).

In Section 5, we compare numerically the effect of both information structures when
computing usage values for a case study of small size.

5 Numerical study

In this section, we present a numerical study. In §5.1, we describe the electrical system of
small size considered. In §5.2, we present the method to compute the Bellman functions
and usage values, either for the hazard-decision information structure in Section 3 or for
the decision-hazard-decision information structure in Section 4. In §5.3, we compare the
numerical results for the usage values. Finally, in §5.4, we show the effect of the information
modelling choice when designing policies to carry on a simulation of the energy system
dispatch.

5.1 Case study description

We consider a small electrical system to conduct the numerical study with the components
listed hereafter.

• 3 thermal units: base unit, semi-base unit and peak unit.

• 1 residual demand.
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• 1 storage unit.

The thermal units differ in their prices and power capacities. Whereas the base and semi-
base units are the cheapest and the less flexible ones, the peak unit is the most expensive
but the most flexible one.

We model the components mentioned above as in Section 2, and we consider the weekly
hazard-decision (Section 3) and the weekly decision-hazard-decision (Section 4) mathemat-
ical modelling of the problem. In the weekly hazard-decision case, all the decisions for the
week are anticipative but, in the weekly decision-hazard-decision case, we consider that the
on and off decisions for the base and semi-base units are nonanticipative (planned in ad-
vance). This classification is made taking into account the rigidity and flexibility of the
units.

To model the uncertainties, we have taken a finite number of scenarios provided by RTE,
with uniform probability. We divide the scenarios into two sets:

•
(
wnKsK

)
s∈S

for n ∈ J1, NK = {1, . . . , N} used to compute Bellman functions and their

associated nonanticipative policies,

•
(
wcKsK

)
s∈S

for c ∈ J1, CK = {1, . . . , C} used in simulation.

We use for the computations the programming language Julia [3], the JuMP package [7]
and the Xpress solver.

5.2 Bellman functions computation

We compute the Bellman functions using the classical stochastic dynamic programming
algorithm [2] for the hazard-decision framework, and an adapted version for the decision-
hazard-decision framework. In both cases, the problem for the entire year is decomposed in
weekly problems that we solve using the backward recursions (11) and (16) (respectively)
for a discretization of the state space X.

The expectations in the Bellman equations are computed as finite sums
∑

n∈J1,NK
1
N
Φ(wnKsK),

where wnKsK is a weekly scenario and 1
N

its corresponding probability.

The objective is to obtain two sequences
(
BHD
s

)
s∈S and

(
BDHD
s

)
s∈S of Bellman functions

corresponding to the weekly hazard-decision and weekly decision-hazard-decision frame-
works. They are represented by real numbers

(
BHD
s (x)

)
s∈S and

(
BDHD
s (x)

)
s∈S with x varying

in a grid (⊂ X). In this case study, we consider that the cost-to-go BHD
s+ and BDHD

s+ in (11)
and (16) respectively are piecewise linear functions. Therefore, for both structures, we solve
MILP problems for each week. The algorithm sketches are presented in Alg. 1 and Alg. 2.

Whereas in the HD Algorithm 1, at each week and each point of the discretization of
the state space, N deterministic mixed integer linear problems are solved, in the DHD Al-
gorithm 2, a stochastic two-stage mixed integer linear problem is solved.

When comparing the Bellman functions for all the weeks in the year we obtain that
BHD
s (x) < BDHD

s (x) for all x, which numerically confirms the theoretical result in (19).
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Algorithm 1: Hazard-decision stochastic dynamic programming

Data: uncertainties scenarios wnKsK with n ∈ J1, NK and probabilities 1
N
,

space state discretization x ∈ X,
final cost K

(
xs+

)
Result:

{
BHD
s (x)

}
s∈S

for s = s, . . . , s do
for x ∈ X do

BHD,0
s (x) = 0;

for n ∈ J1, NK do

BHD,n
s (x) = BHD,n−1

s (x) + 1
N
min
vnKsK

{
Ls

(
x,wnKsK, v

n
KsK

)
+BHD

s+

(
Fs(x, v

n
KsK)

)
,

s.t. (10d)
}

end

end

end

The usage values or prices, p, are calculated as the opposite of the derivative of the
Bellman functions with respect to the level of stock as in Equations (20). As the Bellman
functions are computed on a discrete grid, and as usage values in (20) have been defined as
derivatives, usage values are approximated by increments between middle points of the state
space grid by the formula

d

dx
Bs(x) ≈

Bs(x+
∆x
2
)−Bs(x− ∆x

2
)

∆x
, (21)

with ∆x the discretization step.

5.3 Numerical results for usage values

In Fig. 4, we compare the prices of the thermal units with the usage values obtained with
the Bellman functions computed using the HD and DHD structures.

We observe that, for levels of stock higher than 20%, the HD usage value in blue is above
the semi-base unit price (dashed yellow), whereas the DHD usage value in red is below. As
a consequence, we expect different dispatches in simulation when using these usage values
to design the storage policy, since the merit order of the production means changes. This
change in the dispatch could lead to different conclusions when carrying out prospective
studies. In §5.4 we compare the results in simulation induced by both modelling options to
compute Bellman functions.
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Algorithm 2: Decision-hazard-decision stochastic dynamic programming

Data: uncertainties scenarios wnKsK with n ∈ J1, NK and probabilities 1
N
,

space state discretization x ∈ X,
final cost K

(
xs+

)
Result:

{
BDHD
s (x)

}
s∈S

for s = s, . . . , s do
for x ∈ X do

BDHD
s (x) = min

ũJsJ

N∑
n=1

1

N

(
min
ṽnKsK

{
Ls

(
x, ũJsJ, w

n
KsK, ṽ

n
KsK

)
+BDHD

s+

(
Fs(x, ṽ

n
KsK)

)
,

s.t. (15d)
})

end

end

5.4 Numerical comparison between policies in HD and DHD

The goal of this part of the numerical study is to compare the dispatches obtained when
using the policies induced by both Bellman functions

(
BHD
s

)
s∈S and

(
BDHD
s

)
s∈S computed in

§5.2 .
We recall that an uncertainty scenario for simulation (also called chronicle) is denoted

by
(
wcKsK

)
s∈S

. We simulate the operation of the system for different chronicles c ∈ J1, CK in

which the availability and demand change.
For the sake of simplicity and to be consistent with the weekly decision-hazard-decision

information structure, we choose to design an “anticipative simulator”: uncertainties are
disclosed at the end of the week and recourse controls are computed at the end of the week
but applied within the week. The simulation algorithm is the same regardless the sequence
of Bellman functions (HD or DHD) chosen to design the policies.

We illustrate how the simulation is done for one uncertain chronicle in Algorithm 3. We
highlight that this simulation algorithm can be used with any Bellman function.

In Fig. 5, we compare the simulations of the dispatches for one chronicle of uncertainties
(residual demand and availability fixed) in the week 20 of the year when using the HD and
DHD Bellman functions to compute the policies. In the selected chronicle, the base unit is
not available until the hour 96 of the week. The semi-base and peak unit are available during
the entire week.

We compare the dispatch obtained with the weekly hazard-decision policy in Fig. 5a
with the one obtained with the weekly decision-hazard-decision policy in Fig. 5b. To satisfy
the same demand, with the same production means available, we observe that the dispatch
varies depending on the policy considered. In the case of the HD policy, the semi-base unit
works at its maximum power and the marginal production is made by the storage. On the
contrary, in the DHD policy dispatch, the storage operates at its maximum power and the
marginal production is made by the semi-base unit.
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Figure 4: Prices and usage values comparison for week 20

This difference comes from the fact that, as we remarked in Fig. 4, the HD usage values
are above the semi-base unit price, whereas the DHD usage values are below the semi-base
unit price. This changes the dispatch order.

The merit order difference in the two policies studied is observed for several weeks in the
year, which leads, for all chronicles, to a higher use of the storage (more turbining and more
pumping) when using the DHD policy.

However, we observe that the HD policy tends to store more energy than the DHD policy
as we can see in Fig. 6 for the same simulated yearly chronicle. This result is observed in
all simulated chronicles and can be explained with the usage value difference: in the case of
the DHD policy there is less interest in storing energy since it has lower usage value.

6 Conclusion

During this work, we first formalized the weekly hazard-decision information structure in
a two-timescale setting. This is the most common information framework nowadays when
modelling the resource adequacy problem as a multistage stochastic optimization problem
to compute usage values for prospective studies under uncertainty. We wrote the weekly
Bellman equations in this framework, that make it possible to compute usage values for the
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Algorithm 3: Decision-hazard-decision policy and simulation

Data: uncertainties scenarios wnKsK with n ∈ J1, NK and probabilities 1
N
,

space state discretization x ∈ X,
Bellman functions

{
Bs

}
s∈S,

simulation chronicle
{
wcKsK

}
s∈S

,

initial condition for the state x0
Result:

{
xcs, u

c
JsJ, v

c
KsK

}
s∈S

xcs = x0
for s = s, . . . , s do

compute nonanticipative controls:

ucJsJ = argmin
ũJsJ

N∑
n=1

1

N

(
min
ṽnKsK

{
Ls

(
xcs, ũJsJ, w

n
KsK, ṽ

n
KsK

)
+Bs+

(
Fs(x

c
s, ṽ

n
KsK)

)})
compute recourse controls:

vcKsK = argmin
ṽKsK

{
Ls

(
xcs, u

c
JsJ, w

c
KsK, ṽKsK

)
+Bs+

(
Fs(x

c
s, ṽKsK)

)}
update state:

xcs+ = Fs(x
c
s, ṽKsK)

end

energy in the storage. These Bellman equations respect the hourly physical constraints.
We highlighted the need to improve this structure to account for temporal rigidities in

thermal operation, that is, the fact that on/off decisions cannot be modelled as fast or last
minute decisions. Therefore, we introduced the weekly decision-hazard-decision information
structure. In this structure, the decisions for each stage in the decision-making process are
separated into planning and recourse decisions depending on the physical modelling aspects
of the decisions. We presented the mathematical formulation of the problem considering the
weekly decision-hazard-decision information structure and its associated Bellman equations
in the weekly timescale, that still respect the hourly physical constraints.

Afterwards, we carried out a numerical analysis to quantify, in a case study, the conse-
quences of the information structure modelling choice when computing Bellman functions
and their associated usage values. From this study, we inferred that the policy induced by
the weekly hazard-decision information modelling leads to an overestimation of the thermal
flexibility and as a result, a lower use of the storage. When using the policy induced by the
weekly decision-hazard-decision Bellman functions, we take into account some rigidity in the
thermal units (specially on/off decisions) and the storage is more used. In consequence, we
think that decision-hazard-decision information structures are of great interest to calculate
usage values taking into account that some types of thermal units are less flexible.

22



References

[1] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J.,
1957.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Bel-
mont, Massachusetts, second edition, 2000. Volumes 1 and 2.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

[4] P. Carpentier, J.-P. Chancelier, M. D. Lara, T. Martin, and T. Rigaut. Time blocks
decomposition of multistage stochastic optimization problems. Journal of Convex Anal-
ysis, 30(2):627–658, 2023.

[5] C. Dellacherie and P. A. Meyer. Probabilités et potentiel. Hermann, Paris, 1975.

[6] M. Doquet, R. Gonzalez, S. Lepy, E. Momot, and F. Verrier. A new tool for adequacy
reporting of electric systems: Antares. CIGRE, 2008. 42nd International Conference
on Large High Voltage Electric Systems.

[7] M. Lubin, O. Dowson, J. Dias Garcia, J. Huchette, B. Legat, and J. P. Vielma. JuMP
1.0: Recent improvements to a modeling language for mathematical optimization. Math-
ematical Programming Computation, 2023.

[8] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to
energy planning. Math. Program., 52:359–375, Oct. 1991.

[9] G. Steeger, L. Barroso, and S. Rebennack. Optimal bidding strategies for hydro-electric
producers: A literature survey. Power Systems, IEEE Transactions on, 29:1758–1766,
07 2014.

[10] A. Street, D. Valladão, A. Lawson, and A. Velloso. Assessing the cost of the hazard-
decision simplification in multistage stochastic hydrothermal scheduling. Applied En-
ergy, 280:115939, 2020.

A Hourly composition of the storage dynamics

We consider the hourly dynamics function given by

f(q, rp, rt) = q + ηrp − rt . (22a)

This equation represents the hourly evolution in the level of stock in a storage. To be
able to formulate the problem in a weekly framework, we define the weekly dynamics fs.
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The weekly dynamics fs(q(s,h), r
p
KsK, r

t
KsK) is obtained by composition of the hourly dynam-

ics f(q(s,h), r
p
(s,h)+ , r

t
(s,h)+) for h ∈ H, but the composition being done only on level of stock

variable.
To describe the dynamics composition we introduce the following extra notation,

f r
p,rt

(s,h)

(
q
)
= f

(
q(s,h), r

p
(s,h)+ , r

t
(s,h)+

)
. (22b)

Then,

fs
(
q(s,h), r

p
KsK, r

t
KsK

)
=

(
f r

p,rt

(s,h)
◦ f r

p,rt

(s,h )
◦ · · · ◦ f r

p,rt

(s,h)

)
(q(s,h)) . (22c)

From the hourly dynamics f expression (22a), the weekly dynamics fs is given by:

fs
(
q(s,h), r

p
KsK, r

t
KsK

)
= q(s,h) +

∑
h∈H

(
ηrp(s,h)+ − rt(s,h)+

)
. (22d)
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B Ideal information structure in decision-hazard-decision

B.1 Weekly decision-hazard-decision information structure with
hourly recourse

In addition to the weekly decision-hazard-decision structure presented in Section 4, we con-
sider an information structure in which the nonanticipative control ũJsJ is made knowing the
uncertainties up to the beginning of week s, and the hourly recourse control ṽ(s,h)+ is made
knowing the uncertainties up to the hour (s, h)+. As illustrated in Fig. 2, at the beginning
of the week s the nonanticipative decision ũJsJ is made (for all h ∈ H) and then, once the
uncertainties are disclosed hour by hour, the recourse decisions v(s,h)+ are sequentially made.

For the weekly decision-hazard-decision structure with hourly recourse the information
constraints are given by the σ-fields inclusions

∀s ∈ S ,
σ
(
ŨJsJ

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K

)
, (23a)

∀(s, h) ∈ S×H ,

σ
(
Ṽ(s,h)+

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K,W(s,h+), . . . ,W(s,h)+

)
. (23b)

B.2 Multistage stochastic optimization problem formulation

Considering the definitions in Table 6, we formulate the physical-economical adequacy prob-
lem as a stochastic multistage optimization problem using the weekly decision-hazard-decision
information structure with hourly recourse:

min
Ũ,Ṽ

E

[∑
s∈S

L̃s(Q(s,h), ŨJsJ,WKsK, ṼKsK) +K(Q(s+,h))

]
(24a)

such that , ∀(s, h) ∈ S×H
Q(s,h) = W(s,h) , (24b)

Q(s+,h) = F̃s(Q(s,h), ṼKsK) , (24c)

G̃JsJ
(
ŨJsJ,WKsK, ṼKsK

)
≥ 0 , (24d)

σ
(
ŨJsJ

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K

)
, (24e)

σ
(
Ṽ(s,h)+

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs K,W(s,h+), . . . ,W(s,h)+

)
. (24f)

The final cost K(Q(s+,h)) is used to give value to the energy in the storage at the end of the
yearly period.
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B.3 Bellman equations in decision-hazard-decision information struc-
ture with hourly recourse

Defining th weekly state xs = q(s,h), that is the level of stock in the storage at the beginning
of the week, we write the weekly Bellman equations (25)

BDHDh

s+

(
xs+

)
= K(Q(s+,h)) (25a)

BDHDh

s

(
xs
)
=

min
uJsJ

E

[

min
v(s,h+)

E
[

min
v(s,h+)+

E
[

...

min
v(s,h)

E
[

min
v(s+,h)

{
L̃s(xs, ũJsJ, wKsK, ṽKsK) +BDHDh

s+ (F̃s(xs, ṽKsK))
}

| (w(s,h+), w(s,h+)+ , . . . , w(s,h))
]

...∣∣(w(s,h+), w(s,h+)+)
]

∣∣∣w(s,h+)

]
]
. (25b)

where all the minimizations in Equation (25b) are computed subject to the constraint (24d).
If the sequence

(
WKsK, . . . ,WKsK, . . . ,WKsK

)
of uncertainties is weekly independent, the

weekly Bellman equations provide an optimal solution for the problem (24). We highlight
that the hourly uncertainties WKsK =

(
W(s,h+), . . . ,W(s,h)+ , . . . ,W(s+,h)

)
within the week

are not assumed to be independent to get an optimal solution.
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It is well known that, for all s ∈ S, the function BDHD
s satisfies

BDHDh

s (xs) = min
ŨJsJ,...,ŨJsJ

ṼKsK,...,ṼKsK

E

[
s∑

s′=s

Ls′(Q(s′,h), ŨJs′J,WKs′K, ṼKs′K) +K(Q(s+,h))

]
(26a)

such that , ∀s′ ∈ Js, . . . , sK
Q(s′,h) = xs , (26b)

Q(s′+,h) = Fs′(Q(s′,h), ṼKs′K) , (26c)

GJs′J(ŨJs′J,WKs′K, ṼKs′K) ≥ 0 , (26d)

σ(ŨJs′J) ⊂ σ
(
W(s,h),WKsK, . . . ,WKs′−K

)
, (26e)

σ
(
Ṽ(s′,h)+

)
⊂ σ

(
W(s,h),WKsK, . . . ,WKs′−K,W(s′,h)+ , . . . ,W(s′,h)+

)
. (26f)

so that the value BDHDh

s (xs) of Bellman function is interpreted as the future optimal cost
when at week s the level of stock is xs and the weekly decison-hazard-decision information
structure with hourly recourse is considered. More details can be found in Proposition 10 in
[4].

B.4 Theoretical comparison between Bellman functions in HD,
DHD and DHDh

When we compare theoretically the Bellman functions BHD
s , BDHD

s and BDHDh

s , given by the
Bellman equations (11), (16) and (25), we observe that the weekly hazard-decision approach
is a relaxation of the weekly decision-hazard-decision approach, and this last one is a relax-
ation of the weekly decision-hazard-decision with hourly recourse approach with respect to
the information constraint.

In other words, at each stage of the stochastic multistage optimization problem, the
decision maker has less information when changing from the HD to the DHD approach. The
same happens when changing from the DHD to the DHDh approach. Therefore, we have the
following relation for all s ∈ S:

BHD
s ≤ BDHD

s ≤ BDHDh

s . (27)
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(a) Weekly hazard-decision policy dispatch

(b) Weekly decision-hazard-decision policy dispatch

Figure 5: Dispatch comparison using the policies induced by the weekly hazard-decision and
weekly decision-hazard-decision Bellman functions

28



Figure 6: Comparison of the level of stock obtained from the weekly hazard-decision and the
weekly decision-hazard-decision policies for one given chronicle (of uncertainties)

29


