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Abstract. In this work, we present an optimal control problem un-
der state constraints for breast cancer treatment by chemotherapy. In
this instance, the drug dosage is considered as a control variable. Since
chemotherapeutic agents affect both tumor cells and healthy cells, the
main goal of the control problem is to minimize the evolution of tu-
mor cells with less possible damage to the normal tissue. A system of
nonlinear reaction-diffusion equations is used to describe the drug con-
centration in the tumor cells. The optimal control problem is formulated
by specifying a performance criterion and different kinds of constraints,
and the necessary optimality conditions are investigated. Afterward, nu-
merical simulations with realistic data are presented and discussed to
demonstrate the importance of suggesting optimal control strategies for
tumor cell dynamics and eradication. Finally, the conclusion and the
future perspectives are presented.

Keywords: Optimal control theory· state constraints· cancer chemother-
apy· nonlinear reaction-diffusion systems· malignant tumors· numerical
simulations.

1 Introduction and Motivation

One of the leading causes of death among women worldwide is breast cancer.
It’s a disease characterized by the uncontrolled growth of abnormal breast cells,
which then form malignant tumors. The earliest form is not life-threatening
and can be detected early. Malignant tumor cells spread to nearby breast tissue
through invasion. Invasive cancers then spread to the lymph nodes in the breast,
forming metastases that allow them to migrate to other organs such as the lungs,
brain, and liver. Among the different therapies for breast cancer, chemotherapy
is the most widely used treatment for the eradication of most cancers [6], using
cytotoxic drugs that promote cell death and are administered systemically in the
whole body. Difficulties in modeling chemotherapies lie in the acute toxicity of
drugs on normal breast cells and the resistance of tumors to drugs. Several math-
ematical models have proposed to describe the effect of chemotherapy on tumor
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growth [3, 7–9], and very recently, other mathematical models called treatment
response models directly using data from quantitative medical imaging have been
formulated [1, 2, 10]. The importance of treatment response models lies in the
fact that they integrate clinical or experimental data to predict the response of
tumors to treatments and allow testing of the effectiveness of different thera-
pies. In [2], an optimal chemotherapy strategy was studied. It was found that
when control constraints were imposed, tumor cell density was less responsive to
treatment. It would, therefore, be interesting to have, in addition to constraints
on the drug, a dynamic constraint on the density of tumor cells, forcing it to
respond to treatment. This wich helps to treat malignant cancers. To study the
evolution of tumor density in the breast subjected to chemotherapy, we consider
the following nonlinear parabolic equation described by

∂ϑ

∂t
= div(κ∇ϑ)− Ψ1ϑ

3 + Ψ2ϑ− α0ϕϑ in Q,

−κ∇ϑ · n = Ψ3ϑ
2 on Σ,

ϑ(t = 0,x) = ϑ0(x) in Ω,

(1)

under the constraint

φ0(x) ≤ ϕ(t,x) ≤ φ1(x) a.e.(x, t) ∈ Q, (2)

and the state constraint

G(ϕ) = ∥ϑ(t, ·)∥2L2(Ω)−ξ
ϑ
(t) ≤ 0 a.e.t ∈ (0, T ). (3)

The breast domain Ω is an open bounded domain in IR2 with a smooth boundary
Γ = ∂Ω, T > 0 is a given final time, Q = (0, T )×Ω, Σ = (0, T )×Γ and the vector
n is the outward normal to Γ . The value ϑ(t,x) is the tumoral density at time t
and position x in Ω and the function Ψ1 is the intrinsic growth rate. The function
Ψ2 is the tumor proliferation rate, and Ψ3 is the migration capacity of tumor cells
to other organs. The quantity ϕϑ is the treatment term describing the death of
cells due to chemotherapy treatment, in which the control value ϕ(t,x) models
the concentration of drugs in chemotherapy treatment at time t and position
x and ϑ0 is the density of tumor at time initial time t = 0. The diffusivity
function of the tumor cells is defined in Q and satisfies 0 < ς0 ≤ κ(t,x) ≤ ς1,
where ς0 and ς1 are two positives constants. The functions ξ, φ0 and φ1 are
sufficiently regular. It is worth noting that the nonlinear system (1) integrates a
control ϕ dependent on time and position and considers the capacity of invasion
and migration of cancer cells to other organs modeled by the function Ψ3. This
consideration is neglected (see, e.g., [1–3, 10, 11]). Note that, for an intracranial
brain tumor such as glioblastoma or astrocytoma, the migration capacity Ψ3 = 0,
because the cranial vault does not allow volume expansion of tumor cells but
in the breast or lung, Ψ3 ̸= 0, since we can witness a significant flow of tumor
cells migrating to other organs by spreading to the lymph nodes of the breast.
Moreover, the control limit functions φ0, φ1 are medical and patient-specific.
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The inequality constraint (2) imposed on the control ϕ makes it possible to
avoid acute toxicity of chemotherapeutic drugs beyond the drug concentration
limit.

2 Assumptions and Notations

In this section, we introduce the following spaces and some notations.
For p ∈]1; +∞] and s ∈ [0; 1/2[ we denote by

Lp
+(Q) = {u ∈ Lp(Q); u ≥ 0}, Zs = H2s+1(Ω),

Xs = L2(0, T ;Zs), Ws = H1(0, T ;Z ′
s), Us = Xs ∩Ws ∩ C([0, T ];Z0)

where Z ′
s is the topological dual of Zs. We note u+ the positive part of u by

u+ = max(u, 0). We can now give the weak formulation of the system (1).
(for all v ∈ Z0, and a.e t ∈ (0;T ), ϑ(t = 0,x) = ϑ0(x) in Ω) :∫

Ω

(∂ϑ
∂t

v + κ∇ϑ · ∇v + Ψ1ϑ
3v − Ψ2ϑv + α0ϕv

)
dx+

∫
Γ

Ψ3ϑ
2vdx = 0. (4)

We state the following hypothesis that the functions Ψi and φj must satisfy,
for i = 1, · · · , 3, j = 0, 1.

(H) Ψi ∈ L∞
+ (Q) for i = 1, 2, Ψ3 ∈ L∞

+ (Σ), and φi ∈ L3
+(Ω) for i = 0, 1. For

the initial condition ϑ0 of system (1), we impose ϑ0 ∈ H1(Ω) ∩ L∞
+ (Ω), and we

assume that the parameter ξ
ϑ

is chosen such that

ξ
ϑ
= ∥ϑ0∥2L2(Ω). (5)

According to (H) and [4], the system (4) admits one and unique solution ϑ in
Us ∩ L∞

+ (Q).
We end this section by giving the units of biological data for the system (1) as
follows:

– The diffusion function of tumor cells κ(mm2 · d−1)
– The drug concentration in chemotherapy treatment ϕ(µM)
– The intrinsic growth rate function of tumor cells Ψ1(d

−1)
– The cell’s tumor proliferation rate Ψ2(d

−1)
– The migration capacity function of tumor cells Ψ3(mm · d−1)
– The efficacity parameter of treatment α0(µM−1 · d−1)
– The final time of treatment T (d).

A micromolar (µM) is the number of moles per unit volume and is the usual
unit of molar concentration, mm is the unit of length, and d is the days.

Contribution. Our main goal is to eradicate malignant tumor growth in the
breast with as little damage as possible to normal cells. So, we impose a con-
straint on control to limit the acute toxicity of drugs and a dynamic constraint on
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tumor density throughout treatment. We propose an optimal control approach
and a numerical technique. We obtained very promising results.

Outline of the paper. The goal of this paper is to reduce the progression
of malignant breast tumors with minimal damage to normal cells. In Sec 3, we
presents the optimal control problem and the numerical techniques for resolution
are prensented in Sec 4 . Then, in Sec 5, we presents the numerical simulations
on two examples of eradication of malignant breast tumors with realistic data.
A conclusion and future perspectives are presented in Sec 6.

3 Optimal control problem

Let Yad = {ϕ ∈ L3(Q) : φ0(x) ≤ ϕ(t,x) ≤ φ1(x), a.e., t ∈ [0, T ]} and S : ϕ ∈
Yad 7−→ S(ϕ) ∈ Us ∩ L∞

+ (Q) such that ϑ = S(ϕ) is the unique solution of (1),
corresponding to ϕ. We introduce the following cost functional J , by

J (ϕ) =
1

2

∫
Q
ϑ2dxdt+

ϱ

3

∫
Q
|ϕ|3dxdt, (6)

where the parameter ϱ > 0 is the price we pay for control. The optimal control
problem consists of obtaining a minimizer of functional J with respect to ϕ.
We will study the following problem : Find ϕ∗ ∈ Yad such that functional J is
minimized with respect to ϕ subject to problem (1) and constraints (2) and (3).

Our control problem is then

(CP)

{
inf

ϕ∈Yad

J (ϕ);

s.t., G(ϕ) ≤ 0.
(7)

The existence of optimal solutions of (CP) is proved in [4], as well as a
differentiability result of S. The necessary conditions of first-order optimality
under certain conditions are also given in [4].

4 Numerical techniques

A new reformulation of the optimal control problem: This section presents
the strategies for resolution of the control problem (CP). To take into account
the different constraints, we modify the cost function J by penalizing the con-
straints to force them to be satisfied, which leads to the modified cost function

Jm(ϕ) = J (ϕ)+
ϱ1
3

∫
Q
(φ0−ϕ)3+dxdt+

ϱ2
3

∫
Q
(ϕ−φ1)

3
+dxdt+

ϱ3
4

∫ T

0

G(ϕ)2+dt. (8)

Then we solve a modified optimal control problem without constraint given by

(MCP)

{
inf

ϕ∈L3(Q)
Jm(ϕ);

subject to problem (1).
(9)
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Optimality conditions: As the problem (MCP) is non-convex and without
constraints, we therefore describe the necessary conditions of first-order optimal-
ity. According to [4], we know that the map S is continuously differentiable and
the derivative S ′(ϕ) : h 7−→ w is solution of the linear parabolic problem:

∂w

∂t
− div(κ∇w) + (3Ψ1ϑ

2 + α0ϕ − Ψ2)w = −α0hϑ in Q,

−κ∇w · n− 2Ψ3ϑw = 0 on Σ,

w(t = 0, ·) = 0 in Ω,

(10)

with ϑ = S(ϕ).
In order to derive the optimality conditions, we introduce the following ad-

joint problem corresponding to the primal solution ϑ.

−∂ϑ̃

∂t
− div(κ∇ϑ̃) + (3Ψ1ϑ

2 + α0ϕ − Ψ2)ϑ̃ = ϑ + ϱ3ϑG(ϕ)+ in Q,

−κ∇ϑ̃ · n− 2Ψ3ϑϑ̃ = 0 on Σ,

ϑ̃(t = T, ·) = 0 in Ω.

(11)

In the sequel, we denote by S̃(ϕ) = ϑ̃ the solution of adjoint problem cor-
responding to ϕ. The weak formulation of (11) is given by, for all v ∈ Z0,
(ϑ̃(t = T, ·)= 0 in Ω)

−
∫
Ω

∂ϑ̃

∂t
vdx+

∫
Ω

κ∇ϑ̃ · ∇vdx+ 2

∫
Γ

Ψ3ϑϑ̃vdx+ 3

∫
Ω

Ψ1ϑ
2ϑ̃vdx

+α0

∫
Ω

ϕϑ̃vdx−
∫
Ω

Ψ2ϑ̃vdx =

∫
Ω

ϑvdx+ ϱ3

∫
Ω

ϑG(ϕ)+vdx.

(12)

Now, we can compute the derivative of Jm defined by (8). Since all the terms
are smooth including the function G(·)2+ (G is continuously differentiable, and

we have, ∀h ∈ L3(Q), G′(ϕ) · h = 2

∫
Ω

ϑwdx). So, we have (∀h ∈ L3(Q)) :

J ′
m(ϕ) · h =

∫
Q

(
ϑ+ ϱ3ϑG(ϕ)+

)
wdxdt

+

∫
Q

(
ϱϕ2 − ϱ1(φ0 − ϕ)2+ + ϱ2(ϕ− φ1)

2
+

)
· hdxdt.

(13)

Taking now v = w in (12), we deduce, according to (10), that∫
Q

(
ϑ+ ϱ3ϑG(ϕ)+

)
wdxdt = −α0

∫
Q

hϑϑ̃dxdt
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and then (∀h ∈ L3(Q))

J ′
m(ϕ) · h=

∫
Q
(−α0ϑϑ̃+ ϱϕ2−ϱ1(φ0 − ϕ)2++ϱ2(ϕ− φ1)

2
+) · hdxdt. (14)

Consequently, the gradient of Jm relative to ϕ can be given as

∇Jm(ϕ) = −α0ϑϑ̃+ ϱϕ2 − ϱ1(φ0 − ϕ)2+ + ϱ2(ϕ− φ1)
2
+. (15)

Let ϕ∗ be a solution of (MCP) and ϑ∗ = S(ϕ∗) the associated optimal state.
Since there is no constraint in (9), we have then ∇Jm(ϕ∗) = 0, so that

ϱϕ2
∗ − α0ϑ∗ϑ̃∗ − ϱ1(φ0 − ϕ∗)

2
+ + ϱ2(ϕ∗ − φ1)

2
+ = 0, (16)

where ϑ̃∗ = S̃(ϕ∗) is the adjoint state corresponding to ϕ∗.

Brief description of the discrete problem: In this section, we give a numeri-
cal algorithm for solving the modified control problem (MCP), using the adjoint
variable. We will not provide a complete development of numerical resolution,
but we will only be interested in discretizing the control problem and its resolu-
tion process. We used the algorithm BFGS to solve the derived nonlinear optimiza-
tion problem. Then, we propose a finite element method coupled with the im-
plicit Euler scheme for solving the continuous optimization problem. To describe
the time-position discretization scheme, we introduce the finite-dimensional sub-
space Z0,h of Z0 associated with Th, where (Th)h be a regular family of meshes of
Ω̄. The subscript h stands for the meshsize. For the time discretization, we par-
tition the interval (0, T ) by using the following points, tn = nτ, for n = 0, · · · , N
with τ = T/N. For a continuous mapping ϑ : (0, T ) −→ L2(Ω), we denote
the approximation of ϑ(tn, ·) by ϑn

h, for n = 0, · · · , N. For a given sequence

(ϑn
h)n=0,...,N in L2(Ω), we define its difference quotient as ∂τϑ

n
h =

ϑn
h−ϑn−1

h

τ .
The step is chosen sufficiently small to guarantee both the time accuracy and
convergence of the solution. With the above notation, we formulate the finite
approximation of the problems (9) and (1) as follows:

Find ϕ∗,h in Yad,h wich minimize the functional

Jm,h(ϕh) =
τ

2

N∑
n=1

∫
Ω

(ϑn
h)

2dx+
τ

3

N∑
n=1

∫
Ω

|ϕn
h|3dx+

τϱ3
4

N∑
n=1

G(ϕn
h)

2
+

+
τϱ2
3

N∑
n=1

∫
Ω

(ϕn
h − φ1)

3
+dx+

τϱ1
3

N∑
n=1

∫
Ω

(φ0 − ϕn
h)

3
+dx,

(17)

where according to (4), ϑn
h ∈ Z0,h satisfying, for all vh ∈ Z0,h, (ϑ0

h = ϑ0 in Ω
and n = 1, 2, · · · , N)

∫
Ω

(
∂τϑ

n
hvh+κn∇ϑn

h · ∇vh+Ψn
1 (ϑ

n
h)

3vh−Ψn
2 ϑ

n
hvh

+ α0

∫
Ω

ϕn
hϑ

n
hvh

)
dx+

∫
Γ

Ψn
3 (ϑ

n
h)

2vhdx = 0.

(18)
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Remark 1. We note that, the problem (18) can be written as:

Fh(tn, ϑ
n
h,

ϑn
h − ϑn−1

h

τ
) = 0,

where Fh is a nonlinear operator. The resulting equation is solved using Newton’s
method under the software FreeFem++.

To solve the discretized finite element minimization of Jm,h(ϕ
n
h) over Yad,h, we

need to calculate the gradient of Jm,h(ϕ
n
h). According to (15), we can deduce

∇Jm,h(ϕ
n
h) = ϱ(ϕn

h)
2 − α0ϑ̃

n
ϱ3,hϑ

n
h − ϱ1(φ0 − ϕn

h)
2
+ + ϱ2(ϕ

n
h − φ1)

2
+, (19)

where ϑ̃n
ϱ3,h

= S̃m,h(ϕh) is the solution of the following discrete adjoint problem
(we use (12) and the discrete backward Euler approximation of time) (with
ϑ̃n+1
ϱ3,h

(T, ·) = 0 for n = 0, 1, · · · , N − 1. )

−
∫
Ω

∂τ ϑ̃
n+1
ϱ3,h

· vhdx+

∫
Ω

κn∇ϑ̃n
ϱ3,h · ∇vhdx+ 2

∫
Γ

Ψn
3 ϑ

n
hϑ̃

n
ϱ3,h · vhdx

+ 3

∫
Ω

Ψn
1 (ϑ

n
h)

2ϑ̃n
ϱ3,h · vhdx−

∫
Ω

Ψn
2 ϑ̃

n
ϱ3,h · vhdx+ α0

∫
Ω

ϕn
hϑ̃

n
ϱ3,h · vhdx

=

∫
Ω

ϑn
h · vhdx+ ϱ3

∫
Ω

ϑn
hG(ϑn

h)+ · vhdx

(20)

Now we give the optimization algorithm for the resolution of control problem.

Optimization algorithm: According to the previous discrete formula (19)
and (20), we can now present the following BFGS scheme to solve the discrete
minimization problem (17) and (18). For k = 1, · · · (the iteration index), we
denote by ϕh,k the numerical approximation of the control at the kth iteration
of the algorithm.

1. Initialisation: ϕh,0 (given).
2. Compute the discrete primal problem (18) with the control ϕh,k, gives ϑn

h,k;
for n = 1, 2, · · · , N.

3. Compute the discrete adjoint problem (20) (based on (ϕh;k, ϑh,k, ϱ3)), gives
ϑ̃n
h,k,ϱ3

, for n = N − 1, N − 2, · · · , 0.
4. Compute the gradient of Jm,h gives

dh,k = ϱ(ϕh,k)
2 − α0ϑ̃h,k,ϱ3

ϑh,k − ϱ1(φ0 − ϕh,k)
2
+ + ϱ2(ϕh,k − φ1)

2
+.

5. Find αh,k > 0 such that Jm,h(ϕh,k − αdh,k) is minimized over all α > 0.
6. Compute ϕh,k+1 :

ϕh,k+1 = ϕh,k + sh,k,
sh,k = αh,kph,k,
Bh,kph,k = −dh,k, with Bh,0 = I( the identity matrix),
rh,k = dh,k+1 − dh,k,
Bh,k+1 = Bh,k + (rh,kr

⊺
h,k)/(r

⊺
h,ksh,k)− (Bh,ksh,ks

⊺
h,kBh,k)/(s

⊺
h,kBh,ksh,k).
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7. If the gradient is sufficiently small (convergence) STOP end; ELSE set k :=
k + 1 and go to item 2. The discrete approximation of the optimal solution
(ϕ∗, ϑ∗) is (ϕh,k, ϑh,k).

Remark 2. We note that the first step of the algorithm is equivalent to gradient
descent, and the following steps are steadily more refined by Bk the approxima-
tion to the Hessian matrix at ϕk which is updated iteratively at each step.

5 Numerical simulations

In this section, we present the results of several numerical experiments for the
eradication of two examples of infiltrating lobular carcinomas (malignant breast
tumors that spread rapidly to other breast tissues). Precisely, we are looking for
an optimal control ϕ∗ (optimal concentration of chemotherapeutic drugs) whose
optimal state ϑ∗ (optimal density of tumor cells) decreases rapidly and satisfies
the constraint (3). To calibrate the system (18), we used some realistic data from
[2, 10, 11] (for (x, t) ∈ Ω̄ × (0, T ))

κ = κ0e
−λ0σ; σ = σ0e

−δ0|x|2t; Ψ1 =
k1 − k2e

−γ0σ

e−γ0σ(1− e−2γ0σ)
; Ψ2 = θ2Ψ1;

φ0(x) = 0; φ1(x) = γ0e
−γ1[(x−x1)

2+(y−y1)
2]; Ψ3 = k3Ψ1; κ0 = d0η1;

η1 = 1 + ς1 cos(ς2η2); η2 = ς3 arctan

(
y − y0

ς4 +
√
(x− x0)2 + (y − y0)2

)
Table 1 presents the parameters that we considered in all our experiments.

Table 1. Data table

Parameters Values and Definitions
d0 1.5 mm2 · d−1 : Diffusion coefficient [11]
σ0 18 kPa: Mechanical coupling coefficient [11]
λ0 2.10−3 kPa−1: [2, 10]
k2 2.0 d−1: Tumor cell proliferation rate [11]
k1 4.0 d−1 : Coupling constant
k3 3.0 mm : Coupling constant
δ0 5.55·10−5 mm−2 · d−1 : Coupling constant
α0 1/d · µM: Coupling constant [10, 2]
T 20 days: The final horizon [2, 10]
γ0 100 µM: Coupling constant
γ1 20 mm2: Coupling constant
θ 2.236 : Coupling constant (dimensionless)
ς1 0.75 : Coupling constant
ς2 50 : Coupling constant
ς3 2 : Coupling constant
ς4 10−4 : Coupling constant
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We can now consider the following two applications of the eradication of
malignant breast tumors.

5.1 Applications

(i) Case of the presence of a single tumor.
Here, we consider ϑ0(x) = η1e

− 1
ε [(x−x0)

2+(y−y0)
2] in Ω, representing the density

of tumor cells centered in (x0, y0), see Fig. 1. The discretization and mesh infor-
mations are contained in Table 2.

Table 2. Discretization informations

Parameters Value Definitions
∆t 0.2 days (d) Time Step
x (x; y) 2D space position
∆x 1 mm Space Discretizations (x)
∆y 1 mm Space Discretizations (y)
ne 3184 Total Mesh Elements
np 1653 Total Mesh Points
(x0; y0) (10/3; 10/3) Tumor center
(x1; y1) (2.9; 10/3)
ε 0.02

The Fig. 2 presents the time-evolution of tumor density without treatment,
i.e., ϕ = 0 in the system (1) up to twenty days. We can observe tumor cell
growth becoming more and more invasive. The optimization parameters are:
ϱ = 0.5 · 10−2; ϱ1 = 103; ϱ2 = 2 · 104; ϱ3 = 106. The Fig. 3 shows that all
constraints are satisfied, and the optimal density of tumor cells ϑ∗ decreases,
which confirms our expectations. The Fig. 4 presents the optimal control ϕ∗ at
several days and the Fig. 5 presents the optimal state ϑ∗.

Fig. 1. The breast domain Ω and initial density of tumor cells ϑ0.

Remark 3. We have used different scales in Figures 2, 4, and 5 for better visibility
of the results. Fig. 6 presents the evolution of the maximum value of optimal
control ϕ∗ and state ϑ∗ in the logarithm scale. This simulation proves that tumor
density is drastically reduced.
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Fig. 2. The density of tumor cells ϑ without treatment at 5th, 10th, 15th, 20th days.
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Fig. 3. Constraints satisfaction and the time-evolution of optimal control and state at
tumor center.
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Fig. 4. The optimal drug concentration ϕ∗ at 5th, 10th, 15th, 20th days.

Fig. 5. The optimal density of tumor cells ϑ∗ at 5th, 10th, 15th, 20th days.
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Fig. 6. Evolution of the maximum value of optimal control ϕ∗ and state ϑ∗ in the
logarithm scale.
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(ii) Case of the presence of two tumors.
In this case, we consider ϑ0(x) = η1e

− 1
ε [(x−x0)

2+(y−y0)
2]+η1e

− 1
ε [(x−x̃0)

2+(y−ỹ0)
2],

representing the tumor cell density centered at (x0, y0) and (x̃0, ỹ0), see Fig. 7.
The discretization and mesh information are contained in Table 3.

Table 3. Discretization informations

Parameters Value Definitions
∆t 0.2 days (d) Time Step
x (x; y) 2D space position
∆x 1 mm Space Discretizations (x)
∆y 1 mm Space Discretizations (y)
ne 3310 Total Mesh Elements
np 1716 Total Mesh Points
(x0; y0) (10/3; 2.12) First Tumor center
(x̃0; ỹ0) (4.03; 2.3) Second Tumor center
(x1; y1) (3.68; 2.3)
ε 0.02

The Fig. 8 presents the evolution of tumor density cells without treatment. We
can observe that the growth of tumor cells is invasive with migration from the
breast to other organs. The optimization parameters are as follows: ϱ = 10−2;
ϱ1 = 2 · 103; ϱ2 = 104; ϱ3 = 3 · 106. The Fig. 9 proves that all constraints are
satisfied, and the optimal density of tumor cells ϑ∗ decreases to 0. The optimal
control ϕ∗ and optimal state ϑ∗ at several days are given respectively the Fig. 10
and Fig. 11. The Fig. 12 presents evolution in time of the maximum value of
optimal control ϕ∗ and state ϑ∗.

Fig. 7. The breast domain Ω and initial density of tumor cells ϑ0.

Remark 4. Once again, we have used different scales in Figures 8, 10, and 11
for better visibility of the results. Even in this case, the simulation proves that
tumor density is drastically reduced, and Fig. 12 presents the evolution of the
maximum value of optimal control ϕ∗ and state ϑ∗ in the logarithm scale.
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Fig. 8. The density of tumor cells ϑ without treatmentat 5th, 10th, 15th, 20th days.
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Fig. 9. Constraints satisfaction and the time-evolution of optimal control and state at
tumor centers.
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Fig. 10. The optimal drug concentration ϕ∗ at 5th, 10th, 15th, 20th days.

Fig. 11. The optimal density of tumor cells ϑ∗ at 5th, 10th, 15th, 20th days.
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logarithm scale.
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6 Conclusion and perspectives

In this paper, we present numerical simulations for eradicating malignant breast
tumors using the formalism of optimal control problem with state constraint. We
show through the simulation results the importance of including constraints on
the density of cancer cells. Our numerical approach is based on a mathematical
analysis that we proposed in [4]. Due to the continuous temporal and spatial
approach (metronomic chemotherapy, see [5] for instance), we developed in this
study, we are still far from realistic treatment strategies for malignant breast
cancers. In future work, we will develop an approach that is discontinuous in
time (chemotherapy cycles) and localized in space (we only act at certain points).
Furthermore, it can be interesting to address practical situations with noisy and
uncertain data.
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