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Event-triggered gain scheduling of 2× 2 hyperbolic PDEs with time and
space varying coupling coefficients

Jean Auriol1, Nicolas Espitia2,

Abstract— In this paper, we address the problem of expo-
nential stabilization of 2 × 2 hyperbolic PDEs systems with
time- and space-varying in-domain coupling coefficients using
event-triggered gain scheduling. More precisely, we sample
the coupling terms according to a Lyapunov-based event-
triggering condition. At each triggering time, we define the
control input as the classical static backstepping control law
that would stabilize the system, thereby scheduling the gains
of the controller according to the triggering mechanism while
solely considering the spatial variation of the coefficients. We
prove that we avoid the Zeno phenomenon under the even-
triggering policy, provided that the coupling coefficients are
slowly time-varying. The closed-loop exponential stability is
shown using a Lyapunov analysis. Unlike existing results in
the literature, the proposed approach does not require solving
time-varying backstepping kernel equations in real-time, which
implies a smaller computational burden and better applicability.

I. INTRODUCTION

Hyperbolic partial differential equations (PDEs) play a
crucial role in the mathematical description of complex sys-
tems involving transport phenomena with finite propagation
speeds (e.g., transport of matter, sound waves, and infor-
mation). This class of equations finds significant utility in
modeling physical networks, including hydraulic [9, Chapter
8], road traffic [25], [47], [46], [45], gas flow pipelines [26],
oil drilling [1] among others.

Control design for complex systems modeled by PDEs
constitutes a central research focus. A traditional way to
act on those systems is through boundary control. In this
context, the backstepping method has been used as a standard
and powerful tool to design stabilizing controllers, offering
several key advantages. This method enables the expression
of explicit control laws for an entire class of systems; it
allows for extension to parameter-adaptive use with real-
time parameter estimation and demonstrates the potential
to achieve the enhanced type of convergence, including the
desirable outcomes of finite-time convergence. This method
initially emerged to deal with 1D reaction-diffusion parabolic
PDEs in [12], [39], and since then, it has been employed to
deal with the boundary stabilization of broader classes of
PDEs (for an overview see [30]). PDE backstepping usually
uses Volterra transformations to map the PDE system into a
suitable target PDE system -with desired stability properties
- enabling subsequent Lyapunov stability analysis. For 1D
hyperbolic PDEs, the backstepping approach has been in-
strumental in solving the problem of boundary stabilization
in the presence of coupling terms. For example, [40] solves
the problem of stabilization of 2× 2 linear hyperbolic PDEs
by output feedback. The result has been further extended to
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local exponential stabilization of 2×2 quasi-linear hyperbolic
systems [17], first order n × n inhomogeneous quasi-linear
hyperbolic systems[27], robust control design [6], [8], finite-
time output regulation [18], adaptive control for hyper-
bolic PDEs [3], and intricate dynamics, including couplings
with ordinary differential equations [20]. Additionally, the
backstepping methodology has been the object of further
advances, which include the use of Fredholm transformations
[13], [15], [35].

Nevertheless, the contributions above primarily address
time-invariant coupling parameters (e.g., constant or spatially
varying only). Dealing with more general linear hyperbolic
PDE systems, which feature time- and space-varying in-
domain and boundary coupling coefficients, poses a more
significant challenge for control and estimation. Such hy-
perbolic PDEs with time-and space-varying coefficients may
come into play in numerous applications such as physical
models of balance laws linearized around time-varying tra-
jectories as plug flow chemical reactors equations, Saint-
Venant equations or heat exchangers equations (see, e.g.,
[10]). They also occur in trajectory planning problems.

Very few contributions exist for backstepping-based con-
trol and estimation of hyperbolic systems with time- and
space-varying coefficients. In [19], an observer was proposed
for a hyperbolic partial integro-differential equation (PIDEs).
As for boundary stabilization and tracking for hyperbolic
PDEs, [2] and subsequently [4] are the first contributions
(to our knowledge) that achieved finite-time stabilization
using a time-varying backstepping transformation. More re-
cently, [16] addressed the problem of finite-time boundary
stabilization for general hyperbolic systems of balance laws
with both time- and space-varying coupling coefficients and
transport speeds. The proposed approach employed time-
dependent Volterra and Fredholm transformations that en-
abled transforming the original system into suitable target
systems, one in ”control normal form” (in the same spirit
as in [14], [36], [37]) and the other with simple coupling
structure exhibiting a finite-time stability property. They
performed a rigorous analysis of the well-posedness of the
multi-dimensional hyperbolic PDEs of the resulting kernel
equations. However, to implement the resulting controllers
on real systems, it is necessary to solve the proposed set
of time-varying kernel equations in real-time, which can be
computationally expensive and reduce the applicability of the
approach.

One potential approach to address the complexity associ-
ated with time-varying kernels while achieving exponential
stabilization is to schedule the kernel gains at specific time
instants, which we will refer to as triggering times hereafter.
Instead of handling a time-varying kernel capturing the
time- and space-varying coefficient, we use a simpler kernel
capturing only the spatial variation of the coupling coeffi-
cients. This is possible as long as the coupling coefficients



are sampled in time, thus reducing the kernel-PDEs to a
form involving space-varying coefficients only between two
successive sampling or triggering times. This fundamental
idea was introduced in [28], which solved the problem of
exponential stabilization reaction-diffusion PDE with time-
and space-varying coefficients using event-triggered gain
scheduling. The kernel computation was scheduled aperiodi-
cally when needed and relied on the current state information
of the closed-loop system and the time- and space-varying
reaction coefficient, which was considered as a distributed
input disturbance.

In this paper, we adapt the method of [28] to address the
problem of exponential stabilization of 2×2 hyperbolic PDEs
systems with time- and space-varying in-domain coupling
coefficients using event-triggered gain scheduling. It is worth
mentioning that, as in [28], this approach draws inspiration
from the framework of event-triggered control for PDEs
(see, e.g., [23], [21], [43], [42], [22] for hyperbolic PDEs
and [38], [29], [24], [34] for parabolic PDEs). Although
in this work we do not deal with event-triggered control
(the state value of the control is not updated on events) but
gain scheduling, the main theoretical questions underlying
the design of event-triggered mechanisms, such avoidance of
the Zeno phenomena, well-posedness issues, and robustness
to the sampling schedule while guaranteeing exponential
stability, persist within this framework.

In this paper, we propose a scheme wherein we treat the
time- and space-varying in-domain coupling coefficients as
external (multiplicative) disturbances integrated into the con-
trol and event-triggered mechanism; as such, our proposed
scheme is a feedforward controlled one (see, e.g., [11]) that
compensate for the disturbances. We sample the coupling
terms according to a Lyapunov-based event-triggering con-
dition. Therefore, at each triggering time, we recalculate the
kernels of the Volterra backstepping transformation, thereby
scheduling the gains of the controller according to the
triggering mechanism while solely considering the spatial
variation of the coefficients. Following the backstepping
transformation, the resulting target system exhibits errors
due to sampling. However, by ensuring these errors remain
sufficiently small, we can still guarantee both exponential sta-
bilization and the well-posedness of the closed-loop system.
We prove that under the even-triggering policy, we avoid the
Zeno phenomenon, provided that the coupling coefficients
are slowly time-varying.

The structure of the present work is as follows. In Sec-
tion II, we present the system under consideration, the control
objectives, and the proposed controller based on an event-
triggered gain scheduling mechanism. This triggering condi-
tion determines the time instants at which the coefficients
must be sampled and, thereby when the kernel computa-
tion/updating must be done. It is designed in Section III-
A. We also prove the existence of a minimal dwell time
(therefore guaranteeing there is no Zeno phenomenon) and
the closed-loop stability using a Lyapunov analysis. Finally,
we present some simulation results in Section IV.

II. PROBLEM DESCRIPTION AND CONTROL DESIGN

A. System under consideration

Consider the following 2× 2 linear hyperbolic system

∂tu(t, x) + λ(x)∂xu(t, x) = σ+(t, x)v(t, x), (1)

∂tv(t, x)− µ(x)∂xv(t, x) = σ−(t, x)u(t, x), (2)

with the boundary conditions

u(t, 0) = qv(t, 0), v(t, 1) = ρu(t, 1) + U(t), (3)

where (u(t, x), v(t, x))T is the state of the system, the differ-
ent arguments evolving in {(t, x) s.t. t > t0, x ∈ [0, 1]},
where t0 > 0 is the initial time. The function U(t) corre-
sponds to the boundary actuation. The velocities λ(x) >
0 and µ(x) > 0 belong to C1([0, 1]) and are assumed
to satisfy −µ(x) < 0 < λ(x) for all x ∈ [0, 1]. The
time- and space- varying coupling coefficients σ+ and σ−

belong to C0([0,∞) × [0, 1]) ∩ L∞((0,∞) × [0, 1]), while
the boundary couplings ρ (the proximal reflection) and q (the
distal reflection) are considered as constants. We assume that
all of the time-varying coupling terms are bounded, i.e., there
exists a constant Mσ such that

|σ−(t, x)|, |σ+(t, x)| < Mσ, (4)

Furthermore, we consider the following assumptions:
Assumption 1: The boundary coupling terms verify |ρq| <

1. We also assume that q 6= 0.
This assumption means that the boundary conditions are
dissipative. Such an assumption is necessary to guarantee the
delay-robustness of the closed-loop system (i.e., the closed-
loop system needs to be robust to the introduction of an
arbitrarily small delay in the loop), as shown in [7], [8], [32].
Having q 6= 0 is not necessary but simplifies the backstepping
transformation we use later in the paper.

Assumption 2: There exist a constant ϕσ > 0 such that
the following inequalities hold for all x ∈ [0, 1], and all
t, s ≥ t0

|σ+(t, x)− σ+(s, x)| ≤ ϕσ|t− s|, (5)

|σ−(t, x)− σ−(s, x)| ≤ ϕσ|t− s|. (6)
This assumption means that the different time-varying coef-
ficients are Lipschitz with respect to time.

Remark 1: Similarly to what has been proposed in [28],
we will not consider the system (1)-(3) as a time-varying
system but as a time-invariant system subject to the control
input U(t) and (multiplicative) disturbance inputs (i.e., the
coupling coefficients σ−(t, x), σ+(t, x)). Since we consider
(1)-(3) as a time-invariant system, we can assume that the
initial time is zero. Therefore, the proposed control scheme
may be seen as a feedforward control one that compensates
for the effect of the disturbance inputs.

Remark 2: The approach we present in this paper could
be extended to the case of time-varying boundary coupling
terms (ρ(t) and q(t)). However, the computations become
more involved in this case. For the sake of clarity and
concision, we chose to consider these coupling terms as
constants in this paper.

B. Control objective

It is worth recalling that for hyperbolic systems with time-
independent coefficients, a stabilizing boundary control law
was designed in [40], [17] using the backstepping approach
and appropriate invertible Volterra transformations. The ex-
tension to time-dependent coefficients has been proposed
in [16] using time-varying backstepping transformations. In
this case, the resulting kernel PDE equations contain a time
derivative of the kernel and involve the time- and space-
varying coefficients. The resulting theoretical proof of well-
posedness becomes involved and technical. Moreover, con-
trary to the case of time-independent backstepping kernels



that can be computed offline, having time-varying kernels
raises critical issues regarding the practical implementation
of the corresponding time-varying feedback control law.
Indeed, it implies solving this set of time-varying kernel
equations in real time, which may be computationally chal-
lenging. Note that such an implementation problem has been
partially considered for time-varying parabolic systems by
employing specific numerical strategies such as the method
of successive approximations (see, e.g., [33]-[41]).

Our objective is to stabilize the system (1)-(3) expo-
nentially in the sense of the L2-norm using a suitable
backstepping-based boundary controller while avoiding solv-
ing time-varying kernel equations as those given in [16].
This is possible by scheduling the backstepping kernel gains
at a specific increasing sequence of times. We adjust the
approach proposed in [28] to design an event-triggered
gain scheduling controller. More precisely, let us choose
a given time instants sequence tj (j ∈ N). To design our
feedback controller, we will consider that all the time-varying
coefficients are constant on the time interval [tj , tj+1), their
values being set to their respective values at time tj . We then
apply the backstepping methodology presented in [17] and
solve the corresponding kernel equations at t = tj to obtain
the candidate control law.

C. Backstepping control design

Let {tj}j∈N be an increasing sequence of times with t0 =
0. For all x ∈ [0, 1], we denote

σ+
j (x) := σ+(tj , x), σ−

j (x) := σ−(tj , x), (7)

which are the sampled versions of the different coupling
coefficients that appear in equations (1)-(3). We also define
the errors when sampling as

δσ+
j
(t, x) := σ(t, x)− σ+(tj , x), (8)

δσ−

j
(t, x) := σ−(t, x)− σ−(tj , x). (9)

For all t ∈ [tj , tj+1), we can rewrite the system (1)-(3) as

∂tu(t, x) + λ(x)∂xu(t, x) = σ+
j (x)v(t, x)

+ δσ+
j
(t, x)v(t, x), (10)

∂tv(t, x)− µ(x)∂xv(t, x) = σ−

j (x)u(t, x),

+ δσ−

j
(t, x)u(t, x), (11)

with the boundary conditions

u(t, 0) = qv(t, 0), (12)

v(t, 1) = ρu(t, 1) + U(t), (13)

Consider the following Volterra integral change of coordi-
nates for j ≥ 0:

αj(t, x) = u(t, x) +

∫ x

0

Kuu
j (x, y)u(t, y)dy

+

∫ x

0

Kuv
j (x, y)v(t, y)dy, (14)

βj(t, x) = v(t, x) +

∫ x

0

Kvu
j (x, y)u(t, y)dy

+

∫ x

0

Kvv
j (x, y)v(t, y)dy, (15)

which can be rewritten in the following compact form:

(αj(t, x), βj(t, x)) := (Tj(u(t, ·), v(t, ·)))(x), (16)

where the kernels K ··
j are continuous functions defined on the

triangular domain D = {(x, y) ∈ [0, 1]2, 0 ≤ y ≤ x ≤ x}.
They satisfy [40], [17]

λ(x)∂xK
uu
j (x, y) + ∂y(λ(y)K

uu
j (x, y)) =

− σ−

j (y)K
uv
j (x, y), (17)

λ(x)∂xK
uv
j (x, y)− ∂y(µ(y)K

uv
j (x, y)) =

− σ+
j (y)K

uu
j (x, y), (18)

µ(x)∂xK
vu
j (x, y)− ∂y(λ(y)K

vu
j (x, y)) =

σ−

j (y)K
vv
j (x, y), (19)

µ(x)∂xK
vv
j (x, y) + ∂y(µ(y)K

vv
j (x, y)) =

σ+
j (y)K

vu
j (x, y), (20)

with the boundary conditions

Kuu
j (x, 0) =

µ(0)

λ(0)qj
Kuv(x, 0), (21)

Kuv
j (x, x) =

−σ+
j (x)

λ(x) + µ(x)
, (22)

Kvv
j (x, 0) =

λ(0)qj
µ(0)

Kvu
j (x, 0), (23)

Kvu
j (x, x) =

σ−

j (x)

λ(x) + µ(x)
. (24)

The backstepping boundary control design is performed by
mapping the system (10)-(13) to a target system which will
reflect the errors when sampling. The transformation (14)-
(15) is a Volterra transformation and is invertible [44].
Consequently, there exist bounded functions L··

j defined on

the triangular domain T such that for all t ∈ [tj , tj+1), all
x ∈ [0, 1], we have

u(t, x) = αj(t, x) +

∫ x

0

Lαα
j (x, y)αj(t, y)dy

+

∫ x

0

L
αβ
j (x, y)βj(t, y)dy, (25)

v(t, x) = βj(t, x) +

∫ x

0

L
βα
j (x, y)αj(t, y)dy

+

∫ x

0

L
ββ
j (x, y)βj(t, y)dy. (26)

The inverse transformation is denoted T −1
j such that for all

t ∈ [tj , tj+1) we have

(u(t, x), v(t, x)) := (T −1
j (αj(t, ·), βj(t, ·)))(x), (27)

Let us introduce the concatenation matrices Kj and Lj

defined by:

Kj :=

(

Kuu
j Kuu

j

Kvu
j Kvv

j

)

, Lj :=

(

Lαα
j L

αβ
j

L
βα
j L

ββ
j

)

,

and their respective norms

||Kj ||∞ := sup
(x,y)∈D

|Kj(x, y)|,



||Lj ||∞ := sup
(x,y)∈D

|Lj(x, y)|.

Applying [17, Proposition A.6], we can show that

max{||Kj ||∞, ||Lj ||∞} < φ̄eD̄jκ, (28)

where

κ = max
(x,y)∈T

{
1

λ(x)
,

1

µ(x)
}, q̄ = max{|

λ(0)q

µ(0)
|, |

µ(0)

λ(0)q
|},

C̄j = max{ max
(x,y)∈T

|λ′(x)|, max
(x,y)∈T

|µ′(x)|, max
(x,y)∈T

|σ+
j (x)|,

max
(x,y)∈T

|σ−

j (x)|}, D̄j = 16(1 + 2q̄)C̄j ,

φ̄ = q̄max{ max
(x,y)∈T

|σ+
j (x)|, max

(x,y)∈T
|σ−

j (x)|)}.

Due to equation (4), we obtain that all the kernels are
uniformly bounded by some constant that does not depend
on j, i.e., there exists M1 > 0 such that for all j ≥ 0:

max{||Kj ||∞, ||Lj ||∞} < M1. (29)

Moreover, using Cauchy Schwartz inequality on equations
(16) and (27) imply the following estimates for j ≥ 0:

||T −1
j (αj(t, ·), βj(t, ·))||L2 ≤ (1 +M1)||αj(t, ·), βj(t, ·)||L2

,

||Tj(u(t, ·), v(t, ·))||L2 ≤ (1 +M1)||u(t, ·), v(t, ·)||L2
.

(30)

For all t ∈ [tj , tj+1), we now define the boundary control
(at x = 1) as

U(t) =

∫ 1

0

(ρKuu
j (1, y)−Kvu

j (1, y))u(t, y)dy

+

∫ 1

0

(ρKuv
j (1, y)−Kvv

j (1, y))v(t, y)dy. (31)

Using the backstepping transformation (16), we map the
original system (10)-(13) into the following target system,
defined for all t ∈ (tj , tj+1) by:

∂tαj(t, x) + λ(x)∂xαj(t, x) = (Tj(fj(t, ·)))1(x) (32)

∂tβj(t, x)− µ(x)∂xβj(t, x) = (Tj(fj(t, ·)))2(x), (33)

with the boundary conditions

αj(t, 0) = qβj(t, 0), βj(t, 1) = ραj(t, 1), (34)

where

fj(t, x) = (δσ+
j
(t, x)v(t, x), δσ−

j
(t, x)u(t, x)), (35)

and where (Tj(fj(t, ·)))i (i ∈ {1, 2}) denotes the ith compo-
nent of (Tj(fj(t, ·))).

Remark 3: Notice that the target system (32)-(35) exhibits
the errors when sampling after transformation. If all the time-
varying coefficients were equal to their sampled values, the
right-hand side of equations (32)-(33) would equal zero.
Consequently, the control law (31) would exponentially
stabilize the closed-loop system (1)-(3) in the sense of the
L2-norm [17], [5, Lemma 2]. In the case of time-varying
coefficients, we look for an even-triggered mechanism that
keeps the errors when sampling relatively small, hence
guaranteeing the exponential stability of the target system.

In what follows, we will denote w(t, x) :=
(u(t, x), v(t, x)) and γj(t, x) := (αj(t, x), βj(t, x)).

D. Well-posedness aspects

Inspired by [16], we consider in this paper the concept of
solution along the characteristics or broad solution. It has
been shown in [16] that for any F1 ∈ L∞((0,∞) × (0, 1))
and F2 ∈ L∞((0,∞)×(0, 1)), for any uj ∈ L2(0, 1) and any
vj ∈ L2(0, 1), the system (1)-(3) with the initial condition
(u(tj , ·) = uj , v(tj , ·) = vj) and the control input

U(t) =

∫ 1

0

F1(t, y)u(t, y) + F2(t, y)v(t, y)dy, (36)

admits a unique solution (u, v) ∈ C0([tj , tj+1);L
2(0, 1)2).

Therefore, if we can prove that limj→∞ tj = +∞, then we
would obtain that the system (1)-(3) with the initial condition
(u(0, ·) = u0, v(0, ·) = v0) and the control law (36) admits
a unique solution (uj , vj) ∈ C0([0,∞);L2(0, 1)2). This will
be done when showing the existence of a minimum dwell
time in Section III-B.

III. EVENT-TRIGGERED GAIN SCHEDULING STRATEGY

AND MAIN RESULTS

A. Event-triggered gain scheduling with a static triggering
condition

In this section, we introduce an event-triggering mech-
anism for gain scheduling. The triggering condition deter-
mines the time instants at which the coefficients must be
sampled and, thereby, when the kernel computation and
updating must be done. The triggering condition relies on
the evolution of the errors when sampling and a Lyapunov
function [10] V (t), defined for all t ∈ [tj , tj+1) by

V (w) =

∫ 1

0

e
∫

x

0
−νdr
λ(r)

λ(x)
α2
j (t, x) + a

e
∫

x

0
νdr
µ(r)

µ(x)
β2
j (t, x)dx,

= 〈g(·)γj , γj〉 = 〈g(·)Tj(w[t]), Tj(w[t])〉. (37)

with g being defined as

g(x) := (
e
∫

x

0
−νdr
λ(r)

λ(x)
, a

e
∫

x

0
νdr
µ(r)

µ(x)
). (38)

The parameters ν and a are chosen such that

q2 − a < 0, aρ2eν(
∫ 1
0

dr
λ(r)

+
∫ 1
0

dr
µ(r)

)
< 1. (39)

These conditions are always feasible since |ρq| < 1. The
functional V is equivalent to the L2-norm of the state
(αj , βj) (and consequently to the L2-norm of the state
(u, v)), i.e. there exists ku and kℓ that do not depend on
j (due to equation (30)) such that for all t ∈ [tj , tj+1)

kℓ||w(t, ·)||
2
L2 ≤ V (t) ≤ ku||w(t, ·)||

2
L2 . (40)

More precisely, we can choose

ku = max{
ae

∫ 1
0

νdr
µ(r)

minx∈[0,1] µ(x)
,

1

minx∈[0,1] λ(x)
},

kℓ = min{
e−

∫ 1
0

νdr
λ(r)

maxx∈[0,1] λ(x)
,

a

maxx∈[0,1] µ(x)
}.

Let R ∈ (0, 1) be a positive design parameter. The static
event-triggered gain scheduler is defined as follows: The
times of events tj ≥ t0 with t0 = 0 form a finite or countable
set of times, which is determined by the following rules for
some j ≥ 0:



1) if {t > tj : 2〈g(·)Tj(w[t]), Tj(fj [t])〉 > νRV (t)} =
∅, then the set of the times of the events is {t0, · · · , tj}.

2) if {t > tj : 2〈g(·)Tj(w[t]), Tj(fj [t])〉 > νRV (t)} 6=
∅, then the next event time is given by

tj+1 = inf{t > tj :

2〈g(·)Tj(w[t]), Tj(fj [t])〉 > νRV (t)}, (41)

where the function g is defined by equation (38).

B. Avoidance of the Zeno phenomenon

To be able to implement our controller on digital plat-
forms, we need to guarantee that there are no infinite
triggering times that occur in a finite time interval (which
would imply being able to sample infinitely fast). In other
words, we need to guarantee there is no Zeno phenomenon.
We have the following result

Lemma 1: Under the event-triggered condition (41), there
exists a minimal dwell time between two triggering times,
i.e., there exists a constant τ > 0 (independent of the initial
condition of the state) such that tj+1− tj ≥ τ for all j ∈ N.

Proof: Assume that an event occurred at t = tj+1.
Then, from (41), we have

νRV (tj+1) ≤ 2〈g(·)Tj(w[tj+1]), Tj(fj [tj+1])〉.

Using Cauchy-Schwarz inequality, equation 30 and Assump-
tion 2, we obtain

νRV (tj+1) ≤M2ϕσ|tj+1 − tj |||w[tj+1]||
2,

where

M2 = 2||g||∞(1 +M1)
2.

Due to equation (40), we obtain

0 ≤ (M2ϕσ|tj+1 − tj | − νRkℓ))|||w[tj+1]||
2,

Since |tj+1 − tj | ≥ 0, we obtain

|tj+1 − tj | ≥
νRkℓ

M2ϕσ

= τ, (42)

with τ being the minimal dwell time, which is independent
of the initial condition.

Lemma 1 implies that limj→∞ tj = +∞ and consequently
the proposed control law rewrites as in equation (36), which
implies the existence of solutions in C0([0,∞);L2(0, 1)2)
of the closed-loop system under the static event-triggered
gain scheduler (41). The minimal dwell time depends on the
rate of change of the different coefficients. Larger values of
ϕσ induce a smaller minimal dwell time, corresponding to a
more frequent update of the control law.

C. Stability analysis

We now show the closed-loop stability under the proposed
event-triggered gain scheduling algorithm.

Theorem 1: Let us assume that ϕσ verifies

ln(
ku

kℓ
) < ν2(1−R)R

kℓ

M2ϕσ

, (43)

where M2, is defined in the proof of Lemma 1. Then
the closed loop system (1)-(3) with the control law (31)
and the event-triggered gain scheduler (41) is uniformly

exponentially stable, that is there exists κCL > 0 and νCL > 0
such that for all t > 0 we have

||(u(t, ·), v(t, ·))||2L2 ≤ κCLe
−νCLt||(u0, v0)||

2
L2 (44)

Proof: Let us differentiate V (t) with respect to time
and integrate by parts for t ∈ [tj , tj+1), j ∈ N. We obtain

V̇ (t) = −νV (t) + 2

∫ 1

0

e
∫

x

0
−νdr
λ(r)

λ(x)
αj(t, x)(Tj(fj [t]))1(x)dx

+ 2a

∫ 1

0

e
∫

x

0
νdr
µ(r)

µ(x)
βj(t, x)(Tj(fj [t]))2(x)dx+ β2

j (t, 0)(q
2

− a) + (aeν
∫ 1
0

dr
µ(r) ρ2 − e−ν

∫ 1
0

dr
λ(r) )α2

j (t, 1).

Using equation (41) and equation (39), we obtain

V̇ (t) ≤− ν1V (t), (45)

where ν1 = ν(1 − R) > 0. Consequently, for all t ∈
[tj , tj+1), we have

V (t) ≤ e−ν1(t−tj)V (tj), (46)

which implies, due to equation (40), that for all t ∈ [tj , tj+1),

||(u(t, ·), v(t, ·))||2L2 ≤
ku

kℓ
e−ν1(t−tj)||(u(tj , ·), v(tj , ·))||

2
L2 ,

Since (u, v) ∈ C0([0,∞);L2(0, 1)2), the previous equation
holds for t = tj+1 and we get

||(u(tj , ·), v(tj , ·))||
2
L2 ≤

ku

kℓ
e−ν1(t−tj)||(u(tj , ·), v(tj , ·))||

2
L2 .

Therefore, for all t ≥ 0, we can recursively obtain an
estimate of ||(u(t, ·), v(t, ·))||2

L2 , since we know that there
have been j events and that jτ units of time have (at least)
been passed until t (where τ is defined by equation (42) in
the proof of Lemma 1). For all j ∈ N, we have

||(u(tj , ·), v(tj , ·))||
2
L2 ≤ (

ku

kℓ
)je−ν1tj ||(u0, v0)||

2
L2 .

For t ∈ [tj , tj+1], since j ≤ t
τ

, we get

||(u(t, ·), v(t, ·))||2L2 ≤ (
ku

kℓ
)j+1e−ν1t||(u0, v0)||

2
L2

≤
ku

kℓ
e−(ν1−

ln(
ku
kℓ

)

τ
)t||(u0, v0)||

2
L2 .

Consequently, we obtain

||(u(t, ·), v(t, ·))||2L2 ≤
ku

kℓ
e−ν2t||(u0, v0)||

2
L2 , (47)

with ν2 = ν1 −
ln( ku

kℓ
)

τ
. Due to Lemma 1, and under condi-

tion (43), we obtain ν2 > 0, which implies the exponential
stability of the state (u, v). This concludes the proof.

Remark 4: We emphasize that Condition (43) of Theo-
rem 1 is a sufficient condition and that closed-loop stability
could be achieved even if this condition is not verified. The
possible conservatism of this condition mostly comes from
the coefficients kℓ and ku that depend on the uniform bound
of the backstepping kernels M1 defined in equation (29).
In this context, defining M1 as the uniform bound of the
|| · ||∞-norm of the kernels may not be the best choice.
Indeed, we believe that our computations could be adjusted



using a uniform bound for the || · ||L2 -norm of the kernels
(that would be smaller than the || · ||∞-norm). The choice
of ν, a also impacts the constants ku and kℓ (due to the
definition of the Lyapunov function), while also modifying
equation (43). Finally, the tuning parameter R can be tuned
to alter the minimum dwell time, but this also impacts the
proposed sufficient condition for stability.

IV. NUMERICAL SIMULATIONS

In this section, we illustrate our theoretical results with
numerical simulations. We consider the system (1)-(3) with
the following coefficients

λ(x) = 1, µ(x) = 2, q = 1.2, ρ = 0.3,

σ+(t, x) = 2 + 0.25xe2 sin2(t),

σ−(t, x) = 1 +
5

cosh2((t− 8)2)
+ 0.7 cos(πt) +

5

cosh2(5x)

The time- and space-varying coefficient σ−(t, x) is pictured
in Figure 1 The backstepping kernels are computed using
an iterative algorithm based on the method of successive
approximations [6]. We simulate the evolution of the sys-
tem using a classical finite volume method based on a
Godunov scheme [31] with a space step of 0.025 and
a Courant–Friedrichs–Lewy condition equal to 1. We run
our simulations on a frame of 15s. The parameters of the
triggering condition are chosen as a = 1.5 ν = 1.2,
and R = 0.5. One can easily verify that equation (39)
is satisfied. The kernels are updated aperiodically using
equation (41). Therefore, the proposed approach does not
require solving time- and space-varying kernel equations,
resulting in a simplified procedure. We have pictured in
Figure 2 the time-evolution of the L2-norm of the closed-
loop system (1)-(3) using a control law with constant gains
(i.e., the gains are computed based on the parameter values
at t = 0 and are never updated) and using the proposed
event-triggered controller. The open-loop behavior is not
pictured here, but the open-loop system is unstable. The
corresponding control efforts are pictured in Figure 3. As
can be seen, the nominal controller with constant gains is
not robust to the time variations of the coefficients. In the
meantime, under the static event-triggered scheduler (41), we
have closed-loop stability. We have also pictured in Figure 4
the sampled version of the profile of the time- and space-
varying coefficient σ−(tj , x) for all {tj}j∈N according to
the static event-triggered scheduler (41). The number of
events generated by our static event-triggered gain scheduler
is equal to 44 for this test case. Solving the kernel equations
at each event requires 0.1s, which can be done in real time,
while simulating the system.

V. CONCLUDING REMARKS

In this paper, we have designed an event-triggered gain
scheduling to exponentially stabilize a 2×2 hyperbolic PDEs
systems with time- and space-varying in-domain coupling
coefficients. The control design combines the backstepping
design with an appropriate event-triggering condition. Unlike
existing results in the literature, the proposed approach
does not require solving time-varying backstepping kernel
equations in real time, which implies a smaller computa-
tional burden and better applicability. More precisely, we
sample the coupling terms according to a Lyapunov-based
event-triggering condition and update the backstepping gains

Fig. 1. Profile of the time- and space-varying coefficient σ−(t, x).

Fig. 2. Time evolution of the L2 norm of the closed-loop system with a
nominal controller with constant backstepping gains and with the proposed
event-triggered controller (41).

accordingly. In future contributions, we will consider time-
varying boundary couplings and velocities. We will also try
to propose a dynamic-triggering condition.
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