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Abstract

We study the well-posedness, steady states and long time behavior of
solutions to Vlasov-Fokker-Planck equation with external confinement po-
tential and nonlinear self-consistent interactions. Our analysis introduces
newly characterized conditions on the interaction kernel that ensure the lo-
cal asymptotic stability of the unique steady state. Compared to previous
works on this topic, our results allow for large, singular and non-symmetric
interactions. As a corollary of our main results, we show exponential decay
of solutions to the Vlasov-Poisson-Fokker-Planck equation in dimension
3, for low regularity initial data. In the repulsive case, the result holds
in strongly nonlinear regimes (i.e. for arbitrarily small Debye length).
Our techniques rely on the design of new Lyapunov functionals based on
hypocoercivity and hypoellipticity theories. We use norms which include
part of the interaction kernel, and carefully mix “macroscopic quantities
based”–hypocoercivity with “commutators based”–hypocoercivity.

Mathematics Subject Classification (2020): 35Q83, 35Q84, 35B35,
35B65, 82C40.
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1 Introduction

We are interested in the study of Vlasov-Fokker-Planck (VFP) equation in the
presence of an external confining potential and self-consistent interactions. This
equation describes the time evolution of the distribution function F in the phase
space Rd ˆ Rd with d ě 1, through the kinetic equation

$

’

’

&

’

’

%

BtF ` v ¨ ∇xF ´ ∇x pΨF ` V q ¨ ∇vF “ ν∇v ¨ pvF ` ∇vF q ,

ΨF pt, xq “

ż

R2d

kpx´ yqF pt, y, vqdy dv,

F |t“0 “ Fin.

(1.1)

In this equation the Vlasov transport operator v ¨ ∇x ´ ∇x pΨF ` V q ¨ ∇v ac-
counts for the movement of particles in the phase space under the action of
two forces. The first force is driven by an external potential V with confining
properties. The second force is self-consistent and derives from the potential
ΨF which is given by the convolution between a long-range interaction kernel
k and the macroscopic density. This makes the model (1.1) nonlinear and non-
local. The Fokker-Planck operator ν∇v ¨ pv ¨ q ` ν∆v, with ν ą 0, accounts
for short range interactions with, typically, a fixed background of particles at
constant temperature. In appropriate contexts, it can also be viewed as a toy
model for nonlinear collisional operators such as the Dougherty-Fokker-Planck
[24] or Landau operator [50]. The Vlasov-Fokker-Planck equation can also be
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interpreted as the Kolmogorov-Fokker-Planck equation for the law of a stochas-
tic process following the underdamped Langevin equations, which describes the
trajectories of individual particles.

The self-consistent Vlasov-Fokker-Planck equation appears in a variety of
physical contexts ranging from astrophysics [17], plasmas [9, 37], relativistic
beams [15] or chemical solutions [52]. It even has applications in machine learn-
ing [19], through its relation with the underdamped Langevin process. Depend-
ing on the physics at hand the interaction potential may take various forms. A
widely studied model is the Vlasov-Poisson-Fokker-Planck (VPFP) equation for
which the kernel k is given by the Coulomb kernel

kCpxq “
I

|x|d´2
, (1.2)

with d “ 3. The potential kC describes repulsive electrostatic interactions with
I ą 0 scaling as the squared inverse Debye length. In the case of attractive
gravitational interactions, the Newton potential

kN pxq “ ´
I

|x|d´2
, (1.3)

with d “ 3, is used. The Coulomb and Newton interaction kernels are radially
symmetric and in particular even functions of their arguments, which is nat-
ural for particle systems arising from classical mechanics. However, for other
applications, asymmetric interaction kernels can arise.

In particle accelerator physics, the VFP equation (1.1) is used to describe
the longitudinal dynamics of relativistic beams of charged particles. In this con-
text, there are several models for describing self-consistent interactions, taking
into account synchrotron radiation effects. In the simplest case of a relativistic
particle in free space on a circular orbit the interaction potential (related to the
wakefield in this context) is given by

kSpxq “ 2
cosh

`

5
3 sinh

´1
pxq

˘

´ cosh
`

sinh´1
pxq

˘

sinh
`

2 sinh´1
pxq

˘ 1xą0pxq, (1.4)

with d “ 1. We refer to [15] and references therein for further details on this
model. Observe that unlike kC and kN , the potential kS is not an even function
of its argument (see [15, Figure 2] for a graphical representation).

Steady state The steady states solutions of the Vlasov-Fokker-Planck equa-
tion are of the form (see [25, 22, 9] or Section 3)

F‹px, vq “ ρ‹pxqMpvq, ρ‹pxq “ e´V‹pxq,

where the local Maxwellian distribution is given by

Mpvq “
e´

|v|2

2

p2πq
d
2

,
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and the Gibbs potential V‹ is such that

∇xV‹ “ ∇x pV ` k ˚ ρ‹q ,

where ˚ denotes the convolution. Observe that k ˚ ρ‹ “ ΨF‹
. The macroscopic

part of the steady state can be characterized equivalently, under the normaliza-
tion condition

ş

ρ‹ “ 1, as the fixed point of some nonlinear integral mapping

ρ‹ “
e´V ´k˚ρ‹

ş

Rd e´V ´k˚ρ‹dx
.

This steady state equation coincides with the one of the McKean-Vlasov equa-
tion

Btρ “ ∇x ¨ p∇xρ` ρ∇xk ˚ ρ` ρ∇xV q .

This equation can be seen as the macroscopic version of (1.1) and can be, at
least formally, related to (1.1) in the diffusion limit ν Ñ 8 on the appropriate
time scale. We refer to the recent [5] and references therein for more details on
diffusion limits, at least in the case of Coulomb interactions. We point out that
the existence and stability of steady states for the McKean-Vlasov equation has
been considered for instance in [44, 18, 14], as well as the question of bifurcations
and phase transitions.

Free energy In some cases there is a macroscopic quantity of interest (aside
of the total mass) for the Vlasov-Fokker-Planck equation (1.1). It is usually
refered to as free energy functional and writes

ErF s “

ż

R2d

F px, vq logF px, vqdxdv

`

ż

R2d

F px, vq

ˆ

|v|2

2
` V pxq `

ΨF pxq

2

˙

dxdv,

(1.5)

where the first part represents the entropy of the system, and the second one
represents the sum of its kinetic and potential energy. One may check (see for
instance [15]) that this functional satisfies the differential identity

dE
dt

` ν

ż

R2d

F px, vq

ˇ

ˇ

ˇ

ˇ

∇v log

ˆ

F px, vq

Mpvq

˙
ˇ

ˇ

ˇ

ˇ

2

dxdv

“ ´

ż

R2d

∇xΨ
o
F pxqvF px, vqdxdv ,

where Ψo
F is the part of the total interaction potential induced by the odd part

of k, namely kopxq “ pkpxq ´ kp´xqq{2 (see Section 2.3). In particular, when k
is even, the right-hand side of the previous identity vanishes, thus the free en-
ergy is a Lyapunov functional. In this case the steady states of VFP described
previously coincide with critical points of E under the constraint of given to-
tal mass only if k is even. When k yields enough coercivity and convexity to
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the functional E , it becomes clear that the steady state is actually unique and
asymptotically stable. This is the case for instance for Coulomb interactions,
for which (1.5) allows to show non-quantitative asymptotic stability of the dy-
namics, see [9].

However, for asymmetric k, the functional E does not yield as much informa-
tion anymore. We shall see in Section 3 that it may still be used to investigate
the uniqueness of steady states. For more details on Lyapunov functionals for
(1.1) with general asymmetric kernels we refer to [15] and [39].

State of the art and contributions In the present paper, we study the well-
posedness of self-consistent VFP equations (1.1) around steady states, which we
prove to exist and be unique under appropriate conditions, and derive quanti-
tative estimates of decay and regularization of solutions.

Early works on the well-posedness of VFP include [41, 21, 49, 48, 8]. Con-
cerning the long-time behavior, in linear settings (k “ 0), quantitative conver-
gence estimates can be established thanks to hypocoercivity methods [34, 51, 23,
10]. In the nonlinear case, with smooth interaction kernels (k P W 2,8), hypoco-
ercivity methods have been complemented with techniques involving entropy /
free energy functionals [51, Section A.21], low regularity norms and probabilistic
techniques [7, 29, 4].

The case of singular kernels and more precisely the Coulomb interactions,
and correspondingly the Vlasov-Poisson-Fokker-Planck equation has been stud-
ied a lot. Notably, [35] provided the first quantitative decay estimates for VPFP
with confining potential in dimension 3, though their results were restricted to
weakly nonlinear regimes (for k sufficiently small). Subsequent work [37] con-
tinued in this direction. Recently, [1] demonstrated that appropriate norms
could extend these results beyond weak interaction regimes for the linearized
system, leaving the nonlinear case as a future research direction. Improvement
were obtained recently in this direction by [46]. Asymmetric kernels have only
recently been explored in [15] and [39], with results limited to one dimension
and requiring at least Lipschitz regularity for k.

In light of the existing literature, we have identified several gaps that this
manuscript starts to address. First, we enhance state-of-the-art results by deriv-
ing quantitative decay estimates for VPFP in strongly nonlinear regimes. This
goes beyond the restrictions of [35, 37] and addresses part of the open problems
posed in [1]. We also improve the regularity requirements on the initial data,
compared to the recent [46]. Furthermore, our analysis goes beyond VPFP and
includes a large class of VFP models. Indeed we place particular emphasis on
considering general interaction potentials k, which may be non-symmetric, sin-
gular, or exhibit repulsive and/or mildly attractive behavior. In this regard we
establish sufficient criteria for the uniqueness of steady states and their asymp-
totic stability, noting that such stability is not always guaranteed.

In the following section, we precisely define our setting and present our main
results.

5



2 Setting and main result

In this section, we present the main results of this paper. First we introduce
some notation and the general assumptions, under which our main results hold.

2.1 Notations

In the following, for a complex number z, the real and imaginary parts are
denoted by ℜz and ℑz. The notations x` “ maxp0, xq and x´ “ minp0,´xq

denote the non-negative and non-positive parts respectively. Given a multi-
index α “ pα1, . . . , αdq P Nd, we write Bα for the partial derivative Bα1 . . . Bαd

and |α| “
ř

i αi. Given a function (or a distribution) k : Rd Ñ R, we write
qk : x ÞÑ kp´xq and we denote by Fpkqpξq “ pkpξq “

ş

Rd e
´ix¨ξkpxqdx the Fourier

transform of k. The symbol ˚ denotes the convolution between a distribution
and a function, namely k ˚ ρpxq “

ş

Rd kpx´ yqρpt, yqdy.
The notation x¨, ¨y denotes a duality bracket or a scalar product. In the

latter case, a subscript may be added to precise the Hilbert space. We write
rA,Bs “ AB ´ BA to denote the commutator between two operators. Given
p P r1,8s, we denote by p1 “ p1´p´1q´1 the conjugate Lebesgue exponent. For
weighted Lebesgue space, we denote the norms

}f}
p
Lppmq

“

ż

Ω

|fpωq|pmpωqdω , 1 ď p ă 8

}f}L8pmq “ sup
ωPRd

|fpωqmpωq| .

For weighted Sobolev spaces, when s P N, we denote the squared norm

}f}2Hspmq “
ÿ

|α|ďs

}Bαf}2L2pmq

and when s P p0,8qzN, we define Hspmq by interpolation (through the real or
complex method unambiguously, see [16, Theorems 3.3 and 3.5]).

In inequalities C will denote a constant which may change form a line to
another and we sometimes use À instead of ď C. When it is necessary, we shall
be more presice and write Cpa, b, c, . . . q to denote a constant depending on the
parameters a, b, c, . . . .

2.2 Confining potential

Let us first describe our general assumptions on the confinement potential.

Assumption 2.1. The confining potential V : Rd Ñ R is a C2pRdq function.
It is assumed to satisfy that for any ε ą 0 there is some constant Cε ą 0, such
that

@x P Rd, |∇2V pxq| ď ε|∇V pxq| ` Cε. (2.1)
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Moreover the following integrability and boundedness conditions hold

`

1 ` |∇V |2
˘

e´V P L1 X L8 and

ż

Rd

e´V pxqdx “ 1 . (2.2)

Finally, we assume that the measure e´V admits a Poincaré inequality

ż

Rd

|u|2e´V dx´

ˆ
ż

Rd

ue´V dx

˙2

ď CP

ż

Rd

|∇xu|2e´V dx , (2.3)

for any u : Rd Ñ R such that the integrals are finite and some constant CP ą 0.

The Poincaré inequality (2.3) is equivalent to the existence of a spectral gap
for the Witten Laplacian associated to V , namely ´∆V “ ´∆` 1

4 |∇V |2´ 1
2∆V .

A sufficient condition for ´∆V to admit a spectral gap is given by Persson’s
Theorem [42, Theorem 2.1] taking apxq “ 1

4 |∇V pxq|2 ´ 1
2∆V pxq, which requires

that
inf

|x|ěR
apxq ą 0 for R large enough .

In virtue of (2.1), the Poincaré assumption (2.3) could then be replaced by the
stronger one

|∇V pxq| Ñ 8 when |x| Ñ 8 .

Some simple families of such potential are given for any α P p0,8q

V pxq “ xxy1`α or V pxq “ xxy logp1 ` |x|2qα ,

up to some normalizing additive constant. We refer to [3, 51] for improvements
and more criteria leading to a Poincaré inequality.

In the following any norm involving only the confinement potential will be
denoted by RV .

2.3 Interaction potential

Let us now discuss and state our hypotheses for the interaction potential k.
We will rather use the corresponding convolution operator K (in the sense of
[27, Definition 2.5.1]) which we assume to be bounded between some Lebesgue
spaces. In turn, this yields the existence and uniqueness [27, Theorem 2.5.2] of
a unique tempered distribution k realizing the convolution. We have

Kρ “ k ˚ ρ and K˚ρ “ qk ˚ ρ, (2.4)

for any Schwartz function ρ : Rd Ñ R, where we denoted by K˚ the formal
adjoint of K. From there we define the symmetric and skew-symmetric parts of
K,

Keρ “ ke ˚ ρ and Koρ “ ko ˚ ρ, (2.5)

where the superscripts e and o refer to the fact that ke and ko are respectively
the even and odd parts of k, namely

ke “
k ` qk

2
and ko “

k ´ qk

2
.
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Observe that the corresponding Fourier multipliers are related by pke “ ℜpk and
xko “ iℑpk. With obvious notation, we use the superscripts α “ e, o to denote the
part of the potential Ψα

F related to the even or odd part of k. Before stating our
assumptions on K, let us just mention that by [27, Lemma 2.5.3], BβK “ KBβ

for any multi-index α P Nd.

Assumption 2.2. We assume that for some p, q P r2,8s with q ą d, the
following continuity estimates hold:

}Kαρ}Lp ` }∇Kαρ}Lq ď κα}ρ}L1XL2 , α “ e, o , (2.6)

and we give ourselves, to clarify the dependencies of constants, some arbitrary
κmax ą 0 such that

κ :“ κe ` κo ď κmax .

Moreover we assume that there are θ P r0, 1s and κe ą 0 such that

xKeh, hy ě ´κe
`

θ}h}2L2 ` p1 ´ θq}h}2L1

˘

, for all h P L1 X L2 s.t.

ż

h “ 0.

(2.7)
Finally we assume the monotonicity property

ρ ě 0 ñ Kρ ě 0, for all ρ P L1 X L2. (2.8)

Remark 2.3. In the bilinear estimate (2.7), xKeh, hy is well-defined as the Lp ´

Lp1

duality bracket thanks to (2.6). Observe that it involves only the symmetric
part of the kernel since xKeh, hy “ xKh, hy. Moreover a sufficient condition
for (2.7) to hold is that the negative part of the Fourier transform has some
integrability. Indeed one can show that for any θ P r0, 1s,

xKeh, hy ě ´Cθ}pke´}
L

1
1´θ

}h}2θL2 }h}
2p1´θq

L1 .

with Cθ “ θ´θp1 ´ θq´p1´θq. This yields (2.7) with κe “ Cθ}pke´}
L

1
1´θ

. This

implies also that if pke´ is merely L1`L8 then (2.7) holds with κe “ 2}pke´}L1`L8

and θ “ 1{2.

Remark 2.4. The assumption (2.8) could be replaced by

@ρ P L1 X L2, ρ ě 0 ñ Kρ ě ´C}ρ}L1 .

Indeed if the kernel k has a negative part in L8, then, without loss of generality,
it can be translated by a constant, which is C here, to be made positive without
changing (1.1).

Let us now give some examples of kernels satisfying, or not, our assumptions.

Example 2.5 (Lipschitz kernels). Given a (possibly non-symmetric) k P W 1,8,
such as (1.4), without loss of generality (see Remark 2.4), we can always as-
sume that k ě 0. Then, as consequences of Young and Holder inequalities the
hypotheses are satisfied with p “ q “ 8, and κe “ }ke}L8 and κα “ }kα}W 1,8

for α “ e, o.
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Example 2.6 (Repulsive Riesz and Coulomb kernel). In dimension d, let us
consider the symmetric repulsive Riesz potential

kpxq “
I

|x|d´α
, I ě 0 .

Then, as a direct consequence of Hardy-Littlewood-Sobolev inequalities, the
hypothesis (2.6) is satisfied under the conditions

d

2
ă α ď d and d ě 2 ,

so that q ą d. This includes the Coulomb kernel (α “ 2) in dimension 3.

Besides, (2.7) and (2.8) follow from the non-negativity of k and pk. In particular

κe “ κo “ 0 and κe “
IÑ0

OpIq.

Observe that a smallness condition on I would translate into a condition on κe

only. As we shall see there will be no such condition for our results to hold,
unlike previous works in the literature.

Example 2.7 (Singular attractive kernels). Singular attractive kernels such as

kpxq “ ´
I

|x|d´α
, I ě 0,

fail to satisfy hypothesis (2.8), even if they are translated by a constant (see
Remark 2.4). This hypothesis is important in our treatment of the steady VFP
equation but we discuss an alternative in Section 2.5. Otherwise, in the light of
Remark 2.3 and Example 2.6, it is clear that the rest of the assumptions hold
with

κo “ 0, κe “
IÑ0

OpIq, and κe “
IÑ0

OpIq.

Example 2.8 (More singular kernels). When d ě 2, if 1 ď α ď d
2 (which includes

Manev potentials α “ 1, d “ 3, see [20, 6]) using Hardy-Littlewood-Sobolev
inequalities or Calderon-Zygmund theory only provide q P r2, ds. This situation
could be treated with our approach by requiring more regularity on the initial
condition, but we decided to restrict this work to H1–type regularity at most.
We refer to Section 6 for more on this perspective. When α ă 1, the potential
∇K maps L2 to some Sobolev space which is less regular, as can be seen by the
identification K “ cαp´∆q´α{2.

Example 2.9 (Other kernels in weak Lebesgue spaces). The boundedness as-
sumptions on K and ∇K are satisfied whenever k and ∇k lie in suitable weak
Lebesgue spaces (see [27] for the definition). Namely, if k P Ls,8 for some

s P p1,8q and ∇k P Lt,8 for some t P

´

2d
2`d ,8

¯

, Young’s generalized convolu-

tion inequality [27, Theorem 1.4.25] yield q “ 2t
2´t ą d with

κo “ C p}ko}Ls,8 ` }∇ko}Lt,8 q and κe “ C p}ke}Ls,8 ` }∇ke}Lt,8 q ,

for some universal constant C “ Cps, tq related to Young’s inequality.
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2.4 Main results

Let us first state our main result concerning steady states of (1.1). The following
theorem is, for the sake of presentation, a restricted version of a more general
result, Theorem 3.1 that we prove in Section 3.

Theorem 2.10. Under Assumptions 2.1 and 2.2 there is δe ą 0 such that if

κe ă δepθ, κmax, RV q,

then the equation (1.1) admits a unique steady state with mass 1. It is of the
form

F‹px, vq “ e´V‹pxqMpvq,

with V‹ ´ V “ ΨF‹
P W 2,8. The probability measure with density F‹ satisfies

the Poincaré and weighted Poincaré inequalities stated in Section 3.4 for some
constant C‹ depending only on

›

›

`

1 ` |∇V |2
˘

e´V
›

›

L1XL8 , the Poincaré constant

of e´V dx, as well as κmax and θ.

Remark 2.11. Uniqueness is expected when K is symmetric and positive because
the steady state is characterized by minimization of a strictly convex functional.
When K is non-symmetric and weakly non-positive, a new geometric argument
on the free energy is used to prove the uniqueness of steady states (see Sec-
tion 3.3).

Our second main result concerns the well-posedness of (1.1), as well as the
decay and regularity of solutions around steady states.

Theorem 2.12. Under Assumptions 2.1 and 2.2, there are constants δe ą 0
and δo ą 0 such that if

κe ă δepθ, κmax, RV q and κo ă δopκmax, RV , κ
e, νq,

the unique steady state of (1.1) is stable in the following sense. For any s P r0, 1s

such that

s ą sc :“
3

2

ˆ

d

q
´

1

3

˙

,

there is a constant R ą 0 such that if

}Fin ´ F‹}Hs
xL

2
vpF´1

‹ q
ă R,

then (1.1) has a unique solution F P Cpr0,8q;Hs
xL

2
vpF´1

‹ qq. Moreover, there
are constants C ą 0 and λ such that for all t ą 0

}F ptq ´ F‹}Hs
xL

2
vpF´1

‹ q
ď C}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q
e´λt, (2.9)

}F ptq ´ F‹}H1
xL

2
vpF´1

‹ q
ď C}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q

´

1 ` t´
3
2 p1´sq

¯

e´λt, (2.10)

}F ptq ´ F‹}L2
xH

1´s
v pF´1

‹ q
ď C}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q

´

1 ` t´
1
2 p1´sq

¯

e´λt. (2.11)

Finally, Fin ÞÑ F is Lipschitz continuous from Hs
xL

2
vpF´1

‹ q to Cpr0,8q;Hs
xL

2
vpF´1

‹ qq.
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The current work also bring several novelties and improvements on the
Cauchy theory for the nonlinear Vlasov-Fokker-Planck equation close to equi-
librium.

1. Assumption 2.2 on the interaction operator K encompasses many interac-
tions potentials which are dealt with in a unified manner. They include
singular, non-symmetric potentials (see the examples of Section 2.3 and
consequences of Theorem 2.12 in the next section).

2. Concerning the regularity assumption on the initial data, no regularity is
required in the v variable, which can be compared with [35, 46]. This is
made possible by performing the standard interpolation argument between
the linearized theories in L2

xL
2
v and H1

xL
2
v (instead of H1

x,v), thus allowing
to assume regularity for the initial data in position without assuming any
in velocity. Both theories are established by applying the so-called L2–
hypocoercivity method of [23] to both F and ∇xF . The price to pay is the
extra assumption (2.1) on the confining potential V (see Remark 2.14).

3. We prove nonlinear hypoellipticity (2.10) by proving linear hypoellipticity
in the presence of a source term in Proposition 4.16. During the iterative
scheme used to construct the solution, this allows to use the fact that
both the linear flow and the approximate solution enjoys regularization
properties, thus requiring less regularity for the initial condition.

4. Theorem 2.12 allows for strongly nonlinear regimes, in the sense that
there is no smallness condition on κe. Following the ideas of [1], at the
linearized level, we do not consider the even part of K, namely Ke, to be
a “bad term” which is to be treated perturbatively. As it appears in the
free energy functional (1.5) of the equation, it is in some sense part of
the natural metric to study the equation. As a consequence, when this
even part is positive, it does not need to be small. In the particular case
of Coulomb interactions, we thus prove uniqueness and stability of the
equilibria, even in the strongly nonlinear regime (see Example 2.6 and
Corollary 2.16).

Remark 2.13. Let us point out that, in [46] which deals with Coulomb interac-
tions, the main requirement on the confining potential V is that |∇V |e´V P Lr

for some r ą d. In the present work, the integrability assumption |∇V |2e´V P

Lr for some r ą d
2 would have been sufficient. Note that the control on |∇V |2

we require is used only to prove Lemmas 4.7 and 4.13, which allow respectively
to get rid of any smallness assumption on κe (as introduced in [1]) and any
regularity in the velocity variable for the initial data.

Remark 2.14. The assumption (2.1) with ε “ 1 is standard in the context of
hypocoercivity with confinement, but the version used here (for ε Ñ 0) can be
found in [12], as well in works of semi-classical analysis (in the stronger form
∇2V “ op∇V q, see for instance [32, 31, 33]). This assumption is used for ε small
only in the proof of Lemma 4.13, which allows to avoid assuming regularity in

11



the velocity variable for the initial condition. Without this assumption, as in
[46], a similar result can be proved for initial data in Hs

x,v (instead of L2
vH

s
x).

Remark 2.15. When sc ă 0, that is to say when q ą 3d, the standard H1
x,v

hypoellipticity strategy is enough, in particular the mild growth assumption
(2.1) is unnecessary.

2.5 Particular cases and extensions

The explicit and quantitative stability of equilibria in the case of Poisson inter-
actions was first studied in [35] and improved in [46]. Our framework allows to
reduce even more the regularity required for the initial data Fin.

Corollary 2.16 (Repulsive VPFP). Under Assumptions 2.1, consider the Vlasov-
Poisson-Fokker-Planck equation with Coulomb interactions, in dimension d “ 3,

$

’

’

&

’

’

%

BtF ` v ¨ ∇xF ´ ∇x pΨF ` V q ¨ ∇vF “ ν∇v ¨ pvF ` ∇vF q ,

´δ2∆ΨF pt, xq “

ż

Rd

F pt, x, vqdv,

F |t“0 “ Fin,

(2.12)

for any (arbitrarily small) δ ą 0. Then for any 1
4 ă s ď 1, there is a constant

R ą 0 such that if
}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q
ă R,

then (2.12) has a unique solution F P Cpr0,8q;Hs
xL

2
vpF´1

‹ qq. Moreover, there
are constants C ą 0 and λ such that for all t ą 0

}F ptq ´ F‹}Hs
xL

2
vpF´1

‹ q
ď C}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q
e´λt.

In this result, we improve the regularity assumption on the initial condition

compared to previous works. We only require H
1
4 `
x L2

v instead of (at least) H
1
2 `
x,v

regularity [35, 46]. In particular we do not require any regularity in the velocity
variable for the initial condition. Moreover the results hold for any arbitrarily
small Debye length, namely out of weakly nonlinear regimes.

As pointed out in Example 2.7, the hypothesis (2.8) does not hold in the
case of attractive Newtonian interactions. However, this assumption is necessary
only to prove the existence of steady states, which are already known to exist
[9]. The remaining assumptions still hold, which allows to prove the stability of
said equilibria.

Corollary 2.17 (Attractive VPFP). Under Assumptions 2.1, consider the
Vlasov-Poisson-Fokker-Planck equation with Newton interactions, in dimension
d “ 3,

$

’

’

&

’

’

%

BtF ` v ¨ ∇xF ´ ∇x pΨF ` V q ¨ ∇vF “ ν∇v ¨ pvF ` ∇vF q ,

∆ΨF pt, xq “ Γ

ż

Rd

F pt, x, vqdv,

F |t“0 “ Fin.

(2.13)
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Then there is Γmax ą 0 such that if

Γ ă Γmax,

then for any 1
4 ă s ď 1, there is a constant R ą 0 such that if

}Fin ´ F‹}Hs
xL

2
vpF´1

‹ q
ă R,

then (2.12) has a unique solution F P Cpr0,8q;Hs
xL

2
vpF´1

‹ qq. Moreover, there
are constants C ą 0 and λ such that for all t ą 0

}F ptq ´ F‹}Hs
xL

2
vpF´1

‹ q
ď C}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q
e´λt.

Remark 2.18 (Coulomb and Newton kernels in small dimensions). Our approach
allows to prove the stability of equilibria in dimension d “ 1, 2 for Coulomb and
(small) Newton interactions, up to a minor extra assumption on V . Let us
only briefly comment on this as these cases have already been investigated in
the literature (see [1] and references therein). Our general framework does not
exactly fit these situations because the interaction kernel blows up for large
relative distances, which prevents K from mapping L1 XL2 onto some Lebesgue
space. The study of steady states is classical (see [9] and references therein) and
their smoothness can be proved following the approach of Section 3.2. This then
allows to prove the various functional inequalities of Section 3.4. To prove the
stability of these equilibria, the assumption that K maps in some Lebesgue space
is used only in the proof of Lemma 4.4, which still holds up to assuming also
that (for instance) x¨y5 À eV {2 thanks to the observation that }x¨y´3Kpρq}L8 ď

C}x¨y3ρ}L2 . In the end, the same result as Corollaries 2.16 and 2.17 would then
hold with 0 ď s ď 1.

In the case of the synchrotron kernel (2.14), we obtain the same result as in
[15].

Corollary 2.19 (Synchrotron kernels). Under Assumptions 2.1 (without (2.1),
see Remark 2.15), consider the self-consistent Vlasov-Fokker-Planck equation
for a relativistic electron bunch in dimension d “ 1

$

’

’

&

’

’

%

BtF ` v ¨ ∇xF ´ ∇x pΨF ` V q ¨ ∇vF “ ν∇v ¨ pvF ` ∇vF q ,

ΨF pt, xq “ I

ż

Rd

kSpx´ yqF pt, x, vqdv,

F |t“0 “ Fin,

(2.14)

where kS is given by (1.4). Then there is Imax ą 0 such that if

I ă Imax,

then for any 0 ď s ď 1, there is a constant R ą 0 such that if

}Fin ´ F‹}Hs
xL

2
vpF´1

‹ q
ă R,

then (2.14) has a unique solution F P Cpr0,8q;Hs
xL

2
vpF´1

‹ qq. Moreover, there
are constants C ą 0 and λ such that for all t ą 0

}F ptq ´ F‹}Hs
xL

2
vpF´1

‹ q
ď C}Fin ´ F‹}Hs

xL
2
vpF´1

‹ q
e´λt.
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2.6 Outline

In Section 3 we prove several results related to the steady state equation (3.2),
namely existence, uniqueness and regularity. These results are of independent
interest and hold under weaker assumptions than the general Assumptions 2.1
and 2.2. We then proceed to prove the functional inequalities related to the
measure induced by this steady state in Section 3.4 necessary to the stability
analysis.

In Section 4 we study the linearized equation around the steady state, using
the so called H1–hypocoercivity and hypoellipticity strategies of [34, 51]. We
also use the so called L2–hypocoercivity of [23], and more precisely we take
inspiration from [1] which incorporates Ke into the functional setting so that no
smallness assumption on the upper bound κe is required. In turn we consider K
to be almost positive symmetric, that is we assume κo and κe small. One novelty
of this work is that we apply the L2–hypocoercivity strategy to ∇xpF ´ F‹q

in order to build a linear theory in H1
xL

2
v so that no regularity in velocity is

required, which requires the mild growth assumption (2.1) on V .
In Section 5 we combine all previous results to prove Theorem 2.12. We first

interpolate the hypocoercivity and hypoellipticity results to deduce that the
linearized flow maps initial data and source continuously for some appropriate
“natural” norm. In Section 5.2, we show that the nonlinearity is bounded in
this “natural” norm, so that, in Section 5.3, the proof of Theorem 2.12 reduces
to a straightforward application of Banach-Picard’s fixed point theorem.

In Section 6, we present some perspectives, namely some possible improve-
ments regarding the regularity assumptions on ∇K and the initial data, and
some continuation of the present work.

3 Existence, uniqueness and regularity of the
steady state

The first goal of this section is to prove Theorem 3.1 below (and thus Theo-
rem 2.10) concerning the existence, uniqueness and regularity of steady states.
From this construction, we will derive various functional inequalities related to
the steady state in Section 3.4.

Theorem 3.1. Assume that the confinement potential V satisfies, for some
N ě 2

#

}e´V }L1 “ 1

@1 ď n ď N,
´

1 ` |∇nV |
N
n

¯

e´V P L1 X L8

and that the interaction operator K satisfies that for some p, q P r2,8s,

$

’

&

’

%

}K}L1XL2ÑLp ` }∇K}L1XL2ÑLq ď κ,

@ρ P L1 X L2, ρ ě 0 ñ Kρ ě 0,

}K˚
`

e´V
˘

}L8 ď ζ.
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Then, smooth and rapidly decaying solutions to the stationary Vlasov-Fokker-
Planck equation

v ¨ ∇xF‹ ´ ∇x pΨF‹
` V q ¨ ∇vF‹ “ ν∇v ¨ pvF‹ ` ∇vF‹q (3.1)

are given by all functions

F‹px, vq “ ρ‹pxqMpvq,

with ρ‹ a solution of the fixed point problem

ρ‹ “ T pρ‹q :“
Spρ‹q

}Spρ‹q}L1

, Spρq :“ e´V ´Kρ . (3.2)

Under the hypotheses on the potentials, there exists a solution ρ‹ “ e´V‹ ą 0
to (3.2). Moreover, if additionally q ě d{2 and N ą 1 ` d{q, then any solution
satisfies V‹ ´ V P W 2,8. Finally under the additional assumptions that (2.7)
holds with κe ă δepθ, κ,RV q, then ρ‹ is uniquely defined, and therefore there is
a unique steady state to (3.1).

3.1 Existence of fixed points

From here we consider that the domain of T is the convex set

CM :“
␣

ρ P L1 X Lr : }ρ}L1 ď 1, }ρ}Lr ď M, ρ ě 0
(

with M ą 0 to be determined. The purpose of the Lebesgue index r is to
make the following estimates more general than what is strictly needed to prove
Theorem 3.1. In the proof of Theorem 3.1, we shall take r “ 2.

Lemma 3.2 (Properties of T ). Assume that the interaction potential satisfies
the bound

}∇K}L1XLrÑLq ď κ, 1 ď r ď q ď 8 ,

and it is assumed to be positive in the sense that

@ρ P L1 X Lr, ρ ě 0 ñ Kρ ě 0 .

The confining potential is assumed to be such that

}e´V }L1 “ 1 and
›

›p1 ` |∇V |q e´V
›

›

L1XL8 ď RV . (3.3)

Finally, we assume the following relationship between K and V :

›

›K˚
`

e´V
˘
›

›

L8 ď ζ . (3.4)

Under these assumptions, T satisfies for any ρ P CM

}T pρq}Ls ď eζRV and }T pρq}L1 “ 1 , s P r1,8s, (3.5)
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and more precisely the concentration estimate
›

›

›
eV {s1

T pρq

›

›

›

Ls
ď eζ{s1

, s P r1,8s, (3.6)

as well as the regularity estimate

}∇T pρq}Ls ď RV e
ζ p1 ` κ` κMq , s P r1, qs. (3.7)

Furthermore, T pCM q is precompact in L1, and T satisfies the continuity estimate

}T pρq ´ T pσq}Ls ď 2eζζ1{sR
1{s1

V }ρ´ σ}
1{s
L1 , s P r1,8s. (3.8)

Proof. We first prove the integrability bound (3.5), then the gradient estimate
(3.7). We then deduce the compactness from these bounds, and finally proceed
to prove the Hölder continuity in Ls (where s ă 8).

Step 1: Integrability estimate. We start by exhibiting a lower bound on the
mass of Spρq, using Jensen’s inequality with respect to the measure e´V pxq dx:

ż

Rd

Spρqdx “

ż

Rd

e´V ´Kρ dx

ě exp

ˆ

´

ż

Rd

Kρe´V dx

˙

“ exp

ˆ

´

ż

Rd

ρK˚
`

e´V
˘

dx

˙

,

from which we deduce using (3.4) and the fact that }ρ}L1 ď 1

ż

Rd

Spρqdx ě e´ζ . (3.9)

Clearly }T pρq}L1 “ 1 and since Kρ ě 0, one easily deduces

›

›eV T pρq
›

›

L8 ď eζ

which then yields the upper bound (3.5) and the concentration estimate (3.6).

Step 2: Regularity estimate. Starting from the observation (since Kρ ě 0)

|∇Spρq| “ |∇V ` ∇Kpρq|Spρq ď |∇V ` ∇Kpρq|e´V

and denoting 1
s “ 1

q ` 1
t , one obtains the bound

}∇Spρq}Ls ď
›

›∇V e´V
›

›

Ls ` }∇Kpρq}Lq

›

›e´V
›

›

Lt

ď RV p1 ` κ}ρ}L1XLr q

ď RV p1 ` κ` κMq ,

which, combined with (3.9) yields (3.7).
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Step 3: Compactness. Let us consider some sequence pρnq Ă CM and denote its
image σn :“ T pρnq. Since (3.6) and (3.7) imply that for some C ą 0

›

›eV σn
›

›

L8 ` }∇σn}Ls ď C ,

the Rellich-Kondrachov theorem states that some subsequence, which we still
denote σn, converges in L

1
loc to some σ8 satisfying the same bounds as σn. The

global convergence follows from the weighted L8 bound because for any R ą 0

}σn ´ σ8}L1 ď 2C
›

›1|x|ěRe
´V

›

›

L1 ` }1|x|ďRpσn ´ σ8q}L1

and e´V P Ls. The right-hand side can be made as small as desired by taking
R large and then n large.

Step 4: Continuity estimates. Using the inequality

@a, b ě 0,
ˇ

ˇe´a ´ e´b
ˇ

ˇ ď |a´ b|

with a “ Kpρq ě 0 and b “ Kpσq ě 0, as well as |Kpρ´ σq| ď Kp|ρ´ σ|q, which
are consequences of the non-negativity of K, one has the control

|Spρq ´ Spσq| ď Kp|ρ´ σ|qe´V .

We then deduce that

}Spρq ´ Spσq}L1 ď
›

›pρ´ σqK˚
`

e´V
˘
›

›

L1

ď }ρ´ σ}L1

›

›K˚
`

e´V
˘
›

›

L8

ď ζ}ρ´ σ}L1 , (3.10)

and observing that the following identity holds

T pρq ´ T pσq “
Spρq ´ Spσq

}Spρq}L1

` T pσq
}Spρq}L1 ´ }Spσq}L1

}Spρq}L1

,

one deduces from (3.9) and (3.10)

}T pρq ´ T pσq}L1 ď 2ζeζ}ρ´ σ}L1 .

Interpolating with the bound

}T pρq ´ T pσq}L8 ď 2eζRV ,

one deduces (3.8). This concludes the proof.

The following existence result is a direct consequence of Lemma 3.2 and an
application of Schauder’s theorem with M “ eζRV and endowing CM with the
topology of L1 (note that T is indeed Lipschitz continuous in virtue of (3.8)).

Proposition 3.3 (Existence of the steady state). Under the assumptions of
Lemma 3.2, the mapping T : L1 Ñ L1 admits a fixed point in CM with M “

eζRV . Furthermore, any other fixed point satisfies the estimates of Proposi-
tion 3.2.
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3.2 Regularity of fixed points

Lemma 3.4 (Regularity of the steady state). Under the assumptions of Lemma
3.2, and assuming furthermore q ě d

2 , as well as for some N ě 2

@n ď N,
›

›

›
|∇nV |

N
n e´V

›

›

›

L1XL8
ď RV ,

there exists some C “ CpN,κ, ζ, RV q such that any fixed point ρ‹ of T satisfies
the inductive estimate, for 1 ď n ď N ,

}ρ‹}Wn,1 ` }ρ‹}Wn,q ďC p1 ` }ρ‹}Wn´1,1 ` }ρ‹}Wn´1,r q
n
. (3.11)

Proof. Let us consider ρ‹ of the form ρ‹ “ e´V‹ . We first prove a Faà di
Bruno–type inequality, and then proceed to prove (3.11).

Step 1: A Faà di Bruno–type inequality. Let us prove that there exists some
C “ CpNq such that for any n P t1, . . . , Nu, one has

|∇n
xρ‹| ď C ρ‹

n
ÿ

k“1

ˇ

ˇ∇k
xV‹

ˇ

ˇ

n
k . (3.12)

This is true for n “ 1, let us prove it by induction. Assume it holds for some
n ě 1 and consider α P Nd such that |α| “ n, there holds in virtue of Leibniz’s
formula for partial derivatives

Bα`ejρ‹ “ ´BαpBejV‹ρ‹q “ ´
ÿ

βďα

ˆ

α

β

˙

`

Bβ`ejV‹

˘ `

Bα´βρ‹

˘

and thus, letting k “ |β| P r0, ns, there holds for some C “ CpNq ą 0

ˇ

ˇBα`ejρ‹

ˇ

ˇ ď C
n`1
ÿ

k“1

ˆ

ρ
k

n`1
‹

ˇ

ˇ∇kV‹

ˇ

ˇ

˙ˆ

ρ
´ k

n`1
‹

ˇ

ˇ∇n`1´kρ‹

ˇ

ˇ

˙

.

Using Young’s inequality with the exponents k
n`1 ` n`1´k

n`1 “ 1, and then re-
indexing, one obtains, up to enlarging C

ˇ

ˇBα`ejρ‹

ˇ

ˇ ď C ρ‹

˜

n`1
ÿ

k“1

ˇ

ˇ∇kV‹

ˇ

ˇ

n`1
k `

n
ÿ

k“1

`

ρ´1
‹

ˇ

ˇ∇kρ‹

ˇ

ˇ

˘

n`1
k

¸

Using the inductive assumption and Minkowski’s inequality, we deduce

ˇ

ˇBα`ejρ‹

ˇ

ˇ ď C ρ‹

n`1
ÿ

k“1

ˇ

ˇ∇kV‹

ˇ

ˇ

n`1
k

Summing over j “ 1, . . . , d, we deduce (3.12) at rank n` 1.
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Step 2: Inductive control. Since ∇V‹ “ ∇V ` ∇Kpρ‹q, the previous step yields
the estimate

}∇nρ‹}Lp ďC
n
ÿ

k“1

›

›ρ‹|∇kV |
n
k

›

›

Lp ` C
n´1
ÿ

k“0

›

›

›
ρ‹|∇kp∇Kpρ‹qq|

n
k`1

›

›

›

Lp
.

The first term is bounded by C “ Cpζ,RV , Nq because of (3.6), so we focus on
the inductive term. Hölder’s inequality yield

›

›

›
ρ‹|∇kp∇Kpρ‹qq|

n
k`1

›

›

›

L1XLq
ď}ρ‹}Lq1

XL8

›

›

›
|∇kp∇Kpρ‹qq|

n
k`1

›

›

›

Lq

“}ρ‹}Lq1
XL8

›

›∇k∇Kpρ‹q
›

›

n
k`1

L
nq
k`1

One then interpolates for k “ 0, . . . , n ´ 1 each term between the end points
k “ 0 and k “ n´ 1 with θ “ k

n´1 using Gagliardo-Nirenberg’s inequality :

›

›∇k∇Kpρ‹q
›

›

n
k`1

L
nq
k`1

ď C }∇Kpρ‹q}
1´θ
Lnq

›

›∇n´1∇Kpρ‹q
›

›

θ

Lq ,

and then, since N ě 2 and q ě d
2 , the first term is controlled using the embed-

ding Wn´1,q Ă Lqn:

}∇Kpρ‹q}
W

k,
nq
k`1

ď C }∇Kpρ‹q}Wn´1,q .

In conclusion, using (3.5), there holds

}∇nρ‹}L1XLq ď C ` C
n´1
ÿ

k“0

}∇Kpρ‹q}
n

k`1

Wn´1,q ,

from which we deduce (3.11) using the boundedness of ∇K, this concludes the
proof.

Proposition 3.5 (Regularity of the confinement perturbation). Under the as-
sumptions of Lemma 3.4, and assuming that N ą 1 ` d

q and

}K}L1XLrÑLp ď κ for some p P r1,8s ,

any fixed point ρ‹ “ e´V‹ of T satisfies for some C “ CpN,κ, ζ, RV q

}ρ‹}WN,1 ` }ρ‹}WN,q ` }V ´ V‹}W 2,8 ď C .

Proof. As a direct consequence of Lemma 3.4, there is some C0 “ C0pN,κ, ζ, RV q

such that
}ρ‹}WN,1 ` }ρ‹}WN,q ď C0

and therefore, up to enlarging C0, and noticing that ∇Kpρ‹q “ ∇pV‹ ´ V q

}∇pV‹ ´ V q}WN,q ď C0 ,
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and then by Sobolev embedding

}∇pV‹ ´ V q}W 1,8 ď C0 .

Finally, noticing that for any smooth enough u and x P Rd, there holds

|upxq| ď
1

ωd

ż

|x´y|ď1

|upxq ´ upyq| dy `
1

ωd

ż

|x´y|ď1

|upyq| dy

ď }∇u}L8 `
1

ω
1{p
d

}u}Lp ,

where ωd is the volume of the unit ball, taking u “ V‹´V “ Kpρ‹q, this estimate
guarantees that V‹ ´ V P L8. This concludes the proof.

3.3 Uniqueness of fixed points

Let us introduce the macroscopic free energy functional (see (1.5) for its kinetic
counterpart)

@ρ P X, Frρs :“

ż

Rd

ˆ

V `
1

2
Kepρq

˙

ρdx`

ż

Rd

ρ log ρdx

defined in the convex set

X :“

"

ρ P L1 X L2 : 0 ă ρ ă RV e
ζ ,

ż

ρdx “ 1

*

,

where the upper bound is that of (3.5) with s “ 8. Here we assume that
Ke : L1 X L2 Ñ Lp with p P r2,8s. Observe that, compared to the previous
section (see Proposition 3.5), the range of indices for p has been shrinked and
we take r “ 2. We also introduce the differential of F with respect to ρ:

@h P Y, dρFrρs ¨ h “

ż

Rd

pV ` Kepρq ` log ρqhdx ,

where we denoted the vector space

Y “

"

h P L1 X L2 :

ż

Rd

hdx “ 0

*

.

Proposition 3.6 (Uniqueness of the steady state). Under the assumptions of
Lemma 3.2, the following properties hold.

a) If Ke is such that F is strictly convex, then T has a unique fixed point.

b) If Ko “ 0, fixed points of T coincide exactly with critical points of F with
mass 1. In particular, under the hypothesis of a), the unique fixed point
of T is the unique minimizer of F under the constraint of unit mass.
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Proof. One observes that any ρ P X of the form

ρ “ c e´V ´Kρ for some c P p0,8q

is such that the first order differential of F writes

@h P Y, dρFrρs.h “ ´

ż

Rd

Kopρqhdx ,

and in particular, the skew-symmetry of Ko implies

pdρFrρ1s ´ dρFrρ0sq.pρ1 ´ ρ0q “ 0 . (3.13)

for any ρ0 and ρ1 of the previous form. Therefore, by strict convexity of F ,
ρ1 “ ρ0 which proves a). The property b) is an immediate consequence of the
expressions of dρF and T .

Corollary 3.7. Under the assumptions of Proposition 3.5 and if there is κe ă

δepθ,RV , ζq such that

xKeh, hy ě ´κe
`

θ}h}2L2 ` p1 ´ θq}h}2L1

˘

, for all h P L1 X L2 s.t.

ż

h “ 0.

then the mapping T admits a unique fixed point.

Proof. Let us show that under this additional hypothesis, F is strictly convex.
Indeed, one has

pdρFrρ1s ´ dρFrρ0sq.pρ1 ´ ρ0q “ xKeρ1 ´ ρ0, ρ1 ´ ρ0yL2 `

ż

pρ1 ´ ρ0q log

ˆ

ρ1
ρ0

˙

.

On the one hand by the Csiszár-Kullback-Pinsker inequality, one has
ż

pρ1 ´ ρ0q log

ˆ

ρ1
ρ0

˙

ě }ρ1 ´ ρ0}2L1

On the other hand, thanks to the upper bound on functions in X, one also has
ż

pρ1 ´ ρ0q log

ˆ

ρ1
ρ0

˙

ě
1

RV eζ
}ρ1 ´ ρ0}2L2

where we used the identity

@x, y ą 0, px´ yq log

ˆ

x

y

˙

“ px´ yq2
ż 1

0

1

ty ` p1 ´ tqx
dt .

By combining these controls of the L1 and L2 distances with the assumption,
for a small enough δepθ,RV , ζq, one shows

pdρFrρ1s ´ dρFrρ0sq.pρ1 ´ ρ0q ě 0

with equality only if ρ0 “ ρ1.

Remark 3.8. If θ “ 0 then clearly δe “ 1.

Remark 3.9. The lower bound assumption is not a technical one, when the
interaction kernel has large negative modes one may observe phase transition
and appearance of several equilibria. We refer to [14] in the case of the McKean-
Vlasov equation on the torus without confinement.
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3.4 Functional inequalities related to the steady state

These properties are an immediate consequence of Lemma 3.4 and the Holley-
Strook perturbation principle, and we just point out that (3.17) and (3.18)
follow from an integration by part argument.

Lemma 3.10 (Uniform bounds). Under the assumptions of Proposition 3.5
and assuming that for any ε ą 0 there exists some Cε ą 0 such that

ˇ

ˇ∇2V
ˇ

ˇ ď ε|∇V | ` Cε ,

then any fixed point ρ‹ of T is such that, for any ε ą 0, there exists a constant
C‹,ε “ C‹,εpN,κ, ζ, RV , Cεq ą 0 such that

ˇ

ˇ∇2V‹

ˇ

ˇ ď ε|∇V‹| ` C‹,ε . (3.14)

Furthermore, there exists some C‹ ą 0 such that
›

›

`

1 ` |∇V‹|2
˘

ρ‹

›

›

L1XL8 ď C‹ . (3.15)

Lemma 3.11 (Poincaré inequalities). Under the assumptions of Lemma 3.10
and assuming that for any

u P H1
`

e´V
˘

such that

ż

Rd

upxqe´V pxqdx “ 0

the Poincaré inequality holds:

}u}L2pe´V q ď CP }∇u}L2pe´V q ,

then, for any fixed point ρ‹ “ e´V‹ of T , there exists some constant C‹ “

C‹pN,κ, ζ, RV , CP q ą 0 satisfying for any

u P H1pρ‹q such that

ż

Rd

upxqρ‹pxqdx “ 0

the Poincaré inequality:

}u}L2pρ‹q ď C‹}∇u}L2pρ‹q , (3.16)

as well as the following weighted variations:

}u |∇V‹|}L2pρ‹q ď C‹}∇u}L2pρ‹q , (3.17)

}u |∇V‹|2}L2pρ‹q ď C‹

´

}∇u}L2pρ‹q ` }∇u |∇V‹|}L2pρ‹q

¯

. (3.18)

Lemma 3.12 (Weighted Sobolev spaces comparison). Under the assumptions
of Proposition 3.11 and for any fixed point ρ‹ “ e´V‹ of T , there exists some
C “ CpC‹q such that

1

C
}u ρ1{2

‹ }Hs ď }u}Hspρ‹q ď C}u}Hs , s P r0, 1s , (3.19)

furthermore, denoting ∇˚ :“ ´∇ ` ∇V‹, there also holds for s “ 1

1

C
}u}H1pρ‹q ď }u}L2pρ‹q ` }∇˚u}L2pρ‹q ď C}u}H1pρ‹q . (3.20)
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Proof. The bounds of (3.19) follow from (3.15) and (3.17) for s “ 0, 1, which
then holds for s P r0, 1s by interpolation. To prove (3.20), one writes

}∇u}2L2pρ‹q “ x∇u,∇uyL2pρ‹q

“ x∇˚u,∇˚uyL2pρ‹q ` xr∇˚,∇su, uyL2pρ‹q .

Observing that r∇,∇˚s “ ∆V‹, we deduce from (3.14) and (3.17) that the
second term is in fact a lower order term:

ˇ

ˇ

ˇ
xr∇˚,∇su, uyL2pρ‹q

ˇ

ˇ

ˇ
ď

1

2
}∇u}2L2pρ‹q ` C}u}2L2pρ‹q

and therefore

´C}u}2L2pρ‹q `
1

2
}∇u}2L2pρ‹q ď }∇˚u}L2pρ‹q ď C}u}2L2pρ‹q `

1

2
}∇u}2L2pρ‹q ,

which allows to conclude.

3.5 Proof of Theorem 3.1 and 2.10

Let F‹ solve (1.1). Then observe that G‹px, vq “ e´|v|
2

´V pxq´ΨF‹ pxq also solves
(1.1). Then by multiplying the equation by F‹{G‹ one obtains

}∇vpF‹{G‹q}2L2pG‹q “ 0

which shows that F‹px, vq “ ρ‹pxqMpvq. By plugging back this ansatz into
(1.1), it shows that ρ‹ solves (3.2). The rest of the proof of Theorem 3.1 is a
combination of the results of Proposition 3.2 to Corollary 3.7. For the proof of
Theorem 2.10, just observe that Assumption 2.1 and Assumption 2.2 implies
all the hypotheses of Theorem 2.10. In particular, since Lp X 9W 1,q embeds
into L8 for q ą d, the assumption on K˚

`

e´V
˘

is automatically satisfied and
ζ “ ζpκ,RV q. Finally the functional inequalities of Section 3.4 hold and we also
point out that, all constants depending on κ can be considered to depend on
the larger bound κmax.

4 Linearized VFP

In this section, we study decay and regularization properties of the linearized
flow of the equation (1.1) around the equilibrium F‹ “ ρ‹M of Section 3, where
Mpvq “ p2πq´d{2 exp

`

´|v|2{2
˘

. For that we introduce a perturbation f satis-
fying

f “
F ´ F‹

F‹

.

The functional framework will rely on the Hilbert space L2pF‹q. In this space
the adjoints of ∇x and ∇v are respectively

∇˚
x “ ´∇x ` ∇xV‹ and ∇˚

v “ ´∇v ` v .
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We introduce the subspace

H0 “

"

f P L2pF‹q such that

ż

R2d

f F‹ dxdv “ 0

*

,

and the orthogonal projection in L2pF‹q onto local equilibrium

Πfpxq “

ż

Rd

fpx, vqMpvqdv “
ρf pxq

ρ‹pxq
with ρf pxq “

ż

Rd

fpx, vqF‹px, vqdv.

Observe that ρf “ ρΠf . Let us write the linerized equation. By plugging
F “ F‹p1 ` fq into (1.1), one finds the linearized VFP equation

$

’

’

’

&

’

’

’

%

pBt ` Λqfptq ` v ¨ ∇xψf ptq “ ∇˚
vφptq,

Λ “ ν∇˚
v∇v ` v ¨ ∇x ´ ∇xV‹ ¨ ∇v

ψf “ Kρf ,
fp0, x, vq “ finpx, vq ,

(4.1)

with Fin “ F‹p1 ` finq. In the original equation the right-hand side is given
with φ “ f∇xψf . However, in this section, we will assume that it is a given
source. In the following lemmas and propositions, we assume that the general
hypotheses of the paper, Assumption 2.1 and Assumption 2.2, are satisfied. We
will write C‹ for any positive constant depending only on the steady state and
therefore on κmax, RV and θ only. Note that ´Λ generates a C0–semigroup on
H (see [30, Proposition 5.5]), and thus ´pΛ ` v ¨ ∇xψp¨qq as well since v ¨ ∇ψp¨q

is a bounded operator in H in virtue of Lemma 4.1.

4.1 Preliminary properties

The following bounds are a translation of the assumption on K to the current
L2pF‹q framework and are a consequence of Hölder’s inequality. We use the
notation ψα

f “ Kαρf with α “ o, e.

Lemma 4.1. The following upper bounds hold for α “ e, o

}ψα
f }L2pF‹q ď C‹κ

α}Πf}L2pF‹q, (4.2)

}∇xψ
α
f }L2pF‹q ` }∇xψ

α
f }Lq ď C‹κ

α}Πf}L2pF‹q, (4.3)

as well as the lower bound:

xψf , ρf yL2 “ xψe
f , ρf yL2 ě ´pC‹θ ` p1 ´ θqqκe}Πf}2L2pF‹q . (4.4)

The next lemma is a consequence of the Poincaré inequalities and other
results of Section 3.4.

Lemma 4.2. Let f P H0 Ă L2pF‹q and g P L2pF‹q. Then there is C “ CpC‹q

such that

}Πf}L2pF‹q ď C}∇xf}L2pF‹q, (4.5)

}pId´Πqg}L2pF‹q ď }∇vg}L2pF‹q, (4.6)

}Πg}L2pF‹q ď }g}L2pF‹q ď C
`

}∇xg}L2pF‹q ` }∇vg}L2pF‹q

˘

, (4.7)
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Moreover
}∇˚

vg}2L2pF‹q “ }g}2L2pF‹q ` }∇vg}2L2pF‹q. (4.8)

Finally, for any ε ą 0 there is Cε “ CεpC‹q such that

}|∇2V‹|g}L2pF‹q ď Cε}g}L2pF‹q ` ε}∇xg}L2pF‹q (4.9)

4.2 L2-hypocoercivity

In the following we want to apply the L2 hypocoercivity techniques of [23].
Taking inspiration from [1], we will introduce a suitable norm which will allow us
to include some part the interaction term v¨∇ψf into the dissipative mechanisms
of the equation instead of a mere perturbation of the hypocoercive operator Λ.
Accordingly, let us rewrite the equation (4.1) as

#

pBt ` T ´ Lqf “ ´v ¨ ∇xψ
o
f ` ∇˚

vφ,

fp0, x, vq “ finpx, vq,
. (4.10)

where the operators T and L are defined as

L :“ ´ν∇˚
v∇v and T :“ v ¨ ∇x ´ ∇xV‹ ¨ ∇v ` v ¨ ∇xψ

e
f .

4.2.1 The linearized free energy norm

We endow the subspace H0 with a norm for which L and T will be shown to be
respectively symmetric and skew-symmetric. Let us consider the twisted inner
product

xxf, gyy :“ xf, gyL2pF‹q ` xψe
f , ρgyL2 “ xf ` ψe

f , gyL2pF‹q, (4.11)

and the corresponding (squared) norm

|||f |||
2
:“ xxf, fyy “

ĳ

R2d

fpx, vq2F‹px, vqdxdv `

ż

Rd

pKeρf qpxqρf pxqdx. (4.12)

Remark 4.3. In the case of a purely symmetric kernel k “ ke, observe that
(4.12) is related to the natural Lyapunov functional of the equation: the free
energy (1.5). More precisely, if one plugs in F “ F‹p1 ` εfq and lets ε Ñ 0,
(4.12) is the main order contribution. That is why we refer to it as the linearized
free energy norm. This observation is a generalization to arbitrary kernels of
the one made in [1].

4.2.2 The Dolbeault-Mouhot-Schmeiser functional E0
For the new inner product (4.12) we use the superscript : to denote the adjoint
of an operator for the inner product (4.11). Following [23], we introduce, for
some ε P p0, 1{2q, the following functional:

E0rf s :“
1

2
|||f |||

2
` εxxAf, fyy where A :“

`

Id`pTΠq:TΠ
˘´1

pTΠq
:
.
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On the one hand, we will show that the functional E0 satisfies a Lyapunov

inequality, and on the other hand that both quantities E
1
2
0 and |||¨||| are equivalent

to the norm of L2pF‹q.

Lemma 4.4. For a small enough δe “ δepC‹, θq ą 0, assuming that κe ă δe,
one has for some C “ Cpκe, C‹q that

1

2
}f}2L2pF‹q ď |||f |||

2
ď C}f}2L2pF‹q .

The inner product is compatible with the micro–macro decomposition in the
sense that

Π: “ Π and kerpLqKH0 “ kerpLq
KL2pF‹q ,

and furthermore
xxpId´Πqf, gyy “ xpId´Πqf, gyL2pF‹q (4.13)

Finally, the diffusion and transport operators L and T are skew-symmetric and
symmetric:

T : “ ´T and L “ L:.

Proof. This follows from Lemma 4.1, and more precisely (4.2) and (4.4). The
properties of T, L and Π can be proved exactly as in [1, Lemma 15 and 16].

4.2.3 Properties of T , L, A and Π

We now prove some properties concerning the previously introduced operators.
For properties that can be proved exactly as in [1] we sketch the proof at most.
We only detail proofs when they differ substantially or when we concern addi-
tional properties not proved in [1].

Lemma 4.5. The operator T , as an operator of H0, satisfies the parabolic
dynamics property:

ΠTΠ “ 0,

and, more precisely, there holds for any f P H0

TΠf “ pId´ΠqTΠf “ v ¨ ∇xpΠf ` ψe
f q

as well as
ΠTf “ ΠT pId´Πqf “ ´∇˚

xΠpvfq.

Furthermore, assuming κe ă δepC‹, θq, there is some λM pC‹, θq ą 0 such that
the following macroscopic coercivity estimate hold, namely

}TΠf} ě λM }Πf}. (4.14)

Proof. Performing the same computations as [1, Lemma 18] with the Poincaré
inequality (3.16), one has

}TΠf}2L2pF‹q ě
1

C‹

ˆ

}Πf}2L2pρ‹q ` 2

ż

Rd

ψe
f pxqρf pxqdx

˙
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thus, using the definition of |||¨||| and the lower bound (4.4), we have for some
C “ Cpθ, C‹q

}TΠf}2L2pF‹q ě
1

C‹

p1 ´ κeCq}Πf}2L2pρ‹q,

which allows to conclude.

This next proposition can be proved following [1, Lemma 20].

Lemma 4.6. The auxiliary operator A is such that

A “ ΠApId´Πq : kerpLqK Ñ kerpLq

and satisfies the following boundedness properties:

|||ALf ||| ď
ν

2
|||f |||, |||TAf ||| ď |||f |||, |||Af ||| ď

1

2
|||f |||.

Lemma 4.7. The composition AT satisfies for some C “ CpC‹, κ
eq the bound

|||AT pId´Πqf ||| ď C|||pId´Πqf ||| .

Proof. In this proof, we denote by C “ CpC‹, κ
eq a constant that may change

from line to line. The proof follows the lines of the proof of [1, Lemma 21], so we
focus on the most intricate estimate (4.17). Let us however point out that this
boundedness result is proved by establishing it for the adjoint pAT pId´Πqq:

and reducing the problem to

}pAT pId´Πqq:f}2L2pF‹q

ď C
´

}g}2L2pF‹q ` }f}2L2pF‹q ` }∇xwg|∇xV‹|}2L2pF‹q

¯

,

where g P kerpLq is characterized by the elliptic equation

g ` ∇˚
x∇xwg “ f with wg :“ g ` ψe

g . (4.15)

Taking the L2pF‹q–inner product against g ` ψe
g, one can prove the control

|||g|||
2

` }∇xg}2L2pF‹q ` }∇xwg}2L2pF‹q ď C|||f |||
2
. (4.16)

Let us explain how to establish the bound

}∇xwg|∇xV‹|}2L2pF‹q ď C|||f |||
2
. (4.17)

Taking the L2 pF‹q-inner product of (4.15) with g|∇xV‹|2,

@

∇xg,∇x

`

g|∇xV‹|2
˘D

L2pF‹q
`
@

∇xψ
e
g,∇x

`

g|∇xV‹|2
˘D

L2pF‹q
“ xg´f, g|∇xV‹|2yL2pF‹q,
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thus, using the Leibniz rule, we get
›

›

›
∇xg |∇xV‹|

›

›

›

2

L2pF‹q
“ ´

@

∇xg, g∇x

`

|∇xV‹|2
˘D

L2pF‹q
´
@

∇xψ
e
g, g∇x

`

|∇xV‹|2
˘D

L2pF‹q

´
@

∇xψ
e
g,∇xg|∇xV‹|2

D

L2pF‹q

`

›

›

›
g|∇xV‹|

›

›

›

2

L2pF‹q
´
@

f, g|∇xV‹|2
D

L2pF‹q
“:

5
ÿ

k“1

Xk.

The term X1 is estimated using that ∇x

`

|∇xV‹|2
˘

ď C|∇xV‹|2 `C from (3.14):

|X1| ďC

ż

Rd

|∇xg||g|ρ‹dx` C

ż

Rd

|∇xg||g||∇xV‹|2ρ‹dx

and thus, for any δ P p0, 1q

|X1| ď C}g}2L2pF‹q ` C}∇xg}2L2pF‹q

`
C

δ
}g|∇xV‹|}2L2pF‹q ` δ

›

›

›
∇xg|∇xV‹|

›

›

›

2

L2pF‹q
.

(4.18)

Similarly, the term X2 is controlled using Hölder’s inequality for 1
2 “ 1

q ` 1
s

followed by (4.3) and (3.15):

|X2| ďC

ż

Rd

|∇xψ
e
g||g|ρ‹dx` C

ż

Rd

|∇xψ
e
g| ˆ |g||∇xV‹|ρ

1
2
‹ ˆ |∇xV‹|ρ

1
2
‹ dx

ďC}∇xψ
e
g}L2pF‹q}g}L2pF‹q ` C}∇xψ

e
g}Lq}g|∇xV‹|}L2pF‹q}|∇xV‹|2ρ‹}

1
2

Ls{2

ďC
´

}g}2L2pF‹q ` }g|∇xV‹|}2L2pF‹q

¯

. (4.19)

The term X3 is controlled similarly:

|X3| ď

ż

Rd

|∇xψ
e
g||∇xg| |∇xV‹|

2
ρ‹dx

ďC}∇xψ
e
g}Lq}∇xg|∇xV‹|}L2pF‹q}|∇xV‹|2ρ‹}Ls{2

ď
C

δ
}g}2L2pF‹q ` δ }∇xg|∇xV‹|}L2pF‹q . (4.20)

The terms X4 and X5 are simply controlled as

|X4| ` |X5| À

›

›

›
g|∇xV‹|

›

›

›

2

L2pF‹q
`

1

δ
}f}2L2pF‹q ` δ

›

›

›
g|∇xV‹|2

›

›

›

2

L2pF‹q
. (4.21)

Putting together (4.18)–(4.21), using the weighted Poincaré inequalities (3.17)–
(3.18) (recall that g has zero mean), and using the bound (4.16) we have

›

›

›
∇xg|∇xV‹|

›

›

›

2

L2pF‹q
ď C|||f |||

2
.

Finally, as for (4.19)–(4.20), one proves a similar weighted Sobolev estimate
for ψg, which together with the bound above yields (4.17). This concludes the
proof.
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4.2.4 Properties of the functional E0
Lemma 4.8. For ε P p0, 1{2s, the functional E0 is equivalent to the norm |||¨|||

in the sense that
1

4
|||f |||

2
ď E0rf s ď

3

4
|||f |||

2
.

Furthermore, under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq

for some appropriate choice of ε, there exists λ, µ and C depending on C‹, κ
e, κe, κo,

θ and ν such that any solution to (4.1) satisfies the differential inequality

d

dt
E0rf s ` λ E0rf s ` µ}∇vf}2L2pF‹q ď C}pId´Πqφ}2L2pF‹q .

Proof. The equivalence of norms follows from the bound of A provided by
Lemma 4.6 which gives

1 ´ ε

2
|||f |||

2
ď E0rf s ď

1 ` ε

2
|||f |||

2
.

Differentiating E0 rf s, and using that

v ¨ ∇xψ
o
f P kerpLqK, Lf P kerpLqK, and ∇˚

vφ P kerpLqK,

T : “ ´T, and Af P kerpLq

one has the identity

d

dt
E0rf s “xxBtf, fyy ` εxxABtf, fyy ` εxxAf, Btfyy

“xxLf, fyy ` xxv ¨ ∇xψ
o
f , fyy

´ εxxATf, fyy ` εxxALf, fyy ` εxxA
`

v ¨ ∇xψ
o
f

˘

, fyy

´ εxxAf, Tfyy

` xxf,∇˚
vφyy ` εxxAf,∇˚

vφyy “:
8
ÿ

k“1

Xk.

The term X1 is estimated using the microscopic coercivity estimate (4.6) and
the fact that } ¨ }L2pF‹q “ |||¨||| on kerpLqK:

X1 ď ´
ν

2
|||pId´Πqf |||

2
´
ν

2
}∇vf}2L2pF‹q,

Noting that pTΠq:TΠ is a self-adjoint operator whose spectrum lies in rλM ,`8q

by Lemma 4.5, one has by functional calculus

xxATΠf,Πfyy ě
λM

1 ` λM
|||Πf |||

2
,
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thus, the term X3 is estimated for any δ P p0, 1q as

X3 “ ´εxxATf,Πfyy ď ´
ελM

1 ` λM
|||Πf |||

2
´ εxxAT pId´Πqf,Πfyy

ď ´ε

ˆ

λM
1 ` λM

´ δ

˙

|||Πf |||
2

`
εC

δ
|||pId´Πqf |||

2

for some constant C “ Cpκe, C‹q by Lemma 4.7. Similarly, the boundedness of
TA from Lemma 4.6 yields

X6 “ εxxTApId´Πqf, fyy

ď ε|||TApId´Πqf ||||||Πf ||| ` ε|||TApId´Πqf |||||||pId´Πqf |||

ď δε|||Πf |||
2

` ε

ˆ

1 `
1

4δ

˙

|||pId´Πqf |||
2
,

and that of AL

X4 “ εxxALpId´Πqf,Πfyy ď εδ|||Πf |||
2

`
ε

4δ
|||ALpId´Πqf |||

2

ď εδ|||Πf |||
2

`
εν2

16δ
|||pId´Πqf |||

2
.

The remaining force terms are controlled using the fact that xx¨, ¨yy coincide with
the L2pF‹q–inner product on microscopic distributions, as well as the upper
bound (4.3) on ψo

f :

X2 “ xv ¨ ∇xψ
o
f , pId´ΠqfyL2pF‹q ď Cκo

´

|||Πf |||
2

` |||pId´Πqf |||
2
¯

where we used the equivalence of norms in the last line, and similarly, using
that A has operator norm 1{2 from Lemma 4.6

X5 ď Cεκo|||Πf |||
2
.

Finally, since ∇˚
vφ is microscopic in the sense that Πp∇˚

vφq “ 0, one has in
virtue of Lemma 4.6 that X8 “ 0 as well as

X7 “ xxf,∇˚
vφyy “xpId´Πqf,∇˚

vφyL2pF‹q

ď
ν

4
}∇vf}2L2pF‹q `

1

ν
}pId´Πqφ}2L2pF‹q .

Put together, these estimates yield

d

dt
E0rf s ď ´

ν

4
}∇vf}2L2pF‹q

´

"

ν

2
´
εC

4δ
´ ε

ˆ

1 `
1

4δ

˙

´
εν2

8δ
´ Cκo

*

|||pId´Πqf |||
2

´

"

ε

ˆ

λM
1 ` λM

´ 3δ

˙

´ p1 ` εqCκo
*

|||Πf |||
2

`
1

ν
}pId´Πqφ}2L2pF‹q .
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Choosing ε “ δ2 and using the upper bound (4.3), this simplifies for some
C “ Cpκe, C‹q as

d

dt
E0rf s ď ´

ν

4
}∇vf}2L2pF‹q

´

!ν

2
´ δC ´ 2δ ´ δν ´ Cκo

)

|||pId´Πqf |||
2

´

"

δ2
ˆ

λM
1 ` λM

´ 3δ

˙

´ Cκo
*

|||Πf |||
2

`
1

ν
}pId´Πqφ}2L2pF‹q .

The result then holds taking δ small enough, depending on C, ν and λM , so
that the dissipation rates of pId´Πqf and Πf are of order ν and δ2 respectively,
and then κo small enough, depending on ν and δ2.

We can now state the main result of this section, which is an immediate
consequence of Lemmas 4.8 and 4.4.

Proposition 4.9 (L2
x,v-hypocoercivity). Under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq

there exists λ and C depending on C‹, κ
e, κo, κe and ν such that any solution to

(4.1) satisfies the differential inequality

sup
tě0

e2λt}fptq}2L2pF‹q`

ż 8

0

e2λt}∇vfptq}2L2pF‹qdt

ď C

ˆ

}fin}2L2pF‹q `

ż 8

0

e2λt}φptq}2L2pF‹qdt

˙

.

From Proposition 4.9, one can derive a well-posedness and asymptotic stabil-
ity result for the nonlinear VFP equation (1.1) if Assumption 2.2 is strengthened
by assuming that∇K : L1XL2 Ñ L8 is a bounded operator, namely q “ 8. For
kernels providing less integrability/regularity, one need to resort to higher order
estimates and regularization properties of the equation, which is the purpose of
the rest of Section 4.

4.3 Derivatives estimates

In this section, we derive preliminary estimates on the derivatives of f .

Lemma 4.10. Let f be a solution to (4.1), its velocity gradient satisfies the
equation

Btp∇vfq ` Λp∇vfq ` ν∇vf “ ´∇xf ´ ∇xψf ` ∇v∇˚
vφ .
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as well as the differential inequality

1

2

d

dt
}∇vf}2L2pF‹q `

ν

2
}∇2

vf}2L2pF‹q

ď δ}∇xf}2L2pF‹q ` C
´

δ´1}∇vf}2L2pF‹q ` }φ}2L2pF‹q ` }∇vφ}2L2pF‹q

¯

(4.22)

where δ P p0, 1q, and for some C “ Cpκe, κo, C‹, νq.

Proof. The equation satisfied by ∇vf is obtained by noticing that the following
commutator identity holds:

r∇v,Λs “ ∇x ` ν∇v .

Integrating against ∇vf , there holds

1

2

d

dt
}∇vf}2L2pF‹q ` ν}∇2

vf}2L2pF‹q ` ν}∇vf}2L2pF‹q

“ ´ x∇xf,∇vfyL2pF‹q ´ x∇xψf ,∇vfyL2pF‹q ` x∇˚
vφ,∇˚

v∇vfyL2pF‹q

Àδ
´

}∇xf}2L2pF‹q ` }∇xψf }2L2pF‹q

¯

` ε}∇˚
v∇vf}2L2pF‹q

`
1

δ
}∇vf}2L2pF‹q `

1

ε
}∇˚

vφ}2L2pF‹q .

From there on the one hand one uses (4.8) with g “ ∇vf . On the other hand, one
combines (4.3) with the Poincaré inequality (4.5) to get for some C “ CpC‹, κq

}∇xψf }L2pF‹q ď C}∇xf}L2pF‹q .

In turn, one concludes to (4.22) by taking ε small enough with respect to ν.

Lemma 4.11. Let f be a solution to (4.1), its spatial gradient satisfies the
equation

Btp∇xfq ` Λ p∇xfq “
`

∇2
xV‹

˘

∇vf `
`

v ¨ ∇xψ
“

B˚
xi
f
‰˘d

i“1
` ∇˚

v∇xφ,

as well as the differential inequality

1

2

d

dt
}∇xf}2L2pF‹q `

ν

2
}∇v∇xf}2L2pF‹q

ď C
´

}∇xf}2L2pF‹q ` }∇vf}2L2pF‹q ` }∇xφ}2L2pF‹q

¯

,
(4.23)

for some C “ Cpκe, κo, C‹, νq.

Proof. The differential equation satisfied by ∇xf is immediately obtained by
noticing

r∇x,Λs “ ´
`

∇2
xV‹

˘

∇v and ∇xψrf s “ ´ψr∇˚
xf s .
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integrating against ∇xf , we get

1

2

d

dt
}∇xf}2L2pF‹q ` ν}∇v∇xf}2L2pF‹q

“
@`

∇2
xV‹

˘

∇vf,∇xf
D

L2pF‹q
`

d
ÿ

i“1

@

v ¨ ∇xψ
“

B˚
xi
f
‰

, Bxi
f
D

L2pF‹q

` x∇xφ,∇x∇vfyL2pF‹q.

Concerning the first source term, thanks to the weighted Poincaré inequality
(4.9) with (say) ε “ 1, one has for some C “ CpC‹q which may change from
line to line

@ `

∇2
xV‹

˘

∇vf,∇xf
D

L2pF‹q

ď C
`

}∇vf}L2pF‹q ` }∇x∇vf}L2pF‹q

˘

}∇xf}L2pF‹q

ď C

ˆ

ε}∇x∇vf}2L2pF‹q `
1

ε
}∇xf}2L2pF‹q ` }∇vf}2L2pF‹q

˙

.

Concerning the second source term, we have from the bound (4.3) and the
Poincaré inequality (4.5) that for some C “ CpC‹, κ

e, κoq

d
ÿ

i“1

@

v ¨ ∇xψ
“

B˚
xi
f
‰

, Bxif
D

L2pF‹q
ď C}∇xf}2L2pF‹q

Concerning the third term, we have that

x∇xφ,∇x∇vfyL2pF‹q ď}∇xφ}L2pF‹q}∇x∇vf}L2pF‹q

ď
1

2ν
}∇xφ}2L2pF‹q `

ν

2
}∇x∇vf}2L2pF‹q .

This concludes the proof.

Lemma 4.12. Let f be a solution to (4.1), the inner product of its partial
gradients satisfies the differential inequality

d

dt
x∇xf,∇vfyL2pF‹q `

1

2
}∇xf}2L2pF‹q ď δ}∇x∇vf}2L2pF‹q ` C}f}2L2pF‹q

`
C

δ

´

}∇vf}2L2pF‹q ` }∇2
vf}2L2pF‹q ` }φ}2L2pF‹q ` }∇vφ}2L2pF‹q

¯

,

(4.24)

for any δ P p0, δ1q, where the constants C and δ1 depend on κe, κo, C‹ and ν.
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Proof. On the one hand, there holds

d

dt
x∇vf,∇xfyL2pF‹q

“ xBtp∇vfq,∇xfyL2pF‹q ` xBtp∇xfq,∇vfyL2pF‹q

“ ´ xΛp∇vfq,∇xfyL2pF‹q ´ }∇xf}2L2pF‹q ´ ν x∇vf,∇xfyL2pF‹q

´ xΛp∇xfq,∇vfyL2pF‹q `
@`

∇2
xV‹

˘

∇vf,∇vf
D

L2pF‹q

´ x∇xψf ,∇xfyL2pF‹q `

d
ÿ

i“1

@

v ¨ ∇xψ
“

B˚
xi
f
‰

, Bvif
D

L2pF‹q

` x∇v∇˚
vφ,∇xfyL2pF‹q ` x∇x∇˚

vφ,∇vfyL2pF‹q

“ ´ }∇xf}2L2pF‹q `X1 `X2 `X3 `X4,

where we denoted (and using that the symmetric part of Λ is ´L “ ν∇˚
v∇v)

X1“ ´xΛp∇vfq,∇xfyL2pF‹q ´ xΛp∇xfq,∇vfyL2pF‹q `
@`

∇2
xV‹

˘

∇vf,∇vf
D

L2pF‹q

“ ´νx∇v∇xf,∇2
vfyL2pF‹q `

@`

∇2
xV‹

˘

∇vf,∇vf
D

L2pF‹q

as well as

X2 :“ ´ν x∇vf,∇xfyL2pF‹q ,

X3 :“ ´x∇xψf ,∇xfy `

d
ÿ

i“1

@

v ¨ ∇xψ
“

B˚
xi
f
‰

, Bvif
D

L2pF‹q
,

X4 :“ x∇˚
vφ,∇˚

v∇xfyL2pF‹q ` x∇˚
vφ,∇˚

x∇vfyL2pF‹q .

As in the proof of (4.23), one has for the term X1 for some C “ CpC‹, νq that
may change from line to line

X1 ÀC}∇v∇xf}L2pF‹q

`

}∇vf}L2pF‹q ` ν}∇2
vf}L2pF‹q

˘

` C}∇vf}2L2pF‹q

Àδ}∇v∇xf}2L2pF‹q `
1

δ

´

}∇vf}2 ` }∇2
vf}2L2pF‹q

¯

For the term X2, one has

X2 ďν}∇vf}L2pF‹q}∇xf}L2pF‹q ď ν2}∇vf}2L2pF‹q `
1

4
}∇xf}2L2pF‹q .

As in the proof of (4.23), one has for the term X3 for some C “ CpC‹, κ
e, κoq

that may change from line to line

X3 À C
`

}f}L2pF‹q}∇xf}L2pF‹q ` }∇vf}L2pF‹q}∇xf}L2pF‹q

˘

,

therefore, there holds

X3 À ε}∇xf}2L2pF‹q `
C

ε

´

}f}2L2pF‹q ` }∇vf}2L2pF‹q

¯

.
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Finally, one can show for X4

X4 À
`

}φ}L2pF‹q ` }∇vφ}L2pF‹q

˘ `

}∇xf}L2pF‹q ` }∇vf}L2pF‹q ` }∇v∇xf}L2pF‹q

˘

Àδ
´

}∇xf}2L2pF‹q ` }∇vf}2L2pF‹q ` }∇v∇xf}2L2pF‹q

¯

` δ´1
´

}φ}2L2pF‹q ` }∇vφ}2L2pF‹q

¯

.

Gathering all estimates and taking δ and ε small enough, we conclude the
proof.

4.4 Mixed H1
x,v-L

2
x,v–hypocoercivity

In this section, we introduce a Lyapunov functional for the linearized equation.
It involves a combination of the Dolbeault-Mouhot-Schmeiser L2 hypocoercivity
functional and the Hérau-Nier / Villani H1 hypocoercivity functional.

Define for some small parameters a, b, c P p0, 1q and the following functional:

E1,1rf s :“ E0rf s ` a}∇vfptq}2L2pF‹q ` bx∇vf,∇xfyL2pF‹q ` c}∇xf}2L2pF‹q .

Lemma 4.13. Under the assumption b2 ď ac, the functional E1,1 is equivalent
to the H1pF‹q–norm in the sense that, for some M “ MpC‹, κ

eq and m “

mpa, cq, one has
m}f}2H1pF‹q ď E1,1rf s ď M}f}2H1pF‹q. (4.25)

Furthermore, under the smallness assumptions

κe ă δepC‹, θq and κo ă δ2pC‹, κ
e, κe, νq ,

for some appropriate choice of a, b and c, there exists λ, µ and C depending
on C‹, κ

e, κo, κe and ν such that any solution to (4.1) satisfies the differential
inequality

d

dt
E1,1rf s ` λ E1,1rf s ` µ}∇vf}2H1pF‹q ď C}φ}2H1pF‹q .

Proof. First of all, note that

E0rf s `
a

2
}∇vf}2L2pF‹q `

c

2
}∇xf}2L2pF‹q

ď E1,1rf s ď E0rf s ` pa` bq}∇vf}2L2pF‹q ` pb` cq}∇xf}2L2pF‹q,

which implies the equivalence of E1,1 with the H1pF‹q–norm as stated by (4.25).
Gathering Lemma 4.8, (4.22) with some δv, (4.24) with some δxv and (4.23), one
gets the energy estimate for some µ “ µpC‹, κ

e, κo, κeq andK “ KpC‹, κ
e, κo, κeq

d

dt
E1,1rf s `KE0rf s pµ´ bq `K}∇vf}2L2pF‹q

ˆ

µ´
a

δv
´

b

δxv
´ c

˙

`K}∇xf}2L2pF‹q pµb´ aδv ´ cq

`K}∇2
vf}2L2pF‹q

ˆ

µa´
b

δxv

˙

`K}∇x∇vf}2L2pF‹qpµc´ bδxvq ď C}φ}2H1pF‹q .
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Considering c ! b ! 1, it is enough to choose parameters such that

b

a
! δxv !

c

b
and a ! δv !

b

a

and one checks that the scaling

c “ ε21, b “ ε20, a “ ε16, δv “ ε8, and δxv “ ε2

fits the requirement. Taking ε small enough, we conclude this proof by norm
equivalence (4.25).

The following hypocoercivity result is a direct consequence of Lemma 4.13.

Proposition 4.14. Under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq

there exists λ and C depending on C‹, κ
e, κo, κe and ν such that any solution to

(4.1) satisfies the differential inequality

sup
tě0

e2λt}fptq}2H1pF‹q`

ż 8

0

e2λt}∇vfptq}2H1pF‹qdt

ď C

ˆ

}fin}2H1pF‹q `

ż 8

0

e2λt}φptq}2H1pF‹qdt

˙

.

4.5 Hypoellipticity

In this section we modify the functional of the previous section with time weights
to capture regularization properties of the VFP equation.

Define for some small parameters a, b, c ą 0 the time-weighted homogeneous
functional

Ghomrt, f s “ at}∇vf}2L2pF‹q ` bt2x∇vf,∇xfyL2pF‹q ` ct3}∇xf}2L2pF‹q,

as well as the inhomogeneous one:

Grt, f s “ E0rf s ` Ghomrt, f s.

Lemma 4.15. Assuming b2 ď ac, there holds

1

2
Ghomrt, f s ď at}∇vf}2L2pF‹q ` ct3}∇vf}2L2pF‹q ď 2Ghomrt, f s. (4.26)

Furthermore, under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq ,
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for some appropriate choice of a, b and c, there exists µ and C depending on
C‹, κ

e, κo, κe and ν such that any solution to (4.1) satisfies the differential in-
equality, for t P p0, 1s,

d

dt
Grt, f s ` µ

ˆ

E0rf s ` }∇vf}2L2pF‹q ` t}∇2
vf}L2pF‹q

` t2}∇xf}2L2pF‹q ` t3}∇x∇vf}2L2pF‹q

˙

ď C
´

}φ}2L2pF‹q ` t}∇vφ}2L2pF‹q ` t3}∇xφptq}2L2pF‹q

¯

.

(4.27)

Proof. The comparison (4.26) follows from the observation that

ˇ

ˇbt2x∇vf,∇xfyL2pF‹q

ˇ

ˇ ď
at

2
}∇vf}2L2pF‹q `

ct3

2
}∇xf}2L2pF‹q .

Combined with Lemma 4.8, (4.22) with δ “ δvt, (4.24) with δ “ δxvt and
(4.23), one gets the energy estimate for some µ “ µpC‹, κ

e, κo, κeq and K “

KpC‹, κ
e, κo, κeq,

d

dt
Grf s `KE0rf s

`

µ´ bt2
˘

`K}∇vf}2L2pF‹q

ˆ

µ´
a

δv
´

bt

δxv
´ ct3 ´ 2a

˙

`K}∇xf}2L2pF‹q

`

µbt2 ´ at2δv ´ ct3 ´ ct2 ´ 3ct2
˘

`K}∇2
vf}2L2pF‹q

ˆ

µat´
bt

δxv

˙

`K}∇x∇vf}2L2pF‹qpµct3 ´ bt3δxvq

ď Ca,b,c,δv,δxv

´

}φ}2L2pF‹q ` t}φ}2L2pF‹q ` t3}∇xφ}2L2pF‹q

¯

.

The same choice of parameters as in the proof of Lemma 4.13 allows to conclude.

Proposition 4.16 (H1–hypoellipticity). Under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq ,

there exists C depending on C‹, κ
e, κo, κe and ν such that any solution to (4.1)

satisfies the short time regularization estimates:

sup
0ătď1

!

t3}∇xfptq}2L2pF‹q ` t}∇vfptq}2L2pF‹q

)

`

ż 1

0

!

t2}∇xfptq}2L2pF‹q ` }∇vfptq}2L2pF‹q

)

dt

`

ż 1

0

!

t3}∇x∇vfptq}2L2pF‹q ` t}∇2
vfptq}2L2pF‹q

)

dt

ď C

ˆ

}fin}2L2pF‹q `

ż 1

0

´

}φptq}2L2pF‹q ` t}∇vφptq}2L2pF‹q ` t3}∇xφptq}2L2pF‹q

¯

dt

˙

.
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Remark 4.17. Note that the pointwise estimate imply, in the case of spatial
derivatives (and φ “ 0), that

›

›t2 ∇xf
›

›

Lr
tL

2
x,vpF‹q

ď Cr}fin}L2
x,v
, 1 ď r ă 2 ,

however, the integral estimate from Proposition 4.16 indicates that this holds
for the endpoint r “ 2 as well.

Denote for λ the smallest rate of Propositions 4.14 and 4.16

wσptq :“ eλt mint1, tu
σ
2 , σ P r0, 3s .

The following is a combination of Proposition 4.14 for t P p0, 1s and Proposition
4.16 for t ě 1.

Proposition 4.18. Under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq ,

there exists C and λ depending on C‹, κ
e, κo, κe and ν such that any solution to

(4.1) satisfies

sup
tą0

!

w3ptq2}∇xfptq}2L2pF‹q ` w1ptq2}∇vfptq}2L2pF‹q ` w0ptq2}fptq}2L2pF‹q

)

`

ż 8

0

!

w2ptq2}∇xfptq}2L2pF‹q ` w0ptq2}∇vfptq}2L2pF‹q

)

dt

ď C

ˆ

}fin}2L2pF‹q `

ż 8

0

´

w0ptq2}φptq}2L2pF‹q ` w1ptq2}∇vφptq}2L2pF‹q

` w3ptq2}∇xφptq}2L2pF‹q

¯

dt

˙

.

From here one could interpolate the results of Proposition 4.18 with those
of Propositions 4.14 to quantify the regularization and decay of a solution to
the nonlinear equation (1.1) with an initial data in Hs

x,vpF‹q, for large enough
s P r0, 1s. This is even possible under a slightly weaker assumption than As-
sumption 2.1 on the confining potential, namely (2.1) holding only for some
given ε. At the price of (2.1) holding for ε arbitrarily small, we will be able to
lower the regularity assumptions on the initial data to Hs

xL
2
vpF‹q.

4.6 H1
xL

2
v hypocoercivity

In this section, we apply the Dolbeault-Mouhot-Schmeiser L2–hypocoercivity
techniques, in the linearized free energy norm, to a first order x derivative of
the solution. More precisely we shall consider ∇˚

xf instead of ∇xf as only the
former belongs to H0.

Lemma 4.19. Let f be a solution to (4.1), its twisted spatial gradient ∇˚
xf

satisfies the equation

Btp∇˚
xfq ` pT ´ Lq p∇˚

xfq “ ´pv ¨ ∇xqψo
∇˚

x f
` ∇˚

v∇˚
xφ`X1 `X2 ,
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where we denoted

X1 :“
`

∇2
xV‹

˘

∇˚
vf, X2 :“ ´∇xV‹ pv ¨ ∇xψf q .

Furthermore, under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq,

there exists λ, µ and C depending on C‹, κ
e, κe, κo and ν such that f satisfies

the differential inequality

d

dt
E0 r∇˚

xf s ` λ E0 r∇˚
xf s ` µ}∇v∇˚

xf}2L2pF‹q

ď C
´

}φ}2L2pF‹q ` }∇xφ}2L2pF‹q ` }f}2L2pF‹q ` }∇vf}2L2pF‹q

¯

.

Proof. The equation satisfied by ∇˚
xf is obtained from the identities

r∇˚
x, T s f “ ´

`

∇2
xV‹

˘

∇˚
v ` p∇xV‹q

`

v ¨ ∇xψ
e
f

˘

,
”

∇˚
x, pv ¨ ∇xψ

o
p¨qq

ı

f “ p∇xV‹q
`

v ¨ ∇xψ
o
f

˘

and r∇˚
x, Ls “ 0 .

Since up to the remainder terms X1 and X2, ∇˚
xf follows the same equation as

f , with the source ∇˚
xφ, one can follow the proof of Lemma 4.8 to get (for the

same constants) C, λ and µ depending on κe, κo, κe, C‹ and ν that

d

dt
E0 r∇˚

xf s `λE0 r∇˚
xf s ` µ}∇˚

x∇vf}2L2pF‹q

ď C
´

}∇˚
xφ}2L2pF‹q ` Y1 ` Y2

¯

,

where, using the boundedness of the operator A and the norm equivalence be-
tween } ¨ } and |||¨|||, the remainder terms can be estimated by

Y1 À xx∇˚
xf,X1yy À }∇˚

xf}L2pF‹q}p∇2
xV‹q∇˚

vf}L2pF‹q,

Y2 À xx∇˚
xf,X2yy À }∇˚

xf}L2pF‹q}p∇V‹q pv ¨ ∇xψf q }L2pF‹q.

Then using Young’s inequality and (4.9), one obtains

Y1 À δ}∇˚
xf}2L2pF‹q `

1

δ

´

ε}∇x∇˚
vf}2L2pF‹q ` Cε}∇˚

vf}2L2pF‹q

¯

.

Then up to changing the constants, we have by the equivalence (3.20) and (4.8)

Y1 À δ}∇˚
xf}2L2pF‹q `

ε

δ

´

}∇˚
xf}2L2pF‹q ` }∇˚

x∇vf}2L2pF‹q

¯

`
Cε

δ

´

}f}2L2pF‹q ` }∇vf}2L2pF‹q

¯

.
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For the second remainder term one can use Hölder’s inequality for some 1
2 “

1
q ` 1

s followed by (4.3):

Y2 À δ}∇˚
xf}2L2pF‹q `

1

δ
}|∇xV‹|2ρ‹}

L
s
2

}∇xψf }2Lq ,

À δ}∇˚
xf}2L2pF‹q `

κ

δ
}Πf}2L2pF‹q .

Putting these estimates together with ε “ δ2, and using the fact that E0 is
equivalent to } ¨ }L2pF‹q, we obtain

d

dt
E0 r∇˚

xf s `pλ´ Cpδ ` δ2qqE0 r∇˚
xf s ` pµ´ Cδq}∇˚

x∇vf}2L2pF‹q

ď Cδ

´

}∇˚
xφ}2L2pF‹q ` κ}Πf}2L2pF‹q ` }f}2L2pF‹q ` }∇vf}2L2pF‹q

¯

,

thus, taking δ small enough, we conclude the proof.

Define E1,0 for some small ε P p0, 1q as

E1,0rf s “ E0rf s ` ε E0r∇˚
xf s .

In virtue of (3.20), it is clear that E1,0 defines an equivalent norm to H1
xL

2
vpF‹q,

thus, the following hypocoercivity result follows from Lemmas 4.8 and 4.19 for
a small enough choice of ε.

Proposition 4.20 (H1
xL

2
v–hypocoercivity). Under the smallness assumptions

κe ă δepC‹, θq and κo ă δopC‹, κ
e, κe, νq

there exists λ and C depending on C‹, κ
e, κo, κe and ν such that any solution to

(4.1) satisfies the differential inequality

sup
tě0

e2λt}fptq}2H1
xL

2
vpF‹q`

ż 8

0

e2λt}∇vfptq}2H1
xL

2
vpF‹qdt

ď C

ˆ

}fin}2H1
xL

2
vpF‹q `

ż 8

0

e2λt}φptq}2H1
xL

2
vpF‹qdt

˙

.

5 Non-linear VFP

Now we turn to the proof of our main result Theorem 2.12. First, based on the
analysis of the linearized equation, we introduce norms which will encompass the
gain of regularity of the solution and the exponential decay towards equilibrium.
Then we turn to the estimate of the nonlinear quadratic contribution

φ “ f∇ψf ,

in these functional spaces. From there we prove our main results of perturbative
well-posedness and asymptotic stability using a contraction argument.
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5.1 Functional setting

As in the previous section, we consider the time weights

wσptq “ eλt mint1, tu
σ
2 , σ P r0, 3s

and, for any s P r0, 1s, we introduce the norms

}φ}2Hs “

ż 8

0

´

w1´sptq2}φptq}2L2
x,vpF‹q ` w1´sptq2}φptq}2

L2
xH

1´s
v pF‹q

` w3p1´sqptq2}φptq}2H1
xL

2
vpF‹q

¯

dt

as well as

}f}2X s :“ sup
tą0

´

w0ptq2}fptq}Hs
xL

2
vpF‹q ` w3p1´sqptq2}fptq}2H1

xL
2
vpF‹q

` w1´sptq2}fptq}2
L2

xH
1´s
v pF‹q

¯

` }f}2Hs

where we denoted

}f}2Hs :“

ż 8

0

´

w2p1´sqptq2}fptq}2H1
xL

2
vpF‹q ` w0ptq2}fptq}2

L2
xH

1´s
v pF‹q

¯

dt .

We can now reformulate Proposition 4.20 and Proposition 4.16, by the fact that
any solution f to (4.1) satisfies

}f}X s ď C}pfin, φq}Hs
xL

2
vpF‹qˆHs for s “ 0 or 1 .

It is possible to extend these bounds to any s P r0, 1s. Indeed, according to [38,
Theorem 1.1], this follows from the fact that Hs (resp. Hs) is the geometric
interpolation of order s P r0, 1s between H0 and H1 (resp. H0 and H1). This
can be seen by writing

}φ}H1´s “ }pφ,φ, φq}rHss “ }Aspφ,φ, φq}rHs0

where we denoted the Hilbert norm rHs0

}pφ1, φ2, φ3q}rHs0 “ }φ1}L2
t,x,vpF‹e2λtq ` }φ2}L2

t,x,vpF‹e2λtq ` }φ3}L2
t,vH

1
xpF‹e2λtq

and the operator A

Apφ1, φ2, φ3q “

´

φ1,mint1, tup∇˚
v∇vq1{2φ2,mint1, tu3φ3

¯

.

Arguing similarly for Hs, one gets by interpolation using [38, Theorem 1.1]

}f}Hs ď C}pfin, φq}Hs
xL

2
vpF‹qˆHs for s P r0, 1s .

The pointwise bounds are obtained through the same argument, but applied to
any given time t P p0,8q. For instance, to obtain the x–derivatives control, we
have to check that for s P r0, 1s and t P p0,8q

}fptq}H1
xL

2
vpF‹q ď Csptq}pfin, φq}Hs

xL
2
vpF‹qˆHs ,
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where we denoted

Csptq “ Cw3p1´sqptq´1 “ C0ptq1´sC1ptqs .

We know this holds for s “ 0 and s “ 1, thus, by interpolation, this holds for
s P r0, 1s. The same argument provides the v–derivatives estimate and the L2

x,v–
exponential decay. The following proposition sums up the bounds established
by interpolation in this paragraph.

Lemma 5.1. For any given s P r0, 1s, any solution f to (4.1) satisfies

}f}X s ď C
`

}fin}Hs
xL

2
vpF‹q ` }φ}Hs

˘

.

5.2 Nonlinear estimates

We now show that these norms are adapted to the nonlinear problem.

Lemma 5.2. For any s P r0, 1s such that

s ą sc :“
3

2

ˆ

d

q
´

1

3

˙

,

there exists some C ą 0 such that the following bilinear estimate holds:

}f∇xψg}Hs ď C}f}X s}g}X s .

Remark 5.3. Note that sc ă 1 ô q ą d, and s “ 0 is allowed as soon as q ą 3d.

Proof. Let us denote in this proof σ :“ 1 ´ s and define

δ “
2

3
s´

ˆ

d

q
´

1

3

˙

ą 0 so that
d

q
` δ “ s`

σ

3
.

We start with the control

}f∇xψg}H1
xL

2
vpF‹q À A`B .

where we denoted

A :“ }f∇xψg}L2
xL

2
vpF‹q ` }∇xf∇xψg}L2

xL
2
vpF‹q, B :“ }f∇2

xψg}L2
xL

2
vpF‹q .

On the one hand, one has from the bound (4.3) on ∇xψ

}∇xψg}Lq À }g}L2pF‹q and }∇xψg}W 1,q À }g}H1
xL

2
vpF‹q ,

therefore, since we have by real interpolation with θ “ d
q ` δ “ s ` σ

3 P r0, 1s

(see for instance [45, Lemma 22.3])

“

Lq,W 1,q
‰

θ,2
“ Bθ

q,2 and
“

L2pF‹q, H1
xL

2
vpF‹q

‰

θ,2
“ Hθ

xL
2
vpF‹q ,
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where Bθ
q,2 denoted the suitable Besov space, the following interpolated bound

holds:
}∇xψg}Bθ

q,2
À }g}Hθ

xL
2
vpF‹q .

Using the chain of embeddings (see [2, Propositions 2.71 and then 2.39])

Bθ
q,2 “ B

d
q `δ

q,2 Ă Bδ
8,2 Ă B0

8,1 Ă L8 ,

these two facts yield the estimate

A À }f}H1
xL

2
vpF‹q}∇xψg}L8

x
À }f}H1

xL
2
vpF‹q}g}

H
s` σ

3
x L2

vpF‹q
.

On the other hand, using Hölder’s inequality with 1
2 “ 1

q ` 1
m followed by the

bound on ∇xψ, one has

B “ }f∇xψr∇˚
xgs}L2

xL
2
vpF‹q À }F 1{2

‹ f}Lm
x L2

v
}∇˚

xg}L2
xL

2
vpF‹q .

Using next the Sobolev embedding

Hs` σ
3 “ H

d
q `δ

Ă H
d
q Ă Lm since

d

q
“
d

2
´
d

m
,

we thus have thanks to the norm comparison (3.19) that

B À }f}
H

s` σ
3

x L2
vpF‹q

}g}H1
xL

2
vpF‹q .

Putting together the estimates on A and B, using that s ` σ “ 1, we conclude
that

t3σ}f∇xψg}2
Hs`σ

x L2
vpF‹q

À

´

t2σ}f}2
Hs`σ

x L2
vpF‹q

¯

ˆ

tσ}g}2

H
s` σ

3
x L2

vpF‹q

˙

`

ˆ

tσ}f}2

H
s` σ

3
x L2

vpF‹q

˙

´

t2σ}g}2
Hs`σ

x L2
vpF‹q

¯

,

from which we deduce, interpolating H
s` σ

3
x between Hs

x and Hs`σ
x “ H1

x
ż 8

0

w3σptq2}fptq∇xψgptq}2
Hs`σ

x L2
vpF‹q

dt

À

ˆ
ż 8

0

w2σptq2}f}2
Hs`σ

x L2
vpF‹q

dt

˙

sup
tą0

ˆ

wσptq2}g}2

H
s` σ

3
x L2

vpF‹q

˙

` sup
tą0

ˆ

wσptq2}f}2

H
s` σ

3
x L2

vpF‹q

˙ˆ
ż 8

0

w2σptq2}g}2
Hs`σ

x L2
vpF‹q

dt

˙

À}f}2X s}g}2X s

Similarly, one shows

tσ}f∇xψg}2L2
xH

σ
v pF‹q À }f}2L2

xH
σ
v pF‹q

ˆ

tσ}g}2

H
s` σ

3
x L2

vpF‹q

˙

from which we deduce
ż 8

0

wσptq2}fptq∇xψgptq}2L2
xH

σ
v pF‹qdt À }f}2X s}g}2X s .

This concludes the proof.
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5.3 Proof of Theorem 2.12

Fix some fin P Hs
xL

2
vpF‹q and denote Φ : X s

Ñ X s the mapping defined by

f :“ Φg where

$

’

&

’

%

pBt ` Λqfptq ` v ¨ ∇xψf ptq “ ∇˚
v pg∇xψgq,

fp0, x, vq “ finpx, vq .

As a consequence of Lemmas 5.1 and 5.2, there exists some C ą 0 such that

}Φpg1q ´ Φpg2q}X s ď C p}g1}X s ` }g2}X sq }g2 ´ g2}X s ,

}Φpgq}X s ď C
`

}fin}Hs
xL

2
vpF‹q ` }g}2X s

˘

.

It then follows from a classical Picard argument that for }fin}Hs
xL

2
vpF‹q small

enough, the mapping Φ has a unique fixed point, which proves the theorem.

6 Concluding remarks

Let us end this work by stating some perspectives and natural continuations.
We first present possible improvements on the regularity assumptions.

Weakly regularizing interaction potential We have assumed the inter-
action potential to be regularizing enough, namely ∇K : L1 X L2 Ñ Lq with
q ą d, so that the initial condition only needs to have (at most) H1

x regularity.
In order to extend Theorem 2.12 to the case when we only assume q ě 2 (for
instance, Manev interactions, see Example 2.7), one would need to consider an
initial data Hs

x with s big enough. The strategy to derive H1
xL

2
v estimates from

Section 4.6 would need to be adapted to Hk
xL

2
v for any integer k P N, thus

requiring suitable adaptation of the hypothesis (2.1). The nonlinear estimate
would need to be modified, for instance in the non-regularizing case q “ 2, the
Sobolev algebra inequality [2, Corollary 2.86] yields for s ą d

2 ´ 1
3

t3}f∇xψf }Hs`1
x L2

vpF‹q
À t2}f}2

Hs`1
x L2

vpF‹q
ˆ t}f}2

H
s` 1

3
x L2

vpF‹q

.

Rough initial data Similarly, we have only considered initial data with at
least 0 regularity, in the sense that we excluded Hs

x spaces for s ă 0. However,
when q ą 3d, the critical regularity index is sc ă 0, which suggests that initial
data with regularity Hs

x for sc ă s ă 0 could be considered. This would require
a duality argument in the spirit of [34, 36, 13, 26].

Let us now present some natural continuations.
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Non-perturbative setting For VPFP, one would be interested in showing
exponential convergence to equilibrium starting from an initial data F p0q as-
suming only physical bounds, namely finite entropy and energy. The strategy
would then be to use the free energy, together with regularization estimates
in order to perform a trapping argument and show that after a (possibly non-
explicit) time t0 ą 0, the solution is close to the steady state, allowing to
conclude using Theorem 2.12 with Fin “ F pt0q. Similar strategies have been
considered in [40, 47, 28] for spatially homogeneous kinetic equations. Let us
also mention works concerning the global convergence to equilibrium in the case
of Vlasov-Fokker-Planck equation [9, 29].

Phase transitions and instabilities It is known, in the case of the torus
[14], that negative Fourier modes of the interaction potential may lead to phase
transitions, and more precisely non-uniqueness of steady states. In particular, in
the case of the synchrotron model (2.14), experimental and numerical evidence
suggest that instabilities may arise, and an asymptotically periodic behavior
seem to appear (see [43]). In the linearized setting, it has been shown that
when the size of kS is large, oscillating modes appear [11]. This is to be to
be opposed to the symmetric positive setting (such as Poisson interactions) for
which global convergence to equilibrium is known to hold.
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[28] Maria Pia Gualdani, Stéphane Mischler, Clément Mouhot, and Stéphane
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