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Abstract—This paper introduces the design of a data pipeline
system (DPS) integrated with artificial intelligence (AIF) func-
tions to support continuous AI learning and operations for net-
work automation in 5G/6G systems. We design the DPS as a chain
of functions, namely ingress and egress Network Data Broker
Function (iNDBF and eNDBF) and Network Data Preprocessing
Function (NDPPF), to support in-network learning operations.
To take into account the distributed nature of the network
architecture of 5G systems and beyond, we conceive the DPS to
be integrated seamlessly with a distributed learning frameworks
such as the federated learning (FL). We performed a realistic
evaluation, employing a real dataset from a national mobile
operator to simulate the network architecture. Additionally, a FL
framework for anomaly detection is integrated with the DPS to
assess the effectiveness of our proposal. Evaluation results show
that delays in end-to-end data transmission and preprocessing
to the AIF locations can cause distributed learning AIFs to
work with stale data. The results also highlight how the DPS
can counterbalance these delays leading to desynchronisation of
the distributed learning process, bringing to AIFs with higher
accuracy.

Index Terms—data pipeline, 5G/6G networks, distributed
learning, online learning

I. INTRODUCTION

The integration of Artificial Intelligence Functions (AIF) for

network automation is one of the key innovations expected

for 6G systems [21]. AIFs are meant to perform different

analytic tasks, including learning, anomaly detection [18],

feature clustering, traffic load prediction, and network resource

allocation [3]. In particular, telecom and edge cloud operators

are looking for solutions to support the deployment and

orchestration of distributed AIFs across the cellular xHaul and

core segments [21]. The challenge is to collect and deliver

network system-level metrics to AIF locations in real-time

with practical delivery rate and redundancy.

In this work, we evaluate different Data Pipeline System

(DPS) designs for in-network learning, able to collect data

at distributed operator network nodes (e.g. base stations or

virtualisation servers), and deliver them to AIFs where in-

network learning services such as Anomaly Detection (AD),

or NetWork Data Analytic Function (NWDAF) are running.

In such settings, a DPS for in-network learning must go

beyond the basic requirements of existing telecom network

inventory systems [20]: it must be able to perform real-time

data processing, aggregation and cleaning operations along the

way from data sources to AIFs. Indeed, the actual delivery

time of data at AIF locations is critical to achieving high AI

accuracy and overall infrastructure operational performance:

late data delivery can reduce AIF efficiency, hence their

usefulness. AIFs can also become overloaded at higher data

delivery rates, leading to longer learning times. For instance,

while lower data delivery rates can put AIFs in a starvation

state, and prevent them from delivering an accurate AI model:

redundancy and higher data rate can slow the convergence of

learning algorithms, adding significant overhead and becoming

problematic at the scale of distributed network nodes.

A general conceptual DPS model is proposed in [17]; it

includes several processing stages, such as storing data in

a data lake for later use, which could be useless for an

in-network learning that requires real-time data processing.

To acquire data in real-time, a conventional approach is to

combine real-time data acquisition with a publish/subscribe

model and a data stream processing model. Several engines

are proposed in the literature for either publish/subscribe

systems (e.g. Apache Kafka, Rabbit-MQ) [6], and data stream

processing systems (e.g. Apache Flink, Apache Kafka) [5].

Another challenge lies in the distributed nature of the network

operator architecture, where the DPS architecture component

and AIF placement should both take into account operational

constraints in terms of link delays, node processing capacities,

as well as the set of available Data Sources (DS) [2], [8]. The

main contributions of this paper are summarised as follows:

• We propose a DPS network architecture to enable in-

network learning. Two key functions are identified: (i) the

Network Data Broker Function (NDBF), which buffers

and routes data from sources to AIFs, and (ii) the

Network Data Preprocessing Function (NDPPF), which

processes data in real-time before AI exploitation.

• Using a real-world dataset from a mobile operator, we

emulate propagation delays in a mobile backhauling

network. We deploy DPS functions with three designs: (i)

Border-deployment, functions are placed at the network’s

borders with other Internet Autonomous Systems; (ii)

CN (Core Network)-deployment, functions are deployed

in the operator’s CNs; and (iii) Edge-deployment, where

functions are closer to Data Sources (DS).

• We evaluate the DPS designs using as AIF system

reference a federated learning application for anomaly

detection in mobile access network operations. It runs in

both synchronous and asynchronous modes to measure

how delayed data arrival at AIF locations affects the



accuracy of the global trained model. We make the

evaluation environment, along with the dataset, available

to the community [13].

• We employ two fitness metrics: (i) end-to-end time, to

evaluate the total travel time of data from the data sources

to the AIF locations; to which we associate a target time

to take into account the real-time constraint; (ii) F1-

score to assess the accuracy of the global trained model,

updated continuously as the learning process evolves.

The rest of the paper is organized as follows: Section

II covers related work. Section III outlines the DPS design

for in-network learning and deployment designs. Section IV

addresses the challenges and solutions for integrating the DPS

with AIFs in the operator network. Section V covers the

evaluation methodology, and Section VI presents the results.

Finally, Section VII provides the conclusion.

II. RELATED WORK

A data pipeline system transports data from sources to

consumers through transformations for analytics. Its core de-

sign follows the Extract, Load, and Transform (ELT) method,

where data is extracted, loaded into storage (e.g., data lake),

transformed, and then processed in the destination system [19]

Several works design DPS using the ELT approach for

operational networks with stricter constraints than basic IT

systems. Helu et al. [12] propose a scalable DPS for IIoT,

handling large, high-velocity data. Goodhope et al. [11] de-

scribe LinkedIns real-time DPS using Apache Kafka for high

throughput and low-latency processing, emphasizing fault tol-

erance and scalability. Poojara et al. [15] propose a serverless

DPS for IoT in fog and cloud computing, improving latency.

In [17], a general DPS architecture using the ELT approach

is proposed. Data is first generated from various sources

(human or machine), collected through connectors. Data is

then stored in a data lake, processed into a single format, and

moved to a data warehouse. Before training AI models, data

is labeled and preprocessed. The AI models act as sinks, with

their output data collected continuously by the DPS.

For in-network learning, unlike for the conventional ELT

approach, we need to prune out the data lake step in order

to meet real-time requirements: data does not need to be

stored for the learning purpose (the amount of required storage

would be cumbersome also for large operators), but rather

consumed on the fly by the AIFs. Indeed, data collection can

occur at high frequencies, such as with milliseconds intervals,

instead of seconds or minutes for conventional IT systems,

leading to large data volumes over time. Furthermore, unlike

in [17], data should not be re-used or stored since AIF-based

network automation requires real-time data to adjust network

configuration based on the current state of the network, to

capture zero-day events and vulnerabilities. Storing all data

would demand excessive and unnecessary storage capacity.

Federated Learning (FL) is possible AI distributed technique

where nodes (AIFs) collaboratively train an AI model while

keeping data local. The FL for Anomaly Detection (FLAD)

framework in [18] uses multiple AIF clients that communicate

with a central AIF server. The server aggregates local models

and distributes the global model to clients, giving them a

global view of the system. This framework does not include a

DPS; instead, the authors create a data collection layer with a

single repository, or data lake, to store collected metrics. Each

AIF client retrieves a data subset from this lake in rounds,

leading to varied views of the system state for model training

In our work, we enhance data delivery by integrating FLAD

into an operational DPS. This setup collects and preprocesses

data, feeding it to AIF clients in real-time. The FLAD

framework uses a Long-Short-Term Memory (LSTM) neural

network with an auto-encoder. The auto-encoder processes

input data to reconstruct it, aiming to match the original

as closely as possible by minimizing the Mean Squared

Error (MSE) loss function. To classify an input sequence as

normal or an anomaly, a threshold is set based on the MSE

from training. During inference, high MSE values above this

threshold indicate an anomaly. Additionally, our LSTM model

requires feature normalization for training. Unlike [18], we

implement an online normalization technique to adapt the

FLAD framework for real-time data.

III. IN-NETWORK DATA PIPELINE SYSTEM

A. Design of the Data Pipeline System

To design a DPS for in-network learning, we need to

consider the specific requirements of the network operator:

(i) the DPS must perform real-time data collection and pre-

processing without the need for any data saving, that is, to

enable online learning; (ii) the distributed nature of network

operator infrastructure where the AIFs are deployed: RAN

functions and hardware as well as 5G core function clusters

are geographically distributed. In this respect, the DPS should

be designed in a decoupled manner giving the opportunity

for searching the optimal placement of the DPS across the

network. To address these requirements, we leverage on the

conceptual DPS model from [17].

Our DPS adopts as well the publish/subscribe [7] and

the stream processing [4] technologies; a publish/subscribe

approach enables to decouple the DPS functions in space,

time, and synchronisation scales. For the spacial decoupling,

the interacting (communicating) functions are not required

to know each other: wherever DPS functions are deployed,

communication sequence should be satisfied. As for time

decoupling, it removes the requirement on the DPS functions

to be actively participating in the communication at the same

time. The synchronisation decoupling allows non-blocking

communication when a component is sending/receiving data

from/to the component it is interacting with. Eventually,

stream processing enables a specific DPS function to pre-

process data in real-time. The DPS is therefore a chain of

functions as depicted in Figure 1. These DPS functions are

interconnected with each other: the output of a function is fed

as the input of the next function.

1) Network Data Broker Function (NDBF): The NDBF

queues data for a short period until they are fetched to be

ingested for either the network data preprocessing function or
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Fig. 1: Conceptual model of data pipeline system for in-network learning.

the AIFs. To do so, we use the topic-based publish/subscribe

pattern for routing data in the DPS [7]. With topic-based, the

function publishes data to the so-called topics, initially created

in the NDBF. The interacting functions will receive all the data

published to the topics to which they subscribe. In this respect,

we distinguish the ingress NDBF (iNDBF) for queuing the raw

network data, i.e. the ingress network data to the NPPF, the

egress NDBF (eNDBF) for queuing the preprocessed network

data, i.e. the egress network data from the NDPPF.

2) Network Data preprocessing Function (NDPPF): De-

pending on the schema of the network data generated by the

sources, the NDPPF is responsible for aggregating, reducing,

parsing, normalising, reshaping, or transforming the ingress

raw network data. We leverage the stream processing pattern

in order to preprocess the data on the fly (near real-time) as

they arrive at the NDPPF. To do so, the preprocessing tasks

performed by the function forms a workflow that constantly

processes each cycle new data tuple delivery. Because of the

infinite nature of real-time data, a window [1] mechanism is

used for handling data with flexible time bounds, in order to

process a finite, yet ever changing sequence of data.

As depicted in Figure 1, we consider that the sources publish

the raw network data to iNDBF and the NDPPF publish

the preprocessed network data to eNDBF. Both (sources and

NDPPF) include the connector Pub which enables to create

a connection with both NDBFs and to publish data on a

specific topic, i.e., topic R for raw network data, and P for

preprocessed network data. Moreover, we consider the NDPPF

and the AIFs capable of gathering data published to both the

iNDBF and the eNDBF. Both the NDPPF and the AIFs include

the connector Sub in order to establish a connection with the

NDBFs by subscribing to a specific topic. Here, the NDPPF

subscribes to topic T and the AIF subscribes to topic T ′ for

gathering respectively the raw data and the preprocessed data.

B. DPS Integration with AIFs for federated learning

The DPS can be seamlessly integrated with AIFs, whether

for inference (e.g. prediction), centralised learning, or dis-

tributed learning. Due to the distributed nature of the operator

network, we focus on the distributed learning where the raw

network data generated by different sources are distributed

among the AIF clients that perform training on a subset of the

raw network data. Figure 2 depicts the integration of DPS with

distributed AIFs for federated learning application. For each

AIF client, we consider a chain of functions iNDBF, NDPPF

and eNDBF. As concrete example, we use the FLAD frame-

work (see Section II) as AIFs to be deployed together with
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Fig. 2: DPS integrated with AIFs for federated learning.

Algorithm 1: Incremental normalisation.

1

Global: gMax← 0, gMin← +∞
2 while next batch is available do

3 max ← Maximum value for the batch;

4 min ← Minimum value for the batch ;

5 if max > gMax then

6 gMax ← max;

7 end

8 if min < gMin then

9 gMin ← min;

10 end

11 Return MinMax(batch, gMax, gMin);

12 end

the DPS functions. The following challenges were overcome

to achieve this integration.

1) Real time network data preprocessing: We develop the

NDPPF as an ad-hoc Python application that preprocesses data

in real-time. The NDPPF performs two steps to prepare the

raw network data into the format expected by the LSTM model

used in the FLAD framework:

a) Step 1: Set a window to collect the data to form batch

, B, of raw network data. The data of each B are normalised

to standardise the scales of different data features. Specifically,

we use the min-max normalisation, which linearly transforms



the original data feature values x into normalised values:

x′ = MinMax(x, gMin, gMax) =
x− gMin

gMax− gMin
(1)

In the context of real-time data, the full set of data features

is not available and neither minimum gMin nor maximum

gMax can be calculated globally. Therefore, we use the

Algorithm 1 proposed in [9], where the global gMin and

global gMax for the data features are tracked over time per

data batch, and then the standard min-max normalisation is

applied to each data feature of the batch with these global

gMin and gMax values.

b) Step 2: Before feeding the network data to the LSTM,

the normalised network data are reshaped optimally for the

model to understand. Generally, the input of a LSTM takes

the shape of a 3D array in the form (X,Y,Z) where X is the

number of samples, Y is the number of timestep the samples

were collected, Z is number of features of each sample.
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Fig. 3: Federated learning and inference in real-time

2) Learning and Inference processes: Figure 3 shows the

learning and inference processes as the DPS continuously

delivers to each individual AIF clients different batch of the

preprocessed network data (B1 · · ·BN · · · ).

For the learning, the AIF clients perform the training in

parallel on the incoming batch in N rounds. After each N

rounds, the AIF server aggregates the results of the AIF client

training to generate the global model.

For the aggregation of the trained results, we extend the

FLAD framework to use not only the synchronous but also

asynchronous methods [16].

a) The synchronous method: requires the AIF server to

aggregate the trained results only if all the AIF clients involved

in the learning process have transmitted the trained results.

b) The asynchronous method: considers a global waiting

time W after which the AIF server triggers the aggregation if

at least two AIF clients have transmitted the trained results.

For inference, the global model is deployed as new model

version for inference beside each AIF client. The inference is

performed on recent network data batch unseen by the current

deployed global model version. To classify an incoming batch

as normal or anomaly, the global model version uses a MSE

threshold computed from the MSE computed from composite

features-level MSEs obtained during the learning of the AIF

client beside which it is deployed. This enables to consider

the difference in the traffic patterns.

IV. DEPLOYMENT OF THE DATA PIPELINE SYSTEM

A. Operator Network Architecture

Figure 4 (b) shows the adopted the operator network ar-

chitecture [14]. In this figure, we add the Border server as

a node located at the border of a CN used by some service

provider, such as Google or Akamai, in order to distribute

the application at the border of the CN for load balancing,

or serving content faster to UEs [10]. We also highlight the

delay on the different links of network topology: front-hauling

delay, fdij : the network delay from a base station (BS) BSi

(i.e., source) to a CN CNj ; and back-hauling delay, bdjk: the

network delay from a CN CNj to its Border server k.

B. Possible Deployment designs of the DPS
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Fig. 4: Possible DPS functions deployment in operator net-

work.

We propose to deploy the AIFs at the border of the CNs.

For clarity, we call AIF (client/node) k (k = 1, 2, · · · ,K),

the AIF deployed on border server k. Futhermore, let C be a

set of DPS function chains ck, where a DPS function chain ck
includes an instance of NDPPF , iNDBF and eNDBF . We

associate k to indicate that the ck is deployed to serve the AIF

client k i.e. each ck is deployed to bring the network data from

the data source to the AIF client k, and therefore |C| = K. We

map the data source to the corresponding network equipment

being monitored, such as the base stations (BS) [14]. We then

consider three possible DPS deployments (see Figure 4).

1) Border-deployment: for each AIF client deployed on a

Border k, we deploy one instance of iNDBFk in the CN, and

both NDPPFk and eNDBFk at the border server k. As a

result, the raw network data are transmitted all the way from

the data source to the Border k and get preprocessed there.

2) CN-deployment: for each AIF client k, each of the

iNDBFk, NDPPFk and eNDBFk are deployed at a CN.

In this design the raw network data are preprocessed at the

CN before arriving at the Border k.

3) Edge-deployment: for each AIF client k, both iNDBFk

and NDPPFk are deployed closer to the data source, hence

the raw network data are preprocessed closer to the sources.

The eNDBFk is then deployed in a CN.



C. Deployment timeliness

To assess the deployment timeliness, we first introduce the

end-to-end time Tk as the time it takes for the network data

produced at the data source to reach the AIF client k:

Tk = max
∀BSi

(fdij) + bdjk + t(iNDBFk) (2)

+ t(eNDBFk) + t(NDPPFk)

where, the max function gives the maximum fraunt-hauling

delay fdij among the delays from all the base stations BSi

connected to CN CNj , bdjk is the delay (i.e., back-hauling

delay) from the CN CNj to the AIF client k deployed

on the Border server k (see Figure 4). t(iNDBFk) is the

polling time of the raw network data at the iNDBFk and

t(eNDBFk) is the polling time of the preprocessed network

data at eNDBFk. Note that by polling time, we refer to

the time needed to retrieve data from either iNDBFk or

eNDBFk. Furthermore, t(NDPPFk) is the time that takes

NDPPFk to preprocess the raw network data.

A lower Tk allows the AIF client k to perform learning or

prediction on recent (real-time) network data that matches the

current state of the monitored system. In the case of federated

learning application, the out-of-sync end-to-end time at AIF

clients can lead to a synchronisation problem of the global

learning process with the AIF server, resulting in straggler

nodes being detected as too out-of-sync and thus excluded

from the aggregation round. In this respect, we assume that

the end-to-end time Tk of data arrival at an AIF client k should

satisfy the constraint in the equation (3). This is to ensure that

the AIF clients perform training on the monitored network

data that matches the actual state of the monitored system.

Tk ≤ Target (3)

where Target is the user-defined target time value that can

be in the order of second, minutes or hours depending on the

network operator requirement.

Should the training time ttk of an AIF client k exceed

the end-to-end time of the network data, this may result in

a significant increase in the queuing time of the processed

network data at eNDBFk. Consequently the end-to-end time

Tk may increase, which could potentially impact the target

time constraint. We propose the equation (4) which gives stable

deployment of the DPS integrated with AIF nodes.

(1 + α) ·
1

Tk

≤
1

ttk
(4)

The parameter α ∈ [0, 1] serves to prevent potential equality

or tiny difference between the data arrival rate to the AIF

client and the training rate. In the long run, this can lead the

deployment to an unstable state, mainly due to the stochastic

behaviour of the network and computing resources.

In the case the stability constraint (3) is not satisfied, we

propose the Algorithm 2 to identify the best batch size |B|
for each DPS function chains ck that brings the network

data at the AIF client k. In this algorithm, we propose to

Algorithm 2: Deployment stability

Input : x: Batch increment value

Input : C: DPS function chains set

1 for ck ∈ C do

2 stability ← False

3 while stability = False do

4 ‖B‖ ← ‖B‖+ x

5 Measure : Tk, ttk
6 if Equations (4) & (3) then

7 stability ← True

8 Set‖B‖ the new batch size

9 end

10 end

11 end

iteratively increase the batch size of the raw network data to

be processed by NDPPFk, consequently the preprocessing

time (i.e. t(NDPPFk) ) will increase as well. Increasing

t(NDPPFk) will increase also the end-to-end time Tk,

therefore, we consider as best batch size the one that satisfy

the stability constraint and the end-to-end time constraint.

We use N >> 1 to reduce the high communication cost

between the AIF clients and the AIF server as well as a high

waiting time of the network data at the eNDBF, due to the

frequent blocking time of the AIF client waiting during the

aggregation process of the AIF server.

Given that the AIF client is blocked during aggregation,

waiting for the aggregated results to continue the next N

training rounds, the processed data from NDPPFk may also

be blocked at eNDBFk. This happens while waiting for the

AIF client k to process it. As a result, t(eNDBFk) may

increase exponentially, raising the overall end-to-end time Tk.

To solve this, we propose a continuous polling mechanism to

retrieve processed data from eNDBFk and store it in a queue,

ready for processing. If the time constraint from equation (3)is

not met, the dataset is marked as outdated. Therefore, we

introduce the metric δk to calculate the rate of outdated data

for each DPS function chain ck. δk = Ok

N
where N is the

number of processed network data, representing the training

rounds before aggregation by the AIF server. Ok refers to the

number of processed network data identified as outdated.

V. EVALUATION METHODOLOGY

This section presents the inference of a realistic operator

network, the setting of the DPS integrated with the FLAD

framework on the defined topology, and the learning setup.

A. Mobile xHaul Network Topology

To deploy the operator network topology, we use a dataset

of traffic traces extracted from a French network operator to

emulate a real network infrastructure.

1) Dataset: The dataset was collected using passive mea-

surement probes tapping the interface between PGWs and

external public data networks. This approach captures all

traffic passing through the operator network across France.



The probes use dedicated classifiers to associate each TCP and

UDP traffic flow to the corresponding mobile applications of

UE generating the traffic.

For the evaluation testbed, we use Apache Kafka as the

NDBF due to its efficiency in balancing throughput regardless

of data delivery rates [6]. Apache Kafka uses the TCP protocol

to interact with Pub and Sub connectors. Therefore, we focus

only on TCP traffic flows for two different days in June 2023:

1, 905, 990, 117 requests from a weekday and 1, 711, 327, 873
requests from a weekend. To preserve user privacy, the TCP

traffic flows are aggregated into 1036 TAC zones, which

are large-scale cellular network areas composed of a certain

number of BSs and UEs (typically function of the population

in the area). We consider the following fields: (i) starttime

the startime of the TCP session; (ii) stoptime the stop time

of the TCP session; (iii) the delay from a BSi to a CNj that

we map as the front-hauling delay fdij ; (iv) the delay from a

BSi to a mobile application server k located at CN border or

further on the Internet that we map as the internet edge delay

dik; (v) Service provider; and (vi) tac the id of the TAC area

in which the TCP flows are grouped.

Fig. 5: PDF of the back-hauling delays.

2) Inference process for network topology: To emulate the

operator’s network topology, we first derive the number of CNs

from the measurement. To do this, we filter the measurement

based on service providers, then we select the TCP sessions

belonging to a service provider known to be highly distributed

(Google, Facebook, Akamai, etc.). Based on the measurement

belonging to a single service provider, we observe that the

delay difference is equal to the back-hauling delay:

bdjk = dik − fdij (5)

We then plot the probability density function (PDF) of the

back-hauling delays bdjk for all measurements belonging to

the same service provider. From the same CN, the back-

hauling delays bdjk follow a normal distribution, from dif-

ferent CNs, we can expect several distributions with different

mean values of the back-hauling delays bdjk, so we let bdjk
take this mean value per distribution. We assume that each

distribution corresponds to delays from the same CN, so the

number of distributions is equal to the number of CNs.

In order to apply the above methodology for inferring the

number of CNs from the traces, we analyse the variance

of the delays bdjk for 7 different service providers (i.e.
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Fig. 6: Emulated Operator Network from an operator data set.

Google/Youtube, Apple, Facebook, Microsoft, Twitter, What-

sApp, Deezer and LeBonCoin). The aim was to select the

service provider with the highest dispersion of bdjk delays.

We find that Facebook experiences higher delay variation on

weekdays and lower on weekends. For other providers, delay

variation is either consistent across days or lower on weekdays

and higher on weekends. Specifically, Google/YouTube has the

highest delay variation on weekends. This leads us to focus on

weekend measurements. We consider three service providers:

Google/YouTube, WhatsApp and Deezer for respectively high-

est, medium and lowest traffics. Figure 5 shows that delays

have similar distributions but different probability densities,

indicating the presence of multiple CNs. Based on this, we

focus on distributions with high probability densities around

mean delays of 20 ms, 30 ms, and 40 ms.

AIF1 AIF2 AIF3 Server

Data Sources (DS) 20 20 20 -

Total data per DS 5000 5000 5000 -

Abnormal data per DS 0 0 1250 -

DS sampling rate (ms) 100 100 100 -

Batch size for training 200 200 200 -

Batch size for inference 200 200 200 -

Async waiting time (s) - - - 70

Target time (s) 5 5 5 -

Model type LSTM LSTM LSTM -

Learning rate 0.01 0.01 0.01 -

Aggregation function - - - FedAvg

Loss function MSE MSE MSE MSE

TABLE I: Evaluation setting parameters

We use this information to emulate the operator network

topology, as shown in Figure 6. This setup includes three CNs

(VMs 5, 6, and 7) and three border nodes (VMs 2, 3, and 4).

We deploy TAC areas as Docker containers in VMs 8, 9, and

10. The VMs have 15 GB RAM and 4 CPUs at 2.127 GHz,

running Ubuntu 20.04 LTS.

To set the delays in the emulated operator network topology,

the back-hauling delays are set to the mean delay values (bdjk)

i.e., 20 ms, 30 ms, and 40 ms respectively, obtained from the

inference methodology. We consider 20 data sources (DS) for

each CN. Given Formula (5), for each CN we select the front-

hauling delays fdij for which the bdjk values are closer to or



Synchronous Asynchronous
End-to-end time (s)

AIF1 AIF2 AIF3 AIF1 AIF2 AIF3

Border-deployment 2.48± 0.32 2.5± 0.36 3.07± 0.64 2.47± 0.3 2.44± 0.3 2.75± 0.44

CN-deployment 4.59± 8.14 4.56± 7.46 3.25± 0.74 2.55± 0.19 2.84± 0.46 2.45± 0.38

Edge-deployment 3.07± 0.44 2.95± 0.39 8.16± 3.15 2.87± 0.21 2.84± 0.32 10.82± 4.73

Training time (s)

Border-deployment 1.63± 0.07 1.66± 0.07 2.05± 0.54 1.62± 0.07 1.66± 0.06 1.91± 0.38

CN-deployment 1.63± 0.08 1.67± 0.07 2.04± 0.55 1.63± 0.07 1.65± 0.06 1.59± 0.35

Edge-deployment 1.6± 0.1 1.57± 0.1 6.66± 3.1 1.58± 0.09 1.53± 0.09 9.34± 4.74

TABLE II: Results of the training and end-to-end times per AIF client, deployment designs and synchronisation methods.
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Fig. 7: The values of the components that constitute the end-to-end time in synchronous method.
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equal to the mean delay bdjk. As the result, from the dataset,

the front-hauling delays fdij are in the range [0.2 ms, 20 ms]

which we set randomly between the DS and the CN nodes.

B. Set up of the DPS integrated with AIFs

We consider three AIF clients deployed on the three VMs

representing the border servers (VM 2,3, and 4) of the adopted

operator network topology and the AIF server deployed on

another border node VM 1. For each AIF client, a DPS

function chain is deployed in the emulated topology according

the proposed deployment designs.

The DS use the python tool psutil to collect and transmit

the CPU and memory related metric with 26 features as

raw network data. For factual analysis, each DS collects

and produces 5000 raw network data samples. We inject the

anomaly only in 20 DS of the VM 10, to do so, for the

last 1250 raw network data samples, we increase the memory

usage by simulating a matrix transformation in each docker

container DS. We set the batch size |B| = 200, thanks to

Algorithm 2 with α = 0.02 and Target = 5s.

We run the FLAD framework using synchronous and asyn-

chronous methods. For the latter, we set W = 70s inferred

as the average of the times elapsed between the aggregations

processes of each deployment design executed in synchronous

aggregation method. Table I summarises the setting parameters

of the DPS integration with the improved FLAD framework

VI. EVALUATION RESULTS

In this section, we evaluate the DPS across three deployment

designs, tested with two AIF server aggregation methods:

synchronous (sync) and asynchronous (async). We analyze the

impact of data transmission and preprocessing on end-to-end

time to the AIFs. Additionally, we assess the DPS’s ability to

deliver network data within the target time and examine the

quality of real-time anomaly detection from the model.

A. End-to-end time analysis

In synchronous aggregation of the trained results, Table II

depicts the average and variance values of the end-to-end time.

On the other hand, figure 7 represents the average values of

each of the end-to-end time components. We can notice that

the Border-deployment has the lowest end-to-end time. By

deploying the NDPPF, the eNDBF and the AIF client in the

same Border node, the network delay is negligible between

these functions, consequently the queuing time of the prepro-

cessed data at eNDBF is reduced as depicted in Figure 7c.

The back-hauling delay has in fact an impact on the queuing

time of the preprocessed data at eNDBF, this is the first cause

of the observed high end-to-end times in CN-deployment and

Edge-deployment. The second cause is the preprocessing time,

shown in Figure 7b. We see the longest preprocessing times in

Edge-deployment. This is because the edge VM experiences

the highest memory and CPU consumption, as it hosts the
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Fig. 9: Quality of the generated model version for anomaly detection as the learning process evolves

iNDBF, NDPPF, and 20 docker containers as DS. In Edge-

deployment, network delays between the DS, iNDBF, and

NDPPF are minimal since they share the same VM. However,

the reduced queuing time for raw network data, shown in

Figure 7a, does not offset the long preprocessing time.

In asynchronous aggregation, Table II shows that Border

deployment has the shortest end-to-end time, compared to CN

and Edge deployments. The explanation for the end-to-end

time and its components in the synchronous case also applies

here, so the component figure is omitted.

Comparing the synchronous and asynchronous methods

shows that the latter tends to provide the shortest end-to-

end time for Border and CN deployments, but not always,

as seen in the variances of the end-to-end time results in

Table II. Asynchronous achieves end-to-end lower times due

to reduced queuing time at eNDBF, since the AIF server

can aggregate once at least two AIF clients send results.

In contrast, synchronous aggregation causes longer waits at

eNDBF, as the server must wait for all three AIF clients. Edge

deployment performs poorly in both methods due to the high

load imposed on it.

Table II also shows the average training times. Using

Algorithm 2, we ensure a stable DPS deployment where the

end-to-end data arrival rate is lower than the AIF training

rate. Although network and computing resource fluctuations

can increase end-to-end delay, the algorithm minimizes stale

data and maintains stable deployment. In this respect, Figure

8 shows that asynchronous deployment designs best meet

the end-to-end time constraint. Border-deployment and CN-

deployment result in 2.31 % and 5.99 % outdated data,

respectively. In the synchronous method, these values rise to

3.2 % and 10.3 %. Border-deployment consistently produces

the least outdated data in both methods. In contrast, Edge-

deployment, hindered by a heavily loaded VM, has the highest

amount of outdated data, failing to meet time constraint.

B. Analysis of the model accuracy

Figures 9 evaluate the global model’s quality using MSE

and F1-score. To ensure a fair comparison, we only assess

anomaly detection for Border and CN deployments. In Edge

deployment, network data from the DS shows high values

due to the heavy load on the edge VM. In the synchronous

method, all three AIF clients join each aggregation, while in

the asynchronous method, at most two join. This results in

10 global model versions for the synchronous method and up

to 12 for the asynchronous. For each model version, the MSE

threshold is set as the 90th percentile of MSE over 50 training

rounds by AIF client k, as shown in Figure 9a for AIF3.

In the experiment, the DS generate and transmit normal

data (low CPU and memory usage) during the first three

quarters, and abnormal data (high CPU and memory usage)

in the last quarter (see Table I). In the synchronous method,

Figure 9b shows that MSE predictions align with this pattern,

especially in Border-deployment. Model versions 1 to 7 predict

lower MSE values, while versions 8 to 10 show higher MSE.

CN-deployment’s MSE predictions do not steadily match

the ground truth. In the asynchronous method (for CN and

Border), MSE predictions do not converge to the ground truth.

The synchronous method’s accuracy benefits from aggregating

results from all three AIF clients, unlike the asynchronous

method, which usually aggregates data from mainly two.

Figure 9c shows the F1-score for evaluating anomaly detec-

tion performance across different model versions. For Border-

deployment: (a) in the synchronous method, model versions

1 to 3 correctly identify normal network data 8 % of the

time, with detection quality improving to 100% for model

versions 4 to 7. Model versions 8 to 10 achieve 70% and

89.89% accuracy in detecting abnormal network data; (b) in

the asynchronous method, model versions 5 to 7 detect normal

data 100% of the time, while other versions range from 2.2 %
to 77 %. For CN-deployment: (a) in the synchronous method,

performance varies widely from 11.9 % and 100 %; and (b)

in the asynchronous method, only versions 4 and 6 achieve

100 % accuracy in detecting normal data, with other versions

ranging from 3.84 % to 54 %.

Overall, in Border-deployment with the asynchronous set-

ting, the AIF server often aggregates results from only two

AIF clients due to imbalanced end-to-end times. This prevents

the model version from converging quickly, In synchronous

method, all model versions converge more efficiently because



they use aggregated results from all three AIF clients.

C. Discussion and Limitation

1) Lower model performance in asynchronous method: To

improve model performance, the aggregation approach should

be updated to include training results from stale data. These

results should be weighted by a decreasing factor. The weight

should decrease as the gap between data staleness and the

aggregation time threshold increases.

2) DPS scalability in large operator network setting: The

DPS is designed as chains of decoupled functions, each chain

assigned to an AIF to gather network data. The framework

scales easily for larger networks by adding more AIFs and

DPS function chains, with simple management as only for-

warding states need updating. The functions can be duplicated

without state synchronization, avoiding scalability issues.

3) High resource consumption in Edge-deployment: High

resource consumption results from deploying both data sources

and DPS functions on the same VM. To reduce the high

queuing and processing times, deploying DPS functions on

an additional VM within the same physical server as the data

source VMs may help. This will be explored in future work.

VII. CONCLUSION

We proposed a data pipeline system for in-network learning:

we defined a generic conceptual model as a chain of ingress

Network Data Broker, Network Data preprocessing, and egress

Network Data Broker Functions, and evaluated three possible

designs differing in how the function embedding is done:

Edge, Core Network and Border nodes deployment strategies.

As a benchmark AI application, we use a federated learning for

anomaly detection framework at the state of the art, comparing

synchronous and asynchronous aggregation methods of the

trained results. We deploy both the DPS functions and the AIF

instances on an operator network where we emulate xHaul link

delays leveraging real-world traces from a telecom operator.

Through evaluation, we show that the Border-deployment

in both synchronous and asynchronous aggregation methods

is the only one able to deliver the network data samples to

the AIF clients, within the target time constraint, with small

outdated network data. We also show that the AIF clients

can perform the training with real-time data, and that we

can deploy different global model versions to perform the

anomaly detection in real-time. Furthermore, we show in the

asynchronous method that imbalanced (asynchronous) end-to-

end time of data arrival to the AIF client has a negative impact

on performance of the global model versions.

Future work will focus on automated optimal deployment

of DPS functions taking into account data delivery targets,

possibly coupled with the AIF orchestration, in a large scale

experiment setup involving more than a dozen of AIF clients.
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