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Abstract

We propose a method for estimating disparity confidence
intervals in stereo matching problems. Confidence inter-
vals provide complementary information to usual confi-
dence measures. To the best of our knowledge, this is the
first method creating disparity confidence intervals based
on the cost volume. This method relies on possibility dis-
tributions to interpret the epistemic uncertainty of the cost
volume. Our method has the benefit of having a white-box
nature, differing in this respect from current state-of-the-art
deep neural networks approaches. The accuracy and size
of confidence intervals are validated using the Middlebury
stereo datasets as well as a dataset of satellite images. This
contribution is freely available on GitHub.

1. Introduction

Stereo matching is used as a mean to estimate the depth of a
scene in numerous applications, ranging from autonomous
driving to Earth observation [11, 19]. With the growing
availability of satellite imagery [22], many stereo algo-
rithms have been proposed to perform 3D reconstruction
from remote sensing images [10, 26, 32, 36]. All those al-
gorithms contain a dense matching step, which consists in
determining the displacement of every pixel, called dispar-
ity, between the different images. Such algorithms usually
start by computing the similarity or sets of features between

pixels in the form of a cost volume, from which the dispar-
ity can then be deduced [18, 30]. Point clouds are retrieved

(a) Left epipolar image

(b) Confidence Intervals

Figure 1. Example of intervals on a image of the city of Mont-
pellier, France. Fig. 1a presents the left image, colored pixels indi-
cate wrong interval locations. Fig. 1b contains confidence intervals
along a section of the dashed line in Fig. 1a
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from the disparity, which can themselves be converted into
a mesh or a digital surface model.

Estimating the confidence in the disparity estimation is
crucial in many applications, and can lead to the improve-
ment of overall results [17, 27]. In the context of 3D recon-
struction from satellite imagery, it can even be propagated to
be provided as the confidence related to the final 3D prod-
uct. As such, it has become an important research topic
[16, 25]. There are two aspects to the uncertainty regard-
ing disparity computation: how confident we are in the dis-
parity prediction, and what would be the magnitude of the
potential error. Although state-of-the-art confidence mea-
sures reliably indicate how likely a predicted disparity is to
be correct, they do not indicate the extent of the potential
error. Those two notions are linked, but are not the same:
it could be that a prediction is made with high confidence
but would have a large associated error if wrong (meaning
there would be a great gap between the predicted and the
true disparity in case of an error). Similarly, a prediction
could be made with low confidence, but the set of possible
disparities is restricted to few values close to the predicted
disparity. Estimating the magnitude of the error and provid-
ing sets of possible disparities bring additional information
that could help users to improve the disparity map, similarly
to current work with classical confidence measures [24, 33].

In this article, we present a method for creating robust
disparity confidence intervals on the disparity estimation.
The intervals will be propagated in future applications to
produce confidence intervals on digital surface models, but
this lies outside the scope of this paper and thus will not be
covered here. We design our method so that it can be fully
integrated in classical 3D pipelines [10, 26, 32, 36] using
a cost-volume based stereo matching algorithm depicted in
Scharstein et al. [30]. To the best of our knowledge, this
is the first approach providing disparity confidence inter-
vals for stereo matching problems. For each pixel of the
reference image, we give a lower and upper displacement
of its position in the target image as in Fig. 1. We aim
for an accuracy of 90%, using robust uncertainty models
called possibility distributions. We think this additional in-
formation about the magnitude of the error gives a deeper
understanding of the uncertainty in stereo matching algo-
rithms. No training is required to produce confidence in-
tervals, also sparing the method from classical criticisms
regarding black-box aspects, in the sense that all process-
ing can be followed and monitored. Additionally, we detail
precautions that must be taken when applying some post-
processing steps [30] to the disparity map so that it stays
consistent with the confidence intervals. Our method for
creating confidence intervals can be summarized as follows:
1. Computation of the matching cost volume and confi-

dence measure
2. Transformation of matching cost curves into possibility

distributions
3. Deduction of disparity intervals by taking α-cuts on the

possibility distributions
4. Filtering of intervals while maintaining consistency with

the disparity map
5. Statistical regularization of intervals in low-confidence

zones
Section 2 contains an overview of current work regard-

ing stereo algorithms, confidence measures, and uncertainty
models used in this paper. Section 3 details the method for
constructing confidence intervals. Finally, the confidence
intervals robustness and size are validated in Section 4 us-
ing images from the Middlebury dataset and from a dataset
of high-resolution optical satellite images of various land-
scapes around the city of Montpellier. The code is freely
available on GitHub: https://github.com/CNES/
Pandora.

2. Related Works

2.1. Stereo matching

Our method is designed for classical 3D reconstruction
pipelines from remote sensing imagery [10, 26, 32, 36].
Those pipelines retrieve stereo information by means of
dense matching algorithms, mainly falling into two main
categories: classical approaches following the steps estab-
lished by Scharstein et al. [30], and full deep-learning ap-
proaches. Classical approaches usually contain the follow-
ing steps: matching cost computation, cost aggregation, dis-
parity computation and disparity refinement. On the other
hand, deep-learning approaches provide strong results (see
[18] for details), but are prone to generalization issues when
using images differing from the training dataset, especially
in the context of satellite imagery [20]. Obtaining ground
truth data of various landscape can prove difficult, we there-
fore focus here on classical approaches as we aim to pro-
duce a general and robust method for creating confidence
intervals. We consider two similarity functions, the Cen-
sus cost function [37], and the MC-CNN cost function [38]
learned using convolutional neural networks. Those sim-
ilarity functions are minimitive, meaning that a low value
indicates a strong similarity of the compared patches. Both
handcrafted and learned similarity functions are considered
here to highlight the generic nature of our method for cre-
ating intervals. The cost volume obtained using those func-
tions is regularized using the semi-global matching (SGM)
methods [9, 15], used in other state-of-the-art methods [3].

Numerous confidence measures have been proposed re-
garding the disparity [16], handcrafted using the properties
from the reference image, the cost volume or the disparity
map itself. Learning-based methods constitute the majority
of state of the art confidence measures [25]. We can men-
tion for instance deep learning methods estimating confi-

https://github.com/CNES/Pandora
https://github.com/CNES/Pandora


Figure 2. Example of three MC-CNN cost curves with different
confidences from ambiguity.

dence using CNNs on the cost volume [21] or on the dis-
parity map [24], and random forests on handcrafted confi-
dence measures [12]. We refer to [16, 25] for more in-depth
details. Estimating the confidence supporting the disparity
map can lead to new strategies to improve the overall results
[8, 17, 34]. In this work, we use use a confidence measure
computed from the matching cost volume, called ambiguity
[27].

In [4], authors estimate the magnitude of the absolute
symmetric error using a MLP. Their work demonstrate the
interest in estimating the magnitude of the error as a com-
plement to confident measures, and we push this idea even
further. Indeed, estimating the absolute error provides valu-
able information on the magnitude of the error, but does not
indicate where the correct disparity should be, i.e. if it is
probably higher or lower than the predicted one.

We therefore propose to answer this question using con-
fidence intervals on the disparity. Our method also differs
as it can be plugged on a vast range of cost-volume based
stereo algorithms with winner-takes-all strategy. Addition-
ally, our method does not rely on the accuracy of the algo-
rithm used for the disparity prediction. In contrast, the net-
work in [4] specifically takes as input 4 disparities at various
resolutions estimated by a 3D CNN [13], limiting its appli-
cability. To the best of our knowledge, this is the only work
that estimates the disparity error in a manner similar to ours.
The restricted setting in which they work also means that we
cannot compare our two approaches.

2.2. Possibility distributions

To create confidence intervals, we consider using possibil-
ity distributions, closely related fuzzy sets [6], as uncertainty
models. This allows to correctly represent epistemic uncer-
tainty, i.e., due to the partial nature of available informa-
tion [1]. In stereo matching problems, errors are mostly
due to epistemic uncertainty. Indeed, similarity functions
evaluate how much two patches are alike based on given or
learned features, and there exists some uncertainty regard-
ing how well this similarity indicates a match between cor-
responding pixels. Using possibility distributions aims to
address the downsides of probability distributions regard-

ing epistemic uncertainty [35]. Possibility distributions are
well-suited to model an expert’s opinion on the uncertainty
of an imprecise observation, for instance in the context of
groundwater contamination [1, 2]. In the context of stereo
matching, a regularized cost curve using SGM can be seen
as an expert evaluating if two patches are homologous or
not, based on their features and global properties of the cost
volume. The use of possibility distributions allows to bene-
fit from the advanced state of knowledge of IP towards ro-
bust estimation of uncertainty.

Formally, a possibility distribution is defined as a map-
ping π : Ω → [0, 1] verifying:

∃ω ∈ Ω, π(ω) = 1 (1)

where Ω is the set of possible observed states. π represents
the degree of possibility of an event ω, π(ω) = 1 meaning
that ω is fully possible, and π(ω) = 0 meaning that ω is
impossible. Possibility distributions can be used to define
the envelope of a convex set of probability distributions P
[7]:

P = {P : 2Ω → [0, 1] | P (E) ⩽ sup
ω∈E

π(ω)} (2)

where P is a probability distribution on the power set 2Ω of
Ω.

Alongside possibility distributions are often defined α-
cuts Cπ

α , which will be used for constructing the confidence
intervals:

Cπ
α = {ω ∈ Ω | π(ω) ⩾ α} (3)

α-cuts are the maximal sets whose possibility is at least
equal to α for every ω ∈ Ω. From a probabilistic point
of view, α-cuts are composed of all ω ∈ Ω for which there
is a P ∈ P from Eq. (2) such that P (ω) ⩾ α:

Cπ
α = {ω | ∃P ∈ P, P (ω) ⩾ α} (4)

3. Creation of Disparity Confidence Intervals
In the following, we consider that the images have been re-
sampled in epipolar geometry so that the displacement of a
pixel between left IL and right IR images can only occur
horizontally in a given disparity range D = [dmin, dmax].
In this setting, a pixel of the left image p = (i, j) with a
disparity d ∈ D is matched to the pixel q = (i, j+ d) of the
right image with a cost CV (i, j, d).

3.1. From Cost Curves to Possibility Distributions

We use possibility distributions to model the epistemic un-
certainty associated with similarity functions, in the same
way that an expert would state an opinion for every pixel on
which disparities are more likely to be the correct ones.

In order to construct a possibility distribution consistent
with a cost curve, it is first necessary to normalize the cost



Figure 3. The possibility distributions obtained from the cost
curves of Fig. 2. The arrows and vertical lines indicate the dis-
parity intervals obtained with α = 0.9.

curve to ensure its values lies in [0, 1]. Normalization can
be done using the minimum and maximum values of the
matching cost volume after SGM regularization. Given a
pixel p = (i, j), its cost curve is normalized as follows:

fnorm
i,j (d) =

CV (i, j, d)−maxCV

minCV −maxCV
(5)

The min and max operators of standard normalization are
reversed as the possibility needs to be maximal when the
cost function is minimal. fnorm

i,j is not yet a possibility dis-
tribution as it does not necessarily verify Eq. (1). As noticed
in Eq. (1), we can interpret it as a form of inconsistency, in
the sense that there is no disparity value such that the two
patches of pixels perfectly match. Assuming p = (i, j) has
an homologous pixel in the right image, we can restore con-
sistency through normalisation [23] , resulting in a possibil-
ity distribution πi,j(d) : D → [0, 1]:

πi,j(d) = fnorm
i,j (d) + 1−max

d∈D
fnorm
i,j (d) (6)

Examples of cost curved transformed into possibility dis-
tributions are presented in Figs. 2 and 3. Another way of
verifying Eq. (1) would have been to obtain fnorm

i,j using
the min and max operators on the cost curve instead of the
whole cost volume. Doing so would have artificially ac-
centuated the differences between the matching costs [23].
Using Eq. (6) instead keeps the curvature of the cost curve.

3.2. Deducing Intervals from Alpha-cuts

Having defined possibility distributions, we now look to de-
fine a set of possible disparities verifying our 90% confi-
dence objective. Every possibility distribution defines a set
of probability distributions P using Eq. (2). Disparities d
for which every probability measure in P evaluated on d
are lower than 0.9 are deemed to be unlikely. According to
Eq. (4), considering disparities d for which there is a proba-
bility P ∈ P such that P (d) ⩾ 0.9 is equivalent to consider
the α-cut Cπi,j

α with α = 0.9. Different values of α re-
flect different levels of confidence. We compared different
values of α in the ablation study presented in Tab. 2.

In general, α-cuts are sets and not intervals. We are able
to define a single confidence interval Iα(i, j) from an α-cut
by taking its extrema:

Iα(i, j) = [minCπi,j
α ,maxCπi,j

α ] (7)

Switching from C
πi,j
α to the interval Iα(i, j) reduces the

amount of information available by adding disparities with
low possibilities to our considered set of disparities. How-
ever, as only two interval bounds need to be considered
instead of every disparity of Cπi,j

α , our solution consumes
less memory, facilitates further processing and is easier to
understand for users. The level of confidence of Iα(i, j)
is also guaranteed to be at least equal to that of C

πi,j
α as

C
πi,j
α ⊆ Iα(i, j). Examples of confidence intervals on dis-

parities are presented in Fig. 3.

3.3. Refinement and Filtering with Intervals

In most stereo pipelines, the output disparity map deduced
from the matching cost volume is being post-processed.
Namely, sub-pixel refinement and filtering steps are usually
applied to improve overall results. The confidence intervals
need to be processed accordingly to maintain their coher-
ence with the disparity map.

Sub-pixel refinement is taking into account by slightly
extending the confidence intervals in the case where the pre-
dicted disparity di,j is one of the interval bounds. For clar-
ity, we refer to the lower and upper bounds of an interval I
as I and I respectively. Confidence intervals are modified
as follows:

if di,j = minCπi,j
α , Iα(i, j) = minCπi,j

α − 1 (8)
if di,j = maxCπi,j

α , Iα(i, j) = maxCπi,j
α + 1 (9)

This interval extension is coherent with different methods
of interpolation, like parabolic-fit for instance. V-fit refine-
ment [14] is used in our experiments.

Similarly, multiple filtering of the disparity map can
be considered. We use a median filter in our experi-
ments, which is a popular method in many stereo algorithms
[9, 30]. Using a median filter modifies the disparity map and
might create inconsistencies with the confidence intervals.
However, it is possible to demonstrate that for every set of
pixels {p(i, j)} and confidence intervals {Iα(i, j)} verify-
ing ∀(i, j), p(i, j) ∈ Iα(i, j) then:

median({Iα(i, j)}) ⩽ median({p(i, j)}) (10)
median({p(i, j)}) ⩽ median({Iα(i, j)}) (11)

Previous equations mean that the median filter can be ap-
plied independently to the disparity map and the confidence
interval bounds while still maintaining their coherence.



3.4. Regularization in Low Confidence Areas

Despite running post-processing steps, confidence interval
performances heavily depend on the quality of the simi-
larity function used. Near surface discontinuities, SGM
algorithm sometimes struggle to correctly detect disparity
changes due to the continuity constraint. A shift between
the predicted and the true disparity can be observed, which
induces biases in the cost curve and challenges the interpre-
tation of the cost curve as an expert’s opinion. To overcome
this limitation, confidence intervals are processed with a
more pessimistic approach in those areas.

Low confidence areas are detected using confidence
measures. As such, our approach is complementary to clas-
sical confidence estimation approaches. We use the confi-
dence from ambiguity measure [27] as it presents the ad-
vantage of being both explainable and efficient for this task.
This confidence measure aims to represent the difficulty to
single out a disparity value as the correct disparity. The
higher the confidence from ambiguity, the easier it is easy
to identify the correct disparity, whereas a value near 0 indi-
cates that numerous patches present the same locally mini-
mal similarity. Examples of cost curves with different val-
ues of ambiguities can be found in Fig. 2. The ambigu-
ity measure is computed pixel-wise, and thus can present
strong spatial variations in low confidence zones. To com-
pensate this effect, we first smooth the ambiguity map using
a 1×5 min convolution kernel, and pixels whose ambiguity
is under a threshold τ are considered to be in low confidence
zones:

ambsmooth(i, j) = min
−2⩽k⩽2

amb(i, j + k) (12)

Low confidence if ambsmooth(i, j) ⩽ τ (13)

We fix empirically τ = 0.6 for our experiments with ambi-
guity, as it does not seem to depend on the similarity func-
tion used.

Low confidence areas usually correspond to regions
which possess a strong disparity variation. The intervals in
low confidence areas might be extended to the minimal and
maximal bounds found in the area, but experiments show
this approach is too pessimistic. Indeed, a single unnec-
essary large confidence interval would penalize the whole
area. Instead, we advocate for a statistical approach by ex-
tending the intervals using quantiles instead of the the mini-
mal and maximal bounds. This approach has the advantage
of being more robust to outliers.

For each low confidence pixel, we determine the maxi-
mal set A of contiguous low confidence pixels within l lines
above and bellow, as presented for l = 2 in Fig. 4. Exper-
iments show that l = 2 allows the set A to contain enough
pixels to be statistically relevant, while maintaining a rel-
atively low computation time. Using values higher than 2
does not improve the results. Once A has been established,

Figure 4. Low confidence areas with l = 2.

the lower interval bound of the low confidence pixel is set
to the 10th quantile of the lower interval bounds in A. The
same procedure is applied to the upper bounds with the 90th

quantile. Examples of intervals with and without regulariza-
tion along a row of a scene are presented in Fig. 5. When
no regularization is applied, errors occur for intervals in low
confidence areas.

(a) Intervals without regularization (b) Interval with regularization

Figure 5. Intervals without (Fig. 5a) and with (Fig. 5b) regular-
ization from Middlebury’s cones. CENSUS cost function is used.
Areas with low confidence are indicated in gray.

4. Evaluation
We define different metrics in order to simultaneously eval-
uate intervals reliability and size. The metrics are adapted
to our future objective of propagating the disparity inter-
vals into height intervals for 3D reconstruction from satel-
lite imagery. As such, intervals must be both reliable and
small. The metrics are first assessed globally by consider-
ing every intervals for each dataset. Then, they are mea-
sured separately for high confidence and low confidence
areas. The distinction between both regions is performed
using a threshold on the ambiguity measure, as in Sec. 3.4.

4.1. Evaluation Metrics

The confidence intervals are evaluated following different
criteria:
• Their global accuracy. An interval is considered accurate

if it contains the true disparity. The accuracy is computed
as:

Acc =
#accutate intervals

#intervals
(14)



Global High confidence areas Low confidence areas

Accuracy ↑ Relative Size ↓ Accuracy ↑ Relative Size ↓ Accuracy ↑ Relative Size ↓ Overestimation ↓

Dataset CENSUS MCCNN CENSUS MCCNN CENSUS MCCNN CENSUS MCCNN CENSUS MCCNN CENSUS MCCNN CENSUS MCCNN

2003 0.973 0.954 0.033 0.033 0.983 0.968 0.033 0.033 0.942 0.89 0.183 0.233 0.165 0.182

2005 0.963 0.971 0.026 0.038 0.969 0.973 0.026 0.026 0.95 0.969 0.218 0.256 0.152 0.228

2006 0.989 0.989 0.026 0.038 0.993 0.992 0.026 0.026 0.98 0.985 0.569 0.397 0.109 0.268

2014 0.957 0.983 0.063 0.029 0.912 0.972 0.007 0.013 0.991 0.996 0.872 0.993 0.12 0.339

2021 0.936 0.991 0.594 1.0 0.818 0.969 0.012 0.026 0.987 0.999 0.859 1.0 0.168 0.314

Rural 0.904 0.975 0.100 0.250 0.867 0.967 0.083 0.222 0.952 0.998 0.286 1.0 0.360 0.713

Urban 0.926 0.986 0.100 0.263 0.894 0.981 0.091 0.238 0.965 0.999 0.286 1.0 0.367 0.722

Table 1. Accuracy Acc, Relative size Srel and Relative overestimation Orel for different Middlebury and satellite datasets. “Global”
column consider every intervals in the dataset, while “High confidence areas” and “Low confidence areas” separate the intervals based on
the confidence measure (Sec. 3.4). Two cost functions are compared: CENSUS and MC-CNN. The best results for each dataset appear in
bold font.

where # refers to the number of elements of a set.
• The relative size of the intervals compared to the disparity

range. The relative size is computed over a scene or a
whole dataset as:

Srel = median

(
I − I

dmax − dmin

)
(15)

This criterion is important as one could achieve 100% ac-
curacy by simply setting every interval to [dmin, dmax].

• Srel is not adapted in low confidence areas as we pur-
posely extended the intervals (see Sec. 3.4). Thus, we de-
fine an additional criterion only for low confidence areas,
called relative overestimation:

Orel = median

(
1− ∆|d− d̂|

I − I

)
(16)

where ∆|d−d̂| is the maximal difference between the true
disparity and the predicted disparity over the low confi-
dence area. It is therefore the size of the optimal interval
in the area. Figure 6 allows to visualize ∆|d − d̂| and
I− I . Orel is the median of intervals overestimation over
low confidence areas.
In Eq. (15) and Eq. (16), the median is used to evaluate

the sizes of the intervals instead of the mean in order to gain
statistical robustness. It is noteworthy that using the mean
yields very similar results.

In the absence of any other method for creating disparity
confidence intervals, we compare the accuracy and relative
size of our method with a “naive” approach that serves as a
baseline. This approach, referred to as baseline in Tab. 2,
consists in simply normalizing every cost curve with its
maximum and minimum values, and defining the disparity

Figure 6. A low confidence area in gray, with a representation of
∆|d− d̂| and I − I from Eq. (16).

interval as the minimal and maximal disparities for which
the cost is greater that 90%. We compare this to our method
using possibilities without regularization and with α-levels
taking values in [50%, 80%, 90%, 98%]. We also present
our method with the regularization step and an α-level of
90%, referred to as “90 w/ reg”. This is the same method
used in Tab. 1. This ablation study enables us to observe the
impact of different α-levels on the accuracy of the intervals,
and proves the necessity of the regularization step.

Section 4.3 discusses the performance of the method
with regard to the criterion from Eq. (14). We aim to vali-
date at least 90% accuracy on the intervals over every scene.
Section 4.4 evaluates criteria of Eq. (15) and Eq. (16). In
high confidence areas, the relative size Srel needs to be as
small as possible. We consider a relative size of around
25% as a satisfying objective. In low confidence areas, a
relative overestimation Orel of about 30% seems a feasi-
ble objective, while still providing enough information for
a later propagation into elevation intervals. The numeri-



cal objectives are given for information purposes, as users
needs may vary depending on the application.

Baseline 50 80 90 90 w/ reg 98

2003 0.503 0.997 0.985 0.982 0.973 0.98

2005 0.592 0.978 0.958 0.950 0.963 0.944

2006 0.626 0.986 0.982 0.979 0.989 0.976

2014 0.039 0.543 0.519 0.494 0.957 0.474

2021 0.03 0.549 0.478 0.442 0.936 0.420

Table 2. Ablation study. Evaluation of the accuracy from
Eq. (14) with different methods using the CENSUS cost function.
50, 80, 90, 98 refer to different value of α. 90 /w reg refers to an
α value of 90% and a regularization step from Sec. 3.4.

4.2. Reference Datasets

We used 83 scenes from Middlebury
2003, 2005, 2006, 2014 and 2021 datasets for evalua-
tion [28–31]. We use quarter-size and third-size versions
of the data for 2003, 2005 and 2006 datasets and full
resolution for 2014 and 2021 datasets. We use the disparity
range indicated in the calibration files. Each year contains
respectively 2, 6, 21, 23 and 24 pairs of images with
different shapes, and the size of the disparity intervals
ranges between 60 and 1110. We also use 120 1845× 1845
pairs of epipolar images generated using [5] from satel-
lite images of the region of Montpellier, France, with a
resolution of 50cm/pixel. The disparity range for those
images is between 20 and 50 pixels, depending on the
scene. During the evaluation, the dataset is split into two
categories: urban, for images containing mostly buildings,
and rural, for image mostly composed of forests and fields.
The ground truth disparity was retrieved using LiDAR data.

4.3. Accuracy Results

First, intervals accuracy can be analyzed on the specific ex-
ample of Fig. 7a. Inaccurate intervals are colored in the left
image. Figures 7b and 7c present confidence interval values
along a row, as well as the disparity estimation and the true
disparity. Low confidence areas are indicated by the gray
sections. Figs. 7b and 7c contain both high confidence ar-
eas with small intervals, and low confidence areas with im-
portant disparity variations. We observe a low confidence
area between columns 1300 and 1390 where the computed
disparity is far from the true disparity, but the confidence
intervals remain correct.

Evaluating the accuracy statistics on each dataset yields
strong results. Scores per year for intervals computed using
the CENSUS and MC-CNN cost functions are presented in
Tab. 1. CENSUS-based intervals have an accuracy always

superior to 90% over each dataset. They verify the 90% ac-
curacy objective on 80 of the 83 scenes from Middlebury,
and on all 120 satellite images. MC-CNN-based intervals
have an accuracy superior to 95% on every datasets. They
validate the 90% accuracy objective on all 83 scenes from
Middlebury and 120 satellite images. Those strong perfor-
mances come nonetheless with large interval size, as de-
tailed in section Sec. 4.4.

(a) Left epipolar image

(b) Confidence Intervals

(c) Confidence Intervals

Figure 7. Fig. 7a is the left image of the city of Montpellier where
colored pixels indicate wrong interval location. Figs. 7b and 7c
present detailed confidence intervals, computed disparity, and true
disparity along the black dashed line from figure Fig. 7a. Areas
with low confidence are indicated in gray.

An ablation study is carried out in Tab. 2, highlighting
the importance of the regularization process. Without the
regularization, the accuracy drops for datasets with many
low confidence areas. The value of α has a small impact
when compared to the regularization step. We also observe
that the naive approach of the baseline produces very inac-
curate intervals in comparison to our method.



4.4. Discussions on the Size of the Intervals

Although the intervals are very accurate, confidence inter-
vals with unnecessarily large sizes need to be avoided. In
Figs. 7b and 7c, confidence intervals have a small relative
size in high confidence areas, and a larger size in low con-
fidence areas. In those areas, the intervals are properly ad-
justed to contain the predicted disparity and the true dispar-
ity without overestimating the error. Similar observations
can be made in Fig. 8b.

Detailed statistics of intervals relative size and relative
overestimation are presented in Tab. 1 alongside accuracy
results. For MC-CNN-based intervals, the 5% relative
size criterion is validated for each dataset in high confi-
dence areas, with a relative size on all datasets of only
1.5%. The global relative size is below 4% for years
2001, 2003, 2005, 2006 and 2014. Srel is maximal for the
2021 dataset due to the high proportion of low confidence
intervals on this dataset. Intervals in low confidence areas
are only overestimated by around 30%, meaning that large
intervals are unavoidable on this dataset. This can also be
explained by the complexity and high resolution of 2021
(and 2014) scenes, which leads to larger confidence inter-
vals in general. It results in poorer performances of the
disparity prediction as a majority of pixels have low con-
fidence. Intervals computed on satellite images have a rela-
tive size around 25%, which is relatively low as most scenes
have a disparity range of around 20 pixels. They however
tend to overestimate the intervals in low confidence areas:
around 30% when using the CENSUS cost function, and
70% when using the MC-CNN cost function.

Intervals computed using the CENSUS cost function val-
idate the 25% relative size objective in high confidence ar-
eas. In low confidence areas, their relative overestimation
is around 13%, meaning that they are close to the ideal in-
tervals. They outperform MC-CNN based intervals on all
datasets when comparing their relative size in high confi-
dence, and on all datasets regarding the relative overesti-
mation criterion. This is probably due to the SGM regular-
ization, which uses different weight for the CENSUS and
MC-CNN cost functions. CENSUS based weights seem to
produce curves with a more pronounced/narrow peak near
the minima, resulting in smaller intervals, and thus better
relative sizes and over-estimation metrics.

5. Conclusion and Perspectives

To the best of our knowledge, we present the first method
for creating confidence intervals on the disparity in stereo
matching problems. Our method is designed to work with
any stereo algorithm computing a 3D cost volume. Match-
ing cost functions are transformed into possibility distribu-
tions and then interpreted as an expert’s opinion. We rely
on the advanced theoretical background of possibility dis-

(a) Left epipolar image

(b) Confidence Intervals

Figure 8. Fig. 8a is the left image of a rural area near Montpellier.
Colored pixels indicate wrong interval locations. Figure 8b details
confidence intervals, computed disparity, and true disparity along
the black dashed line from figure Fig. 8a. Areas with low confi-
dence are indicated in gray.

tributions to compute robust uncertainty estimations. Con-
fidence intervals are deduced from the α-cuts of possibil-
ity distributions, and regularized in low confidence areas.
Post-processing steps handling is also taken into account to
maintain consistency between the predicted disparity map
and the confidence intervals. As we have not found existing
accurate methods for comparison, we assess the intervals
based on accuracy, relative size, and overestimation. Crite-
ria are evaluated on the Middlebury datasets. 90% accuracy
objective is achieved while maintaining a small relative size
in high confidence area and without overestimating the in-
tervals size in low confidence areas. The accuracy of the
confidence intervals does not depend on the performance of
the disparity estimation. All of our contributions are avail-
able on our GitHub repository. This work aims to moti-
vate further research in detecting, locating and quantifying
the magnitude of the error in disparity maps. We demon-
strate in this paper that possibility distributions can model
and process epistemic uncertainty in a understandable and
explainable way.

Future work will include propagating the disparity con-
fidence intervals into elevation confidence intervals for
3D reconstruction. Those intervals can then be pro-
vided as a complementary product alongside digital sur-
face models, often used in many Earth Observation appli-
cations.
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Michel, Emmanuelle Sarrazin, Florie Languille, and Laurent
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