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Proximity guarantees of a lift-and-project approach for the cardinality-constrained
Boolean quadric polytope

Walid Ben-Ameura,

aSamovar, Télécom SudParis, Institut Polytechnique de Paris, Palaiseau, France

Abstract

We consider a lift-and-project approach for the cardinality-constrained Boolean quadric polytope. Some upper bounds

for the distance between the polytope and its linear approximation are derived. Unsurprisingly, the distance converges

to 0 when the number of variables increases sufficiently.

Keywords: Boolean quadric polytope, linear relaxations, lift-and-project.

1. Introduction

Let Un = conv({1S 1t
S , S ⊆ [n]}) where [n] = {1, 2, ..., n}

and 1S is a vector of Rn whose ith component equals 1

(resp. 0) if i ∈ S (resp. otherwise). Since any matrix

X ∈ Un is symmetric, we can simply consider the values

Xi j for j ≥ i, leading to the well-known Boolean quadric

polytope BQPn ⊆ Rn(n+1)/2 that can be seen as a projec-

tion of Un. Since 0-1 quadratic programs can obviously be

formulated as linear programs over BQPn (or Un), good ap-

proximations of these polytopes are sought to better solve

this important class of problems. In many applications,

a cardinality constraint is added: only k variables can be

non-zero. This leads to the study of Un
k and BQPn

k where

Un
k = conv

(
{1S 1t

S , S ∈ [n]k}
)
, [n]k = {S ⊆ [n] : |S | = k} and

BQPn
k is the projection of Un

k .

We will review some related work in next section. Then

the paper contributions and some notation are presented in

Section 3. The main results and their proofs are provided

in Section 4. Concluding remarks follow in the last section.

Email address: walid.benameur@telecom-sudparis.eu (Walid

Ben-Ameur )

2. Related work

The Boolean quadric polytope introduced in [20] is also

called the full correlation polytope [22] since X ∈ BQPn

is related to some probability space (Ω,A, µ) through the

equations Xii = µ(Ai) and Xi j = µ(Ai∩A j) where (Ai)i∈[n] ∈ A.

As a consequence, [22] observed that the typical probabil-

ity problem (Boole’s problem) of minimizing µ(A1∪ ...∪An)

given µ(Ai) and µ(Ai ∩ A j) values, can be stated as a lin-

ear program involving a variable for each extreme point of

BQPn (to express X as a convex combination).

Given the connection with 0-1 quadratic programming,

membership in BQPn is unsurprisingly shown to be NP-

complete [22].

Several families of valid inequalities for BQPn have been

proposed in literature. In addition to the obvious inequal-

ities 0 ≤ Xi j ≤ 1, i ≤ j, inequalities Xi j + 1 ≥ Xii + X j j

and Xi j ≤ Xii are presented in [10, 17]. These are now

called RLT inequalities [24]. Triangle inequalities are de-

rived in [20]: Xii + X j j + Xkk ≤ Xi j + Xik + X jk + 1 and

Xi j + Xik ≤ Xii + X jk. Other families include clique in-

equalities [20], cut inequalities [20], Boros and Hammer

inequalities [5], gap inequalities [9] adapted from [14] and

inequalities implied by the positive semidefinite nature of

the matrix X − diag(X)diag(X)T [12, 25] where diag(X) is
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the diagonal vector of X.

The Boolean quadric polytope is equivalent to the cut

polytope since one can be obtained from the other through

a straightforward affine transformation[6, 20, 3]. More pre-

cisely, for X ∈ BQPn one can define a point in z ∈ CUTn+1

(the convex hull of incidence vectors of cuts in a complete

graph of order n + 1) by setting zi,n+1 = Xii for i ∈ [n] and

zi, j = Xii + X j j − 2Xi j for i < j ∈ [n]. Inequalities defined for

the cut polytope can then be easily transformed into valid

inequalities for BQPn and vice-versa. More details can be

found in [15].

The Boolean quadric polytope under the cardinality

constraint
∑

i Xii ≤ k has been studied in [21, 18]. [18] fo-

cused on the case where variables Xi j are considered only

for pairs (i, j) in a proper subset E of the set of all pairs

i ≤ j in [n] × [n]. This is naturally related to the Boolean

quadratic program min
∑

(i, j)∈E qi jxix j where coefficients qi j

are non-zero only for (i, j) ∈ E. Some valid inequali-

ties have been proposed there including star inequalities

(
∑

j,i Xi j ≤ (k− 1)Xii), tree inequalities, long-cycle inequali-

ties, long-tree inequalities and long-forest inequalities gen-

eralizing some of the inequalities proposed in [11]. Accord-

ing to [18] (Section 5), the separation problems for all the

inequalities appear to be difficult. [21] considered the com-

plete case and studied the polytope BQPn
k≤ (the analogue

of BQPn
k where we require

∑
i Xii ≤ k instead of equality).

They also proposed the star and tree inequalities men-

tioned above. Moreover, they considered the projection

of BQPn
k≤ obtained by ignoring Xii variables (since some

applications do not involve node weights).

BQPn
k is studied in [8]. Its dimension is shown to be equal

to n(n− 1)/2− 1 for 2 ≤ k ≤ n. Authors recall that BQPn
k is

stable by permutation allowing to build some facets from

others by straightforward coefficient permutation. Switch-

ing (or complement operation) is also considered in [8]

showing that BQPn
n−k can be obtained from BQPn

k by sim-

ple affine transformation. BQPn
k is proved to be a face of

BQPn and a full description of BQPn
k is given when k = 2

and k = n − 2. It is also shown that BQPn
k≤ is a projection

of BQPn+k
k . Some connections with the equicut polytope

are exposed [8]. More generally, the affine correspondence

mentioned above between the cut polytope and BQPn leads

to a mapping between BQPn
k and the uniform cut polytope

CUTn+1
k (the cut polytope under a cardinality constraint).

Inequalities defined for the uniform cut polytope such as

those of [7, 19] can be mapped to some valid inequalities

for BQPn
k .

The relaxations proposed in the paper are based on lift-

ing where the set of variables and constraints are extended

by multiplying constraints by variables and linearizing by

adding new variables representing products of old vari-

ables. Lifting is of course a well-known technique proposed

in different papers including [23, 16, 2]. Roughly speak-

ing, we know that by using any one of the three variants

introduced there, we get the convex hull of integer solu-

tions inside a polytope at the cost of adding an exponential

number of variables and constraints [2, 13]. Several stud-

ies tried to determine the maximum number of the lift-

and-project iterations required to get the true convex-hull

(generally called rank) (see, e.g., [13, 1]).

3. Contributions and further notation

In our paper, we aim to analyze the quality of the relax-

ation obtained by considering some kind of lifting. More

precisely, focusing on the special case of Un
k and consider-

ing a relaxation involving a variable λS for any set S of size

r (r ≤ k), we show that the normalized distance between

Un
k and the relaxed set is at most min(1 − ( r

k )2, 1 − k
n ).

The lifting approach proposed in the current paper is

somewhat related to the recent work in [4] where the cone

of factor-width-k matrices is approximated through lifting.

The 0-1 case was not handled there and a different distance

(Frobenius distance) is considered in [4].

Let us add some notation. Given a n-square matrix X,

let ||X||1 =
∑

i∈[n]
∑

j∈[n] |Xi j|. Assume T1 and T2 are sub-

sets of square matrices, then the Hausdorff distance in-
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duced by the previous norm is given by: dist(T1,T2) =

max(supX∈S 2
infY∈S 1 ||X − Y ||1, supX∈S 1

infY∈S 2 ||X − Y ||1). We

will use tr(.) to denote the trace of a matrix. Given a set

H defined by two sets of variables X and Y, PX(H) is the

projection of H considering X variables: PX(H) = {X :

∃Y, such that (X,Y) ∈ H}.

4. Linear relaxations through lifting

Consider the following polyhedral set Hn
k,r involving a

matrix variable X in addition to a variable λT for each

subset T of size r where 2 ≤ r ≤ k.

Hn
k,r =



X ∈ Sn, tr(X) = k

Xi j ≥ 0 ∀i, j ∈ [n]

λT ≥ 0 ∀T ∈ [n]r∑
T∈[n]r : T3i

λT =
(

k−1
r−1

)
Xii ∀i ∈ [n]∑

T∈[n]r : T⊇{i, j}
λT =

(
k−2
r−2

)
Xi j ∀i , j ∈ [n].

Lemma 1. Un
k ⊆ PX(Hn

k,r).

Proof. Let X = 1S 1t
S for some S ∈ [n]k. Then X is obviously

non-negative, symmetric and its trace equals k. For each

T ∈ [n]r, let λT =
∏

i∈T Xii . The sum
∑

T∈[n]r : T3i λT is equal

to 0 if Xii = 0 (i.e., i < S ). If i ∈ S , then λT = 1 only if

T ⊆ S and 0 otherwise, leading to
∑

T∈[n]r : T3i λT =
(

k−1
r−1

)
Xii.

The last inequality
∑

T∈[n]r : T⊇{i, j} λT =
(

k−2
r−2

)
Xi j holds for the

same reasons. Consequently, the projection of Hn
k,r onto

the space of X variables contains the extreme points of Un
k

and therefore the whole set Un
k for convexity reasons.

Lemma 2. PX(Hn
k,2) ⊇ PX(Hn

k,3) ⊇ · · · ⊇ PX(Hn
k,k) = Un

k .

Proof. Let us show that PX(Hn
k,r) ⊇ PX(Hn

k,r+1). Let (X, λ)

belong to Hn
k,r+1 where λT is defined for T ∈ [n]r+1. One

can define a point (X, λ′) of Hn
k,r as follows. For each set

S ∈ [n]r, let λ′S =
1

k−r
∑

T⊃S ,|T |=r+1 λT . Observe that∑
S∈[n]r : S3i

λ′S =
1

k − r

∑
S∈[n]r :S3i

∑
T⊃S ,|T |=r+1

λT

=
r

k − r

∑
T∈[n]r+1 : T3i

λT =
r

k − r

(
k − 1

r

)
Xii =

(
k − 1
r − 1

)
Xii.

We can check in the same way that
∑

S∈[n]r :S⊇{i, j} λ
′
S =(

k−2
r−2

)
Xi j,∀i , j ∈ [n]. As a consequence, (X, λ′) ∈ Hn

k,r

implying that X ∈ PX(Hn
k,r) and proving that PX(Hn

k,r) ⊇

PX(Hn
k,r+1).

By summing up constraints
∑

T∈[n]r :T3i λT =
(

k−1
r−1

)
Xii and us-

ing the trace constraint we get that
∑

T∈[n]r
λT =

(
k
r

)
. Hence,

for k = r the sum is just equal to 1 and X is a convex com-

bination of matrices of type 1T 1t
T where T ∈ [n]k implying

that X ∈ Un
k . This leads to PX(Hn

k,k) = Un
k .

Let us consider the bijective linear mapping Lk,r defined

as follows:

Lk,r : (X, λ)7→(X′, λ′)


X′ii = k+1

k Xii,∀i ∈ [n]

X′i j =
k+1
k−1 Xi j,∀i , j ∈ [n]

λ′S = k+1
k−r+1λS ,∀S ∈ [n]r.

Lemma 3. Lk,r(Hn
k,r) = H

n
k+1,r.

Proof. Let (X, λ) ∈ Hn
k,r and (X′, λ′) = Lk,r(X, λ). Then X′

is symmetric and non-negative, and tr(X′) = k+ 1. We also

have: ∑
T∈[n]r :T3i

λ′T =
k + 1

k − r + 1

∑
T∈[n]r :T3i

λT =
k + 1

k − r + 1

(
k − 1
r − 1

)
Xii

=
k + 1

k − r + 1

(
k − 1
r − 1

)
k

k + 1
X′ii =

(
k

r − 1

)
X′ii.

The other constraint
∑

T∈[n]r :T⊇{i, j} λ
′
T =

(
k−1
r−2

)
Xi j can be

proved in the same way. We consequently have Lk,r(Hn
k,r) ⊆

Hn
k+1,r. The other inclusion is also straightforward since

Lk,r is bijective and (Lk,r)−1(Hn
k+1,r) ⊆ H

n
k,r.

Let Mk,r = Lk−1,r ◦ Lk−2,r ◦ · · · ◦ Lr,r. Note that Mk,r can

be expressed explicitly as follows:

Mk,r : (X, λ)7→(X′, λ′)


X′ii = k

r Xii,∀i ∈ [n]

X′i j =
k(k−1)
r(r−1) Xi j,∀i , j ∈ [n]

λ′S =
(

k
r

)
λS ,∀S ∈ [n]r.

LetMk,r
X be the mapping obtained fromMk,r by consid-

ering only X variables:

M
k,r
X : X 7→X′

 X′ii = k
r Xii,∀i ∈ [n]

X′i j =
k(k−1)
r(r−1) Xi j,∀i , j ∈ [n].
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Lemma 4. Mk,r(Hn
r,r) = H

n
k,r and Mk,r

X (Un
r ) = PX(Hn

k,r).

Proof. Mk,r(Hn
r,r) = H

n
k,r is obtained by iteratively applying

Lemma 3. The second part follows from projection and the

fact that PX(Hn
r,r) = Un

r .

Proposition 1. dist
(
Un

k ,PX(Hn
k,r)

)
≤ 2(k2 − r2).

Proof. Since PX(Hn
k,r) ⊇ Un

k , we only have to prove that

supX∈PX (Hn
k,r) infz∈Un

k
||X − Z||1 ≤ 2(k2 − r2). Let X ∈ PX(Hn

k,r).

From Lemma 4, there exists Y ∈ Un
r such that X =Mk,r

X (Y).

Observe that the diagonal terms of the matrix X − Y are

Xii(1 − r/k) while the non-diagonal terms are Xi j(1 −
r(r−1)
k(k−1) )

implying that X−Y is non-negative and ||X−Y ||1 =
∑

i, j |Xi j−

Yi j| =
∑

i, j Xi j −Yi j = ||X||1 − ||Y ||1 = k2 − r2. We hence proved

that:

sup
X∈PX (Hn

k,r)
inf

Y∈Un
r

||X − Y ||1 ≤ k2 − r2. (1)

Let Y = 1S 1t
S for S ∈ [n]r be an extreme point of Un

r . Con-

sider any subset T ∈ [n]k containing S and let Z = 1T 1t
T .

The matrix Y − Z has exactly k2 − r2 non-zero coefficients

implying that ||Y − Z||1 = k2 − r2. Since this holds for

any extreme point of Un
r , it also holds for each matrix of

Un
r . Indeed, given a convex combination Ỹ of vertices Y

of Un
r , and given the same combination Z̃ of vertices Z of

Un
k with ||Y − Z||1 ≤ k2 − r2, then by convexity of the norm

||Ỹ − Z̃||1 ≤ k2 − r2 , leading to:

sup
Y∈Un

r

inf
Z∈Un

k

||Y − Z||1 ≤ k2 − r2. (2)

Combination of (1) and (2) proves the wanted result.

Notice the obvious valid inequalities Xi j ≤ 1 are not con-

sidered in Hn
k,r. It is easy to check that they are not domi-

nated by the other constraints definingHn
k,r. An example is

given below where k = n = 3, r = 2, λi j = Xi j for i < j ∈ [n]

and X =


3/2 3/2 3/2

3/2 3/4 0

3/2 0 3/4

 .
Let Hn

k,r be the subset obtained from Hn
k,r by adding the

constraints Xi j ≤ 1 for i, j ∈ [n]. Let Gn
k be defined as

follows:

Gn
k =



X ∈ Sn∑
i∈[n]

Xii = k∑
1≤i< j≤n

Xi j =
1
2 (k2 − k)

0 ≤ Xi j ≤ 1 ∀i, j ∈ [n].

Lemma 5. Gn
k ⊇ PX(Hn

k,r), and all extreme points of Gn
k are

binary.

Proof. We already observed that
∑

T∈[n]r
λT =

(
k
r

)
for (X, r) ∈

Hn
k,r. By summing up all equations of type

∑
T∈[n]r : T⊇{i, j}

λT =(
k−2
r−2

)
Xi j, we get that

∑
1≤i< j≤n

Xi j =
1

(k−2
r−2)

r(r−1)
2

(
k
r

)
= 1

2 (k2 − k).

Since the other inequalities defining Gn
k are obviously sat-

isfied, Gn
k ⊇ H

n
k,r holds. Moreover, since each variable Xii

(resp. Xi j, i < j) appears in only one equality, all extreme

points of Gn
k can only have 0 − 1 values.

Proposition 2. dist
(
Un

k ,G
n
k

)
≤ 2k2(1 − k

n ).

Proof. Let us prove that for each extreme point X of Gn
k ,

there exists a matrix Y ∈ Un
k such that ||Y−X||1 ≤ 2k2(1− k

n ).

We know from the previous lemma that X is binary. X is

then a symmetric matrix with exactly k2 non-zero coeffi-

cients. We will show by induction on p (p ∈ [n]) that we

can extract from X a principal p-square submatrix contain-

ing at least k2 p/n non-zero coefficients. The result holds

for p = n (the submatrix is the whole matrix X). Assume

the result holds for p and let us prove it for p−1. By induc-

tion hypothesis, let Y be a principal p-square submatrix

of X containing at least k2 p/n non-zero coefficients. Let i

be the index of the row of Y containing the smallest num-

ber of non-zero coefficients. This number is less than or

equal to 1/p of the total number of non-zero coefficients of

Y. Then by considering the p − 1-square matrix obtained

from Y by eliminating the ith row (and column), we get

a matrix Z where the number of 1-coefficients is at least

(1 − 1/p)k2 p/n which is nothing other than k2(p − 1)/n.

Now using the proved result for p = k, we deduce that

there is a set S ∈ [n]k such that ||XS ||1 ≥ k3/n where XS is

4



the principal submatrix induced by S . Then ||X−1S 1t
S ||1 ≤

k2 + k2 − 2k3/n ending the proof.

Theorem 1. dist
(
Un

k ,PX(Hn
k,r)

)
≤ 2k2 min

(
1 − ( r

k )2, 1 − k
n

)
.

Proof. The result follows from the inclusion PX(Hn
k,r) ⊆

Gn
k ∩ PX(Hn

k,r) and Propositions 1 and 2.

It might be convenient to normalize the distance to get

a better idea about the quality of the approximation. One

can, for example, define nd(X,Y) = ||X−Y ||1
||X||1+||Y ||1

. While nd is

not really a distance, it has some nice features: nd(X,Y) = 0

only if X = Y, and 0 ≤ nd(X,Y) ≤ 1. Since all elements of

PX(Hn
k,r) and Un

k are of norm k2, the previous theorem can

be written as nd
(
Un

k ,PX(Hn
k,r)

)
≤ min

(
1 − ( r

k )2, 1 − k
n

)
. Note

that 1− k/n is a better bound for “relatively small” values

of r, namely when r is at most a
√

k/n fraction of k. The

bound of Theorem 1 does not improve with r until r is

sufficiently large.

As might be suggested by the proof of Lemma 2, start-

ing from Hn
k,r and performing one iteration of the Sherali-

Adams lifting, one can obtain all constraints defining

Hn
k,r+1 (in addition to others). In other words, starting

from Hn
k,2, the r − 1-level Sherali-Adams relaxation would

be at least as tight as Hn
k,r. As a consequence, the up-

per bound of Theorem 1 applies also to the Sherali-Adams

relaxation of level r − 1.

5. Concluding remarks

Although the results presented in this paper are specific

to the cardinality-constrained Boolean quadric polytope,

we believe that they deserve to be adapted and/or gener-

alized to other polytopes.
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