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Abstract
Background In bivalves, the rate at which organisms grow is a major functional trait underlying many aspects of 
their commercial production. Growth is a highly polygenic trait, which is typically regulated by many genes with 
small to moderate effects. Due to its complexity, growth variability in such shellfish remains poorly understood. In this 
study, we aimed to investigate differential gene expression among spat of the pearl oyster Pinctada margaritifera with 
distinct growth phenotypes.

Results We selected two groups of P. margaritifera spat belonging to the same F2 cohort based on their growth 
performance at 5.5 months old. Transcriptome profile analysis identified a total of 394 differentially expressed genes 
between these Fast-growing (F) and Slow-growing (S) phenotypes. According to functional enrichment analysis, 
S oysters overexpressed genes associated with stress-pathways and regulation of innate immune responses. In 
contrast, F oysters up-regulated genes associated with cytoskeleton activity, cell proliferation, and apoptosis. Analysis 
of genome polymorphism identified 16 single nucleotide polymorphisms (SNPs) significantly associated with the 
growth phenotypes. SNP effect categorization revealed one SNP identified for high effect and annotated for a stop 
codon gained mutation. Interestingly, this SNP is located within a gene annotated for scavenger receptor class 
F member 1 (SRF1), which is known to modulate apoptosis. Our analyses also revealed that all F oysters showed 
up-regulation for this gene and were homozygous for the stop-codon mutation. Conversely, S oysters had a 
heterozygous genotype and a reduced expression of this gene.

Conclusions Altogether, our findings suggest that differences in growth among the same oyster cohort may be 
explained by contrasted metabolic allocation between regulatory pathways for growth and the immune system. This 
study provides a valuable contribution towards our understanding of the molecular components associated with 
growth performance in the pearl oyster P. margaritifera and bivalves in general.
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Introduction
Relevance and control of growth phenotype expression
Heterogeneity of body sizes is a common feature in wild 
and farmed populations belonging to the same cohort. In 
aquaculture, inter-individual variability is a major draw-
back for productivity and profitability; hence substantial 
efforts (mainly zootechnical) have been made to reduce 
this heterogeneity, while improving mean growth rate [1, 
2]. Growth potential is one of the principal traits targeted 
in selective breeding programs [3, 4], yet the genomic 
architecture conditioning this potential remains poorly 
understood in shellfish, particularly bivalve species.

Factors controlling growth rate and relation to other 
phenotypic traits
In aquaculture as in nature, growth is a complex trait 
under control of genetics and the environment, includ-
ing both biotic and abiotic factors [1, 5, 6]. For instance, 
several studies have sought to quantify the effects on 
growth rate of different exogenous factors, such as nutri-
tional manipulation [7–9] or temperature [10]. In paral-
lel, controlled-environment studies comparing Slow- and 
Fast-growing phenotypes reported substantial basal 
physiological differences, suggesting that variance in 
growth rate is also intrinsically regulated by endogenous 
mechanisms [11, 12]. Quantitative genetics studies show 
that heritability of growth in bivalves is medium to high 
depending on the species (ranging 0.18 to 0.50), and thus 
sufficient for significant genetic gain [13–16]. However, 
higher growth rate has frequently been associated with 
reduced immune capacity or increased potential for 
pathogens and/or parasite development [17, 18]; hence, 
there is a need to understand the biological processes 
behind growth traits and associated phenotypes.

Mechanisms – the genomic architecture of growth rate
The emergence of high-throughput sequencing tech-
nologies, notably whole transcriptome sequencing and 
genotyping by sequencing approaches, have significantly 
improved our ability to explore the molecular architec-
tures of phenotype determination, including for non-
model shellfish species. On the one hand, development 
of SNP markers allows detection of regions (quantitative 
trait loci, QTLs), specific candidate genes (RNAseq), or 
common genetic variants associated with a trait of inter-
est. Indeed, quantitative genetic analyses also widely 
demonstrate that genome polymorphisms (e.g., SNPs) 
influence gene expression variation and downstream phe-
notypes, including their growth traits and performance 
[19]. Such genomic influence on growth traits has been 
repeatedly demonstrated in many bivalve species [20–
25]. Similarly, genome-wide association study (GWAS) 
experiments revealed the polygenic nature of growth rate 
determination in Pacific oyster Crassostrea gigas [15, 26, 

27]. On the other hand, transcriptomic approaches con-
ducted in shellfish species have revealed differential gene 
expression and biological functions associated with dif-
ferential growth, immunity, reproduction and biomin-
eralization [28–37]. For instance, up-regulation of many 
genes involved in cellular control modulating cell pro-
liferation, cell differentiation or cell death was observed 
between fast- and slow-growing phenotypes in the carpet 
shell clam Ruditapes decussatus [33], Manila clam Rudi-
tapes philippinarum [38], and Pacific oyster C. gigas [39]. 
Lastly, a few studies have coupled genetic variant surveys 
and genes expression analysis to further trace phenotypic 
variation at the molecular levels. For example, SNPs sig-
nificantly associated with growth differences in C. gigas 
have been attributed to functional genes such as those for 
amylase [40, 41] and insulin-related peptide [42]. More-
over, faster growth performance has been repeatedly cor-
related with heterozygous individuals, which were also 
characterized by raised metabolisms and protein turn-
overs [43]. Similarly, expression quantitative trait loci 
(eQTL) also offer an elegant approach associating genet-
ics and genomics to identify underlying genetic archi-
tecture responsible for phenotypic variation in growth 
traits [37, 44]. For example, a causal SNP has been iden-
tified within the promotor region of the myostatin gene, 
which was significantly associated with higher growth 
trait values of heterozygous individuals of the clam spe-
cies Chlamy nobilis [44]. Correlation analyses between 
genetic polymorphism and myostatin gene expression for 
growth traits have also been investigated in the scallop 
Argopecten irradians [45]. In this latter case, the authors 
identified two SNPs that together formed a causal haplo-
type associated with growth performance. Interestingly, 
they also found that heterozygous genotypes are not 
always the strongest drivers for fast growing phenotypes 
and that homozygous genotypes may also be important 
in explaining higher body mass. Overall, the availability 
of gene/genome information combined with transcrip-
tomic data can be considered a key step to studying puta-
tive correlations between genome polymorphism and 
gene expression levels pertaining to downstream pheno-
types of interest such as growth traits.

Model species
The black-lipped pearl oyster (P. margaritifera) is the pri-
mary aquaculture species in French Polynesia and rep-
resents the second largest source of economic income 
after tourism for its cultured pearl production [46]. In 
such aquaculture, the body size of oysters represents an 
important phenotypic trait for farmers as it plays a role 
in many aspects of production such as animal stocking, 
predation and grafting [47]. On the one hand, greater 
oyster shell size (for individuals < 3 years old), especially 
for the recipient oyster in the grafting procedure, is 
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accompanied by positive correlation with the size of the 
harvested pearls [48, 49]. Although the value of a cul-
tured pearl mainly depends on surface quality traits (e.g., 
luster, shape, color), pearl size and weight are important 
factors that can substantially increase the value of a pearl, 
as the price is correlated with the weight. On the other 
hand, growth performance can also represent a critical 
trait for donor selection. Indeed, the genetic backgrounds 
for growth traits, including cell multiplication and cell 
differentiation or metabolic pathways such as biominer-
alization, can play a critical role during graft maturation 
and pearl formation [49, 50].

Objectives
In this study, we aimed to investigate the molecular basis 
conditioning growth performance in the pearl oyster P. 
margaritifera by studying differential gene expression 
between fast- and slow-growing phenotypes of juve-
niles from the same bi-parental cohort. Furthermore, 
gene expression profiles were also compared with the 
genome polymorphism from coding regions using vari-
ant annotation and mutational effect prediction. Here, we 
expect that putative mutations associated with differen-
tially regulated genes may also be related to the pheno-
typic differences observed among oysters. Overall, this 
study provides valuable new insight on the role played 
by the molecular component is P. margaritifera growth 
performance.

Materials and methods
Animals and tissue sampling
An F2 cohort was generated from a bi-parental oyster 
family and maintained at Regahiga Pearl farm (Manga-
reva atoll, Gambier archipelago, French Polynesia). This 
biological material was chosen to reduce the genetic 
background noise in order to clarify the response at 
the molecular level, e.g., the contribution of epistasis to 
inter-individual variation was alleviated. Larvae were set-
tled in controlled hatchery tanks using mussel rope col-
lectors. After 5.5 months of rearing, the largest (n = 10) 
and smallest (n = 10) individuals, representing the head 
and the tail of the size distribution were selected as “Fast-
growing” (hereafter referred to as F) and “Slow-growing” 
(hereafter referred to as S) phenotypes (Table S1). These 
twenty selected oysters were then dissected and their 
whole fresh tissues individually collected and preserved 
in RNAlater® at -80 °C until RNA extraction.

RNA extraction, library preparation, and sequencing
Total RNA extraction was performed on the whole soft 
tissues of animals using TRIzol® reagent (Invitrogen), 
following manufacturer’s recommendations. Total RNA 
integrity was assessed on a Bioanalyzer 2100 (Agilent 
Technologies, USA). Total RNA was dried in RNA-stable 

solution (Thermo Fisher Scientific) following manufac-
turer’s instructions and shipped at room temperature to 
McGill sequencing platform services (Montreal, Canada). 
RNA-seq libraries were generated using an Illumina 
TruSeq RNA Sample preparation kit according to man-
ufacturer’s instructions (Illumina). RNA libraries were 
multiplexed (n = 10 individual libraries per sequencing 
lane) and sequenced on an Illumina HiSeq 4000 to pro-
duce 100-bp paired-end reads.

Quality control and sequence data preprocessing
First, low-quality reads, short reads, and Illumina adapt-
ers were removed or trimmed using TrimGalore! v.0.6.4 
9 ([51] https://github.com/FelixKrueger/TrimGalore) 
(q > 30, length > 50  bp). Sequence quality was assessed 
using FastQC v.11.9 [52]. Reads were aligned with STAR 
v.2.7.9a [53], using the draft genome available for P. mar-
garitifera (draft genome available under the European 
Nucleotide Archive Accession PRJEB73564). The out-
put BAM files were filtered for uniquely mapped reads, 
with mapping quality ≥ 30, then sorted and indexed using 
SAMtools v.1.9 [54]. Htseq-count v.0.9.1 [55] was used 
to count the reads that mapped to a single gene model 
annotated in the P. margaritifera GFF file. For down-
stream analyses, we carried out two filtering steps in 
order to reduce signal noise; (1) low coverage transcripts 
with less than five samples showing more than ten reads 
were discarded, (2) transcripts showing abnormally ele-
vated proportion of reads (> 5%) compared with the total 
read count among a sample were excluded.

Data analysis
Differential expression analysis and sample-based clustering
After the filtering steps, the raw counts of the remain-
ing genes were normalized applying the medians of 
ratios method available in the R package DESeq2 v.1.26.0 
[56]. To assess the overall covariation of gene expression 
among samples, we performed variance stabilizing trans-
formation (VST) of gene counts in DESeq2 and principal 
component analysis (PCA) across the top 50 most vari-
ables genes. We then performed differential expression 
analysis to compare the F and S groups. Here, DESeq2 
determined differentially expressed genes (DEGs) using a 
Wald test followed by Benjamini & Hochberg false dis-
covery rate (FDR) correction. Genes were considered as 
DEG if the FDR (adjusted P value) was < 0.01 and the 
absolute log2 fold change was > 1.5.

Functional annotation and gene ontology enrichment
Gene ontology (GO) annotations for all genes identified 
in the reference genome were obtained by using BLAST 
V1.1 against the Swissprot/Uniprot database. In total, the 
background gene list used to perform our gene ontol-
ogy enrichment analysis contained 13,674 annotated 
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genes. Gene ontology enrichment analysis for DEGs was 
performed using a ranked-based gene ontology analysis 
implemented using the GO_MWU approach (GO analy-
sis using adaptive clustering and Mann-Whitney U-test, 
as in [57]. Such GO term enrichment analysis is usually 
applied to provide further information about molecular 
functions (MF), biological processes (BP) and cellular 
components (CC). Herein, analysis was performed using 
the results of gene expression profiling in the form of 
signed negative log P values. Significance of functional 
GO terms was assessed from ten random permuta-
tions and we set a minimum of five genes for any indi-
vidual GO term to be considered. Similar GO terms were 
also merged (gene-sharing pattern) by fixing a cluster-
CutHeight parameter at 0.5. Finally, only GO terms sig-
nificantly enriched with an adjusted P value < 0.01 were 
considered as relevant.

Gene co-expression network analysis
We used weighted gene co-expression network analysis 
(WGCNA, R package v.1.7-3; [58] to identify modules 
of highly co-expressed genes. WGCNA was performed 
using the VST matrix of gene counts exported from 
DESeq2 as described above. Genes showing low vari-
ance (i.e., σ2 < 0.10) were also discarded to reduce noise 
and increase computing efficiency. As a result, the input 
matrix contained 16,900 genes for the signed WGCNA 
network building. Modules were identified using the 
blockwiseModules function implemented in the WGCNA 
R package [58]. Here, the soft thresholding power value 
(β) was set at 12, the value at which the network reaches 
scale-free topology. All function parameters were kept at 
default values except for minModuleSize, mergeCutHeight 
and deepsplit, which were set at 100, 0.30, and 1, respec-
tively. Then, module eigengenes (ME, corresponding to 
the first principal component of a given module) were 
calculated using the moduleEigengene function of the 
WGCNA R package.

We tested putative associations between ME and 
growth phenotypes by calculating Pearson correlation 
coefficients. Modules showing a correlation value up to 
|0.6| and a P value < 0.01 were considered significantly 
correlated with the experimental variable. Hub genes 
were also screened in significant modules using the gene 
significance (GS, which is the correlation between indi-
vidual genes and experimental variables) and module 
membership (MM, which is the correlation between indi-
vidual genes and ME). In this way, if GS and MM show 
a high correlation value, this means that the genes rep-
resent the most important elements of a module and are 
highly significantly associated with experimental variable 
[59, 60]. GO enrichment analysis was also performed for 
the key modules significantly associated with the growth 

phenotypes using the same approach described above for 
DEGs.

Sequence polymorphism survey of DEGs
To study putative associations between sequence poly-
morphisms and gene expression, SNPs were called across 
all individuals and annotated for the potential functional 
effects of allelic variation. To do this, uniquely mapped 
reads for each of the individual BAM files were filtered 
for PCR duplicates using Picard Mark Duplicates (Picard 
Toolkit, 2019. https://broadinstitute.github.io/picard/). 
Then, variant calling was performed with BCFTools 
v.1.4.1 [61], using the default parameters. To retain high 
confidence SNPs, the raw SNP dataset was filtered with 
BCFtools using the command: --include “TYPE = ’snp’ 
& N_ALT = 1 & minDP ≥ 10 & maxDP ≤ 2000 & min-
QAL ≥ 100 & MapQ ≥ 30 & AN > 30 & AC ≥ 3” --SnpGap 
10, which keeps all SNPs that pass the following criteria: 
(1) variant type is biallelic SNP, (2) keep SNP if all sam-
ples have between a minimum of 10 reads a maximum of 
2000 reads, (3) a m Minimum Phred quality score of 100 
and minimum Map Quality score of 30, (5) total num-
ber of called alleles more than 30 (i.e. max missing rate 
allowed ~ 20%), (6) minor allele count of three and (7) 
discard SNPs closer than 10 bp to an INDEL. Functional 
effect annotation of SNPs was then predicted with SnpEff 
v.5.0 [62]. The SnpEff database was built using the same 
unpublished genome assembly as that used for RNA-seq 
read mapping. Only SNPs that were included within pre-
identified DEGs were retained and variants were flagged 
with warning annotations (e.g., from incomplete, incor-
rect or low accuracy predictions) were also discarded. 
Finally, we searched for candidate SNPs associated with 
growth phenotypes using a redundancy analysis (RDA). 
Candidate SNPs for significant association were identi-
fied based on a cut-off of ± 2.75 standard deviations (P 
value < 0.006) from the mean loading of the first RDA 
axis.

Alternative splicing analysis
Analyzing alternative splicing (AS) in the presence of 
SNP within a transcript can be critical as site mutation 
can affect splice site recognition, leading to altered splic-
ing pattern for intance. Hence, splicing alterations can 
be associated with the production of aberrant protein 
isoforms which potentially affect cellular function. In 
contrast, mutational effect of a SNP can be mitigated or 
overlooked by AS events, where different splice patterns 
can compensate for or bypass mutational impact, main-
taining normal protein function or expression levels. 
Here, we assess AS patterns using two complementary 
approaches, generalized linear models implemented in 
the R package DEXseq [63] and Multivariate Analysis of 

https://broadinstitute.github.io/picard/
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Transcript Splicing implemented in the program rMATS 
[64].

For DEXseq, low expressed exons were discared, keep-
ing only thoses where at least ten reads were aligned to 
a minimum of ten samples. Normalization of exon read 
count was performed using DESeq2 algorithm as sug-
gested by DEXseq manual recommendation. Differential 
exon usage was assessed based on an FDR threshold of 
0.01. While DEXseq allow only detection of differential 
exon usage, rMATS identifies and quantifies the major 
types of alternative splicing patterns, including skipped 
exons, alternative 5’ and 3’ splice sites, mutually exclusive 
exons, and retained introns. Here rMATS was performed 
using STAR sorted-BAM files using a pre-filtering 
step to retain only reads that were mapped to the scaf-
fold43000 (113.025 kbp). False discovery rate < 0.01 and 
p-value < 0.05 were fixed as level of significance.

Results
Biometry
Shell surface area was significantly different between F 
and S P. margaritifera juveniles (Wilcoxon P value < 0.001, 
Table S1). The average shell surface ranged from 107 
to 188 mm2 (average 146 ± 25.7 mm2) and from 63 to 
88 mm2 (average 76 ± 9.9 mm2) for the F and S groups, 
respectively.

Sequencing, mapping, and filtering
Among the twenty samples for which RNA was 
sequenced, one F sample showed a very low yield of 
sequencing data and was removed before any pre-pro-
cessing steps. Mean raw reads reached 30.07 +/- 7.39 M 
and 29.28 +/- 7.07  M were retained after filtering for 
quality (Table S1). All samples showed Q30 frequen-
cies of bases higher than 96% and standard GC contents 
(40%), indicating good quality of the RNA sequencing 
reads. Overall, about 65.1–66.5% of reads were uniquely 
mapped to the P. margaritifera draft genome, with an 
average of 23% and 11% of multi-mapping and unmapped 
reads, respectively (Table S2). In total, from the 72,433 
genes identified, 46.43% passed the post-quality filtering 
criteria, leading to a final set of 33,635 genes for down-
stream analyses.

Differential expression analysis
Preliminary principal component analysis (PCA) of the 
top 500 most variable genes showed that the F and S 
oyster groups to be highly differentiated along the first 
PC axis, which explained 19.79% of the overall variance 
(Fig.  1A). Next, comparison between F and S revealed 
394 differentially expressed genes (DEGs), with |logFC| 
> 1.5 and adjusted P value < 0.01 (Fig. 1B). Among these 
DEGs, 285 were up-regulated for F phenotype and 109 
were up-regulated for S phenotype. Individuals’ gene 

expression profiles for the 394 DEGs are represented by a 
heatmap in Fig. 1C. Overall, the K-means clustering algo-
rithm applied across gene expression profiles supported 
two clusters, in which up- and down-regulated genes are 
distinguished according to the DESeq analysis. The top10 
DEGs (ranked according to the adjusted P value) for 
each phenotype group are given in Table 1. The complete 
results on the 394 DEGs have been made available in the 
Supplementary materials Table S3.

GO enrichment analysis of gene expression
The rank-based gene ontology analysis reported a total of 
406 significantly enriched (FDR 0.01) terms in the com-
parison between the Fast- and Slow-growing phenotypes. 
This included 65, 257, and 84 terms belonging to Molecu-
lar Function (MF), Biological Process (BP), and Cellular 
Component (CC), respectively. We give the major GO 
terms that best represent “independent” groups of signifi-
cant GO terms for gene expression differences between 
the Fast- and Slow-growing phenotypes in Table 2. Note 
that the complete results of our GO enrichment analysis 
are provided in the Supplementary materials. Broadly, 
we found that gene ontology for F oysters was mostly 
enriched with terms pertaining to growth and tissue 
homeostasis, including many pathways regulating cell 
proliferation, migration, differentiation, apoptosis, and 
motility (e.g., GO:0042058; GO:0032006; GO:0000902; 
GO:0004445). Additionally, several GO terms were asso-
ciated with innate immune response (GO:1,900,424), 
mostly involving ubiquitin-like protein transferase 
activity. Contrastingly, gene ontology for S oysters was 
enriched for terms associated with DNA/RNA activ-
ity (GO:0003723; GO:0006351; GO:0065004), mito-
chondrial-related processes (GO:0006414; GO:0010257; 
GO:0098798), and structural constituent of ribosomes 
(GO:0003735; GO:0022613; GO:1,990,904).

Gene expression modules strongly correlated with growth 
phenotype
The co-expression network was constructed using 16,900 
selected genes out of 33,635 (genes with low variability 
were discarded) and clusters of highly co-expressed genes 
(modules) were identified and assigned to color anno-
tation modules, as shown in Fig.  2A. Overall, WGCNA 
identified 36 modules containing between 119 and 1,380 
genes. Among these, two modules were strongly cor-
related with growth phenotype: the brown module (986 
genes, rpearson = -0.93, P value < 0.01) and the turquoise 
module (2,312 genes, rpearson = 0.97, P value < 0.01). Fur-
thermore, gene intra-modular connectivity of GS and 
MM for each selected module revealed that most of the 
genes showing high module membership had been iden-
tified as DEGs (Fig.  2B-C). We found that 362 (92%) 
DEGs belonged to one of the two significant modules, 
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Brown and Turquoise, in which 88 down- and 276 up-
regulated DEGs were distributed, respectively. Functional 
enrichment analysis of the Turquoise module high-
lighted strongly representative terms involving regula-
tion of developmental condition and growth, from cell 
level to organ morphogenesis (Fig. 3A). Note that many 
enriched GO terms showed a high level of significance 
(P value < 1.e-05). In contrast, the brown module showed 
less functional enrichment than the turquoise mod-
ule. Enriched GO terms were mainly associated with 
response to stimulus or stress, cell signaling pathways 
and immune response (Fig. 3B). The complete results on 
functional enrichment pertaining to the two significant 
WGCNA modules are provided in the Supplementary 
materials.

Genome polymorphism associated with gene expression
Overall, our polymorphism survey of RNA-seq reads 
identified 990,536 filtered SNPs, in which 2,244 were 
distributed within the DEGs. Among these, 422 (18.8%) 
SNPs showed putative incorrect prediction from SNPeff 
analysis (i.e., warning annotation) and were excluded 
from downstream analyses. From the remaining 1,822 
SNPs, SNPeff annotation reported 17 (1%), 698 (38.3%), 
94 (5.1%), and 1013 (55.6%) SNPs that were assigned to 
high, moderate, modifier, and low impact categories, 
respectively.

Redundancy analysis identified 16 SNPs showing a 
significant association with growth phenotype (RDA, 
adjusted R2 = 0.046; ANOVA P value < 0.04; Fig.  4A-B). 
From these 16 candidate SNPs, eight were classified as 

Fig. 1 Analysis of gene expression profiles between P. margaritifera juveniles groups for Fast- and Slow-growing phenotypes. (A) Two-dimensional PCA 
plot of complete gene expression across all samples (n = 19). Each point represents an individual colored according to its phenotype (F: orange; S: purple). 
(B) Volcano plot of gene expression data depicting differentially expressed genes (DEGs) between the oyster groups. Red dots represent up-regulated 
DEGs for the F phenotype and blue dots represent up-regulated DEGs for the S phenotype. Grey doted lines represent the threshold limits of DEGs 
identification (|Log2FC| > 1.5 and FDR > 0.01). (c) Heatmap of the 394 DEGs identified by DESeq2 analysis. DEGs (rows) are grouped by cluster assignment 
based on a K-means algorithm. Color-coding of gene expression is based on read counts normalized by the variance stabilizing transformation (VST). 
Oysters are grouped in columns
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synonymous (low impact category), seven were classified 
as missense variants (moderate impact category) and one 
was classified as a stop codon gained (high impact cat-
egory; Table 3).

Candidate SNPs were associated with three classes of 
annotated genes involving Dynein heavy chain, short-
chain collagen C4 proteins, and scavenger receptor 
class F1 (SR-F1) activity. Focusing on the highest impact 
mutation (i.e., stop codon gained within the gene SR-F1; 
scaffold4300size113025, position 20,247), we found a 
strong association between genotypes and gene expres-
sion (ANOVA F value = 104.8; P value < 0.01; note that 
we excluded the individuals that were uniquely called 
for the reference genotype). Interestingly, we observed 
that all F oysters exhibited an alternative homozygous 
genotype for the stop codon gained mutation while all S 
oysters (except one) were heterozygous (Fig. 4C). Those 
homozygous for the stop-codon mutation (i.e., F oysters) 
showed higher SR-F1 expression compared with hetero-
zygous (i.e., S oysters). Moreover, note that the unique 
S sample genotyped for the homozygous reference allele 
(i.e., absence of stop codon gained) also demonstrated 
the lowest gene expression for this transcript. Functional 
domain analysis from the InterPro database predicted 
that the position of this stop gain mutation might induce 
the loss of two out of four epidermal growth factor-like 
domains (EGF-like) observed along the N-terminal part 
of the protein (Fig. 4D).

Analyses of alternative splicing
Following differential expression analysis at gene level, 
we studied putative splicing variations between fast- and 
slow-growing oyster groups. Among the 31,285 exons 
analyzed with DEXseq, 316 AS events showed signifi-
cant differential exon usage (FDR < 0.01). However, no 
significant AS event was detected in exon profiles asso-
ciated with the stop-codon mutation identified above 
(i.e. stop codon gained within the gene SR-F1; scaf-
fold4300size113025, position 20,247). Analysis of AS 
conducted with rMATS revealed a potential exon skip-
ping event in a gene unrelated to the stop-codon muta-
tion investigated in this study. Moreover, after FDR 
correction, this putative AS event did not retain statisti-
cal significance.

Discussion
Growth is an important economic trait in aquaculture 
and has been a priority focus in developing selective 
breeding programs. In the present study, we conducted 
a transcriptomic analysis to improve our understanding 
of the gene expression and genomic bases underlying 
inter-individual growth differences in P. margaritifera. 
Our results show substantial differences in terms of 
up- or down-regulated genes between Fast- and Slow-
growing phenotypes that indicate the putative molecular 
mechanisms associated with this complex polygenic trait. 
Comparison of whole transcriptome profiles between the 
Fast- and Slow-growing oysters of our study allowed us 

Table 1 List of the top 10 successfully annotated up-regulated DEGs in Fast- (F) and Slow- (S) growing P. margaritifera F2 juveniles. 
Gene IDs and descriptions were obtained from Blastn against Uniprot database. Log2FC: Log2-fold change
Transcript ID Log2FC log10(FDR) Gene ID Gene Description
Top 10 up-regulated DEGs in F
scaffold8696size123454.3 3.409 Inf P23098 Dynein beta chain, ciliary
scaffold2610size137834.3 2.587 118.983 Q6ZR08 Dynein axonemal heavy chain 12
scaffold2240size97364.3 3.252 99.852 Q8TE73 Dynein axonemal heavy chain 5
scaffold4322size93551.2 2.021 87.029 O15943 Neural-cadherin
scaffold8696size123454.2 1.980 58.353 P39057 Dynein beta chain, ciliary
scaffold9079size64000.2 1.768 56.878 Q8WXX0 Dynein axonemal heavy chain 7
scaffold4722size240932.3 2.788 55.890 Q8WXX0 Dynein axonemal heavy chain 7
scaffold2254size106444.9 2.496 53.684 Q80ZA4 Fibrocystin-L
scaffold2003size102676.2 1.546 53.052 Q9JJC8 Magnesium transporter NIPA2
scaffold3047size151625.8 2.936 50.654 Q9P2D7 Dynein axonemal heavy chain 1
Top 10 up-regulated DEGs in S
scaffold54size490924.9 -1.518 -10.429 Q61483 Delta-like protein 1
scaffold5252size132102.1 -4.922 -8.578 Q9NQ29 Putative RNA-binding Luc7-like 1
scaffold494size163391.2 -2.095 -5.933 C8YR32 Lipoxygenase homology domain-containing protein 1
scaffold6618size92625.3 -2.481 -5.852 P27658 Collagen alpha-1(VIII) chain
scaffold896size230373.6 -2.895 -5.569 Q964E2 Actin
scaffold54size490924.6 -1.730 -5.562 Q61483 Delta-like protein 1
scaffold3907size124695.1 -2.342 -5.100 C8YR32 Lipoxygenase homology domain-containing protein 1
scaffold754size393405.3 -1.853 -4.649 Q61483 Delta-like protein 1
scaffold8185size41456.2 -1.812 -4.528 C8YR32 Lipoxygenase homology domain-containing protein 1
scaffold2007size114573.3 -1.931 -4.274 Q60847 Collagen alpha-1(XII) chain
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Table 2 Gene ontology enrichment analysis. This table presents the GO terms that best represent “independent” groups of significant 
GO terms for gene expression differences between the fast- and slow-growing phenotypes. See supplementary material for complete 
results of the gene ontology enrichment analysis. Gene ratio indicates the number of significant genes (P value < 0.01) present in a 
category/total genes belonging to this category. FDR values correspond to an adjusted P value cutoff of 0.05 using the Benjamini–
Hochberg method
GO terms GO id Gene ratio FDR regulation
Ontology: Molecular Function
inositol phosphate phosphatase activity GO:0004445 9/22 6.63e-04 Up
signaling receptor complex adaptor activity GO:0030159 12/31 5.72e-04 Up
cytoskeletal motor activity GO:0003774 66/141 3.00e-10 Up
phosphatidylinositol binding GO:1,901,981 87/256 3.87e-11 Up
SH3 domain binding GO:0017124 42/108 6.43e-04 Up
GTPase binding GO:0031267 216/608 6.35e-16 Up
protein kinase activity GO:0004672 162/463 8.32e-12 Up
ubiquitin-like protein transferase activity GO:0004842 118/397 6.02e-06 Up
calcium ion binding GO:0005509 107/337 7.94e-05 Up
cytoskeletal protein binding GO:0008092 290/891 4.78e-06 Up
transcription regulator activity GO:0140110 279/995 1.46e-04 Down
Catalytic activity, acting on a nucleic acid GO:0140640 126/670 3.83e-05 Down
RNA binding GO:0003723 200/966 2.33e-20 Down
peptide receptor activity GO:0001653 46/110 1.47e-07 Down
oxidoreduction-driven active transmembrane transporter GO:0003954 13/58 1.84e-05 Down
structural constituent of ribosome GO:0003735 41/164 2.33e-20 Down
Ontology: Biological Processes
astrocyte differentiation GO:0048708 21/45 3.24e-05 Up
regulation of defense response to bacterium GO:1,900,424 20/68 3.92e-04 Up
protein autophosphorylation GO:0018105 112/318 6.01e-17 Up
regulation of phosphatidylinositol 3-kinase signaling GO:0014066; 39/91 2.46e-04 Up
mucopolysaccharide metabolic process GO:1,903,510 27/132 5.58e-06 Up
regulation of ERBB signaling pathway GO:0042058 53/159 1.56e-06 Up
regulation of TOR signaling GO:0032006 41/141 1.72e-04 Up
axo-dendritic transport GO:0008088 60/146 1.97e-04 Up
regulation of dephosphorylation GO:0010921 67/177 2.96e-04 Up
protein polyubiquitination GO:0000209 89/289 1.56e-06 Up
endomembrane system organization GO:0010256 137/557 2.21e-04 Up
cell morphogenesis GO:0000902 450/1336 5.15e-07 Up
RNA biosynthetic process GO:0006351 186/730 1.73e-05 Down
protein-DNA complex subunit organization GO:0065004 53/238 9.03e-05 Down
RNA processing GO:0006396 247/1127 3.96e-35 Down
ribonucleoprotein complex biogenesis GO:0022613 145/591 6.79e-20 Down
neuropeptide signaling pathway GO:0007218 46/110 1.37e-08 Down
mitochondrial gene expression GO:0006414 41/189 5.33e-16 Down
mitochondrial respiratory chain complex assembly GO:0010257 14/64 2.52e-06 Down
regulation of postsynaptic cytosolic calcium ion GO:0099566 7/11 3.64e-04 Down
Ontology: Cellular Components
endosome GO:0005768 255/870 1.05e-15 Up
apical part of cell GO:0045177 188/632 7.06e-09 Up
perinuclear region of cytoplasm GO:0048471 235/807 1.38e-10 Up
cytoplasmic region GO:0099568 239/693 7.62e-08 Up
chromosome GO:0005694 218/980 6.66e-06 Down
ribonucleoprotein complex GO:1,990,904 241/978 1.43e-25 Down
peptidase complex GO:0000502 23/125 2.73e-06 Down
preribosome GO:0030684 28/133 2.72e-08 Down
mitochondrial protein-containing complex GO:0098798 51/248 3.04e-20 Down
ribosome GO:0005840 54/227 5.65e-19 Down
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to identify 394 DEGs, many of which were involved in 
growth-like biological processes. Additionally, a genome 
polymorphism survey identified a strong putative causal 
mutation within a gene (SR-F1) that plays a key role in 
apoptosis and tissue homeostasis.

Molecular signal for growth
In the Fast-growing oysters, we mainly observed up-
regulation for growth metabolism. Functional analysis 
showed enrichment of genes related to signal transduc-
tion, cell proliferation, cell division, cell motility. Notably, 
our findings highlighted increased cytoskeleton activity, 
for which genes pertaining to molecular motors such as 
microtubules (e.g., dynein, fibrocystin, kinesin, myosin, 
cadherin) were mostly up-regulated in F oysters. Micro-
tubules are critical for a large number of cellular pro-
cesses and mainly involved in maintaining cell structure 

and cytoskeleton as well as the cell movement process 
through by micro- or intermediate filaments [66]. More-
over, microtubules also form the major element of cilia 
and flagella, which are highly developed in bivalves and 
cover the external part of multiple tissues (i.e., mantle, 
gills, digestive gland). Overall, these results observed 
in F oysters are consistent with previous studies con-
ducted on marine mollusks such as C. gigas [39], Haliotis 
rufescens [67] and Mytilus galloprovincialis [68]. How-
ever, this latter observation is expected because a faster 
growth rate is also usually accompanied by a general 
increase in the metabolism, particularly cellular division 
and tissue morphogenesis/ development. Our results 
also reported functional enrichment for regulation of 
cell death/ removal, otherwise known as apoptosis (i.e., 
regulation of ErbB and phosphatidylinositol signaling). 
For instance, ErbB family proteins are mostly cell surface 

Fig. 2 Correlation between gene modules and growth phenotypes in P. margaritifera juveniles. (A) WGCNA module-trait associations comparing module 
eigengene (gene count) to growth phenotype. Each cell contains the corresponding Pearson correlation value and its associated P value. The table is 
color-coded by correlation according to the legend. (B) Scatterplot of gene significance for growth phenotype vs. module membership in the brown 
module. (C) Scatterplot of gene significance for growth phenotype vs. module membership in the turquoise module. For B and C, filled circles represent 
DEGs previously identified by DESeq2 analysis where blue and red colors refer to up-regulated DEGs in S and F phenotypes respectively
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receptors forming a pleiotropic signaling system [69]. 
One of the best described functions of ErbB receptor 
family comprises interaction with epidermal growth fac-
tors (EGF) ligands regulating aspects of cell proliferation, 
cell movement, and cell survival [69]. Interestingly, differ-
ences of gene expression between large and small pearl 
oysters involving the apoptosis pathway have already 
been observed in the closely related pearl oyster species 
Pinctada fucata [30]. Here, the authors reported a DEG 
annotated for an inhibitor of apoptosis 2 protein and one 
gene annotated for C1q domain-containing (C1qDC) 
proteins. Other studies conducted in bivalves have also 
reported up-regulation of genes related to apoptosis and 
association with fast-growth phenotypes [34, 70]. Taken 
together, our results show that the Fast-growing oysters 
seem to exhibit up-regulation patterns associated with 
tissue development and homeostatic growth. However, 
several studies underline a downside of such a pheno-
type, whereby increased growth rate may create a more 
favorable environment for faster development of patho-
gens, and thus a greater sensitivity to diseases [18].

Trade-off for resource allocation between growth and 
immune function
Slow-growing oysters showed functional enrichment 
for up-regulated genes involved in transcription factors 
(i.e., synthesis of ribosomal elements), as well as mito-
chondrial metabolism. Interestingly, such metabolic con-
trast between Fast- and Slow-growing phenotypes has 
already been observed in previous studies on mollusk 
species [35, 39, 71–73]. In particular, Meyer and Mana-
han, 2010 reported that slow-growing oysters showed 
less homogeneous gene expression of ribosomal-related 
genes than fast-growing ones. Here, the authors argued 
for the “balance hypothesis”, which underpins a relation-
ship between the stoichiometry of the most abundant cell 
metabolism proteins and whole-organism growth or fit-
ness [74]. Although ribosomes are essential for growth 
and general development in eukaryotes, their synthe-
sis is a costly process that requires close-coordination 
between ribosomal RNA (rRNA) synthesis and produc-
tion of ribosomal proteins [74]. A nucleolar stress (also 
called “ribosomal stress”), which can be induced by cell 
stress or genome mutations, may affect rRNA synthesis 

Fig. 3 Gene Ontology (GO) enrichment analysis of WGCNA modules associated with P. margaritifera growth phenotype. Hierarchical clustering of Gene 
Ontology (GO) terms showing significant enrichment in the turquoise (A) and brown (B) modules. Only the biological process category is represented 
here. Level of significance is indicated with bold text
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and, in turn, crowd the protein synthesis in the cell. 
Consequently, deregulation of the ribosomal metabolic 
equilibrium is detrimental to the cell cycle as it can dis-
rupt protein production machinery, enhance inflam-
matory signaling, and affect major cell processes such 
as cell homeostasis, cell proliferation, and growth [75]. 
Furthermore, ribosomes are also involved in biological 
infection, where intracellular pathogens such as viruses 
are able to induce heterogeneous rRNA production [27]. 
Thus, ribosomal stress through biological infection is 
also a suggested cell signaling pathwaythat can induce 
innate immune responses by increasing inflammatory 
protein synthesis [76]. Considering this latter hypoth-
esis, we observed that the top gene expression profiles 
in S oysters revealed overexpression of genes known 
to be involved in immune and cell stress response. For 
instance, we found that three highly regulated tran-
scripts were annotated for lipoxygenase-like proteins in 
S oysters. Lipoxygenases have been commonly observed 
to mediate inflammation events or pathogen exposure 
[77–79]. In addition, three other top up-regulated genes 
in the S oysters were annotated for delta-like protein 1 
(DLK1). The family of delta-like proteins are molecular 
ligands identified to interact with cellular receptors of 
Notch signaling, an essential growth regulatory pathway 

of cell proliferation, differentiation, and apoptosis critical 
in metazoan development [80]. In marine invertebrates, 
Notch signaling pathways can also play a critical role in 
the regulation of innate immune responses to stress [81]. 
Taken together, our results suggest that the Slow-growing 
oysters show increased metabolic expression for immune 
activity compared with the Fast-growing ones. According 
to the theory of resource allocation, maintaining immune 
performance and growth, as well as other life-history 
traits is energetically demanding and has physiological 
costs [82, 83]. Such concurrent needs lead to trade-offs 
for resource allocation, which can be observed at the 
individual level though plastic modulations of physio-
logical processes, and at the evolutionary level by genetic 
variation among individuals in a population. However, 
enhanced expression of genes associated with mitochon-
drial metabolism in S oysters may suggest a common 
pattern of cell response to stressful stimuli, which usu-
ally requires increase of energy production to enable cell 
adaptation [84]. In consequence, it may be that observed 
slow growth associated with enhanced immune func-
tion could result from stressful conditions during the 
rearing period. For instance, we cannot avoid putative 
heterogeneity for food availability within our rearing 
system. While food availability is known to influence the 

Fig. 4 Analysis of gene polymorphism in P. margaritifera. (A) Redundancy analysis (RDA) performed with 1,824 SNPs called for 19 individuals using growth 
phenotype as the constraining variable on the first ordination axis. Grey points in the center of the plot represent SNPs, while colored diamonds represent 
individuals with orange and purple colors indicating Fast- (F) and Slow- (S) growing phenotypes respectively. (B) RDA biplot focusing on SNPs, where 
candidates for significant association (± 2.75 SD; P < 0.006) with growth phenotype are colored in red. (C) Genotype distribution vs. gene expression for 
the candidate SNP observed in the SR-F1 gene (scaffold4300size113025; base position 20,247) and associated with a high impact effect due to a stop 
codon gained mutation (see Table 3). Colored diamonds represent individuals, with orange and purple colors indicating Fast- (F) and Slow- (S) growing 
phenotypes, respectively. (D) Structural representation and motif composition of the SR-F1 like protein. Functional domains are based on Interpro protein 
predictive model database [65]. EGF: epidermal growth factor-like domain. Sequence base localization of domains are indicated below each scheme
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physiological condition of organisms, a number of stud-
ies support the general hypothesis that restricted food 
supply can promote expression of immune functions at 
the expense of growth [18, 85].

Polymorphism affecting growth
In the present study, we found one SNP located within a 
gene annotated with Scavenger Receptor class F member 
1 (SR-F1), which is predicted to present a high mutational 
effect (i.e., premature stop codon gained). Moreover, 
SR-F1 was expressed at significantly higher level in F 

oysters, which were all homozygous for the premature 
stop-codon mutation. The receptor SR-F1 is a highly evo-
lutionary conserved protein, which contains extracellular 
domains showing significant sequence homology in the 
animal kingdom [86]. SR-F1 is well known to plays a key 
role in the clearance of apoptotic cells, making this recep-
tor a critical control of tissue homeostasis [87]. Indeed, 
programmed cell death (apoptosis) and apoptotic corpse 
clearance by phagocytosis are described as a compensa-
tory response during organism growth [88].

Table 3 Candidate SNPs within DEGs associated with Fast- (F) and Slow- (S) growing phenotypes of P. Margaritifera juveniles from RDA. 
A cut-off of ± 2.75 SD (P < 0.006) from the mean loading of the first axis (RDA1) was used to identify candidate SNPs from a two-tailed 
normal distribution where the mean was centered on 0
Scaffold Position Effect Impact RDA_loading Log2FC Padj Gene_ID Description Up-Regulation
scaffold-
2377size95048

35,421 synony-
mous

Low 0.25 1.959 1.12E-47 DYH5_HUMAN Dynein axo-
nemal heavy 
chain 5

F

scaffold-
3047size151625

123,277 synony-
mous

Low 0.28 2.392 6.77E-33 DYH1_HUMAN Dynein axo-
nemal heavy 
chain 1

F

scaffold-
3047size151625

128,652 synony-
mous

Low 0.25 2.936 2.22E-51 DYH1_HUMAN Dynein axo-
nemal heavy 
chain 1

F

scaffold-
3333size191570

81,288 synony-
mous

Low 0.26 3.106 3.82E-35 XM_022477301.1 dynein 
cytoplasmic 1 
heavy chain 1

F

scaffold-
3500size108302

87,376 synony-
mous

Low 0.28 -1.947 8.12E-04 NA S

scaffold-
4300size113025

20,247 stop_
gained

High -0.29 2.502 1.85E-19 SREC_MOUSE Class F scav-
enger recep-
tor SR-F1

F

scaffold-
4300size113025

20,254 mis-
sense

Moderate 0.29 2.502 1.85E-19 SREC_MOUSE Class F scaven-
ger receptor 
SR-F1

F

scaffold-
4300size113025

20,475 mis-
sense

Moderate 0.29 2.502 1.85E-19 SREC_MOUSE Class F scaven-
ger receptor 
SR-F1

F

scaffold-
4300size113025

20,748 mis-
sense

Moderate 0.29 2.502 1.85E-19 SREC_MOUSE Class F scaven-
ger receptor 
SR-F1

F

scaffold-
4300size113025

20,520 mis-
sense

Moderate 0.29 0.502 1.85E-19 SREC_MOUSE Class F scaven-
ger receptor 
SR-F1

F

scaffold-
6914size72805

36,739 mis-
sense

Moderate 0.25 3.984 9.35E-22 CAS4_EPHMU Short-chain 
collagen C4

F

scaffold-
6914size72805

36,752 synony-
mous

Low 0.32 3.984 9.35E-22 CAS4_EPHMU Short-chain 
collagen C4

F

scaffold-
6914size72805

36,793 mis-
sense

Moderate -0.32 3.984 9.35E-22 CAS4_EPHMU Short-chain 
collagen C4

F

scaffold-
6914size72805

38,277 mis-
sense

Moderate 0.25 3.984 9.35E-22 CAS4_EPHMU Short-chain 
collagen C4

F

scaffold-
7129size47494

32,807 synony-
mous

Low 0.28 -2.041 1.99E-08 NA S

scaffold-
8696size123454

24,578 splice_
region/
synony-
mous

Low 0.25 3.409 0.00E + 00 DYHC_TRIGR Dynein beta 
chain

F
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Mutation for a premature stop codon in the gene body 
can result in dramatic changes in the resulting protein 
(e.g., abnormally shortened, folding disturbance). These 
changes can lead to different consequences such as (i) the 
loss of functionality, (ii) neofunctionalization, (iii) distur-
bance with a compensatory response, or (iv) change in 
protein properties (e.g., stability, binding affinity, activity, 
localization, protein-protein interactions) [89]). Func-
tionality loss is frequently illustrated in human research 
where premature stop codons are known to result in a 
large number of human diseases [90]. In our study, we 
hypothesize that the observed stop-codon mutation 
does not result in a total loss of SR-F1 protein function. 
Indeed, serious disturbance in the SR-F1 pathway would 
lead to more drastic deleterious consequences [87].

In contrast, up-regulation of SR-F1 in F oysters (homo-
zygous mutants) suggests two putative hypotheses. First, 
mutation for premature stop codons would imply a nega-
tive impact, disturbing the capacity of SR-F1 to accom-
plish its role and leading to a compensatory response 
by over-expression of this gene. This phenomenon has 
already been reported in human, where an N-terminal 
truncating mutation caused by a premature stop codon 
on the erythropoietin receptor (EPOR) leads to hypo-
responsiveness of erythropoietin (EPO), but normal 
hemoglobin concentration [91]. Overexpression of SR-F1 
has already been investigated in human cell lines [92]. An 
important result was that up-regulation of SR-F1 led to 
a decrease of phagocytosis efficiency of apoptotic cells, 
which may interfere with tissue homeostasis (equilib-
rium between cell proliferation and apoptosis). However, 
this observation should be considered with caution, as 
homology or direct comparison between human cell lines 
and oysters remains tenuous.

A second hypothesis implies a positive impact of the 
stop-codon mutation. This less common instance has 
been reported in several cases of human EPOR muta-
tion, promoting athletic performance [93], or in plants, 
where it is associated with improved growth traits [94]. 
For instance, two premature stop-codon mutations have 
been described in the TCP gene family in wheat, which 
play an important role in plant development and growth 
[94]. Interestingly, the authors found that stop-codon 
mutations led to increased spike and grain lengths, 
which may be helpful in genetic selection for wheat yield 
improvement.

Here, our results from functional domain analysis of 
SR-F1 suggest that the observed stop-codon mutation 
would eliminate two EGF-like repeats from the N-termi-
nal region of the SR-F1 receptor. Similar mutations were 
investigated by [92] in human cell lines. Interestingly, 
they demonstrated that various N-terminal truncations 
(i.e., removing two to five EGF-like repeats) increased 
binding properties of the SR-F1 receptor, particularly its 

affinity to bind the C1qDC ligand, an important bridging 
protein for recognition of apoptotic cells. Even if the P. 
margaritifera SR-F1 gene sequence varies for the num-
ber of EGF-like repeats compared with its homologous 
sequence in other species, we can speculate that the 
binding property of the SR-F1 stop-codon mutant would 
be conserved and may participate in apoptosis clearance 
during tissue homeostasis and growth. Functional modi-
fications of SR-F1 properties (e.g., increased binding) in 
the oyster model have not been demonstrated, so further 
studies are required to clarify this issue. Furthermore, 
post-transcriptional mechanisms (i.e., alternative splic-
ing) by which transcriptome and proteome plasticity can 
be modulated also participate in transcript-level modi-
fications and protein-level alterations [95]. Our results 
did not identified significant signal of alternative splicing 
event within the coding region of the SR-F1 gene. How-
ever, our sequencing data, similarly to most RNA-seq 
data are restricted to short reads < 200 bp, while alterna-
tive splicing events often occur in larger windows [96]. 
Moreover, whereas short reads are often aligned with 
multiple genome locations, they also commonly span a 
small number of exons, which adds substantial bias for 
splice graph analyses. Combined with the small number 
of samples included in the present study, these limita-
tions prevent us from properly investigating alternative 
splicing for such mutations. Further work which can 
implement complementary data including long-read 
sequencing as well as qRT-PCR validation could enhance 
our understanding of potential regulatory mechanisms 
governing transcript expression through alternative 
splicing [97].

Limitations of the study
Although we have been able to gain insight into the role 
of gene expression in inter-individual growth differences 
within the same oyster cohort, various factors could have 
confounded our interpretations. First, RNA analyses were 
conducted using whole oyster soft tissues. While this 
experimental approach represents the most convenient 
way of sampling from such small juvenile oysters, subtle 
but significant signals of differential gene expression may 
be masked by the effect size of well-represented tissues. 
In other words, if localized structures (e.g., epithelial 
ridge) or specific organs particularly involved in the stud-
ied trait are small relative to the whole soft tissues, large 
differences in gene expression within these structures/ 
organs may be hidden by other transcriptomic patterns 
[98]. For instance, the mollusk mantle is anatomically 
split into different regions responsible for secreting 
various layers of the shell (i.e., periostracum, prisms, or 
nacre) and previous transcriptomic analyses have shown 
that different genes are expressed in separate, discrete, 
and sometimes very limited regions of the mantle outer 
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epithelium [99]. Nevertheless, we think that, in the pres-
ent study, we were able to capture the main patterns of 
gene expression differences related to the growth phe-
notypes considered. Indeed, growth is a global biological 
trait, which affects all tissues and organs of an individual. 
Another issue is the presently incomplete annotation of 
the reference genome, which remains a key limitation 
to our capacity to investigate the complex and polygenic 
components of growth in P. margaritifera more deeply. 
Nevertheless, our study shows that valuable detail as well 
as overall patterns can be highlighted from transcrip-
tomic profiles between well-differentiated phenotypes.

The SRF1 polymorphism reported in this study was 
strongly associated with the growth phenotypes and 
may represent a major causal variant for this trait. While 
strong phenotypic variation can be associated with one 
or a few large-effect loci [100], growth, like most biologi-
cal traits, is highly polygenic [14]. Furthermore, it should 
be noted that our study investigated only one breeding 
family, which represents a restricted genetic background. 
Thus, we consider that the observed association between 
SRF1 polymorphism and growth phenotype needs to be 
studied further to draw conclusions on its real impact. 
Hence, the generalization of our findings pertaining 
to the SRF1 mutation is still limited. Additional stud-
ies based on multiple breeding families are required to 
investigate how genetic diversity and polygenic archi-
tecture can influence phenotype expression of growth in 
Pinctada margaritifera.

Conclusion
In this study, we investigated differential gene expres-
sion of growth-related phenotypes in an F2 full-sib fam-
ily of pearl oyster spat. Comparison of transcriptomic 
profiles showed that the difference between Fast- and 
Slow-growing oysters might be related to the balance of 
regulation between stress response and growth control 
pathways. Furthermore, analysis of sequence polymor-
phism identified a SNP annotated for a stop-codon muta-
tion that possibly has a function in pearl oyster growth. 
Expression analysis for the associated gene showed a 
significantly higher expression level in the Fast-growing 
group, in which all individuals exhibited a homozygous 
genotype for the stop codon. Overall, this study provides 
valuable genomic resources for understanding the molec-
ular bases regulating growth in P. margaritifera and other 
marine bivalve species.
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