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PARAMETRIZATION AND CONVERGENCE OF A PRIMAL-DUAL
BLOCK-COORDINATE APPROACH TO LINEARLY-CONSTRAINED

NONSMOOTH OPTIMIZATION

OLIVIER BILENNE

Abstract. This note is concerned with the problem of minimizing a separable, convex,
composite (smooth and nonsmooth) function subject to linear constraints. We study a
randomized block-coordinate interpretation of the Chambolle-Pock primal-dual algorithm,
based on inexact proximal gradient steps. A specificity of the considered algorithm is its
robustness, as it converges even in the absence of strong duality or when the linear program
is inconsistent. Using matrix preconditiong, we derive tight sublinear convergence rates
with and without duality assumptions and for both the convex and the strongly convex
settings. Our developments are extensions and particularizations of original algorithms
proposed by Malitsky (2019) and Luke and Malitsky (2018). Numerical experiments are
provided for an optimal transport problem of service pricing.

1. Introduction

In an p-agent network, we consider the problem

min
x∈Rn

g(x) + h(x) subject to Ax = b, (P)

where A ∈ R
m×n, b ∈ R

m, and x = (x1, . . . , xp) ∈ R
n contains p decision variables x1 ∈

R
n1 , . . . , xp ∈ R

np, each locally assigned to one of the agents (n =
∑p

i=1 ni). The functions h
and g are assumed to be additively separable for the local variables, i.e.,

h(x) =

p
∑

i=1

hi(xi), g(x) =

p
∑

i=1

gi(xi),

where local functions h1, . . . , hp are smooth and differentiable, and g1, . . . , gp are convex lower
semi-continuous (possibly non-smooth) functions with easily computable resolvents. We call
G(x) =

∑p
i=1Gi(xi) the total objective function, whereGi(xi) = gi(xi)+hi(xi), and we give A

the block matrix structure A = (A1A2 · · · Ap), with A1 ∈ R
m×n1 , . . . , Ap ∈ R

m×np , so that
the equality constraint in (P) rewrites as

∑p
i=1Aixi = b. Problem (P) finds application in

numerous fields, including linear programming, optimal transport, composite minimization,
distributed optimization, and inverse problems.
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To solve (P) we consider a semi-distributed algorithm in the spirit of the primal-dual
algorithm (PDA) of Chambolle and Pock (2011). Our developments build on the convergence
study issued in Malitsky (2019) for the primal-dual method as applied to equality-constrained
convex optimization. In the original analysis, the problem is reformulated as an instance of
the more general constrained optimization problem

min
x∈Rn

h(x) + g(x) subject to x ∈ argmin
x̃

f(x̃), (P’)

where the residual function f is given the quadratic form

f(x) =
1

2
‖Ax− b‖2. (1)

The primal-dual algorithm is then regarded as a variant of the accelerated proximal gradient
method of Tseng (2008). An advantage of this viewpoint, as compared the classic primal-dual
analysis, is that convergence can be guaranteed in the absence of a constraint qualification
for strong duality, or even when the constraint Ax = b is inconsistent and (P) admits no
solution, in which case (P’) remains feasible. We refer to Luke and Malitsky (2018) for a
thorough discussion on the benefits of this particular approach to solving (P).

In the present work we revisit the coordinate-descent implementation of the PDA proposed
in Luke and Malitsky (2018), extending the latter to random coordinate block selection, and
to composite objective functions with smooth and nonsmooth parts by implementing inexact
proximal gradient steps. The demand for proximal gradient methods, in particular, is high
in the practical appplications where proximal steps cannot be implemented exactly.

For the case of strongly convex objectives, we derive a specific stepsize sequence that leads
to accelerated convergence rates, which we obtain using suitable matrix preconditioners. To
our knowledge, these faster rates were, to date, only available for the centralized implemen-
tation of the algorithm. Numerical experiments are eventually reported for a simple problem
in optimal transport.

Notation. In the real space R
n, the identity matrix is denoted by In, the vector of ones

by 1n = (1, 1, . . . , 1), and diag(a1, . . . , an) is the diagonal matrix with a1, . . . , an as diagonal
entries. For x, z ∈ R

n, we let 〈x, z〉 =∑n
i=1 xizi = x⊤z denote the Euclidean inner product

of x and z, and ‖x‖ = 〈x, x〉1/2 the Euclidean norm of x. Given a symmetric and positive
definite matrix Λ ∈ R

p×p, we write ‖x‖Λ = 〈Λx, x〉1/2 for x ∈ R
n. We call S the set of

solutions of (P’) and call G∗ its optimal value, so that G(x∗) = G∗ for all x∗ ∈ S.

2. Algorithm and main results

Before discussing the algorithm, we formulate the assumptions that are made in the intro-
duction on the convexity of g and the smoothness of h.

Assumption 2.1. For i = 1, . . . , p:

(i) The effective domain dom(gi) ⊆ R
ni is nonempty, closed, and convex. There exists a

symmetric, positive semi-definite matrix Υi ∈ R
ni×ni such that gi(·)− 1

2
‖·‖2Υi

is convex.
(ii) Function hi is convex differentiable, and there exists a symmetric, positive semi-definite

matrix Λi ∈ R
ni×ni such that, for every xi, x̃i ∈ dom(ri),

0 6 hi(x̃i)− hi(xi)− 〈∇hi(xi), x̃i − xi〉 6
1

2
‖x̃i − xi‖2Λi

. (2)
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We write Υ = diag(Υ1, . . . , Υp), and Λ = diag(Λ1, . . . , Λp).

We note that in the general convex problem the matrices Υ and Λ are positive semi-definite
(Υ, Λ < 0). Strong convexity of G implies as well the existence of a positive definite Υ ≻ 0.
Under these assumptions, we consider the following iterative algorithm (Algorithm 1), in
which we use

proxMf (z) = (I +M−1∂f)−1z = argminx∈Rn

{

f(x) +
1

2
‖x− z‖2M

}

to denote the (scaled) proximal operator associated with a function f and a symmetric and
positive definite scaling matrix M .

Algorithm 1: Primal-dual block coordinate descent

Parameters :P , T k, σk

Initialization : x0 ∈ R
n, y0 = σ0(Ax0 − b), u0 = Ax0 − b

Output : xk

for k = 0, 1, 2, . . . do
1 select random block Bk(ω) ⊂ {1, . . . , p}

for i = 1, . . . , p do

2 if i ∈ Bk(ω) then xk+1
i = prox

PiT k
i

gi

(

xk
i − (PiT

k
i )

−1(∇hi(x
k
i ) + A⊤

i y
k)
)

3 else xk+1
i = xk

i

4 uk+1 = uk + A(xk+1 − xk)

5 yk+1 = yk + σkAP (xk+1 − xk) + σk+1uk+1

At each step, Algorithm 1 proceeds on Line 2 to individual proximal gradient steps for the
primal vectors xk

1, . . . , x
k
p along a randomly selected subset of coordinate direction blocks.

The full dual vector yk is then upated on Line 5, using the dual residual uk+1 = Axk+1 − b
(recursively computed on Line 4) and a linear extrapolation term derived from the last two
primal iterates. The random block selection routine on Line 1 consists in drawing successive
subsets of coordinate block indices; this is done by simulating a Bernoulli process B : Ω 7→
(2{1,...,p})N with underlying probability space (Ω,F ,P), where the probability measure P

satisfies P(Bk = ∅) = 0 and P(i ∈ Bk|B−k) = P(i ∈ Bk) = πi > 0 at each step k and for any
block index i ∈ {1, . . . , p}. In the algorithm, a weighting matrix P = diag(P1, . . . , Pp) ≻ 0 is
combined with a sequence of block diagonal scaling matrices T k = diag(T k

1 , . . . , T
k
p ) where,

for i = 1, . . . , p, Pi := (1/πi) Ini
and T k

i ∈ R
ni×ni is positive definite. The products PiT

k
i are

then used as a sequence of preconditioners for the proximal gradient steps.
It can be seen that the global implementation of Algorithm 1 obtained by setting p = 1

with P = In and σ ≡ σ yields the dual update rule yk+1 = yk+σ[A(2xk+1−xk)−b], in which
case the algorithm then reduces to a simple application the PDA with parameter θ = 1. The
main differences between Algorithm 1 and the method studied in Luke and Malitsky (2018)
are (i) the proximal steps are not computed exactly, (ii) the primal vectors are updated
simultaneously in random subsets, and (iii) there is flexibility in the choice of the step size
sequences T k and σk. Also, we consider two distinct implementations of Algorithm 1, with
either constant or decreasing stepsizes.
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Constant stepsize. With fixed parameters T k ≡ T and σk ≡ σ, Algorithm 1 is a mere ex-
tension of Luke and Malitsky (2018) to composite objective functions with updates involving
random blocks of coordinates. A suitable choice for the preconditioner T , then, is to set

Ti =
Ini

τi
+ πiΛi + σA⊤

i Ai i = 1, . . . , p (3a)

for some nonegative parameters (τ1, . . . , τp) and σ satisfying

diag

(

1

π1

(In1

τ1
+ σA⊤

1 A1

)

, . . . ,
1

πp

(Inp

τp
+ σA⊤

p Ap

)

)

− σΞ ≻ 0, (3b)

where we define Ξ = (Ξij), with Ξij = πi,jA
⊤
i Aj/(πiπj) and πi,j = P({ω ∈ Ω|i, j ∈ ω}).

We note that the matrix Ξ features nondiagonal terms only when the the coordinates are
updated by blocks, i.e., if πi,j 6= 0 for some i 6= j.

Theorem 2.2 characterizes the convergence of Algorithm 1 when stepsize (3) is used. Its

statement involves a particular sequence sk = 1
k

∑k
l=1 x

l or, equivalently,

sk = (In − P )

(

∑k−1
l=0 σlxl

∑k−1
l=0 σl

)

+ P

(

∑k−1
l=0 σlxl+1

∑k−1
l=0 σl

)

, (4)

which has the quality of a weighted time average of the primal iterates.

Theorem 2.2 (Constant stepsize). Let sequence (xk)k be issued by Algorithm 1 with parame-

ters T k ≡ T, σk ≡ σ satisfying (3), and consider the sequence (sk)k such that sk = 1
k

∑k
l=1 x

l.

(i) If there exists a Lagrange multiplier for Problem (P’), then (xk) and (sk) almost surely
converge to a solution of (P’) and, almost surely, f(xk) − f ∗ = o(1/k), f(sk) − f ∗ =
O(1/k2).

(ii) If S is a bounded set and h + g is bounded from below, then all limit points of (sk)
almost surely belong to S with f(sk)− f ∗ = O(1/k), and E[f(sk)− f ∗] = o(1/k).

Decreasing stepsizes. Accelerated convergence rates can be obtained when the objective
function is strongly convex, i.e., if Υ = diag(Υ1, . . . , Υp) ≻ 0. In the strongly convex case, we
set T k = T/τk, and

σk =
α

τk
− β, (5)

where α = σ
−1
max(ΞΥ−1P ) and β = σmax(ΛΥ

−1P )α, in which σmax(·) denotes the spectral
radius. Define

κ =
β

α
= σmax(ΛΥ

−1P ).

Given an initial τ 0 < 1/κ, the stepsize τk+1 is recursively computed from τk using

τk+1 = max
i∈{1,...,p}















1
2

(

1
πi
− 1− κ

)

(τk)2 +

√

(

1 + 1
2

(

1
πi
− κ
)

τk
)2

− 1
4

(

2
πi
− 1 + 2κ

)

(τk)2 τk

1 + ( 1
πi
− κ)τk − κ(τk)2















,

(6)

The primal stepsize sequence (6) is shown in Section 4 to have the asymptotic behavior

τk+1 − τk +
(τk)2

2
= O

(

(τk)3
)

,
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so that τk is O(1/k) decreasing with exact local convergence rate 2/k, and the stepsize σk

for the dual iterates increases as O(k). Alternatively, one can use a stepsize sequence given
by the polynomial computation rule

τk+1 = τk − (τk)2

2
+ γ

(

17

8
δ2 +

3

4
δ +

1

8
+ κ

)

(τk)3 + γ

(

2δ +
1

2

)

κ (τk)4, (7)

where (γ − 1) > 0 and δ = maxi∈{1,...,p}{| 1πi
− κ|}, which decreases as

τk+1 6 τk −
(

1− ǫ

2

)

(τk)2 (8)

on condition that τ 0 is taken small enough. An actual upper bound on the initial stepsize
can be obtained by combining the conditions (C1), (C2) and (C3) derived in Section 4.

The following accelerated convergence rates for Algorithm 1 were derived by adjusting to
our distributed setting the discussions of (Malitsky, 2019, Section 4.2).

Theorem 2.3 (Strong convexity). Let Υ ≻ 0, and denote by x∗ the solution of (P’).
Let (xk)k be a sequence issued by Algorithm 1 with parameter σk given by (5) and with T k =
P−2Υ/τk, where τk satisfies either (6) or (7). Consider the sequence (sk)k such that sk =
1
k

∑k
l=1 x

l.

(i) If there exists a Lagrange multiplier for Problem (P’), then (xk) almost surely converges
to x∗ with rate ‖xk − x∗‖P 2T = O(1/k) and, almost surely, f(xk) − f ∗ = o(1/k3),
f(zk)− f ∗ = O(1/k4), f(sk)− f ∗ = O(1/k4).

(ii) Otherwise, (sk) almost surely converges to x∗ with f(sk)−f ∗ = O(1/k2), and E[f(sk)−
f ∗] = o(1/k2).

3. Convergence analysis

3.1. Interpretation as a proximal gradient algorithm. The proofs for Theorems 2.2
and 2.3 rest on rewriting Algorithm 1 as the (primal-only) proximal gradient algorithm given
as Algorithm 2, which shares similarities with the accelerated proximal gradient algorithm
of Tseng (2008), now used with stepsize θk ≡ σk/Sk, where Sk =

∑k
l=0 σ

l.

Algorithm 2: Expression of Algorithm 1 as an accelerated proximal gradient

Parameters :P , T k, σk

Initialization : x0 = s0 ∈ R
n, S−1 = 0, S0 = σ0

Output : xk, sk

for k = 0, 1, 2, . . . do
1 zk =

(

1/Sk
) (

Sk−1sk + σkxk
)

2 select random block Bk(ω) ⊂ {1, . . . , p}
for i = 1, . . . , p do

3 if i∈Bk(ω) then xk+1
i = prox

PiT
k
i

gi

(

xk
i − (PiT

k
i )

−1(∇hi(x
k
i ) + Sk∇if(z

k))
)

4 else xk+1
i = xk

i

5 sk+1 = zk +
(

σk/Sk
)

P
(

xk+1 − xk
)

6 Sk+1 = Sk + σk+1

5



The equivalence between Algorithms 1 and 2 can be shown by introducing a dual variable
yk ≡ Sk(Azk − b). The dual variable allows us to write, on Line 3 of Algorithm 2,

Sk∇if(z
k) = A⊤

i S
k(Azk − b) = A⊤

i y
k. (9)

Line 5 also gives us

Sk(Ask+1 − b) = yk + σkAP (xk+1 − xk). (10)

Algorithm 2-Line 1 then yields the dual update rule

yk+1 = Sk+1(Azk+1 − b)
= A(Sksk+1 + σk+1xk+1)− Sk+1b
= Sk(Ask+1 − b) + σk+1(Axk+1 − b)
(10)
= yk + σkAP (xk+1 − xk) + σk+1uk+1,

(11)

where a second dual variable uk ≡ (Axk − b) has been introduced, which satisfies

uk+1 = uk + A(xk+1 − xk). (12)

Algorithm 1 can eventually be recovered after inclusion of (9), (11), and (12) into Algorithm 2.
Straightforward computations also lead to the expression previously given in (4) for the
sequence sk, which can be derived by induction on k. We note that the sequences sk and zk

are bounded whenever the algorithm produces a bounded sequence xk.
In Sections 3.2 to 3.5 we study the convergence of the sequences produced by Algorithm 2.

For analysis purposes, we consider the auxiliary sequence defined by

x̂k+1 = proxPT k

g

(

xk − (PT k)−1(∇h(xk) + Sk∇f(zk))
)

, (13)

which would coincide with iterate x̂k+1 if all coordinates were to be udpated at step k (i.e.,
in the event Bk = {1, . . . , p}).

3.2. ESO for block coordinate sampling. Let Fk := σ(x0, s0, z0, . . . , xk, sk, zk) denote
the sigma algebra of the process history up to step k. The upcoming property for Algorithm 2
relates to the concept of expected separable overapproximation (ESO), as seen in Richtárik
and Takáč (2014, 2016); Fercoq and Richtárik (2015).

Lemma 3.1 (Proximal step). In Algorithm 2, ∀x ∈ R
n,

g(x̂k+1)− g(x) 6 〈∇ζ(x̂k+1), x− x̂k+1〉 6 ζ(x)− ζ(x̂k+1)− 1

2
‖x− x̂k+1‖2PT k+Υ , (14)

where

ζ(x) = h(xk) + 〈∇h(xk), x− xk〉+ Sk〈∇f(zk), x− zk〉+ 1
2
‖x− xk‖2PT k . (15)

Proof. Equation (13) rewrites as x̂k+1 = argminx̃{g(x̃) + ζ(x̃)}. Hence, 0 ∈ ∂g(x̂k+1) +
∇ζ(x̂k+1), which yields the first inequality. The second inequality follows by strong convexity
of g + ζ with modulus PT k + Υ . �
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3.3. Extrapolation. The next lemma characterizes the sequence (sk) as a convex combina-
tion of past primal iterates. It is an extension of Lemma 2 in Fercoq and Richtárik (2015).

Lemma 3.2. In Algorithm 2, we have

sk =

k
∑

l=0

Γ k,lxl, k > 1, (16)

where (Γ k,l) is a sequence of diagonal matrices such that Γ 1,0 = In − P , Γ 1,1 = P and,
for k > 1,

SkΓ k+1,l =







Sk−1Γ k,l for l=0, . . . , k−1,
σk−1P − σk(P − In) if l= k,
σkP if l= k+1.

(17)

Moreover, Γ k+1,k = [Sk−1Γ k,k − σk(P − In)]/S
k and

∑k
l=0 Γ

k,l = In.

Proof. We proceed by induction. By combining Lines 1 and 5 in Algorithm 2, we find

sk+1 =
1

Sk

(

Sk−1sk + σkPxk+1 − σk(P − In)x
k
)

, (18)

which yields s1 = (In − P )x0 + Px1, and the values of Γ 1,0 and Γ 1,1. Suppose now that (16)
holds for k > 1, then we infer from (18) that

Sksk+1 =
∑k

l=0 S
k−1Γ k,lxl + σkPxk+1 − σk(P − In)x

k

=
∑k−1

l=0 Sk−1Γ k,lxl + Sk−1Γ k,kxk + σkPxk+1 − σk(P − In)x
k

=
∑k−1

l=0 Sk−1Γ k,lxl + [Sk−1Γ k,k − σk(P − In)] x
k + σkPxk+1.

(19)

Equation (17) follows by inspection of (16) and (19). Hence, (16) holds for all k.
It can be checked that sk is a convex combination of x0, . . . , xk. Again, we do this by

induction. We already know that
∑1

l=0 Γ
1,l = (In − P ) + P = In and, by (17),

∑2
l=0 Γ

2,l =
(

1/S1
)[

S0Γ 1,0 + σ0P − σ1(P − In) + σ1P
]

=
(

1/S1
)[

S0 + σ1
]

In = In. Suppose now that
∑k

l=0 Γ
k,l = In is true for some k > 1, then

∑k+1

l=0
Γ k+1,l (17)

=
(

1/Sk
)

[

Sk−1
∑k−1

l=0
Γ k,l + σk−1P − σk(P − In) + σkP

]

=
(

1/Sk
) [

Sk−1(In − Γ k,k) + σk−1P + σkIn
]

(17)
=
(

1/Sk
) [

Sk−1
(

In −
(

σk−1/Sk−1
)

P
)

+ σk−1P + σkIn
]

=
(

1/Sk
) [

Sk−1 + σk
]

In = In,

and the last identity holds by induction on k. Observe that this last result could also be
obtained immediately by simple inspection of (4). �

Now, define G = (G1, . . . , Gp) and Ĝk = 〈Ĝk, 1p〉, where

Ĝk =

k
∑

l=0

Γ k,lG(xl), k > 1. (20)

By convexity, it follows from (16) and (20) that Ĝk > G(sk) and Ĝk > G(sk). We show the
following result.
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Lemma 3.3. In Algorithm 2 and for any positive definite M = diag(M1, . . . ,Mp),

E[‖xk+1 − x∗‖2PM |Fk] = ‖x̂k+1 − x∗‖2M + ‖xk − x∗‖2(P−In)M , (21)

E[Ĝk+1|Fk] = 1
Sk [S

k−1Ĝk + σkG(x̂k+1)], (22)

where x̂k+1 and Ĝk are defined as in (13) and (20).

Proof. For i = 1, . . . , p, We find,

E[‖xk+1
i − x∗

i ‖PiMi
|Fk] = πi‖x̂k+1

i − x∗
i ‖2PiMi

+ (1− πi)‖xk
i − x∗

i ‖2PiMi

= ‖x̂k+1
i − x∗

i ‖2Mi
+ (π−1

i − 1)‖xk
i − x∗

i ‖2Mi
.

(23)

Summing up the above for i = 1, . . . , p gives (21). Next, observe that E[Gi(x
k+1)|Fk] =

πiGi(x̂
k+1) + (1− πi)Gi(x

k) for i ∈ {1, . . . , p}, which in matrix form rewrites as

E[G(xk+1)|Fk] = P−1G(x̂k+1) + (In − P−1)G(xk). (24)

It follows that

E[Ĝk+1|Fk]
(20)
=
∑k−1

l=0 Γ k+1,lG(xl) + Γ k+1,kG(xk) + Γ k+1,k+1
E[G(xk+1)|Fk]

(17)
=
(

Sk−1

Sk

)
∑k−1

l=0 Γ k,lG(xl) + Γ k+1,kG(xk) +
(

σk

Sk

)

PE[G(xk+1)|Fk]
(24)
=
(

Sk−1

Sk

)
∑k−1

l=0 Γ k,lG(xl) + [Γ k+1,k + ( σ
k

Sk )(P − In)]G(xk) +
(

σk

Sk

)

G(x̂k+1)
(20)
=
(

Sk−1

Sk )
)

Ĝk +
(

σk

Sk

)

G(x̂k+1),

(25)

which yields (22) since G = 〈G, 1p〉 and Ĝk = 〈Ĝk, 1p〉. �

3.4. Properties of f . In this section we report useful properties related to the penalty
function f . First notice that, for all x, x̃, x̄ ∈ R

q,

〈∇f(x), x̃− x̄〉 = 〈∇f(x), x̃− x〉 − 〈∇f(x), x̄− x〉
= f(x̃)− f(x)− 1

2
‖A(x̃− x)‖2 − [f(x̄)− f(x)− 1

2
‖A(x̄− x)‖2]

= f(x̃)− f(x̄)− 1
2
‖A(x̃− x)‖2 + 1

2
‖A(x̄− x)‖2.

(26)

For all x, x̃ ∈ R
q, and α ∈ [0, 1], we also have

f(αx+ (1− α)x̃) = αf(x) + (1− α)f(x̃)− α(1− α)

2
‖A(x− x̃)‖2. (27)

For any x∗ ∈ argminx f(x), we have ∇f(x∗) = 0, and f satisfies

f(x)− f(x∗) =
1

2
〈A⊤A(x− x∗), x− x∗〉 = 1

2
‖A(x− x∗)‖2, ∀x ∈ R

q. (28)

Besides, we know from Line 1 in Algorithm 2 that

∇f(zk) = ∇f((Sk−1sk + σkxk)/Sk) = A⊤[A(Sk−1sk + σkxk)/Sk − b]
= 1

Sk [S
k−1A⊤(Ask − b) + σkA⊤(Axk − b)] = 1

Sk (S
k−1∇f(sk) + σk∇f(xk)),

(29)

and it follows from Lines 1 and 5 in Algorithm 2 that

f(sk+1) = f
(

(

Sk−1

Sk

)

sk +
(

σk

Sk

)

[xk + P (xk+1 − xk)]
)

(27)
=
(

Sk−1

Sk

)

f(sk) +
(

σk

Sk

)

f(xk + P (xk+1 − xk))− 1
2

(

σkSk−1

(Sk)2

)

‖A(xk + P (xk+1 − xk)− sk)‖2.
(30)

The last result of this section requires new notions to be introduced. For i ∈ {1, . . . , p} let
Ui be the n×n block matrix defined by Ui = diag(0, . . . , Ini

, 0, . . . , 0). Clearly
∑p

i=1 Ui = In,
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and Uix = (0, . . . , xi, . . . , 0) for any x = (x1, . . . , xp) ∈ R
n. Then, for any random block

B ∈ I, we define the n × n matrix U(B) =
∑

i∈B Ui. We find E[U(B)P ] = In and Ξ =
E[U(B)PA⊤APU(B)], where the expectations are taken with respect to the probabbility
measure P. It follows that

1

2
‖A(x̂k+1 − sk)‖2 = 1

2
‖E[A(xk + P (xk+1 − xk)− sk)|Fk]‖2

=
1

2
E[‖A(xk+P (xk+1−xk)− sk)‖2|Fk]− 1

2
E[‖A(PU(B)− I)(x̂k+1−xk)‖2|Fk]

=
1

2
E[‖A(xk + P (xk+1 − xk)− sk)‖2|Fk]− 1

2
‖x̂k+1 − xk‖2Ξ−A⊤A

(30)
=
(Sk

σk

)

f(sk)−
( (Sk)2

σkSk−1

)

E[f(sk+1)|Fk] +
( Sk

Sk−1

)

E[f(xk + P (xk+1 − xk))|Fk]

−1

2
‖x̂k+1 − xk‖2Ξ−A⊤A

(1)
=
(Sk

σk

)

f(sk)−
( (Sk)2

σkSk−1

)

E[f(sk+1)|Fk]− 1

2
‖x̂k+1 − xk‖2Ξ−A⊤A

+
1

2

( Sk

Sk−1

)

E[‖[Ax̂k+1 − b] + A[xk + P (xk+1 − xk)− x̂k+1]‖2|Fk]

=
(Sk

σk

)

f(sk)−
( (Sk)2

σkSk−1

)

E[f(sk+1)|Fk]− 1

2
‖x̂k+1 − xk‖2Ξ−A⊤A

+
( Sk

Sk−1

)

[

f(x̂k+1) +
1

2
E[‖A(PU(B)− I)(x̂k+1 − xk)‖2|Fk]

]

=
(Sk

σk

)

f(sk)−
( (Sk)2

σkSk−1

)

E[f(sk+1)|Fk] +
1

2

( σk

Sk−1

)

‖x̂k+1 − xk‖2Ξ−A⊤A+
( Sk

Sk−1

)

f(x̂k+1),

(31)

where we have used E[A[xk + P (xk+1 − xk)− x̂k+1]|Fk] = 0.

3.5. Main descent argument. We now derive the main argument for the theorems. Let x∗

be a solution of (P’). It follows from Lemma 3.1 that

G(x̂k+1)−G∗

(2)

6 g(x̂k+1) + h(xk)−G∗ + 〈∇h(xk), x̂k+1 − xk〉+ 1

2
‖x̂k+1 − xk‖2Λ

(15)
= [g(x̂k+1) + ζ(x̂k+1)]−G∗ − Sk〈∇f(zk), x̂k+1 − zk〉 − 1

2
‖x̂k+1 − xk‖2PT k−Λ

(14)

6 [g(x∗) + ζ(x∗)− 1

2
‖x̂k+1−x∗‖2PT k+Υ ]−G∗−Sk〈∇f(zk), x̂k+1−zk〉− 1

2
‖x̂k+1−xk‖2PT k−Λ

(15)
= h(xk)− h(x∗) + 〈∇h(xk), x∗ − xk〉+ Sk〈∇f(zk), x∗ − x̂k+1〉+ 1

2
‖xk − x∗‖2PT k

−1

2
‖x̂k+1 − x∗‖2PT k+Υ − 1

2
‖x̂k+1 − xk‖2PT k−Λ

(2)

6 Sk〈∇f(zk), x∗ − x̂k+1〉+ 1

2
‖xk − x∗‖2PT k −

1

2
‖x̂k+1 − x∗‖2PT k+Υ − 1

2
‖x̂k+1 − xk‖2PT k−Λ

9



(29)
= Sk−1〈∇f(sk), x∗ − x̂k+1〉+ σk〈∇f(xk), x∗ − x̂k+1〉+ 1

2
‖xk − x∗‖2PT k

−1

2
‖x̂k+1 − x∗‖2PT k+Υ − 1

2
‖x̂k+1 − xk‖2PT kΛ

(26)
= −Sk(f(x̂k+1)− f ∗)− Sk−1

2
‖A(x∗ − sk)‖2 + Sk−1

2
‖A(x̂k+1 − sk)‖2 − σk

2
‖A(x∗ − xk)‖2

+
σk

2
‖A(x̂k+1 − xk)‖2 + 1

2
‖xk − x∗‖2PT k −

1

2
‖x̂k+1 − x∗‖2PT k+Υ − 1

2
‖x̂k+1 − xk‖2PT k−Λ

(1)
= −[Skf(x̂k+1) + Sk−1f(sk) + σkf(xk)− 2Skf ∗] +

Sk−1

2
‖A(x̂k+1 − sk)‖2

+
1

2
‖xk − x∗‖2PT k −

1

2
‖x̂k+1 − x∗‖2PT k+Υ − 1

2
‖x̂k+1 − xk‖2PT k−σkA⊤A−Λ

(31)
=

1

2
‖xk − x∗‖2PT k +

((Sk−1)2

σk

)

(f(sk)− f ∗)− 1

2
‖x̂k+1 − x∗‖2PT k+Υ

−
((Sk)2

σk

)

E[f(sk+1)− f ∗|Fk]− 1

2
‖x̂k+1 − xk‖2PT k−σkΞ−Λ − σk(f(xk)− f ∗).

Using (21) and (22), setting T k = T/τk, and multiplying by σk, we find

E

[

σk

2τk
‖xk+1 − x∗‖2P 2T+τkPΥ + SkFk+1|Fk

]

6 σk

2τk
‖xk − x∗‖2P 2T+τk(P−In)Υ

+ Sk−1Fk

− σk

2τk
‖x̂k+1 − xk‖2PT−τk(σkΞ+Λ) − (σk)2(f(xk)− f ∗),

(32)

where we define Fk = Ĝk−G∗+Sk−1(f(sk)−f ∗). For the convergence of the above sequence
we require, at every k,

τk(σkΞ + Λ)− PT 4 0, (33a)

σk+1

τk+1
(P 2T + τk+1(P − In)Υ )−

σk

τk
(P 2T + τkPΥ ) 4 0. (33b)

After introducing

V k(x) =
σk

2τk
‖xk − x‖2P 2T+τkPΥ + Sk−1Fk,

we can rewrite (32) as the inequality

E
[

V k+1(x∗)|Fk
]

6 V k(x∗)− σk

2τk
‖x̂k+1 − xk‖2PT−τk(σkΞ+Λ) − (σk)2(f(xk)− f ∗) , (34)

which becomes the focal point in our convergence analysis. Moreover, taking the total
expectation in (34) and iterating on k gives

E

[

V k(x∗) +
∑k−1

l=0

σl

2τ l
‖x̂k − xl‖2PT−τ l(σlΞ+Λ)

]

6 C. (35)

where C := σ0

2τ0
‖x0 − x∗‖2P 2T+τ0(P−In)Υ

. It follows from Ĝk > G(sk) and the definitions

of V k(x∗) and Fk, that

E

[

σk

2τkSk−1
‖xk − x∗‖2P 2T+τkPΥ

]

+ Sk−1
E[f(sk)− f ∗] + E[G(sk)−G∗] 6

C

Sk−1
. (36)
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Besides, if G is bounded from below by a finite constant Gmin, then we also find

E[f(sk)− f ∗] 6
C

(Sk−1)2
+

G∗ −Gmin

Sk−1
. (37)

Recall the sequence (34). Convergence of (V k(x)) follows almost surely from (34) on
condition that V k(x) is bounded from below, in which case Doob’s supermartingale theorem
applies. As we see below, such a lower bound exists in the case when strong duality holds
in (P’) with respect to the constraint ∇f(x) = A⊤(Ax − b) = 0 and an optimal multiplier
can be found (Section 3.6). In the negative, it is necessary to step back and to consider the
convergence of a downscaled version of the sequence V k(x) (Section 3.7).

3.6. Duality and existence of a Lagrange multiplier. Rewrite the constraint in (P’)
as ∇f(x) = 0, i.e., A⊤Ax−A⊤b = 0. First assume that (P’) admits an optimal primal-dual
pair (x∗, v∗) satisfying 0 ∈ ∂G(x∗) + A⊤Av∗, or

G(sk)−G∗ = G(sk)−G(x∗) > 〈−A⊤Av∗, sk − x∗〉 = −〈Av∗, A(sk − x∗)〉
> −‖Av∗‖‖A(sk − x∗)‖ (28)

= −‖Av∗‖
√

2(f(sk)− f ∗),
(38)

where we have used A⊤(Ax∗ − b) = 0. Since Ĝk > G(sk), we find

Sk−1Fk = Sk−1[Ĝk −G∗ + Sk−1(f(sk)− f ∗)] > Sk−1[G(sk)−G∗ + Sk−1(f(sk)− f ∗)]
(38)

> (Sk−1)2(f(sk)− f ∗)−
√
2‖Av∗‖

√

(Sk−1)2(f(sk)− f ∗)

= 1
2
(Sk−1)2(f(sk)− f ∗) +

(√

1
2
(Sk−1)2(f(sk)− f ∗)− ‖Av∗‖

)2

− ‖Av∗‖2

>
1

2
(Sk−1)2(f(sk)− f ∗)− ‖Av∗‖2 > −‖Av∗‖2.

(39)
It follows that for all x the sequence V k(x) > −‖Av∗‖2 is bounded from below, and the
supermartingale theorem applies in (34), so that the sequence (V k(x∗)) converges almost
surely to a random quantity not smaller than −‖Av∗‖2, and

∞
∑

k=0

[

σk

2τk
‖x̂k+1 − xk‖2PT−τk(σkΞ+Λ) + (σk)2(f(xk)− f ∗)

]

< ∞ a.s.. (40)

The convergence analysis of the sequences xk, sk and zk is deferred to the proofs of Theo-
rems 2.2(i) and 2.3(i) in the Appendix.

3.7. Without a Lagrange multiplier. Suppose now that no such optimal primal-dual
pair exists. If G is bounded from below by a finite constant Gmin, then Ĝk > G(sk) > Gmin,
and we find

Fk = Ĝk −G∗ + Sk−1(f(sk)− f ∗) > Gmin −G∗ + Sk−1(f(sk)− f ∗) > Gmin −G∗. (41)

The supermartingale theorem can now be applied to the sequence defined by W 0(x∗) =

V 0(x∗) = σ0

2τ0
‖x0 −x∗‖2P 2T+τ0(P−In)Υ

and W k(x∗) = V k(x∗)/Sk−1 for k > 1. This downscaled

sequence is bounded from below by Gmin −G∗ and satisfies

E
[

W k+1(x∗)|Fk
]

6
1

Sk−1
E
[

V k+1(x∗)|Fk
]

(34)

6 W k(x∗)− σk

2τkSk−1
‖x̂k+1 − xk‖2PT−τk(σkΞ+Λ) −

(σk)2

Sk−1
(f(xk)− f ∗),

(42)
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where we have used Sk > Sk−1. We find that W k(x∗) converges almost surely to a random
quantity Z(ω) > Gmin −G∗, and

∞
∑

k=0

[

σk

2τkSk−1
‖x̂k+1 − xk‖2PT−τk(σkΞ+Λ) +

(σk)2

Sk−1
(f(xk)− f ∗)

]

< ∞ a.s.. (43)

See the proofs of Theorems 2.2(ii) and 2.3(ii) in the Appendix for a derivation of the conver-
gence rates of the individual sequences. We note that the orders of convergence lost in the
absence of a Lagrange multiplier are due to the scaling factor 1/Sk−1 in the sequence W k(x∗).

4. Decreasing stepsizes for the strongly convex case

In this section we derive the decreasing stepsize sequence (6) for the strongly convex case
(Υ ≻ 0). First, we ensure (33a) holds by setting σk = α/τk−β, with α = σ

−1
max(Ξ(PT )−1) and

β = σmax(Λ(PT )−1)α. Indeed, we find 1/τk = σk/α+σmax(Λ(PT )−1) = σk
σmax(Ξ(PT )−1)+

σmax(Λ(PT )−1). Consequently,

τk(σkΞ + Λ)− PT = τk
(

(σkΞ + Λ)(PT )−1 − In
τk

)

PT

= τk
(

(σkΞ + Λ)(PT )−1 − [σk
σmax(Ξ(PT )−1) + σmax(Λ(PT )−1)]In

)

PT 4 0 ,

and (33a) is true. Then, solving (33) for τk yields a lower bound for the sequence τk, which
must satisfy

[(α− βτk)(P 2T + τkPΥ )− β(τk)2(In − P )Υ ](τk+1)2 + (τk)2(βP 2T + α(In − P )Υ )τk+1

−α(τk)2P 2T < 0.

A close inspection (omitted in this study) of the above condition yields an upper bound for
the sequence (τk), which decreases with asymptotic convergence rate O(2σmax(Υ

−1P 2T )/k).
In view of this conjecture, we can maximize the sequence by balancing the eigenspectrum of
the matrix Υ−1P 2T . We do so by choosing T = QΥ , where Q = diag(q1In1

, . . . , qpInp
), and

the condition becomes
[

[(α− βτk)(P 2Q + τkP )− β(τk)2(In − P )](τk+1)2 + (τk)2(βP 2Q+ α(In − P ))τk+1

−α(τk)2P 2Q
]

Υ < 0.
(44)

where α = σ
−1
max(Ξ(PQΥ )−1) and β = σmax(Λ(PQΥ )−1)α. The stepsize sequence (6) is

obtained by letting Q = P−2 (i.e., T = P−2Υ ) and by recursively taking for τk+1 the positive
solution of (44). As we proceed to show next, the sequence (6) is decreasing with asymptotic
rate 2/k.

Fix T = QΥ , where Q = diag(q1In1
, . . . , qpInp

), and ensure that (33a) holds by setting σk =
α/τk − β, where α = σ

−1
max(Ξ(PQΥ )−1) and β = σmax(Λ(PQΥ )−1)α. Then, Condition (33b)

reduces to (44), which rewrites as

[(α− βτk)(qi + πiτ
k) + βπi(1− πi)(τ

k)2](τk+1)2

+(βqi − απi(1− πi))(τ
k)2τk+1 − αqi(τ

k)2 > 0, i = 1, . . . , p.
(45)
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The discriminant of (45), given by

∆ = 4α2

[

1 +

(

πi

qi
− β

α

)

τk +

[

(

πi

qi
− β

α

)2

−
(

πi(2− πi)

qi
+

2β

α

)

π2
i

qi

]

(τk)2

4

]

q2i (τ
k)2

= 4α2

[

(

1 +

(

πi

qi
− β

α

)

τk

2

)2

−
(

πi(2− πi)

qi
+

2β

α

)

π2
i (τ

k)2

4qi

]

q2i (τ
k)2,

(46)

is nonnegative for

τk 6
2

max
(

0,
(

β
α
− πi

qi

)

− πi√
qi

√

πi(2−πi)
qi

+ 2β
α
, πi√

qi

√

πi(2−πi)
qi

+ 2β
α

−
(

πi

qi
− β

α

)

) . (C1)

Under (C1), Condition (45) reduces to

τk+1 >
−(βqi − απi(1− πi))(τ

k)2 +
√
∆

2[(α− βτk)(qi + πiτk) + βπi(1− πi)(τk)2]
, (47)

holding for i = 1, . . . , p. Now, define δ
¯
, δ̄ and δ as

δ
¯
= min

i∈{1,...,p}

{

πi

qi
− β

α

}

, δ̄ = max
i∈{1,...,p}

{

πi

qi
− β

α

}

, δ = max(|δ
¯
|, |δ̄|). (48)

Let γ > 1, and assume that

−γ − 1

γ
6

(

βπ2
i

αqi

)

(τk)2 −
(

πi

qi
− β

α

)

τk 6
γ − 1

γ
, (49)

or, equivalently,

τk 6

(

αqi
2βπ2

i

)

[

δ
¯
+

√

δ
¯
2 + 4

(

βπ2
i

αqi

)(

γ − 1

γ

)

]

,

τk 6

(

αqi
2βπ2

i

)

[

δ̄ −
√

δ̄2 − 4

(

βπ2
i

αqi

)(

γ − 1

γ

)

]

if δ̄ > 0.

(C2)

Using the identities
√
1 + x 6 1 + (x/2), and (1 − x)−1 6 1 + x + γx2 for x 6 1 − 1/γ, we

find

1

τk

(

−(βqi − απi(1− πi))(τ
k)2 +

√
∆

2[(α− βτk)(qi + πiτk) + βπi(1− πi)(τk)2]

)

(46)

6

1 + (πi

qi
− β

α
− π2

i

2qi
)τk +

[

(

πi

qi
− β

α

)2

−
(

πi(2−πi)
qi

+ 2β
α

)

π2

i

qi

]

(τk)2

8

1−
[

(
βπ2

i

αqi
)(τk)2 − (πi

qi
− β

α
)τk
]

6

[

1 +
(

πi

qi
− β

α
− π2

i

2qi

)

τk +

[

(

πi

qi
− β

α

)2

−
(

πi(2−πi)
qi

+ 2β
α

)

π2

i

qi

]

(τk)2

8

]

×
[

1 +
[(

βπ2

i

αqi

)

(τk)2 −
(

πi

qi
− β

α

)

τk
]

+ γ
[(

πi

qi
− β

α

)

τk −
(

βπ2

i

αqi

)

(τk)2
]2
]

= 1−
(

π2

i

2qi

)

τk +
(

βπ2

i

αqi

)

(τk)2 + γ
[(

βπ2

i

αqi

)

(τk)2 −
(

πi

qi
− β

α

)

τk
]2
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+

[

(

πi

qi
− β

α

)2

−
(

πi(2−πi)
qi

+ 2β
α

)

π2

i

qi

]

(τk)2

8

+

[

[(

βπ2

i

αqi

)

(τk)2 −
(

πi

qi
− β

α

)

τk
]

+ γ
[(

πi

qi
− β

α

)

τk −
(

βπ2

i

αqi

)

(τk)2
]2
]

(

πi

qi
− β

α
− π2

i

2qi

)

τk

+

[

[(

βπ2

i

αqi

)

(τk)2 −
(

πi

qi
− β

α

)

τk
]

+ γ
[(

πi

qi
− β

α

)

τk −
(

βπ2

i

αqi

)

(τk)2
]2
]

×
[

(

πi

qi
− β

α

)2

−
(

πi(2−πi)
qi

+ 2β
α

)

π2

i

qi

]

(τk)2

8

(48),(49)

6 1−
(

π2

i

2qi

)

τk + γ

[

17δ2

8
+
(

δ
2
+ β

α

) π2

i

qi
+ 1+2δ

8

(

π2

i

qi

)2
]

(τk)2 + γ
(

2δ +
π2

i

2qi

)(

βπ2

i

αqi

)

(τk)3

= 1−
(

π2
i

2qi

)

τk + u(τk), (50)

where u(ǫ) = O(ǫ2). The above result can be balanced by setting qi = π2
i for i = 1, . . . , p. In

particular, it can be seen from (47) and (50) that τk+1 6 τk − (1− ǫ)(τk)2/2 whenever

τk 6

[

(17δ2 + 6δ + 1)α + 8β

8 (4δ + 1)β

]

[
√

1 +
16αβ(4δ + 1) ǫ

[(17δ2 + 6δ + 1)α+ 8β]2γ
− 1

]

. (C3)

It follows that the stepsize sequence (7) satisfies (33) and decreases with complexity τk+1 6

τk − (1− ǫ)(τk)2/2 on condition that τ 0 satisfies (C1), (C2) and (C3).
Now we show that the tight stepsize rule (6) vanishes with asymptotic behavior τk+1 =

τk− (τk)2/2+O((τk)3). To see this, observe that (45) has two fixed points, 0 and α
β
, where 0

is the unique attracting fixed point. Indeed, the positive solution of (45) with qi = π2
i is

given by (6), which reduces for τk = α
β
− ǫ to

τk+1 = τk − βπi + α

βπi + (1− πi)α
ǫ+O(ǫ2). (51)

Hence, stepsize sequence (6) will run away from α/β and decrease towards 0 provided that
τ 0 < α

β
. Moreover, we will have σk > 0 for all k in (5).

To find the asymptotic rate of τk under qi = π2
i for i = 1, . . . , p, we apply

√
1 + x =

1 + (x/2) + O(x2) and (1 − x)−1 6 1 + x + O(x2) to (6). Proceeding as in (50), we find
τk+1 = τk − (τk)2/2 + O((τk)3). We infer that τk − 2/k = o(1/k), and it follows from (5)
that σk − (αk/2− β) = o(1), Sk − [αk(k + 1)/4− (k + 1)β] = o(k).1

5. Numerical experiments for an optimal transport problem

We consider an optimal transport problem where a number of customers are willing to
buy a service available at various sites 1, . . . , p. The customers are identical within each of m
distinct classes indexed by 1, . . . , m. Site j is characterized by a cost vector cj = (c1j , . . . , cmj),
where cij denotes the cost charged to any customer from class i for buying the service at
site j (i = 1, . . . , m; j = 1, . . . , p). We use the following notation: for i = 1, . . . , m and
j = 1, . . . , p,

• µi ∈ R>0: mass of customers from class i,

1If 0<a[1]< 2, the solution of the difference equation a[k+1]=a[k]− 1

2
a[k]2 is a[k] = 2

k
+ o(1/k) for k> 1.
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• νj ∈ R>0: capacity at site j,
• xij ∈ R>0: mass of customers from class i receiving service at site j,
• xj = (x1j , . . . , xmj) ∈ R

m
>0: service schedule at site j,

• x = (x1, . . . , xp) ∈ R
mp
>0 : global service schedule,

• cj = (c1j , . . . , cmj): cost vector associated with site j,
• cij: cost charged to a customer from class i when receiving service at site j.

One would like to the maximize the overall attractiveness of the service by solving

minimize
x

∑p
j=1 [〈cj , xj〉+ dj(xj)]

subject to
∑p

j=1 xij = µi (i = 1, . . . , m)
∑m

i=1 xij 6 νj (j = 1, . . . , p)
xij > 0 (i = 1, . . . , m, j = 1, . . . , p)

(OT)

where dj : Rm
>0 7→ R>0 is a smooth, convex function such that dj(xj) models an additional

congestion cost around site j under service schedule xj .
Problem (OT) rewrites as as an instance of (P) in which nj ≡ m for j = 1, . . . , p, the

equality constraint is specified by b = µ = (µ1, . . . , µm) and A = (A1 · · · Ap) with Aj = Inj
,

the feasible sets are given for j = 1, . . . , p by

Xj = {xj ∈ R
m
>0 : νj − ||xj||1 > 0}, (52)

and the objective functions by

hj(xj) = 〈cj , xj〉+ dj(xj)−
1

2
‖xj‖2Υj

, gj(xj) = IXj
(xj) +

1

2
‖xj‖2Υj

, (53)

where hj is smooth convex and gj is proper convex lower semi-continuous, and IC denotes
the indicator function of the set C. The stationarity condition for (OT) implies that every
primal-dual solution (x, y) satisfies

cij +∇jdj(xj) + yi > 0 =⇒ xij = 0, (54)

xij > 0 =⇒ cij +∇jdj(xj) + δj + yi = 0, (55)

for some δj > 0, where δj denotes the dual variable relative to the side inequality constraint
∑m

i=1 xij − νj 6 0, and yi relates to the equality constraint
∑p

j=1 xij − µi = 0.

Customer guidance through pricing. The interpretation of these dual variables as prices
allows the operator to maximize the service quality by assigning unit prices p1, . . . , pp to the
service at each site, under the assumption that all customers are willing to be served at
lowest cost, i.e., a customer from class i is going to purchase the service at a site j that
minimizes their prospective total cost cij + pj . Indeed, implementing the price profile

pj = ∇jdj(xj) + δj − a, (56)

where a is an arbitrary constant parameter, yields

xij > 0 =⇒ cij + pj + yi + a = 0, (57)

cij + pj + yi + a > 0 =⇒ xij = 0 (58)

or, equivalently,
xij > 0 =⇒ j ∈ argminj′{cij′ + pj′}. (59)

which is the desired result. Any indecisions in (59) may be dealt with in practice using a
booking system.
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(m, p) : (10, 10) (20, 20) (50, 50) (100, 100) (10, 40) (10, 250) (10, 1000)
Constant (σ = 1): 261 519 1 091 1 927 914 3 929 9 350
Constant (f.t. σ): 221 99 44 56 41 96 278

Accelerated: 130 128 152 122 107 92 62

(a) Epochs until ‖Ax− b‖∞ < 10−6

(m, p) : (10, 10) (20, 20) (50, 50) (100, 100) (10, 40) (10, 250) (10, 1000)
Constant (σ = 1): 409 816 1 988 3 861 1 655 10 762 /
Constant (f.t. σ): 221 99 53 64 45 141 472

Accelerated: 1 589 1 288 2 333 1 094 1 092 1 771 1 773

(b) Epochs until dist∞
(

(∂x,−∂y)L(x
k, yk), 0

)

< 10−6 where L(x, y) = h(x) + g(x) + 〈y,Ax− b〉

Table 1. Application of Algorithm 1 to (OT) with dj(xj) = 1
2
‖xj‖2. Con-

stant (3) with σ = 1 and with finely-tuned σ, and accelerated (6) scaling.

Experiments. In our numerical experiments we use the basic congestion model dj(xj) =
1
2
‖xj‖2Υj

for j = 1, . . . , p, where Υj < 0, which implies convexity in the sense of Assump-

tion 2.1(i) with characteristic Υ = diag(Υ1, . . . , Υp). In particular, if we set Υj = MjInj
for

some Mj > 0, the primal step on Line 2 of Algorithm 1 reduces to

xk+1
j = prox

IXj

(

(

Mj + λk
j

)−1(
λk
jx

k
j −

(

cj + yk
))

)

, (60)

where we have used Pj = (1/πj) Inj
and either the constant preconditiong T k

j = Tj with Tj =

(1/τj + σ)Inj
derived from (3), or the decreasing sequence T k

j = Tj/τ
k with Tj = (Mj/π

2
j )Inj

and τk satisfying (6), which respectively give λk
j = (1/πj)(1/τj + σ) and λk

j = (Mjπj/τ
k).

The proximal operation in (60) thus involves a (scaled) gradient descent and an Euclidean
projection on Xj, which are straightforward to compute.

In our tests, we set M1j = · · · = Mmj = 1 for j = 1, . . . , p. All the entries of c1, . . . , cp,
µ1,. . . ,µm, and ν1,. . . , νp are picked randomly, independently and uniformly in [0, 1]. The
populations µ1,. . . ,µm are then normalized so that the total load over total capacity satu-
ration factor is 0.8 i.e.,

∑m
i=1 µi = 0.8

∑p
j=1 µj. Algorithm 1 is then implemented with the

following block selection policy: at every step, each agent updates their primal variables inde-
pendently with probability 1/p. Ignoring all update-free steps, which occur with probability
π0 = (1−1/p)p, we find π1 = · · · = πp = [p(1−π0)]

−1 and πi,j = [p2(1−π0)]
−1 if i 6= j. For the

constant stepsize policy, we fix σ and we set τ1 = · · · = τp = (1/2σ) p(1−π0) (σmax(Ξ)−1)−1

in accordance with (3). For the accelerated implementation, the decreasing stepsize se-
quence τk is computed as in (6) with τ 0 = 1. Since in this problem Λ = 0, we have
β = κ = 0.

Table 1 displays the number of updates per agent (epochs) that were needed to approach
optimality. As stopping criteria we consider the feasiblity residual ‖Ax− b‖∞ and the KKT
residual dist∞

(

(∂x,−∂y)L(x
k, yk), 0

)

, where L(x, y) = h(x) + g(x) + 〈y, Ax− b〉 denotes the
Lagrangian of (P). In our simulations, the constant scaling implementation proved quite
sensitive to the chosen parameters. Setting σ = 1 was fine with smaller networks, though
performance deteriorated as the size of the problem increased, and in particular for a larger
number p of agents. Speed of convergence can be considerably increased by fine tuning the
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parameter values, as can be seen on the second lines of Table 1a and Table 1b, where we
used σ = 0.1 for (m, p) = (10, 10) and σ = 0.01 for the larger networks. The accelerated
scaling, on the other hand, offered good and consistent (near dimension-free) performance
even in the larger networks with tens of thousands of variables and many agents.

Appendix A. Proofs of Theorems 2.2 and 2.3

A.1. Convex case (Υ = 0). If Υ = 0, then we take the constant stepsizes τk = 1 and σk = σ
all k, so that (33a) reduces to a condition on σ,

σΞ + Λ 4 PT. (61)

Besides, in Algorithm 2 we get Sk = (k + 1)σ, while Fk = Ĝk − G∗ + σk(f(sk) − f ∗) and
V k(x) = σ

2
‖xk − x‖2P 2T + kσFk.

We are now in a position to show Theorem 2.2. Part (i) in the proof, in particular, follows
the lines of (Luke and Malitsky, 2018, proof of Theorem 1, part (i)), with a few changes
required by the presence of the smooth component h. All the developments are detailed
below for completeness.

Proof of Theorem 2.2. (i) First suppose there is a Lagrange multiplier. Then, (39) becomes

kFk >
σk2

2
(f(sk)− f ∗)− ‖Av∗‖2

σ
> −‖Av∗‖2

σ
, (62)

and we have V k(x) > −‖Av∗‖2. The supermartingale theorem applies, and (43) reduces to

∞
∑

k=0

[

1

2
‖x̂k+1 − xk‖2PT−(σΞ+Λ) + σ(f(xk)− f ∗)

]

< ∞ a.s., (63)

which almost surely yields f(xk) − f ∗ = o(1/k) and ‖x̂k+1 − xk‖2PT−(σΞ+Λ) → 0 (hence,

by (28), f(x̂k+1)− f ∗ = 1
2
‖x̂k+1 − x∗‖2A⊤A → 0), and the sequence V k(x∗) converges almost

surely to a random quantity not smaller than −‖Av∗‖2. It follows that V k(x∗) is almost
surely bounded from above by a constant C(ω), so that

C(ω)+‖Av∗‖2> V k(x∗)+‖Av∗‖2= σ

2
‖xk−x∗‖2P 2T+σkFk+‖Av∗‖2

(62)

>
σ

2
‖xk−x∗‖2P 2T > 0 a.s.,

(64)
which shows that the sequence xk is pointwise almost surely bounded, and so are the se-
quences sk and zk as a consequence of (4). Since almost surely kσFk = V k(x∗) − σ

2
‖xk −

x∗‖2P 2T 6 V k(x∗) is bounded from above, we infer from (62) that f(sk) − f ∗ = O(1/k2)
almost surely. Since we also have f(xk) − f ∗ = o(1/k) almost surely, Sk−1/Sk = O(1), and
σk/Sk = O(1/k) as k → ∞, it follows from Line 1 of Algorithm 2 and from the convexity
of f that f(zk)− f ∗ = O(1/k2) almost surely. Then, using Ax∗ = b, we find

〈∇f(zk), x∗ − x̂k+1〉 (1)
= 〈A⊤(Azk − b), x∗ − x̂k+1〉

= 〈A⊤A(zk − x∗), x∗ − x̂k+1〉 6 ‖A(zk − x∗)‖‖A(x∗ − x̂k+1)‖
(28)
= 2

√

f(zk)− f ∗
√

f(x̂k+1)− f ∗ = o(1/k),

(65)
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where we have used f(x̂k+1)− f ∗ → 0. By convexity and smoothness of h, we find

〈∇h(xk), x∗ − x̂k+1〉 = 〈∇h(xk), x∗ − xk〉 − 〈∇h(xk), x̂k+1 − xk〉
(2)

6 [h(x∗)− h(xk)]− [h(x̂k+1)− h(xk)− 1
2
‖x̂k+1 − xk‖2Λ]

= h(x∗)− h(x̂k+1) + 1
2
‖x̂k+1 − xk‖2Λ.

(66)

Consider a bounded sequence (xk) (this event happens with probability one), and one of
its convergent subsequence (xkl) with accumulation point x̃, which is feasible since f(x̃) =
liml→∞ f(xkl) = f ∗. Now, applying Lemma 3.1 at point x∗ gives

g(x̂kl+1)− g(x∗)
(14)

6 〈∇h(xkl) + Skl∇f(zkl) + PT kl(x̂kl+1 − xkl), x∗ − x̂kl+1〉
(66)

6 h(x∗)− h(x̂kl+1) + 1
2
‖x̂kl+1 − xkl‖2Λ

+〈Skl∇f(zkl) + PT kl(x̂kl+1 − xkl), x∗ − x̂kl+1〉,
which rewrites as

G(x̂kl+1)−G(x∗) 6 1
2
‖x̂kl+1 − xkl‖2Λ + Skl〈∇f(zkl), x∗ − x̂kl+1〉

+〈PT kl(x̂kl+1 − xkl), x∗ − x̂kl+1〉. (67)

Since ‖x̂kl+1−xkl‖2PT−(σΞ+Λ) → 0, the sequence (x̂kl+1) is bounded and, by taking the limit of

the last equation for l → ∞, we find, using (65), Skl = klσ and the lower-semicontinuity of G:
G(x̃) 6 liml→∞G(x̂kl+1) 6 G(x∗), and x∗ ∈ S. To show that the bounded sequence (xk)

has a unique accumulation point, we consider a second convergent subsequence xk̄l → x̄.
Recall that V k(x) = σ

2
‖xk − x‖2P 2T + kσFk and that V k(x) is convergent for our bounded

sequence (xk), thus admitting the same limit for subsequences (xkl) and (xk̄l). Computing

these limits at x = x̃ yields liml→∞ V kl(x̃) = liml→∞ klσFkl and liml→∞ V k̄l(x̃) = σ
2
‖x̄ −

x̃‖2P 2T + liml→∞ k̄lσFk̄l
, hence liml→∞ klσFkl =

σ
2
‖x̄− x̃‖2P 2T + liml→∞ k̄lσFk̄l

. Repeating this

operation at x = x̄ gives σ
2
‖x̃− x̄‖2P 2T +liml→∞ klσFkl = liml→∞ k̄lσFk̄l. Thus ‖x̃− x̄‖2P 2T = 0

and x̃ = x̄, which shows that almost surely (xk) converges pointwise to a point of S. Let x∗

be that limit point. From Lemma 3.2, we know that
∑k

l=0 |Γ k,l| =∑k
l=0 Γ

k,l = In. Moreover,
(17) gives Γ k+1,l = (Sl/Sk)Γ l+1,l = O(1/k) and thus, for all l, Γ k+1,l → 0 as k → ∞. It

follows from (16) and the Toeplitz Theorem, Toeplitz (1911), that sk =
∑k

l=0 Γ
k,lxl → x∗ ∈ S

almost surely, which completes the proof of (i).

(ii) We know from Section 3.7 that almost surely W k(x∗) converges to Z(ω) > Gmin −G∗

and is thus bounded from above by a constant C(ω), so that C(ω) > W k(x∗) > Fk. It
follows from (41) that f(sk) − f ∗ 6 [Fk + G∗ − Gmin]/(kσ) 6 [C(ω) + G∗ − Gmin]/(kσ)
and, consequently, we find f(sk) − f ∗ = O(1/k) almost surely. From (43) we also have
(f(xk) − f ∗) = o(1) almost surely. It follows from Line 1 in Algorithm 2 and from the
convexity of f that almost surely f(zk)− f ∗ = O(1/k).

Now, consider the sublevel sets defined by

L(c) = {x : max(f(x)− f ∗, G(x)−G∗) 6 c}, c > 0. (68)

Since L(0) = S is bounded and both f and G are convex functions, the sets L(c) are

bounded for all c > 0. From Ĝk > G(sk) and the definitions of W k(x∗), we find W k(x) >
G(sk)−G∗ + Sk−1(f(sk)− f ∗), which yields

f(sk)− f ∗ 6
1

Sk−1
(W k(x∗) +G∗ −Gmin) and G(sk)−G∗ 6 W k(x∗), (69)
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in which W k(x∗) → Z(ω) for any outcome ω ∈ Ω, where Ω is an event of probability 1.
It follows that both sequences (f(sk(ω))− f ∗) and (G(sk(ω))− G∗) are bounded by a con-
stant C ′(ω). Hence, the sequence sk(ω) belongs to L(C ′(ω)), which is a bounded set. Thus,
the sequence sk(ω) is bounded if ω ∈ Ω.

Since Sk−1 = σk, (69) also yields f(sk(ω))−f ∗ = O(1/k) if ω ∈ Ω. Hence f(sk(ω))−f ∗ =
O(1/k) almost surely, as seen previously. Besides, all the accumulation points of (sk(ω)) are
feasible if ω ∈ Ω. It follows that lim infk→∞G(sk) > G∗ if ω ∈ Ω, hence with probability
one. Now, observe that (36) reduces in the convex case to

E

[

1

2k
‖xk − x∗‖2P 2T+PΥ

]

+ σkE[f(sk)− f ∗] + E[G(sk)−G∗] 6
C

σk
, (70)

and suppose that there is an event Ω̃ with nonzero probability such that lim supk→∞G(sk(ω)) >
G∗. Then, taking the limit superior in (70) leads to a contradiction. Hence, lim supk→∞G(sk) 6
G∗ with probability one. Thus, limk→∞G(sk) = G∗ with probability one, and almost surely
the accumulation points of (sk) belong to S.

It remains to derive the convergence rate of the sequence (f(sk(ω))). We know that
G(sk(ω)) − G∗ = o(1) for every ω ∈ Ω. Consider the nonnegative sequence uk(ω) =
max(0, G∗ − G(sk(ω))). For all k and for all ω ∈ Ω, we have E[G∗ − G(sk(ω))|ω ∈ Ω] 6
E[uk(ω)|ω ∈ Ω] where (uk) converges pointwise towards 0 on Ω. Since (uk) satisfies |uk(ω)| 6
G∗ − Gmin for all k, with E[|G∗ − Gmin||ω ∈ Ω] = G∗ − Gmin < ∞, Lebesgue’s domi-
nated convergence theorem applies, and we find limk→∞ E[uk(ω)|ω ∈ Ω] = 0. It follows
that limk→∞ E[G∗ − G(sk(ω))] 6 Prob(ω ∈ Ω) limk→∞E[uk(ω)|ω∈Ω] + (1 − Prob(ω ∈
Ω)) limk→∞E[uk(ω)|ω /∈Ω] 6 0, where we have used Prob(ω ∈ Ω) = 1 and uk 6 G∗ −Gmin.
Combining this result with (70) gives

E[f(sk)− f ∗] 6
C

(σk)2
+

E[G∗ −G(sk)]

σk
= o(1/k),

which completes the proof of Theorem 2.2. �

A.2. Strongly convex case. The proof of 2.3 under strong convexity is similar to that of
Theorem 2.2. Recall from Section 4, however, that in Algorithm 2 we now have τk − 2/k =
o(1/k), σk − (αk/2− β) = o(1), and Sk − [αk(k + 1)/4− (k + 1)β] = o(k).

Proof of Theorem 2.3. (i) We begin as in the proof of Theorem 2.3(i) by showing that kFk

is bounded from below. If (P’) admits an optimal primal-dual pair (x∗, v∗) satisfying (38),
then, it follows from (39) that the sequence V k(x) > −‖Av∗‖2 is bounded from below, and
the supermartingale theorem applies in (34) to the nonnegative sequence V k(x) + ‖Av∗‖2,
so that ∞

∑

k=0

[

σk

2τk
‖x̂k+1 − xk‖2PT−τk(σkΞ+Λ) + (σk)2(f(xk)− f ∗)

]

< ∞ a.s., (71)

where PT − τk(σkΞ +Λ) → PT −αΞ , which almost surely yields f(xk)− f ∗ = o(1/k3) and

k2‖x̂k+1 − xk‖2PT → 0 (hence, by (28), k2[f(x̂k+1)− f ∗] = k2

2
‖x̂k+1 − x∗‖2A⊤A → 0), and the

sequence V k(x∗) converges almost surely to a random quantity not smaller than −‖Av∗‖2.
It follows that V k(x∗) is almost surely bounded from above by a constant C, so that

C + ‖Av∗‖2 > V k(x∗) + ‖Av∗‖2
(39)

>
σk

2τk
‖xk − x∗‖2P 2T > 0 a.s., (72)
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which shows that ‖xk − x∗‖P 2T = O(1/k) and, since P 2T has full rank, the sequence (xk)
converges pointwise almost surely to the solution x∗. Since (17) in Lemma 3.2 gives Γ k+1,l =
(Sl/Sk)Γ l+1,l = O(1/k2) for all l, so do sequences (sk) and (zk) as a consequence of (16),
Line 1 in Algorithm 2, and the Toeplitz Theorem. Since almost surely Sk−1Fk = V k(x∗) −
σk

2τk
‖xk−x∗‖2

P 2T+τkPΥ
6 V k(x∗) is bounded from above, we infer from (39) that f(sk)−f ∗ =

O(1/k4) almost surely. Since we also have f(xk) − f ∗ = o(1/k3) almost surely, Sk−1/Sk =
O(1), and σk/Sk = O(1/k) as k → ∞, it follows from Line 1 of Algorithm 2 and from the
convexity of f that f(zk)− f ∗ = O(1/k4) almost surely.

(ii) In the strongly convex case, we know from Section 3.7 that almost surely W k(x∗)
converges to Z(ω) > Gmin − G∗ and is thus bounded from above by a constant C(ω), so
that C(ω) > W k(x∗) > Fk. It follows from (41) that f(sk)− f ∗ 6 [Fk +G∗ −Gmin]/S

k−1 6

[C(ω) + G∗ − Gmin]/S
k−1 and, since Sk = O(k2), we find f(sk) − f ∗ = O(1/k2) almost

surely. From (43) we also have (f(xk)− f ∗) = o(1/k) almost surely. It follows from Line 1
in Algorithm 2 and from the convexity of h that f(zk)− f ∗ = O(1/k2) almost surely.

Since (69) still holds, we find that the sequence sk(ω) is bounded for ω ∈ Ω, with f(sk(ω))−
f ∗ = O(1/k2).
All the accumulation points of (sk(ω)) are thus feasible if ω ∈ Ω. As a consequence, we

find lim infk→∞G(sk) > G∗ almost surely. Under strong convexity, (36) now reduces to

E

[

1

2Sk−1
‖xk − x∗‖2Ψk

]

+ Sk−1
E[f(sk)− f ∗] + E[G(sk)−G∗] 6

C

Sk−1
. (73)

Reasoning as we did for (70), we also find lim supk→∞G(sk) 6 G∗ with probability one. It
follow that, almost surely, limk→∞G(sk) = G∗ and x∗ is the unique accumulation point of (sk).
As for the convergence rate of the sequence (f(sk(ω))), it still holds that G(sk(ω))−G∗ = o(1)
almost surely, and that limk→∞E[G∗−G(sk(ω))] 6 0. Applying this last resul to (70) yields

E[f(sk)− f ∗] 6
C

(Sk−1)2
+

E[G∗ −G(sk)]

Sk−1
= o(1/k2),

which completes the proof of Theorem 2.3. �
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