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Abstract

The Distance Geometry Problem asks for a geometric representation of a given
weighted graph in R¥ so that vertices are points and edges are segments with
lengths equal to the corresponding weights. Two problem variants are defined
by a vertex order given as part of the input, which allows the use of a branching
algorithm based on K-lateration: find two possible positions for the next vertex
j using the positions of K predecessors and their distances to j, then explore
each position recursively, pruning positions at need. Whereas the first variant
only requires the K predecessors to exist, the second variant also requires them
to be contiguous and immediately preceding j. For this variant, fixed-parameter
tractability of the algorithm can be established by means of a solution counting
method that only depends on the graph edges (rather than their weights). Only
in the first variant, however, it is possible to efficiently construct a suitable
vertex order directly from the graph. Since both fixed-parameter tractability
and efficient vertex order construction are desirable properties, one would need
an analogous solution counting method for the first variant. In this paper we
prove that such a counting method cannot be devised for the first variant.

Keywords: DGP, DMDGP, DDGP, Branch-and-Prune, solution symmetry.

1. Introduction

The DISTANCE GEOMETRY PROBLEM (DGP) [33, 38] is as follows. Given an
integer K > 0 and a simple undirected edge-weighted graph G = (V, E, d) with
|V|=nandd: E — Ry, find a set of points {z1,...,2,} C RX that realizes the
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graph so that, for each {4, j} € E, we have ||a;—x||2 = d;;. This problem is used
to model the retrieval of positions (the z;’s) from some given distances (the d;;’s)
in various application settings, e.g. synchronization in network protocols [40],
restriction site mapping in molecules [41], sensor network localization [3, 6, 22],
protein conformation from distance data [17, 18, 33], geometry of nanostructures
[5], localization of underwater vehicles [4], natural language processing [21, 28],
machine learning and data science [29].

In this paper we consider two DGP variants where a certain order on the
vertices is given as part of the input. This order is used to construct realizations
in a build-up fashion [13]. Both variants have desirable algorithmic properties, so
a reconciliation of these properties into a single DGP variant would represent an
important progress. In this paper we prove that the best strategy we currently
have to achieve this reconciliation cannot work. The rest of this section explains
the goal of this paper in more detail.

1.1. The two variants

In the first variant, the order specifies that, for any graph vertex j beyond
the K-th one, there are at least K vertices i < j (i.e., preceding j in the order)
such that {i,j} € E. In other words, distances to j are known from a set
Uj of at least K vertices {i1,...,ix} preceding j. This variant is known as
DiscreTIZABLE DGP (DDGP) [37]. We note that, in general, many vertex
orders may satisfy this requirement.

In the second variant, the order specifies that the vertices in U; precede j
immediately and contiguously, i.e. iy = j—K,io = j—K+1,...,ixg = j—1. Itis
very easy to show that, under this condition, every U; induces a clique in G (see
the beginning of Sect. 2.1 about induced subgraphs). Again, many orders may
satisfy this requirement. This variant is a subclass of DDGP instances known as
DISCRETIZABLE MOLECULAR DGP (DMDGP) [27]. The reference to molecules
in the name arises from the application of the DGP to protein conformation
from Nuclear Magnetic Resonance (NMR) experiments [43], where, in a first
approximation, the order can follow the amino acid sequence defined by the
protein backbone [26].

1.2. Branching and pruning

Both variants can be solved by an algorithm known as Branch-and-Prune
(BP) [32]. This algorithm exploits the vertex order to find (almost certainly) at
most two possible realizations for vertex j by means of the at least K predeces-
sors of j, and then it branches on each of the two positions. The realization of
vertex j can be obtained from the realizations x; of its predecessors ¢ € U; by
an algorithm known as K-lateration [38]. It consists in solving a linear system
of K — 1 equations in K unknowns plus a single quadratic equation, which is
why it yields at most two points x;', z; almost certainly.

If there are more predecessors of j aside from those in Uj, the BP checks the
feasibility of xj,x; w.r.t. the distances from these other predecessors, prun-
ing either or both of the points at need. The BP algorithm has worst-case
exponential time complexity.
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The BP algorithm can be stopped as soon as the first realization is found,
or be allowed to continue until it exhausts all non-pruned branchings. In the
second case, it finds all incongruent realizations (up to an initial reflection) of
the given instance.

1.8. Fized-parameter tractability of the DMDGP

A Fixed-Parameter Tractable (FPT) algorithm has worst-case complexity
O(2"p(¢)) where p(¢) is a polynomial in the input size ¢, and & is a part of the
input that is usually small or can be fixed in practice. An FPT problem is one
for which an FPT algorithm exists. See [14] for more details.

On DMDGP instances, the BP algorithm turns out to be FPT (up to the
usual approximations Turing Machines are subjected to when dealing with algo-
rithms involving real numbers [20]) w.r.t. K and another parameter vy indicating
the vertex at which the BP stops branching “too frequently” [34], which can be
considered fixed for most proteins (but not all). So the DMDGP is FPT and
justifiably very fast on most protein instances, whereas an equivalent theory is
not yet known for the DDGP.

The proof showing that the DMDGP is FPT involves the theory of partial
reflection symmetries of the DMDGP [35], which allows one to count the number
of BP branchings in function of K and vy (and hence the number of partial
solutions up to a certain vertex j) in a way that only depends on the edges E
of G, but not on their weights d. Note that the number of branchings up to
order rank v is the same as the number of partial realizations up to v, which is
the same as the number of realizations of the DMDGP instance defined on the
subgraph of G induced by {1,...,v} C V.

We label E as a “combinatorial” data type, and d a “numeric” data type,
and define a method to count realizations combinatorially as long as it only uses
combinatorial data types. We note that the combinatorial counting method in
[35] counts DMDGP realizations correctly only almost certainly.

This use of the term “combinatorial” comes from the graph rigidity literature
(a prominent part of distance geometry), the fundamental problem of which [16,
Ch. 5] is to find a combinatorial method to determine the rigidity of graphs in
K > 2 dimensions [24], i.e. a method that only depends on the graph topology,
not on the edge weights or the geometric realization of the graph.

We remark that the FPT-ness of the DMDGP is clearly a desirable feature.

1.4. Finding the vertex orders from the graphs

Suitable vertex orders for the DDGP and the DMDGP can be found algo-
rithmically from the input of the DGP. So, while the two variants are not special
cases of the DGP because their definition requires the vertex order as an input,
it makes sense to speak of the “recognition problems” of the two variants: when
is a given DGP instance a DDGP or a DMDGP one?

In the protein application, constructing a suitable vertex order from the
graph is important because NMR experiments do not always provide enough
inter-atomic distances to warrant using the natural order of the atoms in pro-
teins.
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It turns out that finding a suitable DDGP order is FPT w.r.t. K [25, §3.2],
which is fixed for most DGP applications [29, §3.3]. Hence, in practice, DDGP
orders can be found in polytime. Finding a suitable DMDGP order, however,
is NP-complete for any fixed K [9].

We remark that the FPT-ness of the DDGP recognition problem is clearly
a desirable feature.

1.5. Our contribution

From the foregoing discussion, it is important to have both of the desirable
FPT-related features of the two DGP variants at the same time.

The NP-hardness of the DMDGP recognition problem for fixed K makes
it impossible to attempt to find a corresponding FPT recognition algorithm
w.r.t. K, unless P = NP. We can therefore only hope to be able to construct
an FPT solution algorithm for the DDGP. The first and most natural attempt
towards this goal is to extend the FPT property of the DMDGP solution algo-
rithm to the DDGP. For this purpose, we need a combinatorial solution counting
method for the DDGP, because it is precisely the feature that makes the FPT
analysis of the BP possible for DMDGP instances.

We finally come to state the objective of this paper more precisely. We
show that the number of solutions of a DDGP instance may depend on the
edge weights with some positive probability. This negates the existence of a
combinatorial method for counting DDGP solutions that is similar to the one
we have for the DMDGP. In turn, this implies that extending the FPT analysis
we currently have for the DMDGP to the DDGP is doomed to failure. See
Sect. 3.1.1 for more details.

As for the rest of this paper, preliminary notions are given in Sect. 2.
In Sect. 3 we prove that we cannot easily extend our FPT analysis from the
DMDGP to the DDGP; we also present a simple subclass of the DDGP where
combinatorial counting is possible, to show that our impossibility result does
not cover the whole problem.

2. Notation and preliminary notions

In the following, we use the formal language of first order logic in the frame-
work of the ZFC axiom system [23], including the usual symbols for logical
connectives (e.g. A, V, ) and quantifiers (e.g. ¥, 3). In particular, we use “<”
to denote orders on sets of vertices, and also on sets of integers. Thus, we may
have quantifications such as “Vk < K,i < K,i < j”7, where k, K are integers
and 17, j are vertices of a graph. The apparent ambiguity is dispelled by the fact
that there is always a natural bijection between countable ordered vertex sets
and sets of integers having the same cardinality. In particular, the quantifica-
tion above states “for each integer k less than or equal to K, each i-th vertex
in the vertex set with ordinal label ¢ less than or equal to K, and each vertex
pair having ordinal labels ¢, j such that ¢ is strictly less than j7. We use the
standard notation with angular brackets for the inner product of two vectors.
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2.1 Definition

Given an integer K and a simple undirected graph G = (V, E), an embedding of
G in R¥ is a function z : V — R¥. Given an edge weight functiond : E — R,
a realization of G in R is an embedding that also satisfies

V{i,j} € B lzi — a4l = d, (1)
where z; = x(i) for alli € V, and d;; = d({3, j}) for all {i,j} € E. |

As mentioned above, the DDGP arises in applications such as the determina-
tion of protein structure [38], as well as in the study of rigid graphs constructed
by “Henneberg type 1 moves” [19, 42]. Its formal definition is as follows:

Given an integer K > 0, a simple undirected graph G = (V| E)
with an edge weight function d : E — R, and a vertex order < on
V ={1,...,n} such that:

(i) G[Up] (the subgraph of G induced by Up) is a clique of size K,
where Uy = {1,..., K}

1) Vj € +1,...,n i Cl,., 0 — 1) wit
ii) Vj K+1 av; 1 j — 1} with
|Uj| = K AYieU;{i,j} € E,

determine if there is a realization z : V — R satisfying Eq. (1).

Remarks
1. The size of the clique Uy is always equal to the dimension: this is the
reason why we use the same symbol K for both.

2. As already mentioned, the DMDGP differs from the DDGP because U;
consists of immediate and contiguous predecessors of j.

3. For any j € V, we let £(j) = max. U; and U; = U; U{j}. In other words,
£(j) is the last vertex in the set U; according to the vertex order.

4. We partition the edge set E into the discretization edges Ep = {{i,j} €
E |i € U;} and pruning edges Ep = E \ Ep.

2.1. FEuclidean distance and Gram matrices

A K-dimensional realization x of a graph on n vertices can be represented
as an n X K matrix: the i-th row is the position vector z; € R¥X of the i-th
vertex. We shall make use of this representation in some of the proofs below.

The n x n symmetric zero-diagonal matrix D having ||z; — ;|3 as its (i, j)-th
entry is a squared Fuclidean Distance Matriz (EDM). By Schoenberg’s theorem
[39], the matrix I' = —3JDJ (where J = I,, — 1117 is the centering matriz
and 1 is the all-one vector) is the Gram matriz of the realization z, i.e. zzT =T
[11]. Using spectral decomposition and the positive semidefiniteness of Gram
matrices, one can derive x from I' in polynomial time [10]. Moreover, D =
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diag(T)17 — 2T + 1diag(I") ", which implies that rank(D) < rank(I') + 2 [12];
since rank(I") = rank(x) < K, we also have rank(D) < K + 2.

Notation-wise, for a realization x of G = (V, E,d) and a subset U C V we
define the restriction of x to U by z[U] = (x; | i € U), which turns out to be a
realization of the induced subgraph G[U] = (U,{i € U,j € U | {i,j} € E}).

Given a realization = of GG, we can compute the corresponding EDM by
evaluating all Euclidean distances between all pairs x;, z;. Conversely, given an
EDM D, we can compute a realization (in some dimension K € {1,...,n}) by
obtaining the Gram matrix I' in function of D as explained above, and then
factoring G using the spectral decomposition I' = PT AP, where P is a matrix
of eigenvectors and A a diagonal matrix of corresponding eigenvalues. Then
= PT+/A is a realization of D.

2.2. More on the BP algorithm

The BP algorithm [32] works by finding a position for a vertex j > K in V by
using K-lateration on a set U; of K adjacent predecessors of j. This assumes
that the set Uy of the first K vertices in the order already has a realization.
Otherwise, since the definition of DDGP and DMDGP ensures that G[Up] is a
clique, realizing the initial clique can simply be carried out in polynomial time
in K (constant if K is fixed) [2], by using K-lateration repeatedly for K < K.

Repeated K-lateration applied to DDGP and DMDGP instances yields an
exact algorithm in the real RAM computational model [7], which endows a
theoretical Turing machine with the ability of computing with real numbers
exactly — an actual computer would have to approximate real numbers with
floating point numbers, and might possibly yield inexact solutions. A similar
consideration is also valid during the pruning operation of the BP: checking if
the two positions for vertex j found by K-lateration are compatible with the
positions of its other adjacent predecessors h ¢ U; (if any) involves a check of the
type |[xn —z;]l2 = dnj, which in practice is transformed into | [|z5 —;||3—dj; | <
¢ for some given ¢ > 0.

By repeated branching and pruning operations, the BP yields a tree search
over the set S of possible positions for vertices {K + 1,...,n}. This tree (call
it 7) has width at most 2"~% and depth at most n. If the BP stops when T
has depth < n, then no positions could be found for vertex n, which means
that the instance is NO. Otherwise, the instance is YES; and any sequence
(1, TRy - ,xjj y .., z2n) of positions found by the BP for all vertices in V,
where (s; | K < j < n) is a sequence of 4+, —, is a realization of G which certifies
a YES (up to €).

We recall that this certificate is only valid in the real RAM model, which
describes a computer able to represent real numbers exactly. In practice, we take
d: E — Q4, perform operations in floating point, and attempt at minimizing
numerical errors using a variety of techniques [8, 15, 36, 37].

2.8. Almost always and almost never

Given any probability space, an event happens almost always when the cor-
responding set has measure 1 in the space, and almost never when the corre-
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sponding set has measure 0. In the rest of the paper we shall discuss events
happening almost always without necessarily making the probability space ex-
plicit. In some cases our probability space will be a bounded subset of the
realization space R™¥, while in others it will be a bounded subset of the edge
weight space R™. The correct setting should be clear from the context.

It is always possible to construct infinite families of DDGP (respectively,
DMDGP) instances where the edge weight function d is carefully chosen so that
there may be more than two possible positions for vertex j (see Example 3.3
below, and [35] for more examples). But these families all have measure zero
(“almost never”) in the set of all DDGP (respectively, DMDGP) instances.

Most of the properties discussed in this paper hold almost always: this occurs
because K-lateration may fail to work as expected almost never, notably when
the points realizing vertices in U; are not in general position [16, p. 20]. If z is
a realization of G in general position and W C V then, for each W C V with
|W| = h+ 1, z[W] spans an affine subspace of dimension h.

2.4. How K-lateration actually works

Given K points {x1,...,2x} C RE and their distances d; to an unknown
point y € R, y can be determined by solving the quadratic system of K
equations in K unknowns y = (y1,...,yk)

Vi<K |z -yl =d;. (2)
The K-lateration operation is as follows:
1. Rewrite Eq. (2) as Vi < K |lz;||3 + ||y||3 — 2(xi,y) = d2.

2. Arbitrarily choose one of these K equations, e.g. the K-th one, and form
the system of K — 1 equations in K unknowns given by the difference of
the i-th equation with the K-th one; this removes the term ||y||3 from all
equations, leaving the following (after some rearrangements):

Vi < K 2{z; — 2k, y) = (|23 — lex3) - (dF - d%), 3)
which is a linear underdetermined system in y.

3. We assume that Eq. (3) has full rank K — 1 almost always, so we can
express K — 1 of the unknowns in function of the remaining one, which
we assume without loss of generality (wlog) to be yx:

Vi < K y; = b; — Biyk, (4)
for some B,b € R¥ [30, §3.3].

4. We replace y1,...,yx—1 in ||zx —y||3 = d3% and obtain a quadratic equa-
tion in the single unknown yx. We solve this equation and obtain two
solutions y?},y;( almost always, yielding two positions yT,y~ for y by
using Eq. (4).
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5. Finally, we check that yT,y~ satisfy the original equations Eq. (2). If they
do, the system has two solutions almost always. Otherwise, it is infeasible.

We denote by S; the result of the K-lateration operation in function of y, Uj,
namely the position of vertex j < n in function of the positions y[U;] =
(Yiys- - Yix ). We remark that either S; = @ or |S;| = 2 almost always.

The following example shows how trilateration determines: (a) zero or two
positions with probability one, and (b) one or infinitely many positions with
probability zero.

2.2 Example

Consider a triangle graph over V = {1,2,3} with dio = 2 and di3 = da3 € @ =
[1,2], embedded in R%. Ifz; = (0,0) and 3 = (2,0), then x3 moves continuously
on the segment (1,t) for t € [—\/3,/3] as dy3, da3 move continuously in o (see
first picture in Fig. 1).

e At t = 0 (corresponding to dis = des = 1) the three points x1,x9,x3
are aligned, and therefore their affine span has deficient rank equal to 1:
this situation yields a single position for vertex 3 (point x3). Since three
points on the plane almost never determine a single line, the corresponding
realization occurs almost never. All of the other values in the interval o
define nontrivial isosceles triangles having full affine span rank 2, yielding
two distinct positions for vertex xs. This situation occurs almost always.

e A different choice of o, e.g. [3,2], might have yielded a situation where
the affine span rank of the associated realizations is always full. For more
complicated graphs it is possible to have situations where both endpoints
of the interval yield realizations with deficient ranks.

e Suppose now that we add another vertex (labelled by 4) to the triangle
graph above, and another spatial dimension (so K = 3). We let 4 be
adjacent to 1,2,3 with edge weights di4 = doy = 2 and d3q = V3. We
consider realizations in R3. When we apply the K-lateration operation to
the realization 1 = (0,0), o = (2,0), 3 = (1,0) (which occurs almost
never), T4 can move in a circle of radius v/3 and centered at (1,0). In
other words, this K-lateration operation finds an uncountable number of
positions for x4 (see last picture in Fig. 1). The “almost always” case
occurs when x1,x2,x3 are not collinear — and, although it is not shown
here (but see [33, Fig. 3.8]), it yields two distinct positions for vertex 4.

We also note that the determination of the positions in RX for the last point
given K known points is the intersection of K spheres. If the spheres intersect
at all, this intersection almost always consists of two points, but it may also
yield a single point or uncountably many points almost never. |

2.5. Search space symmetry

The tree T is a graph defined over S C R, and is therefore itself naturally
embedded in RX as the union of the (partial) realizations of G explored during



2 NOTATION AND PRELIMINARY NOTIONS 9

Possible positions for 3

O I

S

-3

2 0

Figure 1: The two situations depicted in Eg. 2.2. Top: z3 is almost always in any of two
positions in R?, and almost never in just one. Bottom: x4 is almost never in uncountably
many positions in R3.

the BP. Limited to the DMDGP only, two invariant groups of the embeddings
of T were described in [35]. Both groups are reflection groups acting on the
realizations of G in R¥X. The group action is both geometric (in R¥) and
permutative (w.r.t. the tree T seen as a graph).

The discretization group is the invariant group of maximum width trees T'
with 2"~ ¥ leaf nodes, where each vertex j is only adjacent to the K immediate
predecessors in U; (as well as perhaps some successors); unsurprisingly, this
group has cardinality power of two (more precisely, 2"~ %) almost always.

The pruning group, which is a subgroup of the discretization group, is the
invariant group of the more general case where vertices 7 may be adjacent to the
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immediate predecessors in U; but also to other predecessors that allow the BP
to prune. Surprisingly, it was proved (see [35] and [33, §3.3.8]) that the pruning
group also has cardinality power of two, where the exponent depends on how
many order ranks are not within the range of vertex pairs defining pruning
edges, up to a K rank offset. The argument implies that the number of nodes
at each tree level only depends on the graph adjacencies rather than the edge
weights. This gives rise to a combinatorial method for counting the number of
solutions of any DMDGP instance [31].

If U C V is such that U is an initial segment of the vertex order of V, it
is evident that G[U] is also a DMDGP instance. The combinatorial counting
method above can therefore also be used to count the number of partial real-
izations of G during a run of the BP algorithm. In particular, if there is an
order rank vy starting with which the number of solutions increases at most
logarithmically, the width of T remains polynomially bounded. This was used
to prove that the BP algorithm is FPT in K and v [34].

2.5.1. The elusive DDGP symmetries

The difference between DMDGP and DDGP is that the sets U; of adjacent
predecessors must also be immediate and contiguous in the DMDGP case. By
an easy induction, this implies that each G[U;] must be a clique of size K in G,
while this need not hold in the DDGP. The fact that each G[U,] is a clique is
the key property used in the analysis of DMDGP symmetries. A similar study
for the DDGP does not exist yet.

An attempt to lay some groundwork in extending the study of symmetries
from the DMDGP to the DDGP was made in [1]. For a number of years we
debated on how to progress without making any actual advance. We argue
in this paper that such an extension is impossible because it would require a
combinatorial method for counting the solutions of a DDGP instance. However,
as shown in Sect. 3 below, DDGP instances may have different numbers of
solutions depending on the edge weights only.

3. Can we count DDGP realizations combinatorially?

In this section we claim that we can extend the existing DMDGP combina-
torial counting algorithm only to a special subclass of DDGP instances, namely
when

VK < j<n Uj induces a clique of size K in G. (5)

We already recalled in Sect. 2 that Property (5) need not hold in all DDGP
instances.

We shall first focus on the contra-positive of this claim: whenever some U;
does not induce a clique in GG, combinatorial counting for the DDGP must fail.
Since this observation is independent on the presence of pruning edges, our
argument is based on the (easier) case of YES instances without pruning edges,
i.e. when every edge in G is an edge necessary to carry out the K-lateration
operation.
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For each j € {1,...,n} let a; be the number of positions, found by the BP
algorithm for vertex j, which will eventually lead to a realization of G. We
assume that the given DDGP instance is YES, and, wlog, that ay = --- =
ax = 1. Moreover, since the only possible choice for Uk 11 is {1, ..., K}, which
are the immediate predecessors of K + 1, the DMDGP and DDGP coincide on
instances of size K + 1, which implies [27] that ax41 = 2.

We start with the trivial observation that, by a repeated application of K-
lateration, there are two positions for vertex j for each position of the vertex
£(j) with largest label in Uj:

Qj < 2ag(j). (6)

By [35], the condition a; = 2ay(;) is necessary to ensure combinatorial counting
in DMDGP instances without pruning edges. We therefore look at conditions
that yield a; = 2ay; almost always, to observe what could go wrong when
a;j < 2ay(;). We assume in the following that all realizations of G are in general
position.

Given a realization x of G = (V, E) we let D*(V) be the EDM of z. If
W C V we also let D*(W) be the EDM of z[W]. We recall that U; = U; U{j}.

3.1 Remark -
If x is a realization of G and K < j < n, then we can write the EDM of z[U ;]
in the form below:

_ DUy &,
Dw(U]) — < 5 J )
20

0 , i — @i l3 - [l — @i ||§ dzm

llziy — iy l12 0 o iy g llz | di

== . . : 7(7)
i — 2 ll3 N2 —2inll3 -+ 0 &y s
2 2 2
djiy i, djig | 0

where D*(Uj;) is expressed in function of x, whereas the last row and column is
expressed in function of the known edge weights d. ]

3.2 Proposition
Consider a YES DDGP instance (K, G) without pruning edges, and let j € V

such that K < j <n. If, for any realization z of G[U;| the matrix D*(U;) is a
EDM, then a; = 2ay;y > 1 almost always.

Proof. 1If there is no z realizing G[U;] then there cannot be any realization of
G in RX, making the DDGP instance a NO instance, against the assumption.
So we assume there is at least one realization z of G[U;], which yields a,g;y > 1.

Now we use the hypothesis that for any z realizing G[U;], D*(U;) is a EDM.
By Schoenberg’s theorem, we can find the Gram matrix of a realization z of

G[U;]. From this we infer that K-lateration on U; to determine the position of
vertex j will find a solution set S; # @. By Sect. 2.4, this means that |S;| = 2



3 CAN WE COUNT DDGP REALIZATIONS COMBINATORIALLY? 12

almost always. Since different realizations of G[U;] almost always yield different
positions of vertex £(j), we conclude that the number of realizations of G[U,] is
almost always twice the number of positions of vertex £(j) over all realizations
of G[U;]. This concludes the proof. m|

Proposition 3.2 suggests looking at cases where a; < 2ay; in order to find
conditions that prevent combinatorial counting.

8.1. An impossibility result

The counterexample below shows what can go wrong if the hypothesis of
Prop. 3.2 does not hold.

3.3 Example
Consider the graph G = (V| E) below:

02650
with edge Weights d12 = d15 = d23 = d45 = 1, d34 = 2, d13 = \/E, d24 = \/5,
realized in R?.
First, we remark that G is a DDGP graph without pruning edges. We show
U for each j € {3,4,5} in the table below (arc tails), as well as the induced

edges in G[U;] (undirected edges). It is evident that Us = {1,4} but {1,4} ¢ E:
in other words, G[Us] is not a 2-clique in G (against Property (5)).

N
1—2—3 1 2—3 1 2 3

v ]

5 4 5 4 54

We assume that 1 = (1,0), 2 = (2,0), 3 = (2,1). There are two possible
positions for vertex 4, namely xf = (4,1), z; = (0,1), as shown in Fig. 2.
However, ||z; — x}||2 = v/10 cannot form a triangle with segments realizing
{1,5},{4,5} both having unit length, since d5 + ds5 = 2 < /10, which negates
the triangular inequality on 1,4,5. On the other hand, the position x5 = (0,0)
is compatible with x; . In this case, K-lateration would return the singleton
{zy } as the set Sy of positions for vertex 4, rather than ensuring |S4| € {0,2}
as expected. Note that the above instance is not “almost never”, as all U;’s are
realized in general position. We shall exploit this in Thm. 3.4. Generalizations
of this counterexample can be obtained for all K. |

3.4 Theorem
The solutions of the DDGP cannot be counted combinatorially.
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i 3 3 ol

= =

5 1 2 1 2

Figure 2: Left: the realization with x, is feasible: we can find a position for x5. Right:
the realization with xi’ is infeasible: there is no position for x5 compatible with the given
distances.

Proof. A counting method is combinatorial if it does not use the edge weights
(Sect. 1.3). We now construct an uncountable family of DDGP instances for
which K-lateration finds 0,1 or 2 positions for a certain vertex, all with positive
probability. This shows that the edge weights must necessarily be taken into
account by any counting method, and hence that this counting method cannot
be combinatorial. We consider the case of Example 3.3: our strategy is to define
intervals for dog and dss such that: (i) at the lower extrema K-lateration on
5 finds two positions for x5, (ii) at the upper extrema K-lateration on 5 only
finds one position (and hence fails) for x5, and (iii) there are neighbourhoods
of these extrema for which the same behaviours hold. This will show that the
K-lateration output cardinality depends on the edge weights only. Therefore,
by inclusion of this DDGP subclass in the whole DDGP, there can be no general
combinatorial counting method for the DDGP.

In the rest of the proof (which simply consists of a long but easy symbolic
calculation) we sometimes indicate the distance between two vertices w,v by
uv for brevity. We generalize the instance in Example 3.3 to the uncountable
family of instances given by day € [V/1+ £2,v/5] and day € [g,2] for some small
enough € > 0. If we take the lower extrema of both intervals doy = /1 + 2 and
dz4 = € we obtain ] = (2+¢,1) and 2, = (2 —¢,1), whence

14t =2y —2flls = (—1—e)24+1=+v2+2+¢
U=z —agl = V(-1+e)2+1=V2-2e+e2

When ¢ is negligible, we have 14T ~ v2 < 2 =141 = 154475 = dy5 + dys
and the same for 14—, which implies that both positions for vertex 4 yield a
distance 14 that satisfies the triangular inequality. As ¢ grows, 14— decreases,
which means that it satisfies the triangular inequality for all values of day4, d34 in
the respective intervals (as verified in Eg. 3.3). We want to find the value of € at
which x] satisfies the triangular inequality at equality, namely 14+ = 154+4+5 =
di5 + dys = 2. This happens at V2 +2c 4+ €2 = 2, namely €2 + 2¢ — 2 = 0,
i.e. when € = % = —1++/3. Since we assumed € > 0, ¢ = —1 + V3
is the only value for which 14+ = d;5 + d4s = 2. Thus, the family of DDGP
instances under scrutiny has the property that vertex 5 has two positions (almost
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always) for dag € [1,V/5 — 2v/3], d34 € [0,—1 + /3], only one position (z}) for
dos € [V/'5 — 23,5, dzs € [—1 4 +/3,2], and zero positions in the remaining
cases where no position for vertex 4 exists.

In other words, assuming uniform probability distributions over the two dis-
tance intervals for doy, d34, we have shown that this DDGP instance family has
(almost always) 2p solutions (for some p € N) with probability
pis = 7*/5’2‘2@1‘@’2 ~ 0.3, p solutions with probability 7, = Vooy 5\;52;/?7‘/3*1 ~
0.08, and 0 solutions in the remaining events where ds4 is towards the lower ex-
tremum while ds4 is towards the upper one and vice versa, which have joint prob-

- 5+1—(V5—1
ability mop = 1— ’:};’11 = f+\/g(+‘( ) — \/52“ ~ 0.62. Note that mg, w1, T > 0,

as claimed. O

Thm. 3.4 does not prevent the existence of counting techniques for subclasses
of the DDGP, or based on a condition involving other parameters than G, d, K,
or taking into account special structures in the pruning edges.

3.1.1. Just what is impossible here?

Our impossibility result states that there cannot be an extension to the
DDGP of the FPT analysis of the BP on DMDGP instances. It does that by
showing that the combinatorial counting method that is valid for the DMDGP
cannot apply to the DDGP. In turn, this is implied by Thm. 3.4: there exist
infinitely many DDGP instances, defined on the same graph, such that their
number of solutions varies in function of the edge weights only.

Thm. 3.4 raises a new question: could an FPT analysis of the DDGP rely
on an FPT parameter (which controls the exponential behaviour of the solution
algorithm) defined in function of the edge weights, and not just of the graph
itself? This would yield a worst-case complexity such as 2p(1) where & is a
rational number, which is unusual and somewhat perplexing. One might try and
reduce the rational part of the instance to integers, which could however result
in an inordinately large integer x. Most of all, with x depending on numerical
rather than combinatorial parameters, it would be extremely hard to argue
that the FPT parameter remains small in all cases (think of infinite families of
instances with a few exponentially long distances). These considerations suggest
that an FPT analysis of the DDGP is unlikely to exist.

Our belief is that, unless all of the U;’s induce cliques in G, there is no ezact
combinatorial counting method for the DDGP. However, since FPT analyses
argue towards worst-case complexity estimates, it is possible that there may
exist approrimate combinatorial counting methods for the DDGP that yield
valid, albeit slack, FPT analyses for a DDGP solution algorithm (such as the
BP).

In summary, our impossibility result destroys the most direct avenue of
thought towards an FPT analysis of the BP for the DDGP, but some hope
remains for more convoluted approaches.
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3.2. A sufficient condition (without pruning edges)

We derive here a sufficient condition to count solutions combinatorially in
DDGP instances without pruning edges and satisfying Property (5).

3.5 Proposition

Let (K,G = (V,E,d)) be a YES DDGP instance without pruning edges and
satisfying property (5). Let j € V such that K < j < n. If G[Uj] is a clique of
size K in G, then a; = 2ay(;) almost always.

Proof. Let x by any realization of G = (V, E,d). Then z[U;] is a realization for
G[U;]. Therefore D*(U;) must be such that its (i, h)-th component ||z; — xp]|2
is equal to d;j, for every {i, h} in the edges of G[U;]. But since G[U;] is assumed
to be a clique, ||z; — xp||2 = dip for every ¢ < h € Uj, i.e. none of the entries
of D*(U;) depends on the given realization z: we can therefore rename D (U;)
to bj, since it is a constant matrix. Now we can compute any realization z of
D; by using Schoenberg’s theorem [39] and spectral decomposition [10], then
applying congruence operators to z. For any one of these realizations we can
apply K-lateration to find two positions for vertex j almost always (since the
DDGP instance is YES), yielding corresponding realizations 2’ in R¥ for G[U,].

This shows that D*(U;) is an EDM. The claim now holds by Prop. (3.2). O

We also remark that Prop. 3.5 cannot be improved in general terms, for example
by asking that G[U,] is a clique without one or a few edges, since Eg. 3.3 portrays
a failure when a single edge is missing from the clique on G[Us].

This shows that a combinatorial counting of the number of solutions of
DDGP instances prior to actually solving the instance may only be possible in
the special case where all of the U;’s induce cliques of size K in G. We call the
class of such DDGP instances the combinatorial DDGP.

3.6 Corollary

For a combinatorial DDGP instance without pruning edges, the number of real-
izations of G (excluding those that are congruent by rotations and translations)
is 2"~ K almost always.

Proof. This follows by a1 =--- =axg =1, ag+1 = 2, and Prop. 3.5. O

We remark that Cor. 3.6 applies to DMDGP instances. This provides an alter-
native proof to the result that DMDGP instances without pruning edges almost
always have 2"~ incongruent solutions [33, §3.3.8.1].
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