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Abstract—LoRaWan (Long Range Wide Area Network) is a 

low-power wireless technology with an extended range. It is 

utilized frequently in Internet of Things (IoT) applications. 

Consequently, numerous IoT applications and solutions 

incorporate mobility. However, the increasing number of 

End Devices (ED) and mobility models of nodes impact the 

network performance of LoRaWAN (packet size, latency, 

energy consumption, and Packet Delivery Ratio (PDR)). This 

paper studies the influence of mobility models on the 

performance of LoRaWAN by using different scenarios 

under extensive simulations with the Network Simulator 

(NS3), including the random waypoint model, the Gauss 

Markov model, and the constant position model. The results 

indicate that the manner in which nodes move significantly 

impacts network performance; for instance, the Gauss-

Markov model maintains a high level of network 

performance. To validate the simulation results, Extensive 

experiments have been conducted with the Lora end device 

CubeCell HTCC-AB01 model in a variety of scenarios by 

analyzing the RSSI (Received Signal Strength Indicator) level 

in urban and rural areas using a large number of 

trajectories.  

 

Keywords—LoRaWan, NS3, LPWAN (low-power, wide-area 

networks), mobility model, RSSI, lora 

I. INTRODUCTION 

LoRaWAN is a wireless communication protocol for 

Low-Power, Wide-Area Networks (LPWANs). One of the 

critical features of LoRaWAN is its ability to support long-

range communications, making it well-suited for 

applications that require low-power, long-range 

connectivity. It is based on the LoRa (Long Range) 

modulation technology developed by Semtech 

Corporation. LoRaWAN uses a star network topology 

where end devices communicate with one or more 

Gateways (GW), which communicate with a Network 

Server (NS). The network server manages the 

communication between the end devices, and the 

application server provides the end-user interface and data 

processing [1], as shown in Fig. 1. 

LoRaWAN uses the Adaptive Data Rate (ADR) 

algorithm to optimize transmission data rates for end 
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devices. The algorithm determines the optimal 

combinations of Spreading Factor (SF), bandwidth (BW), 

and Transmit Power (TP) of end devices to increase their 

transmission data rates, reduce their transmission airtime, 

and optimize their energy efficiency [2]. The network 

needs some measurements (uplink messages) to determine 

the optimal data rate. Currently, The Things Stack takes 

the 20 most recent uplinks, starting when the ADR bit is 

set. These measurements contain the frame counter, signal-

to-noise ratio (SNR), and number of gateways that 

received each uplink. 

For each of these measurements, take the SNR of the 

best gateway and calculate the so-called “margin,” which 

is the measured SNR minus the required SNR to 

demodulate a message given the data rate. This margin 

determines how much one can increase the data rate or 

lower the transmit power. One domain that can benefit 

from LoRaWAN’s mobility features is asset tracking. 

With LoRaWAN, tracking assets over long distances is 

possible, even in areas where traditional cellular networks 

are unavailable. For example, logistics companies can use 

LoRaWAN to track the location and condition of their 

shipments, allowing them to optimize their supply chain 

and improve efficiency. Another domain where 

LoRaWAN’s mobility features can be helpful in smart 

cities. With LoRaWAN, it is possible to collect data from 

many sensors deployed throughout a city, including traffic 

sensors, environmental sensors, and utility meters. These 

sensors are often outdoors and can be spread across a large 

area; LoRaWAN’s long-range communications and 

mobility features can help ensure reliable connectivity and 

data collection. LoRaWAN can also be used in the 

agriculture industry to track livestock or monitor 

environmental conditions, in the healthcare industry to 

track medical devices or patient health, and in the 

industrial sector to track inventory or monitor equipment 

health. 

In the context of LoRaWAN, a mobility model refers to 

a mathematical model that describes the movement of 

nodes within a network. A mobility model can be used to 

simulate the behavior of nodes in a LoRaWAN network 
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and evaluate its performance under different scenarios. 

Using a mobility model to simulate the behavior of nodes 

in a LoRaWAN network makes it possible to assess the 

network’s performance under other conditions.  

 This research focuses on the impact of three major 

mobility models: the Random Way Point (RWP) model, 

the Gauss Markov (GM) model, and the Constant Position 

(CP) model on the performance of LoRaWAN such as 

Energy Remaining, node density, PDR (Packet Delivery 

Ratio), delay and Packet size, this can be useful in 

optimizing the network design and improving its 

performance using network simulator NS3. Based on our 

bibliographic analysis of recent scientific publications, it 

has been observed that a significant number of authors 

engaged in research and simulations about the Lora 

network, extensively employed in industrial and academic 

domains, tend to overlook the incorporation of node 

movement parameters that will be simulated in mobility 

models within the context of this study. The significance 

of doing this scientific research is now evident, as it will 

focus on the specific parts requiring investigation and 

promptly illustrate the impact of these factors on the 

findings, resulting in substantial time savings. 

The remaining sections are organized as follows: The 

Section II explains some fundamental concepts and 

performance metrics of LoRaWAN, including mobility 

patterns, PDR, Delay, and the energy framework. The 

related works are presented in Section III. Section IV 

illustrates the experiences, results under NS3, and 

discussion. Section V describes the experimental model 

configuration and presents findings and analysis. Section 

VI provides concluding remarks and a discussion of future 

work. 

 

 
Fig. 1. LoraWan architecture. 

 

II. BACKGROUND LORAWAN 

Any network must consider the mobility aspect. Nodes 

in WSNs (Wireless Sensors Network) can migrate anytime 

and in any direction. Network architecture can be damaged 

by high mobility, which can also be the reason for the odd 

behavior of network communication. Rapidly moving 

cluster heads could lead to the collapse of the entire cluster, 

squandering resources. Furthermore, repeated re-

clustering consumes more energy. As a result, the sensor 

node’s mobility was taken into consideration. Random 

nodes were moved around the network to test mobility in 

the current system. Similar random selection is used to 

determine the node’s new location. The mobility level of a 

node is determined by computing the difference between 

its previous and current positions. 

Eq. (1) is used to determine the level of mobility [3].  

 

𝑀𝐿 = √ (𝑥 𝑛𝑒𝑤 − 𝑥 𝑐𝑢𝑟𝑟 ) 2 + (𝑦 𝑛𝑒𝑤 − 𝑦 𝑐𝑢𝑟𝑟 ) 2        (1) 

 

where (xnew, ynew) are the coordinates of the sensor node at 

the new position and (xcurr, ycurr) are the coordinates points 

of nodes at the last calculated position. An inverse 

relationship exists between a node’s mobility and chances 

of becoming a cluster head; therefore, a node with a high 

mobility level has fewer chances to be selected as a cluster 

head. 

A.  Mobility Patterns 

The movement patterns of mobile elements are 

categorized by mobility models, which can be roughly 

divided into four subclasses as shown in Fig.2.: random 

mobility models: Random Waypoint (RWP), Random 

Walk (RW), Random direction (RD), models with 

temporal dependency: Gauss Markov (GM), Semi-Markov 

Smoot, models with spatial dependence: Probabilistic 

Random Walk, and models with geographic restriction: 

Pathway.  

In this study, the RWP, GM, and Constant Position (CP) 

models are the three alternative mobility patterns to 

describe how the node moves. 

 
Fig. 2. Mobility models. 

 

1) Random waypoint mobility model (RWP)  

Johnson and Maltz were the ones who first introduced 

the Random Waypoint mobility concept [4]. Because of its 

simplicity, it is the most frequently utilized for mobile ad 

hoc networks [5]. The Random Waypoint mobility model 

assigns each node a randomly distributed speed between 

[Vmin, Vmax] and a random destination inside the 

simulation zone.  

The node stops at the destination for the time specified 

by the t pause parameter. Continual movement results if t 

pause=0. Upon expiration of this period, the node selects 

and moves toward a different random location within the 

simulation region. Until the simulation is over, the entire 

process is repeated numerous times[6], as shown in Fig. 3. 
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Fig. 3. Trajectory of end device under the random waypoint (RWP) 

model. 

 

2) Gauss-markov mobility model (GM) 

One tuning parameter [4, 5] allows the Gauss-Markov 

mobility model to adjust to various amounts of 

unpredictability. Each node is first given a current speed 

and direction. Nodes move by updating their respective 

speeds and directions at set intervals n. Specifically, this is 

achieved by determining the speed and direction at the nth 

instance based on the speed and direction at the (n-1) st 

instance and a random variable using the following 

equations: 

 

𝑣 𝑛 = 𝛼 𝑣 𝑛−1 + (1 −  𝛼)𝑣̅ + √1 − 𝛼2𝑣 𝑥 𝑛−1        (2) 

𝑑 𝑛 = 𝛼 𝑑 𝑛−1 + (1 −  𝛼)𝑑̅ + √1 − 𝛼2𝑑 𝑥 𝑛−1        (3) 

where, 

• Vn and Dn are the new speed and direction of the    

  node at time interval n. 

•  ̄v and  ̄d are constants representing the mean value of    

   speed and direction as n → ∞. 

• vxn−1 and dxn−1 are random variables from a   

  Gaussian distribution. 

• α, where 0 ≤ α ≤ 1, is the tuning parameter used to   

  vary the randomness; very random values or     

  Brownian motion is obtained by setting α =0 and   

  linear motion is obtained by setting α =1.   

  Intermediate levels of randomness are obtained by  

  varying the value of α between 0 and 1.  

At each time interval, the next location is calculated 

based on the current location, speed, and direction of 

movement. Specifically, at time interval n, a node’s 

position is given by Eqs. (4−5):  

 

𝑥{𝑛} = 𝑥{𝑛−1} + 𝑣{𝑛−1} 𝐶𝑜𝑠 𝑑{𝑛−1}            (4) 

𝑦{𝑛} = 𝑦{𝑛−1} + 𝑣{𝑛−1} 𝑆𝑖𝑛 𝑑{𝑛−1}            (5) 

where, (xn, yn) and (xn−1, yn−1) are the x and y Coordinates 

for the node position at the nth and (n-1) time intervals, 

respectively, and (vn−1) , (dn−1) are the speed and direction 

of the node, respectively, at the (n-1) time interval.  

3) Gauss markov variables 

Alpha 𝛼: The variable 𝛼 is the tuning parameter for 

GM. Setting 𝛼 to a value between 0 and 1 allows us to 

adjust the degree of the model randomness. When 𝛼=1, the 

model will be predictable and lose all of its randomness, 

and the new direction and velocity will be the same as the 

previous direction and velocity. Thus, when 𝛼=1, the node 

moves in a straight line: 

Fig. 4 shows an example of a GM trajectory in a 2D 

area. Linear motion is obtained by setting α = 1. 

 

 
Fig. 4. G M Model, Alpha = 1. 

 

On the other hand, when 𝛼=0, the model will become 

memoryless, and the new direction and velocity will 

depend on the mean and standard deviation values of the 

direction and velocity and the Gaussian random variables. 

  Fig. 5 shows an example of a GM trajectory. A 

Brownian motion is obtained by setting α = 0.5. 

 

 
Fig. 5. G M Model, Alpha = 0.5. 

B. Energy Framework 

Energy usage is a critical concern for wireless devices, 

and researchers in wireless networking often need to 

analyze the energy consumption of nodes or the overall 

network during network simulations using Ns-3 [7]. To 

facilitate this, Ns-3 must include support for energy 
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consumption modeling. Moreover, with the growing 

viability of concepts like fuel cells and energy scavenging 

for low-power wireless devices, it is essential to 

incorporate the impact of these emerging technologies into 

simulations by enabling the modeling of diverse energy 

sources in NS-3. Fig. 6. depicts the NS-3 Energy 

Framework, which is the foundation for modeling energy 

consumption, energy sources, and energy harvesting [8]. 

 

 
Fig. 6. Proposed ns-3 Energy Framework structure, including energy 

sources, device energy models, and interfaces [9]. 

 

1) Energy source  

The Energy Source is a vital component of each node, 

serving as its power source. Multiple device energy models 

can be connected to each energy source, and a node may 

have more than one energy source. Once an energy source 

is linked to an energy model, it is assumed that that source 

powers the corresponding device. The Energy source's 

primary purpose is to provide power to the devices 

connected to the node. When the energy runs out, the 

devices are immediately informed and can take appropriate 

action. Energy source objects are also available to every 

node, offering beneficial data such as battery level and 

remaining energy. This feature is particularly 

advantageous for NS-3 when implementing energy-

efficient protocols. The Energy Source needs to precisely 

reflect their practicality and effectiveness to simulate 

different power sources, like batteries, as they are vital 

features. 

The Energy Source regularly surveys all the devices and 

energy harvesters within a given device to determine the 

combined current channel and energy consumption. When 

a node changes condition, the associated Device Energy 

Model will inform the Energy Source about this 

modification, potentially affecting the lifespan of a battery 

through two distinct effects. The first is the Rate Capacity 

Effect, which can reduce the battery's lifespan if the 

current draw exceeds its rated value. Conversely, the 

Recovery Effect can extend the battery's lifespan by 

cycling between discharge and idle states. In order to 

account for the Rate Capacity Effect, the Energy Source 

analyses and estimates the energy consumption by 

monitoring the current drawn from all devices on the same 

node. Furthermore, the power source of the Energy Source 

can be recharged by connecting several Energy Harvesters. 

 The Energy Source base class includes Device Energy 

Model objects and Energy Harvester objects that obtain 

power. If the Energy Source runs out of control, it notifies 

all devices on its list. Each node can react appropriately 

and follow the prescribed protocol during a power disaster. 

2) Device energy model 

Measures a device's energy consumption by assigning 

power values to its different states. When the device 

changes conditions, the Energy Source is notified and 

recalculates the total power draw. This model can work for 

devices with infinite states, like an electric vehicle's motor, 

by directly converting speed values to current. 

3) Energy harvester 

When recharging the Energy Source, it's important to 

consider both the energy output of the environment and the 

efficiency and power consumption of the Energy Harvester. 

The Energy Harvester collects energy from the 

surroundings, making it a valuable tool for energy 

collection. 

C. Packet Delivery Ratio (PDR) 

When assessing a sensor network's effectiveness, it’s 

typical to gauge the number of packets the server receives 

relative to the number of packets dispatched by the end 

nodes. This measurement, referred to as PDR, can be 

computed either node by node or for the entire network. 

For the latter, Eq. (6) is the appropriate calculation. 

 

𝑃𝐷𝑅 =
∑ Number of packet received 

∑ Number of packet sent 
              (6) 

D. Delay (Second)  

The Delay is measured from when the packet leaves the 

source application to when the same packet arrives at the 

destination application. 

 

Delay =
∑(TPR−TPT)

 Number of Packets Received 
                   (7) 

 

where, 

 T P R = Time Packet Received. 

 T P T = Time Packet Transmitted. 

III. SIMILAR WORKS 

Many researchers conduct interesting studies and 

papers on improving the performances of the Internet of 

Mobile Things by employing various techniques. 

Following is a list of various works in this field: Wu et 

al. [10] provided a general model that uses a state machine 

to estimate energy usage in LoRaWAN for various channel 

access techniques. They can characterize the energy usage 

for particular access mechanisms or the entire network. 

According to this model, random access only operates at 

peak efficiency when no further receive windows are 

opened. Listening before speaking is an easy improvement. 

Advantages are made for networks with high loads using a 

more complicated schedule.  

Loh et al. [11] presented a contribution to enhancing the 

Adaptive Data Rate (ADR) in the case of predefined 

mobility patterns. By incorporating the positional 

information and trajectories of mobile devices for dynamic 
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allocation, the proposed Enhanced-ADR (E-ADR) 

approach aims to optimize transmission time, energy 

consumption, and packet loss for mobile devices. In [12], 

the same authors extend E-ADR to unknown mobility 

patterns. In the case when sensors travel with unknown or 

undefined trajectories. This extension, called the Variable 

Order Hidden Markov Model (VHMM), is based on E-

ADR to predict the node trajectory. 

Benkahla et al. [13] put forth two ADR proposals that 

will be managed by Network Server NS, the Gaussian 

filter-based ADR (G-ADR) and the Exponential Moving 

Average-based ADR (EMA-ADR). Both of these methods 

function as a low-pass filter, intending to resist sudden 

changes in the signal-to-noise ratio of received packets at 

the NS. Their proposed approaches are geared towards 

allocating the most suitable Spread Factor SF and Transmit 

Power TP to mobile and static EDs, aiming to reduce 

convergence time in the confirmed mode of LoRaWAN.  

Like [14], the authors employed simulation tools to 

demonstrate that the movement of end devices results in 

invalid configuration commands for setting the spreading 

factor and the transmission power for an end device. 

Recently [15], the distance between the ED’s former and 

present positions at the NS is used by the proposed 

Mobility ADR (M-ADR) to determine the ED status (i.e., 

whether it is static or movable). They employed the 

Kalman Filter to estimate the Signal-to-Noise Ratio (SNR) 

to precisely determine SF, TP, or both if the ED status was 

found to be mobile because these parameters are primarily 

dependent on SNR. The suggested M-ADR further 

determines the ideal SF and TP configuration after the 

Kalman Filter determines the system’s current estimate.  

To evaluate the network performance and energy 

consumption, Farhad et al. [16] have simulated 

LoRaWAN-Aloha and LoRaWAN-CSMA/CA under 

various networking scenarios by varying network load, 

spreading factors, and sensor and gateway distances. The 

simulation's findings compare and contrast CSMA and 

Aloha regarding collision rate, the likelihood that a 

network would succeed, and energy usage per node. 

According to the performance analysis, LoRaWAN-

CSMA/CA may be a better option than LoRaWAN-Aloha 

for large IoT networks with stringent scalability 

requirements. But for a small, static IoT network, 

LoRaWAN Aloha might be a better option. 

In [17], they enable the analysis of LoRa in terms of 

energy efficiency by modeling the energy consumption of 

the SX1272, a standard LoRa chip. They perform real-

world measurements of the chip to develop a device profile 

and use the results to create an energy consumption 

module in ns-3 to evaluate LoRa networks in terms of 

energy efficiency. 

Finnegan et al. [18] suggested slotted CAD to maintain 

100% PDR and experimental 4800 bps data throughput 

without other environmental disturbances. Compared to 

different scenarios, the proposed slotted CAD CSMA/CA 

approach efficiently uses the free channel and avoids 

collisions while minimizing delay time. 

IV. RESULTS AND DISCUSSIONS 

This section presents the results of different simulation 

scenarios by varying the number of end devices, sending 

periods, number of gateways, packet size, and radius. 

These results are analyzed and evaluated to study the 

impact of different mobility models on energy remaining, 

PDR, and delay in Lora Networks. 

The simulation goes up to 50, 100, 300, and 500 ED 

with 1 and 2 GW, the simulation time equals 3600s (1 

hour), and a power source: a 200 mAh battery. The node 

sends data frames to the GW (uplink) with a size of 12 

bytes every 5 seconds. The ED positions are randomly 

assigned around the GW in a radius of 1000, 5000, 8000, 

10000, and 15000 meters; a simulator of an energy 

recuperator is added, which periodically collects a random 

value. The remaining energy is evaluated, and their 

effectiveness is compared using the NS-3 simulator; the 

Lora network is simulated by increasing the number of 

nodes for the three mobility models. 

 

TABLE I: SIMULATION PARAMETERS. 

Parameters Value Unit 

N of Nodes 50, 100, 300, 500  - 

Radius 1000, 5000, 8000, 10000, 15000  Meter 

Period 3, 5, 7 Second 

Packet Size 12, 64, 120, 192, 216  Byte 

Gateway (GW) 1, 2 − 

Simulation Time 3600 Second 

Mobility Model ConstantPositionMobilityModel − 

− RandomWayPointMobilityModel − 

− Vitesse Max = 60 meters/s 

− Pause Time = 0 second 

− GaussMarkovMobilityModel − 

− Vitesse Min=20, Max = 70 meters/s 

− Pause Time = 2, 𝛼 = 1 − 

Energy Initial 200 mAh 

Battery PD2032 2664 Joules 

− 3.7 Volts 

Simulator NS3 (Version 3.35) − 

Operating System Ubuntu 24.4 64bit − 

 

Fig. 7 below presents the energy remaining as a function 

of the simulation time equal to 3600 sec in four (04) 

scenarios with three mobility models. The impact of the 

mobility model on the remaining energy is essential. When 

1 ED (end device) sends a packet of size 12 bytes every 05 

seconds within a radius of 20m around a single GW (Fig. 

7. (a)), the second case is with two GW (Fig. 7. (b)), the 

third case with 500 ED and one GW (Fig. 7. (c)), and 

finally, with 500 ED and a packet size of 24 bytes and one 

GW (Fig. 7. (d)); energy remaining decreases during the 

simulation time for all four scenarios. 

  In the first scenario, the GM mobility model with alpha 

=1, pause time = 2 seconds and a speed varying between 

20 and 70 m/s performs better than the two other models 

with an energy remaining of 2663.9 J. This is because 

consumption during one hour (simulation time) equals 0.1J. 

For the two rest models, RWP and CP, the energy 

consumption is 0.4J, which equals 9.6J in 24h, making the 

GM model 4 times less than the RWP and CP models. In 

the second scenario, when adding a second 

The GM mobility model also gives good results compared 
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to the two other models but performs less than the first 

scenarios. In the third scenario, when increasing the 

number of ED to 500 nodes. CP and GM have the same 

value of 2663.6J, while the worst model is RWP, with a 

max speed of 60 m/s. In the fourth and last scenario, notice 

that the GM model has been slightly impacted by the 

packet size when it is increased by energy remaining of 

2663.2J, while the CP model is better performing with a 

value of 2663.6J. The worst model is the RWP of the time 

pause, which is zero, i.e., maximum mobility. 

As already seen in the preceding sections, the impact of 

the mobility model on residual energy, node density, PDR 

(%), and latency is the primary emphasis of this work (see 

Fig.7).  

 

 
(a)                                                                                              (b)  

 
(c)                                                                 (d)  

Fig. 7. Impact of mobility model on energy remaining. (a)One End device and Gatway, (b)Two Gatway and one device (C)500 ED and Packet size 

12(d) 500 ED and Packet size 24. 

 
TABLE II. SIMULATION VALUES 

Mobility 

Model 
ED 

Packets 

Sent 

Packets 

Received 
PDR (%) 

Packets 

Loss 

Total Delay 

(Sec) 

Constant 

Position 

Model 

01 618 618 100 00 0.37070 

50 30874 25697 83.23 5177 0.13766 

100 61736 41549 67.30 20187 0.10645 

300 185222 58530 31.59 126692 0.09096 

500 308708 49847 16.14 258861 0.07899 

Random 

WayPoint 

Model 

01 618 618 100 00 0.05657 

50 30874 23628 76.53 7246 0.05657 

100 61745 42326 68.54 19419 0.05657 

300 185234 57989 31.30 127245 0.05657 

500 308695 51303 16.61 257392 0.05657 

Gauss 

Markov 

Mobility 

01 618 618 100 00 0.05657 

50 30875 24587 79.63 6288 0.13337 

100 61740 40326 65.31 21414 0.05657 

300 185215 61936 33.44 123279 0.05657 

500 308705 53385 17.29 255320 0.05657 
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The packet delivery ratio is shown in Fig. 8(a) below as 

a function of the number of nodes. PDR is the ratio of 

packets delivered to the total number of packets generated. 

The PDR is inversely correlated to the packet loss rate. A 

higher packet delivery rate means less packet loss. When 

there are more nodes in the network, there are more 

collisions, which causes the PDR to decrease. At 500 ED 

in a 20-meter radius around the GW, the graph shows 

almost the same performances as the three mobility models. 

The PDR decreases with an increase in the ED by less than 

20% since collisions during transmission are less frequent 

when the number of ED is lower and the collisions increase. 

They are keeping the same simulation parameters, 

except the distance increase between ED and GW to 8000 

meters, as shown in Fig. 8 (b). CP and GM provide a PDR 

greater than 50%, but RWP provides the worst PDR of 

always less than 20%. 

 
(a)  

 
(b)  

Fig. 8. Impact of number ED on PDR, (a) PDR Vs Number ED with 

radius=20m, (b) PDR Vs Number ED with radius=8000m. 

 

Fig. 9 (a) shows the PDR as a function of radius and 

follows the same behavior as the number of nodes. When 

the radius increases, it leads to a decrease in the PDR. With 

10 ED. GM marks good results when showing a 

percentage of 80%, CP slightly less than 70%; unlike the 

first two, poor results are presented by the RWP, from 

8000 m is a decrease of less than 50%, and at 15000 m is 

at 20%. 

In Fig. 9 (b), by increasing the number of EDs to 300 

nodes, the result PDR is less than the PDR in graph 9 (a), 

seen at the increase in the number of collisions, but greater 

than 50% for GM and CP model, and still, RWP continues 

to be the worst model when it marks a PDR between 10% 

and 20%. 

 
(a)  

 
(b) 

Fig. 9. Impact of radius on PDR, (a) PDR Vs Radius With 10 ED, (b) 
PDR Vs Radius with300ED. 

 

In Fig. 10, the graph shows the effect of increasing the 

radius of the area on the end-to-end delay for 300 ED and 

one gateway; notice that the uncertainty remains constant 

for the three mobility models in a radius between 100 and 

1000 meters, with a delay value of less than 0.06 seconds. 

As soon as the distance increases from 1000 meters to 

15000 meters, the GM and CP models increase linearly 

until 0.13 seconds. The RWP model remains almost 

constant, keeping the same value between 0.05 and 0.06 

seconds throughout the simulation, despite increasing the 

radius to 15000 meters. 

 
Fig. 10. Delay VS radius. 
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The Fig. 11 below shows the delay as a function of the 

number of nodes. Within a radius of 8000 meters, the delay 

increases with the number of nodes in the network. The 

nodes send data frames; collisions and interferences appear 

more frequently in this case. The delay increases steadily 

for the GM and CP models, up to 160 seconds for 500 ed. 

The delay also increases slightly for the RWP, which is 

less than 20 seconds. 

 
Fig. 11. Delay VS Number ED. 

 

Fig. 12 shows how changing the packet size from 12 to 

216 bytes affects the PDR. It is observed that the PDR 

decreases constantly with increasing the packet size for the 

three mobility models. With 50 E D and one gateway, a 

transmission interval of 5 seconds in a range of 20 m can 

reach a PDR between 75 to 85% with a small payload (12 

bytes), keeping the same parameters but increasing the 

packet size to 216 bytes, the PDR decreases to 30%. 

 
Fig. 12. PDR Vs packet size. 

A. Alpha Value 

In all the above graphs, the GM mobility model uses 

Alpha = 1, as shown in Table I; the following chart shows 

the results when Alpha = 0.5 to notice the random 

variable's impact better. 

The PDR is represented in Fig.13 below as a function 

of the number of nodes up to 500 ED, around 20 meters 

from the gateway. Comparing with Fig.8 (a) (same 

simulation parameter used), except that the GM mobility 

model has changed the value of Alpha = 0.5 instead of 1, 

which clearly shows the impact of Alpha on the result 

obtained. 

  With Alpha = 0.5, the GM model performs better than 

with Alpha =1. In Fig.8 (a), the PDR is less than 20% for 

the three mobility models, while with Alpha = 0.5 relative 

to the GM model, the PDR is greater than 50%, as 

illustrated in Fig. 13. 

 

 
Fig. 13. PDR Vs. Number ED With Alpha = 0.5. 

 

B. Energy Harvester 

 Fig. 14 shows the evolution of the remaining energy in 

the end node during the simulation time, where energy 

recovery mitigates the energy expenditure associated with 

sending packets when the sending period is longer than 5 

seconds (exactly 7 seconds) using the recovery module.  

 
(a) 

 
(b) 

Fig. 14. Impact of Period Send on Energy Remaining. (a) Period 

send packet > 5s. (b) Period send packet < 5s;  
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But when the sending period is less than 5 seconds (3 

seconds), Fig.14(b) shows the impact of the transmission 

speed on the energy recovery module and that the 

remaining energy is not constantly replenished. 

 
TABLE III. MEASUREMENT CONFIGURATION. 

Parameters Value 

Transmit Power (TP) 

Frequency 

Bandwidth 

Packet Length 

Period Send 

Baud 

14 dBm 

433 Mhz 

125 kHz 

12 Byte 

05 second 

115200 bps 

 

V. EXPERIMENTS AND RESULTS 

 In this section, this study describes the experimental 

setup evaluation metrics and presents the results of the 

experience.   The experiment uses the Cube Cell HTCC-

AB01 module based on ASR605x chips, which operates at 

433, 868, and 915 MHz; a lot of migration and 

development has been done to make it perfectly support 

Arduino® to run the LoRaWAN protocol correctly and 

can easily connect lithium, batteries, and solar panels with 

a maximum transmission power of 22 dBm. These 

modules are provided by Heltec Automation [19]. The 

measuring system, which consists of two LoRa Cube Cell 

HTCC-AB01 modules and two computers, is depicted in 

Fig. 15(a). As seen in Fig.15(b), a LoRa module is linked 

to a computer via a serial interface that can enable half-

duplex communication and is powered by a laptop. Data 

packets are sent or received by the system’s computers 

while operational and transmitted between two Cube Cell 

HTCC-AB01 modules through a radio link. Experience 

can evaluate the transmission efficiency using the 

measured packets. 

  During the experiment, the LoRa transmitter 

continuously sends packets of 12 bytes every 05 seconds, 

using two (02) Cube Cell HTCC-Ab01 powered by Laptop 

one is considered as Sender fixed on the car’s roof with a 

height of 150 Cm from the ground level as shown on Fig. 

15(b). The second module represents a receiver node; it is 

mobile because it is placed inside the vehicle and moves at 

a speed between 20-70 m/s.  LoRa node is set to point-to-

point (P2P) transmission mode with a transmit power of 14 

dBm and a 2.5 dBi gain antenna. The carrier frequency is 

433 MHz, and the bandwidth is 125 kHz. The baud rate of 

the serial interface is set to the maximum value of 115200 

bps. The parameters used are illustrated in Table III.  
 

 
(a) 

 
(b) 

Fig. 15. (a)Architecture of measurement system, (b), Measurement 

System. 

 

Finding a test site for long-range LoRa radio 

communications was very difficult. Two (02) sites were 

recommended, the first in the city center of the wilaya of 

Chlef in Algeria, in an urban area at coordinates 

36.1590687 and 1.3239960; this is the most difficult in 

terms of transmission reliability because of high buildings, 

trees, congested areas, and narrow streets. The experiment 

is conducted at 23:30. Experience indicates that the 

maximum distance obtained is 966.97 meters of a line 

sight, as shown in Fig. 16. 

 
Fig. 16. Distance traveled in an urban area. 
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  Google Maps Fig. 16 demonstrates that while the 

transmitter stays in its initial location and does not move 

during the measurement procedure, the receiver position 

continues to move until it reaches the farthest point of 

966.97 meters of line of sight. 

Fig. 17 shows the experimental Received Signal 

Strength Indicator (RSSI) about the distance traveled in 

meters. The measurement of signal reception at the 

receiver, indicated by the value of the radio signal strength 

(RSSI), shows a deal that continues to decrease with 

increasing distance.  This is consistent with the nature of 

long-distance communication transmission, i.e., the signal 

strength will weaken as the distance between transmitter 

and receiver increases. 

 
Fig. 17. RSSI (dBm) vs distance (M) in an urban area. 

 

 The Fig.18 displays the number of lost packets about 

distance. A linear increase in incorrect and rejected packets  

 

is affected by interferences, and since the Lora receiver 

module is mobile, remoteness from the transmitter module 

will be followed by a decrease in signal strength.  

 

 
Fig. 18. Lost Packet vs Distance (M) in an urban area. 

 

The second experiment was conducted in an open field 

in a rural area with fewer obstacles at coordinates 

36,248,630,9, 13,319,770. With the same parameters, the 

receiver module moves until it reaches the furthest 

distance. The location map from Google Maps and the 

measurement points are shown in Fig. 19. Experience 

indicates that the maximum length obtained is 1,310 

meters of the line of sight. 

Fig.20 shows the RSSI about the distance traveled in 

meters. RSSI decreases with increasing distance. The 

signal strength measurement at the receiver is indicated by 

the lowest RSSI value of −98 dBm, and the highest RSSI 

value of −37 dBm. The impact of distance on signal 

strength is clearly illustrated. 

 
Fig. 19. Distance traveled in a rural area. 
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Fig. 20. RSSI (dBm) vs Distance (M) in a rural area. 

 
Fig. 21. Lost Packet vs Distance (M) in a rural area. 

 

 The number of lost packets about the distance is shown 

in Fig.21. The graph shows a linear increase in lost 

packets—a high RSSI results in low packet loss. However, 

packet loss becomes evident when RSSI falls below -90 

dBm and increases rapidly as RSSI decreases.  RSSI is 

impacted by distance, and consequently the number of lost 

packets is affected by RSSI. 

VI. CONCLUSION 

This paper examines the impact of mobility models on 

LoraWan performance using both NS3 simulations and 

real-world experiments across various scenarios. This 

research examines a comprehensive evaluation of the top 

three frequently employed mobility models in academic 

circles: Random Way Point (RWP), Gauss Markov (GM), 

and Constant Position (CP) Model. The performances are 

analyzed using different metrics (delay, packet delivery 

ratio, energy remaining, packet size, radius, and number of 

nodes). The simulation results indicate that the GM model 

performs well regarding energy consumption and radius; 

the GM model with Alpha = 1 performs better than the 

other two models, and Alpha = 0.5 performs even better in 

terms of PDR. At the same time, the RWP demonstrates 

positive results regarding delays. In studying protocols or 

applications that utilize LoRaWAN, it is imperative to 

consider the relevant mobility parameters. This 

consideration is crucial for ensuring the efficiency and 

reliability of the system, as well as for optimizing its 

overall performance. Therefore, it is recommended that 

researchers and industrials alike give due attention to this 

critical aspect of LoRaWAN-based systems. Experiments 

conducted with the Cube Cell HTCC-AB01 indicate 

network performance matches simulations, particularly in 

rural areas. In forthcoming times, there will be an emphasis 

on examining a greater number of radio elements and 

parameters, with a particular focus on the interference that 

may arise between different networks. 
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