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New computable algorithms for smooth multiobjective
optimization problems

Sorin-Mihai Grad∗ Tibor Illés † Petra Renáta Rigó ‡

August 28, 2024

Abstract

We propose new practical algorithms for solving smooth multiobjective opti-
mization problems based on determining joint decreasing directions via suitable
linear programming problems. The presented iterative method is specialized for
unconstrained, sign constrained and linearly constrained multiobjective optimiza-
tion problems. In all cases we show that the objective function values sequence
is decreasing with respect to the considered nonnegative orthant while the iterates
are feasible. Furthermore, we prove that every accumulation point of the sequence
generated by the algorithm, if any, is a substationary point to the considered mul-
tiobjective optimization problem, and, under convexity assumptions, it is actually
a weakly Pareto efficient (also known as weakly Pareto-optimal) point. Different to
similar algorithms from the literature, the ones proposed in this work involve joint
decreasing directions that are easily computable in polynomial time by solving linear
programming problems. The computational performance of our algorithms has been
illustrated on convex unconstrained and convex linearly constrained multiobjective
optimization problems.

Keywords. Continuous Optimization, multiple objective programming, joint decreas-
ing direction, linear programming, (weakly) Pareto efficient solution

1 Introduction
Multiobjective optimization problems consist in minimizing several objective functions at
the same time, such problems arising in different fields, such as engineering [9], statistics
[6], management science [10], etc. The most used solution notions for such problems are
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the Pareto and weakly Pareto efficient ones, see [4,23]. A point is called Pareto efficient if
there does not exist another point with the same or smaller objective function value (with
respect to the corresponding nonnegative orthant), such that there is a strict decrease in
at least one objective function value. A point is called weakly Pareto efficient if there does
not exist another point with strict decrease in all its objective values. These notions have
also been extended to cases when other ordering cones are used instead of the nonnegative
orthant and even to problems with infinitely-dimensional image space [4].

One of the main approaches to handle multiobjective optimization problems is the
scalarization technique, see [11,23,25]. However, the scalar optimization problem attached
to a multiobjective one often turns out to be unbounded (see, for instance [5]), providing
thus no valuable input in solving the original problem. This motivated the introduction
of algorithms capable of directly solving multiobjective problems, most of which being
direct extensions of iterative methods for tackling scalar optimization problems, such as
the steepest descent method [19], the Barzilai-Borwein descent method [7], the conjugate
gradient method [24], different versions of the projected gradient method [2,14,17], New-
ton’s method [12], and even the proximal point algorithm [5, 16] in the nonsmooth case.
All these algorithms have a common feature in that there is a decrease (with respect
to the partial ordering induced by the underlying cone) in the vector objective value at
each iteration. Convergence results for the sequences produced by these methods were
provided under different assumptions. While the determination of the descent direction
plays a key role in these algorithms, in most of the contributions to this direction this
step has only a theoretical value and, consequently, no numerical results were provided.
Moreover, inexact versions of some of these methods were proposed in the literature in
order to facilitate their implementation. Our aim is to propose new algorithms for solving
different types of multiobjective optimization problems, where the descent directions are
easily computable in polynomial time.

These new algorithms for solving multiobjective optimization problems are based on
an idea by Illés and Lovics [20] from 2018. They proposed some techniques for determining
joint decreasing directions for both unconstrained and linearly constrained multiobjective
optimization problems. Afterward, a subdivision technique was employed for approxi-
mating the whole weakly Pareto efficient set of linearly constrained convex multiobjective
optimization problems, and these theoretical achievements were illustrated by computa-
tional results obtained while solving the classical Markowitz model.

We propose a generic algorithm for solving multiobjective optimization problems where
joint decreasing directions are used in order to guarantee descending values of the objec-
tive vector function. We discuss afterward the differences between it and other similar
algorithms considered in the literature. In particular, we show that joint decreasing di-
rections for these problems can be computed in polynomial time using results from linear
programming, making thus our method practical in the sense that numerical results can
be obtained easily for it. Then, we specialize the proposed algorithm for unconstrained,
sign constrained and linearly constrained multiobjective optimization problems. In or-
der to illustrate the applicability of the proposed methods, we provide numerical results.
From the test examples available in the literature we chose a convex unconstrained mul-
tiobjective optimization problem to illustrate how our algorithm works. After that, we
modified the selected test problem by adding linear constraints in such a way, that some
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of the weakly Pareto efficient points became infeasible for the constrained problem. The
computational results in the constrained case show the effect of the linear constraints both
on the running time and on the obtained weakly Pareto efficient set.

The paper is organized as follows. In Section 2 some basic concepts and definitions
related to multiobjective/vector optimization problems are presented. In Section 3 we
propose a generic scheme based on the computation of joint decreasing directions for
solving multiobjective optimization problems, and we point out some differences between
it and some of the similar algorithms from the literature. In Section 4, the new algorithm
for unconstrained multiobjective optimization problems is defined. Section 5 is devoted
to the algorithm for multiobjective optimization problems with sign constraints, while in
Section 6, the new algorithm variant for linearly constrained multiobjective optimization
problem is discussed. In all cases we show that the objective vector function values
sequence is decreasing with respect to the natural partial ordering of Rm. Furthermore, we
prove that every accumulation point of the generated sequence, if any, is a substationary
point, and, under convexity hypotheses imposed on the objective vector function and on
the feasible set, a weakly Pareto efficient one. In Section 7 we provide numerical results
in order to show the efficacy and efficiency of the new algorithms. Section 8 contains
concluding remarks and ideas for future research.

We use the following notations throughout the paper. Let Rm
⊕ and Rm

+ be the nonnega-
tive and the positive orthant in the m-dimensional Euclidean space (m ≥ 2), respectively.
We consider the partial ordering induced by Rm

+ , i.e. for x, y ∈ Rm, x≦y if y−x ∈ Rm
⊕ and

x < y if y−x ∈ Rm
+ . We write x ≤ y when x ≦ y and x ̸= y. We also use analogously for

m-dimensional vectors the notations ≧, ≥ and >. For real numbers we use the standard
notations <, >, ≤, and ≥. Vectors are denoted by lowercase boldface Latin letters, e
is the n-dimensional all-one vector. Furthermore, ∥ · ∥ denotes the standard Euclidean
norm. Let U ⊆ Rn open and F = (F1, . . . , Fm)⊤ : U → Rm continuously differentiable,
i.e. F ∈ C1(U,Rm). The Jacobian of F at x ∈ U is denoted by JF (x) ∈ Rm×n and the
Hessian of Fj (j = 1, . . . , m) at x ∈ U is ∇2Fj(x). For simplicity, when Fj is convex (on
U), j = 1, . . . , m, instead of calling F Rm

⊕ -convex (on U) we say that it is convex (on U).

2 Basic results in multiobjective optimization
In this section we introduce the general multiobjective optimization problem and the
concepts of (weakly) Pareto efficient solutions. Let F ⊆ Rn be closed with nonempty
interior and F = (F1, . . . , Fm)⊤ : F → Rm. The general multiobjective optimization
problem we consider is

Min F (x)
x ∈ F .

}
(GMOP )

From now on we assume F to be continuously differentiable on int F . We call (GMOP )
convex when F and F are convex. We say that x̄ ∈ F is a substationary point to (GMOP )
if there exists a w ∈ Sm := {w ∈ Rm

⊕ : e⊤w = 1}, which satisfies w⊤[JF (x̄)] = 0. This
notion is defined by means of a necessary condition for the weak Pareto efficiency of a
point to (GMOP ) and its origin can be traced back to [22], arguably the first paper on
multiobjective optimization.
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We say that x̄ ∈ F is a stationary (critical) point to (GMOP ) if R(JF (x̄))∩(−Rm
+ ) =

∅, where R(·) denotes the image set of the considered mapping. Hence, x̄ ∈ F is stationary
to (GMOP ) if and only if for all v ∈ Rn we have JF (x̄)v ≮ 0, that is for every v ∈ Rn

there exists a j = j(v) such that

(JF (x̄)v)j = ∇Fj(x̄)⊤v ≥ 0,

and this implies
max

i=1,...,m
∇Fj(x̄)⊤v ≥ 0 ∀v ∈ Rn.

Definition 2.1 We say that x∗ ∈ F is a

• weakly Pareto efficient solution to (GMOP ) if no feasible solution x ∈ F exists
satisfying F (x) < F (x∗);

• Pareto efficient solution to (GMOP ) if no feasible solution x ∈ F exists satisfying
F (x) ≤ F (x∗).

Pareto solutions to (GMOP ) are also weakly Pareto ones to it, while the opposite
implication does not hold in general. For a discussion on how to guarantee the latter,
see [5, Section 4]. Since 1952 several methods have been proposed for finding one of
the (weakly) Pareto efficient solutions to (GMOP ). Markowitz considered the following
weighted optimization problem

min w⊤F (x)
x ∈ F

}
(WOP (w)),

where w ∈ Sm. The next statement shows that (WOP (w)) can be used for determining
the weakly Pareto efficient solutions to (GMOP ), see [4, 8, 23, 25].

Theorem 2.1 Let (GMOP ) and the corresponding (WOP (w)) be given for a w ∈ Sm.
Assume that x∗ ∈ F is an optimal solution to (WOP (w)), then x∗ is a weakly Pareto
efficient solution to (GMOP ).

For the completeness of the discussion we mention the following theorem, which shows
that in the convex case each Pareto efficient solution to (GMOP ) can be determined
by solving (WOP (w)) defined by means of a suitable weights vector w ∈ Sm ∩ Rm

+ ,
see [8, 23,25].

Theorem 2.2 Let (GMOP ) be a convex multiobjective optimization problem, and as-
sume that x∗ ∈ F is a Pareto efficient solution to (GMOP ). Then there is a weight
vector w ∈ Sm ∩ Rm

+ and corresponding (WOP (w)) whose optimal solution is x∗.

Remark 1 A point x̄ ∈ F is substationary to (GMOP ) if and only if there exists a
w ∈ Sm such that w⊤∇F (x̄) = 0. This is a necessary condition for the local optimality of
x̄ to (WOP (w)) and becomes sufficient for its (global) optimality when F is convex (on
F) and F is convex. Hence, by Theorem 2.1, when (GMOP ) is convex, a substationary
point to it is weakly Pareto efficient to it.
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Now we present the definition of joint decreasing directions which will be used in this
paper.

Definition 2.2 (Illés and Lovics [20], see also [26]) Given (GMOP ) and a feasible
point x ∈ F , a vector v ∈ Rn \ {0} is said to be a

• joint decreasing direction of F at point x if there exists h1 > 0, such that, for every
h ∈ (0, h1] one has F (x + hv) < F (x);

• feasible joint decreasing direction of F if it is a joint decreasing direction of F at x
and there exists h2 > 0, such that, for every h ∈ (0, h2], x + hv ∈ F holds as well.

Remark 2 A vector v ∈ Rn is a joint decreasing direction of F if and only if [JF (x)] v < 0.

Let DF (x) = {v ∈ Rn : [JF (x)] v < 0} be the set of all joint decreasing directions of F
at x. A method for determining them relies on employing the quadratic programming
problem

min
w∈Sm

w⊤
(
JF (x) [JF (x)]⊤

)
w (QOP (x)).

Theorem 2.3 (Schäffler et al. [26], see [20] for a more direct proof) Let (GMOP ),
a point x ∈ Rn, and the associated (QOP (x)) be given. Let F : Rn → Rm be a continu-
ously differentiable (and convex) vector function, and w∗ ∈ Rm denote the optimal solution
to (QOP (x)). We define the vector q = [JF (x)]⊤w∗ ∈ Rn. If q = 0, then x is a substa-
tionary (weakly Pareto efficient) point to (GMOP ), otherwise −q is a joint decreasing
direction of F at point x.

A similar outcome can be reached by introducing, for x ∈ Rn, the following linear
programming problem

max
(q,q0)∈Rn×R

q0

[JF (x)]q + q0e≦0
0 ≤ q0 ≤ 1

 (LP (x)).

Theorem 2.4 (Illés and Lovics [20]) Let (GMOP ), a point x ∈ Rn and the associated
(LP (x)) be given. Let F : Rn → Rm be a continuously differentiable (and convex) vector
function. Then (LP (x)) always has an optimal solution (q∗, q∗

0). There are two cases for
the optimal value of (LP (x)), either q0 = 0 when x is a substationary (weakly Pareto
efficient) point to (GMOP ), or q0 = 1 in which case q∗ is a joint decreasing direction of
F at x.
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Algorithm 3.1 Generic scheme for solving GMOPs
[Step 1] take x0 ∈ F = Rn, 0 < β < 1, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] if DF (xk) = ∅ then STOP (xk is a substationary solution to (GMOP ));
[Step 2] otherwise select a joint decreasing direction vk ∈ DF (xk), compute uk =
JF (xk) vk

[Step 3] choose tk as the largest t ∈ J s.t. F (xk + t vk) ≦ F (xk) + βt uk

[Step 4] let xk+1 = xk + tk vk and k = k + 1; go to Step 2

3 Generic scheme for solving general multiobjective
optimization problems

Based on the above discussion, we propose in Algorithm 3.1 a generic scheme for solving
GMOPs that makes use of joint decreasing directions.

In the following subsections we recall several algorithms for solving GMOPs from the
literature. The key difference between these methods is in the second step of Algorithm
3.1, namely the way how the descent directions are defined. In each case we will point
out what is this step.

3.1 Steepest descent algorithm
In this subsection we focus on the steepest descent algorithm introduced by Fliege and
Svaiter [11] for solving unconstrained multicriteria optimization problems. It is proven
that the method converges to a critical point to (GMOP ). In [19], the algorithm is refined
in order to solve smooth unconstrained multiobjective optimization problems, where the
vector-minimization is considered with respect to a closed convex ordering cone. The
authors prove that every accumulation point of the generated sequence is critical. The
sketch of the steepest descent algorithm used in these papers is presented in Algorithm
3.2.

Algorithm 3.2 Steepest descent algorithm
[Step 1] take x0 ∈ F = Rn, 0 < β < 1, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] determine the steepest descent direction vk = argminv∈Rn

{
φxk(v) + 1

2∥v∥2
}

and
θk = φxk(vk) + 1

2∥vk∥2, where φx(v) = max
j=1,...,m

∇Fj(x)⊤v; if θk = 0 : STOP
[Step 3] choose tk as the largest t ∈ J s.t. F (xk + tvk) ≦ F (xk) + βtJF (xk)vk

[Step 4] let xk+1 = xk + tkvk and k = k + 1; go to Step 2

Step 2 of Algorithm 3.1 and its counterpart in Algorithm 3.2 are different, as the first
one delivers a joint decreasing direction, while the other a steepest descent direction ob-
tained by solving the minimax quadratic optimization problem infv∈Rn

{
φxk(v) + 1

2∥v∥2
}
.

Moreover, Algorithm 3.2 requires the additional computation of θk, k ≥ 0. Last but not
least, the stopping criteria of the two algorithms differ as well.
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3.2 Projected gradient method
A projected gradient algorithm for solving smooth multiobjective optimization problems
consisting in vector-minimizing over a closed convex set F ⊆ Rn a vector function F : F →
Rm with respect to the partial ordering induced by a closed convex cone was proposed
by Graña-Drummond and Iusem [17]. They showed that any accumulation point of the
sequence generated by this method converges to a stationary point to the considered
problem. In the convex case and under some mild assumptions they also show convergence
of the sequence generated by the algorithm to a weakly Pareto efficient solution to the
considered problem. Improvements and extensions of the method are proposed in [14,15].
The sketch of the method adapted to the present framework is presented in Algorithm
3.3.

Algorithm 3.3 Projected gradient algorithm
[Step 1] take x0 ∈ F ⊆ Rn, 0 < β < 1, σ > 0, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] determine the descent direction vk = argminv∈F−xk

{
σφxk(v) + 1

2∥v∥2
}

and θk =
φxk(vk) + 1

2∥vk∥2, where φx(v) = max
j=1,...,m

∇Fj(x)⊤v; if θk = 0 : STOP
[Step 3] choose tk as the largest t ∈ J s.t. F (xk + tvk) ≦ F (xk) + βtJF (xk)vk

[Step 4] let xk+1 = xk + tkvk and k = k + 1; go to Step 2

The differences between Algorithm 3.1 and Algorithm 3.3 are basically the same like
between the first one and Algorithm 3.2, with the additional constraint that the steepest
descent direction in Step 2 of Algorithm 3.3 is chosen so that the new iterate is feasible.

3.3 Conjugate gradient algorithm
Lucambio Pérez and Prudente [24] have recently introduced nonlinear conjugate gradient
methods for finding critical points of vector functions with respect to a partial ordering
induced by a closed convex pointed cone with nonempty interior. No convexity assumption
is imposed on the objective vector function. Under inexact line search, the authors prove
that the sequences generated by the method find critical points to (GMOP ). The sketch of
their basic algorithm is given in Algorithm 3.4, particularized for the framework considered
in our paper.

Algorithm 3.4 Conjugate gradient algorithm
[Step 1] take x0 ∈ F = Rn, 0 < β < 1, (σk)k > 0, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] determine the descent direction vk = argminv∈Rn

{
φxk(v) + 1

2∥v∥2
}
, where

φx(v) = max
j=1,...,m

∇Fj(x)⊤v; if vk = 0 : STOP; define dk = dk−1 + σkvk (d0 = v0)
[Step 3] choose tk as the largest t ∈ J s.t. F (xk + tdk) ≦ F (xk) + βtJF (xk)dk

[Step 4] let xk+1 = xk + tkdk and k = k + 1; go to Step 2

Here we can also see that when comparing Algorithm 3.1 and Algorithm 3.4 the key
difference can be found in Step 2, where the descent direction is computed in each case in
a specific way. Furthermore, the use of (σk)k > 0 can be also noticed, and the stopping
criteria differ.
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3.4 Newton’s method
In this subsection we present the extension of Newton’s method proposed by Fliege,
Graña-Drummond and Svaiter [12] for solving GMOPs. The objective vector functions
are supposed to be twice continuously differentiable and locally strongly convex. Under
these hypotheses the method is locally superlinearly convergent to Pareto efficient points
when the objective vector function is cone-convex. Moreover, in [18] an improvement is
proposed, where quadratic convergence of the generated sequence is achieved. Below we
present the scheme of multiobjective Newton’s method in Algorithm 3.5.

Algorithm 3.5 Newton’s method
[Step 1] take x0 ∈ F ⊆ Rn, 0 < β < 1, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] determine the Newton direction sk = argmins∈Rn max
j=1,...,m

{
∇Fj(xk)⊤s + 1

2s⊤∇2Fj(xk)s
}

and θk = inf
s∈Rn

max
j=1,...,m

{
∇Fj(xk)⊤s + 1

2s⊤∇2Fj(xk)s
}
; if θk = 0 : STOP

[Step 3] choose tk as the largest t ∈ J s.t.
{

xk + tsk ∈ F
Fj(xk + tsk) ≤ Fj(xk) + βtθk, j = 1, . . . , m

[Step 4] let xk+1 = xk + tksk and k = k + 1; go to Step 2

Even though Newton’s algorithm is a second order method, while the other ones
considered in this paper are first order ones, its general scheme is consistent with the
others. Of course, Step 2 in Algorithm 3.5 is not the one in Algorithm 3.1 since Newton’s
direction is obtained by minimizing the max-ordering scalarization of the variations on
the quadratic approximation of the objective vector function. Furthermore, Step 3 and
the stopping criteria differ in this case, too.

To sum up, the algorithms presented in this section show that the determination of the
descent directions and the solutions of the subproblems appearing in Step 2 (in each case)
play a crucial role in these methods. However, out of the previously mentioned papers
only in few cases one can read about numerical results or implementation techniques, and
in those cases inexact versions of these methods were considered. Our aim is to introduce
new algorithms based on Algorithm 3.1 where the subproblems are easily solvable in an
efficient and exact manner. In the following section we propose a new algorithm for
solving unconstrained multiobjective optimization problems. After that, we present other
variants of the new algorithm for solving smooth multiobjective optimization problems
with sign constraints and linear constraints, respectively.

4 New algorithm for solving unconstrained multiob-
jective optimization problems

In this section we present the new algorithm we propose for solving unconstrained mul-
tiobjective optimization problems which involves linear programming subproblems. The
main steps of the method are given in Algorithm 4.1.

Following the result of Illés and Lovics [20] we examine the case (using notations from
Step 2 of Algorithm 4.1)

[JF (x)]q + q0e≦0, q0 > 0. (1)
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Algorithm 4.1 New algorithm for solving unconstrained multiobjective optimization
problems
[Step 1] take x0 ∈ F = Rn, 0 < β < 1, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] determine the joint decreasing direction q ∈ Rn by solving

max
(q,q0)∈Rn×R

q0

JF (xk)q + q0 e ≦ 0
0 ≤ q0 ≤ 1

[Step 3] if q0 = 0 then STOP (xk is a substationary solution to (GMOP ));
[Step 2] otherwise vk := q;
[Step 4] choose tk as the largest t ∈ J s.t. F (xk + t vk) ≦ F (xk) + βt JF (xk)vk

[Step 5] let xk+1 = xk + tk vk and k = k + 1; go to Step 2

If system (1) has a solution (q, q0), then ((1/q0)q, 1) solves it, too, so the optimal value
of the objective function in Step 2 of Algorithm 4.1 is 1, in which case q0 = 1 in Step 3.
This means that

[JF (x)]q≦ − e
so q is a joint decreasing direction of the vector function F .

If system (1) has no solution, then the optimal value of the objective function is 0
(as (0, 0) is feasible to the considered linear programming problem), and from a variant
of the Farkas Lemma (see [20]) we know that there exists a w ∈ Rm which satisfies the
following equality system

w⊤[JF (x)] = 0, e⊤w = 1, w≧0. (2)

This means that if the optimal value of the problem (LP (x)) is 0, then x is a substationary
point to (GMOP ).

Lemma 4.1 Let (GMOP ) be given with F = Rn and the vector function F : Rn → Rm

continuously differentiable. Assumming that Algorithm 4.1 starting at x0 ∈ F produces
for 0 < β < 1 the sequence of points {xk}, then

F (xk+1) < F (xk), ∀k≥ 0. (3)

Proof. Let k ≥ 0. Since vk is a joint decreasing direction computed in Step 2 of
Algorithm 4.1, we have [JF (xk)] vk ≦ −e. Therefore, in Step 4, choose tk as the largest
t ∈ J such that

F (xk + t vk) ≦ F (xk) + βt JF (xk)vk ≦ F (xk) − βt e,

where t > 0. Selecting tk and restructuring the previous inequality, we get

F (xk+1) − F (xk)≦ − βtk e < 0, (4)

where xk+1 = xk + tk vk from Step 5 of Algorithm 4.1. Thus we proved (3). ■
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In the following statement we show that the objective vector function values sequence
{F (xk)} generated by Algorithm 4.1 is Rm

⊕ -decreasing.

Theorem 4.2 Let (GMOP ) be given with F = Rn, and the vector function F : Rn → Rm

continuously differentiable (and convex). Assume that Algorithm 4.1 starting at x0 ∈ F
produces for 0 < β < 1 the sequence of points {xk}. Then, every accumulation point of
{xk}, if any, is a substationary (weakly Pareto efficient) point to (GMOP ).

Proof. Let x̄ be an accumulation point of the sequence {xk}. We should consider now a
convergent subsequence of {xk}, but for simplicity we identify it with the whole sequence.
Let k ≥ 0. We have

lim
k→∞

(
F
(
xk+1

)
− F

(
xk
))

= F (x̄) − F (x̄) = 0 (5)

and from (4) we get
F
(
xk
)

− F
(
xk+1

)
≧βtke> 0. (6)

From (5) and (6) follows that
lim

k→∞
tk = 0. (7)

On the other hand,

0 = lim
k→∞

∥xk+1 − xk∥ = lim
k→∞

∥xk + tkvk − xk∥ = lim
k→∞

∥tkvk∥. (8)

From (7) and (8) it follows that {vk} is bounded. Hence, there exists an accumulation
point v̄ ∈ Rn of the sequence of joint decreasing directions {vk} generated by Algorithm
4.1. Therefore, there exists a subsequence {vkj } such that

lim
kj→∞

vkj = v̄, and lim
kj→∞

tkj
= 0.

This means that for a fixed quite large j0∈ N there exists a positive integer γ > 1 such
that for all j > j0 we have

tkj
<

1
2γ

, (9)

which means that the inequality in Step 4 of the Algorithm 4.1 is not satisfied for t = 1
2γ ,

hence
F
(

xkj + 1
2γ

vkj

)
≦̸ F

(
xkj

)
+ β

2γ
JF

(
xkj

)
vkj . (10)

Thus, for each j> j0 there exists i = i(kj) ∈ {1, . . . , m} such that

Fi

(
xkj + 1

2γ
vkj

)
> Fi

(
xkj

)
+ β

2γ
∇Fi

(
xkj

)⊤
vkj . (11)

Because the indices in {1, . . . , m} are finitely many, in the infinite sequence {kj} at
least one of them, say i0 should appear infinitely many times. The occurrence of i0 ∈
{1, 2, . . . , m} defines the subsequence {kjl

}. Then, for all l = 1, 2, . . . we have

Fi0

(
xkjl + 1

2γ
vkjl

)
> Fi0

(
xkjl

)
+ β

2γ
∇Fi0

(
xkjl

)⊤
vkjl . (12)
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We take the limit l → ∞ and we get

Fi0

(
x̄ + 1

2γ
v̄
)

≥ Fi0 (x̄) + β

2γ
∇Fi0 (x̄)⊤ v̄. (13)

This inequality holds for the positive integer γ defined by (9), and for i0, hence JF (x̄)v̄ ≮
0, and it follows that

max
i=1,...,m

∇Fi(x̄)⊤v̄ ≥ 0. (14)

From (14) follows that there exists w̄ ∈ Rm that solves (2) for the given x̄. Using Theorem
2.4 we get that x̄ is a substationary point to (GMOP ). Finally, in the convex case Remark
1 yields the assertion. ■

In the following section we introduce a similar algorithm for solving multiobjective
optimization problems with sign constraints.

5 Multiobjective optimization problems with sign con-
straints

Consider now the following multiobjective optimization problems with sign constraints

Min F (x)
x≧0

}
(SMOP ).

Let the vector x= (x1, . . . , xn)⊤ ≧0 be given. Then, we can define the following two sets
of indices

I+(x) = {i∈ {1, . . . , n} : xi > 0},

I0(x) = {i∈ {1, . . . , n} : xi = 0},

denoted simpler by I+ and I0, respectively, when it is clear to which vector we refer. Using
them we partition the columns of the matrix JF (x) into two parts denoted by JF (x)I0

and JF (x)I+ . Consider the linear programming problem

max
(q,q0)∈Rn×R

q0

[JF (x)]I+u + [JF (x)]I0z + q0 e ≦ 0
z≧0

0 ≤ q0 ≤ 1.


(LPS(x))

The following statement is the counterpart of Theorem 2.4 for multiobjective opti-
mization problems with sign constraints, exhibiting the connection between (LPS(x))
and the substationarity of x ∈ Rn

⊕ to (SMOP ) or the determination of a feasible joint
decreasing direction of F on Rn

⊕.

Theorem 5.1 (Illés and Lovics [20]) Let (SMOP ), x≧0 a feasible point of it and the
associated (LPS(x)) be given. Let the vector function F : Rn → Rm be continuously

11



differentiable (and convex) on F = Rn
⊕. Then, (LPS(x)) always has an optimal solution

(u∗, z∗, q∗
0). There are two possibilities for the optimal value of (LPS(x)), either q∗

0 = 0
which means that x is a substationary (weakly Pareto efficient) point to (SMOP ), or
q∗

0 = 1 in which case q = (u∗, z∗)⊤ is a feasible joint decreasing direction of the vector
function F on Rn

⊕.

The new method for solving (SMOP ) is given in Algorithm 5.1.

Algorithm 5.1 Algorithm for solving sign constrained multiobjective optimization prob-
lems
[Step 1] take x0 ∈ F = Rn

⊕, 0 < β < 1, k = 0, J =
{

1
2n : n ∈ N

}
[Step 2] determine the (feasible) joint decreasing direction q =

(
u∗

z∗

)
= (q1, . . . , qn)⊤ ∈

Rn from
max

(q,q0)∈Rn×R
q0

[JF (xk)]I+ u + [JF (xk)]I0 z + q0 e≦0
0 ≤ q0 ≤ 1, z≧0, q = (u, z)⊤

[Step 3] if q0 = 0 then STOP (xk is a substationary solution to (SMOP ));
[Step 2] otherwise compute σ = min{ xk

i

−qi
: qi < 0 and i ∈ I+};

[Step 2] [Step 2] if σ ≥ 1 then vk := q;
[Step 2] [Step 2] otherwise vk := 1

σ
q

[Step 4] choose tk as the largest t ∈ J s.t.

F (xk + t vk) ≦ F (xk) + βt JF (xk)vk

[Step 5] let xk+1 = xk + tk vk and k = k + 1; go to Step 2

Lemma 5.2 Let (SMOP ) be given with F = Rn
⊕ and the vector function F : Rn → Rm be

continuously differentiable on F . Assume that Algorithm 5.1 starting at x0 ∈ F produces
the sequence of points {xk}. Then

F (xk+1) < F (xk), ∀k≥ 0. (15)

Proof. Since vk is a feasible joint decreasing direction computed in Step 2 of Algorithm
5.1, we have

[JF (xk)]I+u∗ + [JF (xk)]I0z∗ = JF (xk) vk≦ − e, and z∗≧0.

Therefore, in Step 4 of Algorithm 5.1 choose tk as the largest t ∈ J =
{

1
2n : n ∈ N

}
such

that
F (xk + t vk) ≦ F (xk) + βt JF (xk)vk ≦ F (xk) − βt e,

and xk + t vk≧0, where t > 0. Selecting tk and restructuring the previous inequality, we
get

F (xk+1) − F (xk)≦ − βtk e < 0, (16)
where xk+1 = xk + tk vk. Thus we proved (15). ■
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Theorem 5.3 Let (SMOP ) be given with F = Rn
⊕, and the vector function F : Rn →

Rm continuously differentiable (and convex) on F . Assume that Algorithm 5.1 starting at
x0 ∈ F produces the sequence of points {xk}. Then, every accumulation point of {xk}, if
any, is a substationary (weakly Pareto efficient) point to (SMOP ).

Proof. Let x̄ be an accumulation point of the sequence {xk}. The proof goes along the
lines of the one of Theorem 4.2, one only needs to use Lemma 5.2 instead of Lemma 4.1,
and then all the steps (5) – (12) hold.

Summarizing, the occurrence of i0 ∈ {1, 2, . . . , m} defines the subsequence {kjl
}. Then,

for all l = 1, 2, . . . we have

Fi0

(
xkjl + 1

2γ
vkjl

)
> Fi0

(
xkjl

)
+ β

2γ
∇Fi0

(
xkjl

)⊤
vkjl ,

with the additional information that

∇Fi0

(
xkjl

)⊤
vkjl =

[
∇Fi0

(
xkjl

)]⊤
I+

ukjl +
[
∇Fi0

(
xkjl

)]⊤
I0

zkjl ,

where
I = I+(xkjl ) ∪ I0(xkjl ), vkjl |I+ = ukjl and vkjl |I0 = zkjl , zkjl≧0.

In the infinite sequence of points {xkjl } generated by Algorithm 5.1, there should be
a partition (Î+, Î0) of I that occurs infinitely many times. This is due to the fact that
there are only finitely many possible different partitions of the index set I. Let us define
the infinite index sequence ι(l) as a subsequence of kjl

where the partition (Î+, Î0) occurs.
For xι(l)+1 = xι(l) + 1

2γ vι(l), we have

Fi0

(
xι(l)+1

)
> Fi0

(
xι(l)

)
+ β

2γ

([
∇Fi0

(
xι(l)

)]⊤
Î+

uι(l) +
[
∇Fi0

(
xι(l)

)]⊤
Î0

zι(l)
)

,

and zι(l)≧0 for all indices ι(l). We take the limit l → ∞ obtaining

x̄ = lim
l→∞

xι(l), v̄ = lim
l→∞

vι(l), ū = lim
l→∞

uι(l), z̄ = lim
l→∞

zι(l), with

Fi0

(
x̄ + 1

2γ
v̄
)

≥ Fi0 (x̄) + β

2γ

(
[∇Fi0 (x̄)]⊤I+

ū + [∇Fi0 (x̄)]⊤I0
z̄
)

, (17)

and z̄≧0. Inequality (17) holds for the positive integer γ defined by (9), and for i0, hence

JF (x̄)v̄ = [JF (x̄)]I+
ū + [JF (x̄)]I0

z̄ ≮ 0, and z̄≧0.

Therefore, the system of linear inequalities in (u, z) ∈ Rn

[JF (x̄)]I+
u + [JF (x̄)]I0

z < 0, and z≧0 (18)

has no solution for the given feasible solution x̄≧0. Applying Theorem 5.1, we get that
x̄ is a substationary (weakly Pareto efficient) point to (SMOP ). ■

13



6 Linearly constrained multiobjective optimization
problem

In this section we consider linearly constrained multiobjective optimization problems of
the form

Min F (x)
Ax = b

x≧0

 (LMOP ),

where A ∈ Rm×n is a matrix of rank m (m ≤ n) and b ∈ Rm. Denote the feasible set of
(LMOP ) by

P = {x ∈ Rn
⊕ : A x = b}

and assume it nonempty. Like in Section 5, given x≧0, we define the following two sets
of indices

I+ = {i : xi > 0}, and I0 = {i : xi = 0},

used for partitioning the columns of the matrix JF (x) into two parts denoted by JF (x)I0

and JF (x)I+ , respectively. Using them, we define a linear programming problem that
will be employed for deriving feasible joint decreasing directions to a generalized linearly
constrained multiobjective optimization problem at a point x ∈ P , namely

max
(q,q0)∈Rn×R

q0

[JF (x)]I+ u + [JF (x)]I0 z + q0 e≦0
AI+ u + AI0 z = 0

z≧0
0 ≤ q0 ≤ 1.


(LPL(x))

When x ∈ P , the first constraint of (LPL(x)) guarantees that a solution (u, z) ∈ Rn

defines in case q0 = 1 a joint decreasing direction at x for the objective vector function
F . The second and the third constraints of (LPL(x)) guarantee the feasibility of the
joint decreasing direction at x for problem (LMOP ). The following statement is the
counterpart of Theorem 2.4 and Theorem 5.1 for multiobjective optimization problems
with linear constraints, and, since it contains several modifications with respect to them,
we provide its proof as well. The first occurrence of a similar result has been published by
Illés and Lovics [20], however, the proof given below slightly differs from the one available
there.

Theorem 6.1 Let (LMOP ) with a feasible point x ∈ P and the associated (LPL(x)) be
given. Let the vector function F : Rn → Rm be continuously differentiable (and convex)
on F = P. Assume that P is bounded. Then, (LPL(x)) always has an optimal solution
(u∗, z∗, q∗

0)∈ Rn × R. There are two possibilities for the optimal value of (LPL(x)), either
q∗

0 = 0 which means that x is a substationary (weakly Pareto efficient) point to (LMOP ),
or q∗

0 = 1 which means that q = (u∗, z∗)⊤ is a feasible joint decreasing direction of the
vector function F on P.
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Proof. The point (u, z, q0) = (0, 0, 0) is a feasible solution to (LPL(x)). Therefore,
(LPL(x)) has optimal solutions since it has feasible solutions and its objective function
is bounded from above by 1.

Let us examine the case when the optimal objective function value of (LPL(x)) is
positive, namely q0 > 0, thus the linear system of inequalities

[JF (x)]I+ u + [JF (x)]I0 z + q0 e≦0
AI+ u + AI0 z = 0

z≧0, q0 > 0

 (E ′
1)

has solutions, that is equivalent to

[JF (x)]I+ u + [JF (x)]I0 z≦ − e
AI+ u + AI0 z = 0, z≧0

}
(E1).

Any solution of (E1) is a feasible joint decreasing direction to (LMOP ).
In case when the optimal objective function value of (LPL(x)) is zero, namely q0 = 0,

then (E ′
1) has no solution, likewise (E1) has no solution, either. According to the Farkas

Lemma, the linear system of inequalities

w⊤[JF (x)]I+ − v⊤AI+ = 0
w⊤[JF (x)]I0 − v⊤AI0≧0

e⊤w = 1, w≧0

 (E2)

has solutions. Let us analyze the weighted scalar optimization problem associated to
(LMOP ), given as follows

min w⊤F (x)
Ax = b

x≧0

 (LMOPw),

with the weight w ∈ Sm that is part of a solution of (E2). As P is nonempty, (LMOPw)
has optimal solutions, that can be characterized by the KKT-conditions corresponding to
(LMOPw), which are described in (E2). Thus, any solution of (E2) is a certificate that x
is a substationary point to (LMOP ). ■

The new iterative method we propose for solving (LMOP ) is given in Algorithm 6.1.

Remark 3 The sequence {xk} generated in Algorithm 6.1 is feasible to (LMOP ) because
x0 ∈ P and, given k ∈ N, when xk ∈ P one has, by construction, xk+1 ∈ Rn

⊕ and
Axk+1 = Axk + tkAvk = b + 0 = b

In the following statement we prove that the objective vector function values sequence
{F (xk)} is Rm

⊕ -decreasing.
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Algorithm 6.1 Algorithm for solving linearly constrained multiobjective optimization
problems
[Step 1] take x0 ∈ F = P , 0 < β < 1, k = 0, J =

{
1

2n : n ∈ N
}

[Step 2] determine the (feasible) joint decreasing direction q =
(

u∗

z∗

)
∈ Rn from

max
(q,q0)∈Rn×R

q0

[JF (xk)]I+u + [JF (xk)]I0z + q0 e≦0
AI+ u + AI0 z = 0
0 ≤ q0 ≤ 1, z≧0

[Step 3] if q0 = 0 then STOP (xk is a substationary solution to (LMOP ));
[Step 2] otherwise compute σ = min{ xk

i

−qi
: qi < 0 and i ∈ I+};

[Step 2] [Step 2] if σ ≥ 1 then vk := q;
[Step 2] [Step 2] otherwise vk := 1

σ
q;

[Step 4] choose tk as the largest t ∈ J s.t.

F (xk + t vk) ≦ F (xk) + βt JF (xk)vk

[Step 5] let xk+1 = xk + tk vk and k = k + 1; go to Step 2

Lemma 6.2 Let (LMOP ) be given with F = P ≠ ∅ and P is assumed to be bounded.
Furthermore, let the vector function F : Rn → Rm be continuously differentiable on F .
Assuming that Algorithm 6.1 starting at x0 ∈ F produces the sequence of points {xk},
then

F (xk+1) < F (xk), ∀k≥ 0. (19)

Proof. Since vk is a feasible joint decreasing direction computed in Step 2 of Algorithm
6.1 using the linear programming problem (LPL(xk)), the proof goes along the same lines
as the one of Lemma 5.2. ■

Theorem 6.3 Let (LMOP ) be given with F = P such that P ̸= ∅ and it is bounded.
Furthermore, the vector function F : Rn → Rm is continuously differentiable (and convex)
on F . Assume that Algorithm 6.1 starting at x0 ∈ F produces the sequence of points
{xk}. Then, every accumulation point of {xk}, if any, is a substationary (weakly Pareto
efficient) point to (LMOP ).

Proof. Let x̄ be an accumulation point of the sequence {xk}. The proof goes along the
same lines as the one of Theorem 5.3, as the difference in the linear programming problems
considered in Step 2 of the corresponding algorithms does not effect its flow, since the
additional constraint only ensures the feasibility of the new iterates after applying the
computed joint decreasing direction. Only at the very end of the proof we need to handle
the question of the properties of x̄.

Like in the proof of Theorem 5.3, the system of linear inequalities in (u, z) ∈ Rn

[JF (x̄)]I+
u + [JF (x̄)]I0

z < 0, and z≧0 (20)
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has no solution for the given feasible solution x̄ ∈ P . Therefore, the linear system
of inequalities (E1) has no solution, either. Exactly the same steps as in the proof of
Theorem 6.1 lead to the same conclusion, that x̄ ∈ P is a substationary (weakly Pareto
efficient) point to (LMOP ). ■

Remark 4 The fact that P is assumed to be bounded was not used directly in the proof of
Theorem 6.1 and in the one of Theorem 6.3. In both cases, we imposed this hypothesis in
order to guarantee that (LMOPw) has optimal solutions. This can be ensured with differ-
ent assumptions as well, that would be discussed in a subsequent work. In particular, when
F is convex on P, (LMOPw) is a convex optimization problem and thus each solution of
(E2) (their existence is guaranteed by the Farkas Lemma whenever Algorithm 6.1 stops)
delivers an optimal solution to (LMOPw), making thus the assumption of boundedness
on P not necessary.

7 Numerical results
We implemented Algorithm 4.1 and Algorithm 6.1 in matlab in order to showcase the
practical usage of the iterative methods we propose in this work. From the test exam-
ples available in the literature (see, for instance, [1]) we chose a convex unconstrained
multiobjective optimization problem to show how our algorithm performs. After that,
we modified the selected test problem by adding linear constraints in such a way, that
some of the weakly Pareto efficient points became infeasible for the constrained problem.
Our numerical experiments using different starting points show the effect of having linear
constraints, as well, see Figures 4, 5 and 6.

Example 1 Let F1, F2, F3 : R2 → R be defined as follows

F1(x) = 1
4
(
(x1 − 1)4 + 2 (x2 − 2)4

)
, F2(x) = e

x1+x2
2 +x2

1+x2
2, F3(x) = 1

6
(
e−x1 + 2 e−x2

)
and let F : R2 → R3, F (x) = (F1(x), F2(x), F3(x))⊤. We want to solve the following
convex unconstrained multiobjective optimization problem

Min F (x)
x ∈ R2.

}

We used two types of stopping criteria in our implementation, namely we ran the
algorithm until

i. ∥tkq∥ ≤ ϵ or q0 ≤ ϵ, or

ii. tk ≤ ϵ or q0 ≤ ϵ,

where tk is the stepsize and (q, q0) is the derived optimal solution to the linear programming
problem from Step 2 of Algorithm 4.1. Furthermore, we also stopped the algorithm when
the number of iterations reached 500. In Figures 1 and 2 we can see the obtained results
with different values of ϵ > 0 by considering the starting point (−1, 2)⊤ and (0, 3)⊤,
respectively. In the first two cases we used the stopping criterion i., while in the third
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one we applied the stopping criterion ii. The obtained weakly Pareto efficient points are
the same within the limits of numerical errors. From the obtained numbers of iterations
we can see that the algorithm is sensitive to the employed stopping criterion and to the
admissible error ϵ > 0. Note that in all cases we used β = 0.1.

ϵ = 10−5, stop i, iter = 26 ϵ = 10−10, stop i, iter = 43 ϵ = 10−16, stop ii, iter = 59

Figure 1: Results with starting point (−1, 2)⊤. The level sets of the used objective
functions F1, F2 and F3 are plotted in red, green and blue, respectively. Here, stop i or ii
represents the stopping criterion i or ii, while iter is the number of performed iterations
before the activation of the stopping criterion.

ϵ = 10−5, stop i, iter = 54 ϵ = 10−10, stop i, iter = 63 ϵ = 10−16, stop ii, iter = 66

Figure 2: Results with starting point (0, 3)⊤. The level sets of the used objective functions
F1, F2 and F3 are plotted in red, green and blue, respectively. Here, stop i or ii represents
the stopping criterion i or ii, while iter is the number of performed iterations before the
activation of the stopping criterion.

In order to get an idea about the whole set of weakly Pareto efficient points of the
considered multiobjective optimization problem, we provide a so-called inner approxima-
tion of it, that comprises the outcomes of starting the proposed algorithm from as many
as possible points (not to be confused with the outer approximation of a solution set of a
multiobjective optimization problem, for which other methods are available, see Illés and
Lovics [20]). To proceed, we divided the rectangle T = [−2, 8] × [−2, 8] into 10 × 10 unit
squares and we generated 5 points in each square. In this way, we obtained 500 starting
points in T . We ran Algorithm 4.1 with these starting points with ϵ = 10−5 and by using
the stopping criterion i. In Figure 3 we can see the obtained weakly Pareto efficient points
after running the algorithm 500 times with these starting points. Hence, Figure 3 shows
how the set of weakly Pareto efficient points looks like in case of Example 1. Note that
the running time in this case was about 14 hours.
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Figure 3: Set of weakly Pareto efficient points

We also tested our new method on a linearly constrained multiobjective optimization
problem.

Example 2 Consider the following problem

Min F (x)
Ax ≦ b
x ≧ x̂,



where F is the function given in Example 1, A =

 10 1
0 1

−1 −1

 , b =

8
5
0

 and x̂ =
(

−2
−2

)
.

Note that this problem is slightly different to (LMOP ) in the sense that instead of
Ax = b we have Ax ≦ b and also a different lower bound imposed on the vector x.
To accommodate this situation, in our numerical computations we modified Step 2 of
Algorithm 5.1. The obtained results can be seen in Figures 4 and 5, where we compared
the results with the unconstrained case. In all these cases we used β = 0.1, ϵ = 10−5 and
stopping criterion i. In the captions of the figures we can see the obtained weakly Pareto
efficient point within the limits of the numerical calculation errors and the necessary
numbers of iterations. From Figures 4 and 5 we can see the effect of the linear constraints
on the solution. In Figure 4 when we have linear constraints the algorithm stops with
q0 becoming less than ϵ. We can see that the obtained weakly Pareto efficient point and
the trajectory also differs from the unconstrained case, because the obtained point x̄u is
not feasible to the constrained problem. In Figure 5 when we have linear constraints the
obtained weakly Pareto efficient point is on the boundary of the feasible polyhedron, and
the followed trajectory is also different than in the unconstrained case. In both cases the
numbers of iterations are also different, because the obtained point x̄u is not feasible to the
constrained problem. Figure 3 helps us to understand that from any feasible point we get
a weakly Pareto efficient point that may differ from the unconstrained case solution, but
even in this case it is a weakly Pareto efficient point corresponding to the feasible solution
set of the problem.
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x̄u = (0.6407, 1.6583)⊤, iter =
26

x̄c = (−0.0556, 0.5556)⊤, iter
= 2

Figure 4: Results with starting point (−1, 2)⊤ without constraints and with linear con-
straints. The lines coming from the linear constraints are plotted in black. Here, x̄u and
x̄c represent the obtained weakly Pareto efficient points within the numerical tolerance,
and iter is the number of performed iterations before the activation of the stopping crite-
rion.

x̄u = (1.3861, 2.2824)⊤, iter =
54

x̄c = (0.6150, 1.8498)⊤, iter =
11

Figure 5: Results with starting point (0, 3)⊤ without constraints and with linear con-
straints. The lines coming from the linear constraints are plotted in black. Here, x̄u and
x̄c represent the obtained weakly Pareto efficient points within the numerical tolerance,
and iter is the number of performed iterations before the activation of the stopping crite-
rion.

Let us define the rectangle T = [−2, 1] × [−1, 5], such that it contains the feasible
solution set of the problem. We divided T into 10×10 unit squares and we intersected the
squares with the polyhedron obtained from the linear constraints coming from Example 2.
We generated 10 points in each obtained form. We ran Algorithm 4.1 with these starting
points with β = 0.1, ϵ = 10−5 and by using the stopping criterion i. In Figure 6 we can
see the obtained weakly Pareto efficient points in each case. We can see that in many
cases the algorithm stopped at the boundary of the polyhedron, which are weakly Pareto
efficient points for the constrained case. Based on our observation, the running time in
this case was 399 seconds, because we have less starting points and the linear constraints,
as well.
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Figure 6: Set of weakly Pareto efficient points

8 Conclusions and further research plans
We proposed a generic scheme for solving multiobjective optimization problems. In par-
ticular, we derived new algorithms for solving unconstrained, sign constrained and linearly
constrained multiobjective optimization problems, where we computed the feasible joint
decreasing direction using suitably defined linear programming problems. In all the cases
we showed that the objective vector function values sequence is decreasing with respect
to the considered orthant. We proved that every accumulation point of the sequence
generated by the algorithms, if any, is a substationary point to the considered multi-
objective optimization problem. When the objective vector function of the considered
multiobjective optimization problem is convex with respect to the corresponding non-
negative orthant, each accumulation point of the mentioned sequence turns out to be
weakly Pareto efficient. Different to their existing counterparts from the literature, a nov-
elty of these algorithms is that the decreasing directions are easily computable via linear
programming. Moreover, in the proposed algorithms both the computation of the joint
decreasing direction using linear programming model and the line search can be exactly
solved. The computational performance of our algorithms has been illustrated on convex
unconstrained and convex linearly constrained multiobjective optimization problems. The
numerical results in the constrained case show the effect of the linear constraints both on
the running time and on the obtained weakly Pareto efficient set.

As further research we plan to consider other choices of stepsizes in the proposed
iterative methods and to introduce algorithms where quadratic programming problems
are used for determining the joint decreasing directions (following [26]). It would be also
interesting to give a subdivision framework (like in Illés and Lovics [20]) for all these types
of multiobjective optimization problems in order to efficiently approximate their entire
weak Pareto frontiers.
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