
HAL Id: hal-04680614
https://hal.science/hal-04680614v1

Submitted on 28 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COMPLEX WEIGHING MATRICES AND
QUATERNARY CODES

Danni Lu, Minjia Shi, Ronan Egan, Patrick Solé

To cite this version:
Danni Lu, Minjia Shi, Ronan Egan, Patrick Solé. COMPLEX WEIGHING MATRICES AND QUA-
TERNARY CODES. Bulletin of the Australian Mathematical Society, In press. �hal-04680614�

https://hal.science/hal-04680614v1
https://hal.archives-ouvertes.fr


Submitted to the Bulletin of the Australian Mathematical Society
doi:10.1017/S . . .

COMPLEX WEIGHING MATRICES AND QUATERNARY
CODES

DANNI LU, MINJIA SHI, RONAN EGAN and PATRICK SOLÉ

Abstract

Weighing matrices with entries in the complex cubic and sextic roots of unity are employed to construct
Hermitian self-dual codes and Hermitian LCD codes over the finite field GF(4). The parameters of these
codes are explored for small matrix orders and weights.
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1. Introduction

Weighing matrices (to be defined below) constitute a far reaching generalization of
Hadamard matrices [9]. Several databases are available on the internet [14, 15]. In this
note, we consider such matrices over the cubic and sextic complex root of unity [3].
Note that the quotient of the Eisenstein integers by the ideal generated by 2 is equal to
GF(4). In view of that well-known arithmetic fact, it is natural to construct quaternary
codes from such weighing matrices. In this note, we construct Hermitian quaternary
self-dual codes by extending two constructions of the binary self-dual codes [1, 10] to
quaternary codes. The two families of codes obtained are called Cn,k and C∗n,k, where
n stands for the order of the weighing matrix and k for its weight. In addition to being
of interest in their own right, Hermitian quaternary codes that are self-orthogonal are
used in the construction of quantum error-correcting codes, see [5]. Further, since 4 is
the smallest square prime power greater than 1, Hermitian quaternary self-dual codes
have been the first and the most studied amongst Hermitian self-dual codes, see e.g.,
[12]. The second construction requires Hermitian weighing matrices. Such objects are
not classical and a generation technique, of independent interest, is described.

In the same vein, we construct Hermitian Linear Complementary Dual (shortly
LCD) codes over GF(4) in the sense of [7]. The two types of codes obtained are called
Ln,k and L∗n,k, where n (resp. k) stands for the order (resp. the weight) of the weighing
matrix used. A new method for constructing Hermitian LCD codes is also introduced
in [11]. We also believe that the codes generated using the construction methods in
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this paper can serve as invariants of such matrices from a classification perspective.
This is the spirit of the classification of designs by their codes in the famous book [2]."

The material is arranged as follows. The next section collects the notions and
notations needed for the rest of the paper. Section 3 (resp. Section 4) studies Hermitian
quaternary self-dual codes (resp Hermitian LCD codes). In Section 5, an algorithm
is presented for finding Hermitian matrices in the equivalence class of CW(n, k, q).
Section 6 contains the numerical examples of these constructions.

2. Notations and Definitions

2.1. Codes A [n, k] linear code C over GF(q) is a k-dimensional vector subspace of
GF(q)n, where GF(q) denotes the Galois field of order q, with q being a power of a
prime p. The elements in C are called codewords and the weight wt(x) of a codeword
x is the number of its non-zero coordinates. The distance between two codewords
x and y is the weight wt(x − y). The minimum weight of a linear code C is defined
as min {wt(x) | 0 , x ∈ C} . A [n, k, d] code is a linear code with minimum weight
d. If there exists an n-order monomial matrix P over GF(q) such that C′ = CP =
{cP | c ∈ C} , then the codes C and C′ over GF(q) are said to be equivalent. If C = CP
holds, it is referred to as an automorphism of C, and the set of all automorphisms of
C forms the automorphism group of C. Let GF(4) = {0, 1, v, v + 1} be a finite field
of order 4. The Hermitian inner product between codewords x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) is defined as x · y = ∑n

i=1 xiy2
i . The Hermitian dual code C⊥H is

defined as C⊥H = {x ∈ GF(4)n | x · y = 0,∀y ∈ C} . If C ⊆ C⊥H , then C is Hermitian
self-orthogonal, and Hermitian self-dual if C = C⊥H . The table of Hermitian self-dual
codes over GF(4) is provided in [13], where for a given length, the Highest-Bound
is given. If a Hermitian self-dual code meets this bound, it is considered optimal. A
linear code C over GF(4) is usually called a Hermitian LCD code if C ∩C⊥H = {0} .
2.2. Combinatorial matrices A complex weighing matrix W ∈ CW(n, k, q) is a
matrix of order n and weight k. Its elements are 0 and the q-th roots of unity ζq,
and it satisfies WW∗ = kIn, where k ≤ n. Here, W∗ denotes the conjugate transpose
of W and In is the n × n identity matrix. The set CW(n, n, q) corresponds to the
set of Butson Hadamard matrix BH(n, q). For q = 3, the complex weighing matrix
W ∈ CW(n, k, 3) includes elements 0, 1, ζ3 and ζ2

3 . For q = 6, the complex weighing
matrix W ∈ CW(n, k, 6) includes elements 0, 1, ζ6, ζ2

6 ,−1,−ζ6 and −ζ2
6 . In this paper,

we focus on the codes generated by these two types of matrices over GF(4). It is
natural to study complex weighing matrices in the context of constructing codes rather
than the full weight Butson Hadamard matrices for two reasons. The first is that
when interpreted over GF(4), it is natural to allow for entries equal to 0. But more
importantly, non-trivial complex weighing matrices may exist when Butson matrices
cannot. This is particularly apparent in the case of CW(n, k, 3) as it is not a requirement
that 3 | n when k < n. Additionally, for any n, one can construct at least one CW(n, k, 6)
with 2 ≤ k ≤ n. See [9] and the references contained therein for further details on
complex weighing matrices and their existence.
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If there exist two monomial matrices P and Q, where the non-zero entries of P and
Q are q-th roots of unity, such that W ′ = PWQ∗, then we say that the two complex
weighing matrices W and W ′, both of order n and weight k, with non-zero entries that
are q-th roots of unity, are equivalent, and we write W ≡ W ′. If W = PWQ∗ holds, it
is referred to as an automorphism of W. The set of all automorphisms of W forms the
automorphism group of W.

3. Hermitian self-dual codes over GF(4)

In this section, we present two methods for constructing Hermitian self-dual codes
over GF(4) using complex weighing matrices.

Theorem 3.1. Let W ∈ CW(n, k, q) be a complex weighing matrix satisfying k ≡ 1
(mod 2). If α is a nonzero element in GF(4), then the matrix G =

[
αIn W

]
generates

a Hermitian self-dual [2n, n] code Cn,k over GF(4). The matrix G′ =
[
αIn W ′

]
also

generates a Hermitian self-dual [2n, n] code over GF(4), where W ′ is equivalent to W.

Proof. Consider the equation GG∗ = ααIn +WW∗ = In + kIn = (k + 1)In = 0, where
α denotes the complex conjugate of α. If W ′ is equivalent to W, then W ′W ′∗ = kIn,
which implies G′G′∗ = 0. Therefore, G′ also generates a Hermitian self-dual code, as
required. □

Theorem 3.2. Let W ∈ CW(n, k, q) be a complex weighing matrix that satisfies
k ≡ 0 (mod 2) and W = W∗. If α is a nonzero element in GF(4), then the matrix
G =
[
αIn In +W

]
generates a Hermitian self-dual [2n, n] code C∗n,k over GF(4). The

matrix G′ =
[
αIn In +W ′

]
also generates a Hermitian self-dual [2n, n] code over

GF(4), where W ′ = W ′∗ and W ′ is equivalent to W.

Proof. The product GG∗ yields αᾱIn + In + W∗ + W + WW∗. Since W is a complex
weighing matrix, it satisfies WW∗ = kIn. Considering k ≡ 0 (mod 2) and W = W∗,
this simplifies to GG∗ = 0. Similarly, when W ′ = W ′∗ and W ′ is equivalent to W, the
same conclusion can be drawn. □

Proposition 3.3. If W and W ′ are equivalent complex weighing matrices of order n and
weight k, then the Hermitian self-dual codes constructed from W and W ′ by Theorem
3.1 are also equivalent.

Proof. Since W and W ′ are equivalent, there exist monomial matrices P and Q such
that W ′ = PWQ∗. Therefore,[

αIn W ′
]
=
[
αIn PWQ∗

]
= P
[
αIn W

] [P−1 0
0 Q∗

]
,

where the matrix
[
P−1 0
0 Q∗

]
is a 2n×2n monomial matrix and 0 denotes the n×n zero

matrix. This completes the proof. □
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4. Hermitian LCD codes over GF(4)

In this section, two methods are presented for constructing Hermitian LCD codes
over GF(4) using complex weighing matrices.

Proposition 4.1 ([6], Proposition 2). If G is a generator matrix for the [n, k] linear
code C, then the k × k matrix GG∗ is nonsingular if and only if C is a Hermitian LCD
code.

Theorem 4.2. Let W ∈ CW(n, k, q) be a complex weighing matrix with k being even. If
α is a nonzero element in GF(4), then the matrix G =

[
αIn W

]
generates a Hermitian

LCD code Ln,k of length 2n over GF(4).

Proof. From the proof of Theorem 3.1, it is known that GG∗ = (k + 1)In, hence
det(GG∗) = (k + 1)n. Then the claim follows from Proposition 4.1. □

Theorem 4.3. Let W ∈ CW(n, k, q) be a complex weighing matrix with k being odd
and W = W∗. If α is a nonzero element in GF(4), then the matrix G =

[
αIn In +W

]
generates a Hermitian LCD code L∗n,k of length 2n over GF(4).

Proof. From the proof of Theorem 3.2, it follows that GG∗ = (k + 2)In, hence
det(GG∗) = (k + 2)n. Then the result is obtained from Proposition 4.1. □

Remark 4.4. In Theorem 4.2, if W ′ is equivalent to W, then the same construction
will also generate a Hermitian LCD code of length 2n over GF(4). Furthermore,
the Hermitian LCD code generated by W ′ is equivalent to the Hermitian LCD code
generated by W. Similarly, in Theorem 4.3, if W ′ is an equivalent Hermitian matrix to
W, then same construction method will generate a Hermitian LCD code over GF(4).

5. Finding Hermitian matrices in the equivalence class of a CW(n, k, q)

Let Monn(q) be the group of n × n monomial matrices with non-zero entries in the
q-th roots of unity. The group Monn(q)2 acts on CW(n, k, q) via

W(M,N) = MWN∗.

The orbits under this action are the equivalence classes. Restricting to the action of
the group Monn(1)2, the orbits are permutation equivalence classes. The stabilisers of
a matrix W under these actions are the automorphism and permutation automorphism
groups respectively. Our next goal is to describe an algorithm for searching through
the equivalence class of a given CW(n, k, q) for Hermitian members. That is, given
W ∈ CW(n, k, q), we search for a matrix H ≡ W such that H = H∗.

For any Hermitian matrix H, it must be true that Hi j = 0 if and only if H ji = 0.
Given any W ∈ CW(n, k, q), let Wc denote the matrix obtained from W by letting the
[i, j] entry be 1 if Wi j = c, and 0 otherwise. Adhering to this notation,

W =
∑

c∈{0}∪⟨ζq⟩
cWc.
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In particular, the matrix W0 is a (0, 1)-matrix of weight n − k, and if W is Hermitian,
then W0 is symmetric. The following proposition is immediate.

Proposition 5.1. If there exists a Hermitian matrix in the equivalence class of W, then
the matrix W0 is permutation equivalent to a symmetric matrix.

We now make another simple observation. Suppose that H ∈ CW(n, k, q) is
Hermitian. For any M ∈ Monn(q), we observe that

(MHM∗)∗ = MH∗M∗ = MHM∗. (5.1)

Hence MHM∗ is also Hermitian for any choice of M. Suppose now that W is any
matrix in CW(n, k, q), not necessarily Hermitian, that is equivalent to H. Then there
exist matrices S ,T ∈ Monn(q) such that S WT ∗ = H. It follows that T ∗S W = T ∗HT ,
which is Hermitian by (5.1). The next proposition follows immediately.

Proposition 5.2. Let W ∈ CW(n, k, q) and suppose that there is a Hermitian matrix H
in the equivalence class of W. Then there is a monomial matrix M ∈ Monn(q) such
that MW is Hermitian.

It follows that if there is a Hermitian H ≡ W, we need only search for M such that
MW is Hermitian. Now, we may write any matrix M ∈ Monn(q) uniquely in the form
M = DP, where D is diagonal and P is a permutation matrix. If MW is Hermitian,
then it follows that PW0 is symmetric.

Suppose now that a matrix W ∈ CW(n, k, q) is given. We first want to determine
whether or not there exists a Hermitian matrix in the equivalence class of W, and find
them in the case that they exist. Proposition 5.2 allows us to consider only the orbit
of W under the action of Monn(q) via left multiplication. A matrix in CW(n, k, q) is
normalized if the first non-zero entry in every row and column is 1. Any matrix is
diagonally equivalent to a normalized matrix.

Proposition 5.3. Let H ∈ CW(n, k, q) be Hermitian. Then there exists a diagonal
matrix D such that DHD∗ is normalized and Hermitian.

Proof. Let D j be the diagonal matrix with Hi j in the ith position of the diagonal,
if Hi j is the first non-zero entry in row j, and 1 elsewhere on the diagonal. Then
letting D = DnDn−1 · · ·D2D1, the matrix DHD∗ is normalized. The matrix DHD∗ is
Hermitian by Equation (5.1). □

It follows then from Proposition 5.3 that if W ∈ CW(n, k, q) is diagonally equiva-
lent to a Hermitian matrix, then there exist diagonal matrices D and E such that DWE∗

is both normalized and Hermitian.
Combining the details of the section up to now, we describe a simple computational

algorithm for finding a Hermitian matrix, if it exists, in the equivalence class of a given
matrix W ∈ CW(n, k, q).
(1) Given W, construct W0.
(2) Find a single permutation matrix Q ∈ Monn(1) such that QW0 is symmetric.
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(3) Find all permutation matrices P ∈ Monn(1) such that PW0 is symmetric.
(4) For each P found in the previous step, find pairs of diagonal matrices D and E

so that the matrix H = D(PW)E∗ is normalized. If H is Hermitian, then exit the
algorithm.

Steps (1) and (4) of the algorithm above are straightforward, requiring no signif-
icant computational effort. Step (2) is computationally difficult, and represents the
most time consuming aspect of the algorithm. Fortunately, searching through all of
Monn(1) for the matrix Q is not necessary. This is because under any assumption
that row i of W0 is permuted to row j immediately restricts the search space, as the
remaining rows must be permuted so as to preserve symmetry. For example, if the first
row of W0 is fixed, then the 1s on the first column must be preserved. Any subsequent
assumptions have a similar effect. For the values of n considered in this work, very few
assumptions are required before complete searches through remaining search spaces
are computationally easy, and running through all possible assumptions is feasible.

Assuming that Step (2) is complete, Step (3) can be implemented rather efficiently
as follows. Suppose we have found a single permutation matrix Q such that QW0 = X
is symmetric. Now consider the equivalent problem of finding all P such that PX is
symmetric. In this case, the symmetry of PX implies that

PX = (PX)⊤ = X⊤P⊤ = XP⊤.

It follows that PXP = X, and so (P, P⊤) is a permutation automorphism of X. Since X
is a symmetric (0, 1)-matrix of weight n − k, it is an incidence structure. Finding the
matrices P such that PXP = X is an incidence structure automorphism problem, for
which there are efficient algorithms available in Magma [4] that can be taken advantage
of. This speeds up the process of finding all of the permutation matrices P such that
PW0 is symmetric significantly.

Example 5.4. The matrix

W =


0 1 1 1 1
1 0 1 ζ3 ζ2

3
1 1 0 ζ2

3 ζ3
1 ζ3 ζ2

3 0 1
1 ζ2

3 ζ3 1 0


is a CW(5, 4, 3) that is not Hermitian (but it is symmetric). Note that W0 = I5, which

is already symmetric. However, W is already normalized and is not Hermitian, so we
must proceed with Step (2) of the algorithm, and find another permutation matrix P
such that PW0 is symmetric. Any symmetric P is a candidate in this case. Let P be the
permutation matrix that swaps the first two rows. Clearly, the matrix PW is no longer
normalized. Letting E = diag(1, 1, 1, ζ2

3 , ζ3), the matrix H = PWE is normalized. This
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matrix is 
1 0 1 1 1
0 1 1 ζ2

3 ζ3
1 1 0 ζ3 ζ2

3
1 ζ3 ζ2

3 0 ζ3
1 ζ2

3 ζ3 ζ2
3 0

 ,
which is Hermitian. We can now exit the algorithm.

6. Numerical examples

Using the construction methods provided in Section 3, Table 1 presents some
optimal Hermitian self-dual codes. Here, n, k and q are the three parameters of the
complex weighing matrices, and the parameters of the codes are [2n, n, d].

Definition 6.1. The direct sum of an n-order square matrix and an m-order square
matrix is defined as

A ⊕ B =
[

A 0n×m

0m×n B

]
.

Table 1. Optimal Hermitian self-dual codes

n k q d
Sources or constructions

of the matrices
3 3 3 4 [14]
5 4 3 4 [3]
6 3 3 4 CW(3, 3, 3) ⊕CW(3, 3, 3)
6 5 6 4 [3]
6 4 6 4 [3]
8 7 3 6 [9]
8 7 6 6 [8]
12 6 3 8 CW(6, 6, 3) ⊕CW(6, 6, 3)

Remark 6.2. Among the codes presented in Table 1, the three codes with parameters
[12, 6, 4] are non-equivalent, as well as the two codes with parameters [16, 8, 6].

Remark 6.3. The three matrices W1 ∈ CW(5, 4, 3), W2 ∈ CW(6, 4, 6), and W3 ∈
CW(12, 6, 3) in Table 1 are derived as equivalent Hermitian matrices using the
algorithm in Section 5 and are subsequently used to construct Hermitian self-dual
codes via Theorem 3.2. The Hermitian matrix for W1 is provided in Example 5.4, while
the Hermitian matrices W ′2 for W2 and W ′3 for W3 will be presented in the appendix.
The remaining matrices can be directly used to construct Hermitian self-dual codes
via Theorem 3.1.
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A. Appendix

W ′2 =



1 0 0 1 1 1
0 1 0 1 ζ2

3 ζ3
0 0 1 1 ζ3 ζ2

3
1 1 1 −1 0 0
1 ζ3 ζ2

3 0 −1 0
1 ζ2

3 ζ3 0 0 −1



W ′3 =



0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 ζ2

3 0 ζ3 0 ζ3 0 1 0 ζ2
3

1 0 ζ3 0 ζ2
3 0 ζ2

3 0 ζ3 0 1 0
0 1 0 ζ3 0 1 0 ζ2

3 0 ζ3 0 ζ2
3

1 0 ζ2
3 0 1 0 ζ3 0 ζ3 0 ζ2

3 0
0 1 0 ζ3 0 ζ2

3 0 ζ3 0 ζ2
3 0 1

1 0 ζ2
3 0 ζ3 0 ζ2

3 0 1 0 ζ3 0
0 1 0 ζ2

3 0 ζ2
3 0 1 0 ζ3 0 ζ3

1 0 1 0 ζ2
3 0 ζ3 0 ζ2

3 0 ζ3 0
0 1 0 1 0 ζ3 0 ζ2

3 0 ζ2
3 0 ζ3

1 0 ζ3 0 ζ3 0 1 0 ζ2
3 0 ζ2

3 0
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