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A B S T R A C T

Exposure to ambient particulate matter (PM) has been identified as a major global health concern; however, the
importance of specific chemical PM components remains uncertain. Recent studies have suggested that carbo-
naceous aerosols are important detrimental components of the particle mixture. Using time-series methods, we
investigated associations between short-term exposure to carbonaceous particles and mortality in London, UK.
Daily counts of non-accidental, respiratory, and cardiovascular deaths were obtained between 2010 and 2019.
For the same period, daily concentrations of carbonaceous particles: organic (OC), elemental (EC), wood-burning
(WC), total carbon (TC) and equivalent black carbon (eBC) were sourced from two centrally located monitoring
sites (one urban-traffic and one urban-background). Generalized additive models were used to estimate the
percentage change in mortality risk associated with interquartile range increases in particulate concentrations.
Lagged effects up to 3 days were examined. Stratified analyses were conducted by age, sex, and season, separate
analyses were also performed by site-type. For non-accidental mortality, positive associations were observed for
all particle species at lag1, including statistically significant percentage risk changes in WC (0.51% (95%CI:
0.19%, 0.82%) per IQR (0.68 μg/m3)) and OC (0.45% (95%CI: 0.04%, 0.87% per IQR (2.36 μg/m3)). For res-
piratory deaths, associations were greatest for particulate concentrations averaged over the current and previous
3 days, with increases in risk of 1.70% (95%CI: 0.64%, 2.77%) for WC and 1.31% (95%CI: − 0.08%, 2.71%) for
OC. No associations were found with cardiovascular mortality. Results were robust to adjustment for particle
mass concentrations. Stratified analyses suggested particulate effects were greatest in the summer and respira-
tory associations more pronounced in females. Our findings are supportive of an association between carbona-
ceous particles and non-accidental and respiratory mortality. The strongest evidence of an effect was for WC; this
is of significance given the rising popularity of wood-burning for residential space heating and energy production
across Europe.

1. Introduction

Exposure to ambient particulate matter (PM) has been identified as a
major global health concern (Murray et al., 2020). Over the past de-
cades, a large literature has amassed documenting the adverse effects of
long-term and indeed, short-term exposure to PM on health (US EPA,

2019; Sacks et al., 2019; Chen and Hoek, 2020; Atkinson et al., 2014).
Historically, studies that have investigated the effects of PM have

done so by examining measures of particle mass concentration, such as
PM10 or PM2.5 (particles with an aerodynamic diameter of less than 10
μm or 2.5 μm, respectively) since these were regulated and monitored. In
more recent years, a greater emphasis has been placed on understanding
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the effects of individual particle species, knowledge of which could aid
the development of more targeted abatement policies. However, as of
yet, there is insufficient evidence to conclude any particular components
of PM is more toxic than another (Sacks et al., 2019; COMEAP, 2022).

Among the largest chemical constituents of PM are the carbonaceous
aerosols, accounting for approximately 10–50% of the mass of urban
particulates (Putaud et al., 2004; Hama et al., 2022). Typically grouped
into two fractions: organic carbon (OC) and elemental carbon (EC) (also
referred to as black carbon (BC) when measured using light absorption
methods), the carbonaceous aerosols are directly released into the at-
mosphere as a result of combustion processes: EC being mainly associ-
ated with fossil fuels and OC being dominant in the burning of wood and
other biomass (McDuffie et al., 2020; Bond et al., 2004). OC can also be
formed secondarily via gas-to-particle conversion reactions, e.g., the
oxidation of volatile organic compounds (VOCs) (Donahue et al., 2012).

Previous studies have demonstrated relationships between short-
term exposure to carbonaceous particles and adverse health, especially
cardio-respiratory diseases. In the meta-analysis by Yang et al., which
reviewed evidence from existing time-series of PM composition and
health, both BC and OC were shown to be robustly associated with
cardiovascular and respiratory mortality, and cardiovascular hospital
admissions (Yang et al., 2019). Furthermore, the health risks associated
with carbonaceous particles, specifically BC, have been shown to be
similar per interquartile range increase in mass concentration (μg/m3) to
those of PM10 and PM2.5 (Janssen et al., 2011).

In spite of these findings, there has been limited assessment of the
short-term effects of carbonaceous particles in the UK, largely because
long time series of data are not readily available. Of the few studies that
have been conducted, the primary focus has been traffic emissions,
considering only EC/BC, with estimates based on only 2-years of data
(Atkinson et al., 2016; Samoli et al., 2016). In this study, we used
time-series methods to evaluate associations between daily concentra-
tions of carbonaceous particles and daily all-cause and cause-specific
mortality in London, UK, based on data collected over the 10-year
period, 2010–2019.

2. Methods

2.1. Health data

For the study period January 1, 2010 to November 17, 2019 (3608
days), details of all deaths registered in the administrative region of
Greater London were obtained from the Office for National Statistics
(ONS). This information was used to establish a database of daily counts
of mortality for all non-accidental (International Classification of Dis-
eases, version 10 (ICD-10: A00-R99), cardiovascular (ICD-10: I00-I99),
and respiratory (ICD-10: J00-J99) causes. Sub-aggregations of the data
were also created stratifying counts by age (<65 years and ≥65 years)
and sex (male/female).

2.2. Exposure data

Particulate data were sourced from two fixed-site monitoring sta-
tions within the London Air Quality Network: Marylebone Road (urban
traffic) and North Kensington (urban background). These data consisted
of daily average concentrations of organic carbon (OC), elemental car-
bon (EC), total carbon (TC), and PM mass - including PM10 and PM2.5.
Measurements of equivalent black carbon (eBC) were also obtained. At
both sites particulate concentrations were collected according to stan-
dardized measurement procedures and, where necessary, were aggre-
gated into daily metrics in line with Local Air Quality Management
(LAQM) guidance (Tompkins et al., 2021; Defra, 2021). Further details
are provided in Supplementary Table S1.

Measurement data were obtained for the whole study period,
January 2010–November 2019, with the exception of EC, OC, and TC at
North Kensington, that were only available up to November 2018 due to

relocation of monitoring equipment (see Supplementary Table S2 for
data availability).

Where possible, missing values were imputed for days where particle
concentrations were available at only one of the two study monitoring
sites. Here, we opted for a simple ratio-based approach with missing
values at site X calculated by multiplying the corresponding values at
site Y by the overall monthly average between the two sites. See equa-
tion below:

Cxmd = Cymd * (Cxm/Cym)

where x/y represent the two monitoring stations, m the month and d the
day of measurement.

For cases where missing values fell within months with less than 50%
data availability, multiplier ratios were based on seasonal as opposed to
monthly averages.

To estimate a daily average city-wide concentration, mean mea-
surements was taken across the two sites.

As an additional metric of carbonaceous exposure, daily concentra-
tions of PM from wood-burning, hereafter wood-burning carbon (WC),
were also obtained for the study period (available from January
2010–November 2019). These measurements were derived using dual
wavelength aethalometers to estimate the concentration of PM2.5 from
wood and solid fuel burning. The method relies on PM2.5 from wood and
solid fuel burning being more strongly light absorbing at short wave-
lengths when compared with soot from diesel emissions. Notably, values
were only able to be reliably calculated for North Kensington. Further
details regarding the derivation of WC concentrations can be found
elsewhere (Sandradewi et al., 2008; Fuller et al., 2014; Font et al.,
2022), a brief summary of the measurement methodologies is provided
in Supplementary Table S1.

2.3. Meteorology

Meteorological data, including daily mean temperature (◦C) and
relative humidity (%), for London City Airport were extracted from the
NOAA Integrated Surface Database (ISD).

2.4. Statistical analysis

Generalized additive quasi-Poisson regression models (GAMs)
(Hastie, 2017) were used to quantify associations between daily con-
centrations of carbonaceous particles and mortality by cause. GAM ex-
tends the traditional generalized linear modelling approach by replacing
linear predictors with unspecified nonparametric functions (Dominici
et al., 2002). The GAM approach has been widely adopted in time-series
studies of air pollution and health, mainly due to its inherent flexibility,
enabling nonparametric adjustments for nonlinear confounding effects
of seasonality, trends, and weather variables (Dominici et al., 2002). In
the current study, we specified a natural spline function of calendar time
with 8 degrees of freedom (df) per year to control for seasonality and
long-term trends. Meteorological confounding was addressed using
smooth splines of daily mean temperature (tempt) and relative humidity
(rht) with 6 df and 3 df respectively. The smoothing applied to each of
the splines was selected according to previous literature (Bhaskaran
et al., 2013; Touloumi et al., 2006). Additional adjustments for day of
the week (dow) and holiday effects (hols) were incorporated into the
models as indicator variables. The basic form of the models was as
follows:

log[E(Yt)] = intercept + βXt + s(time, df= 8/year) + s (tempt, df= 6) + s
(rht df = 3) + dow + hols

Where, E(Yt) denotes the expected number of deaths on day t, X the
concentration of carbonaceous particulates on day t, and β the effect
estimate.

To investigate for latency in the exposure-response, particle
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concentrations were lagged between the current and previous 3 days
(single-day: lag0 to lag3 and moving average: lag03). This period was
selected in accordance with previous studies, which have shown asso-
ciations between PM and mortality to be greatest within the 0–3-day lag
interval (Atkinson et al., 2016; Atkinson et al., 2010).

In line with previous studies, age- and sex-specific analyses were
performed to identify potentially vulnerable groups. Stratified analyses
were also performed by season (warm: May to October or cold
November to April), with models adjusted for time segmentation, tem-
perature, and humidity. To assess whether estimates differed according
to exposure site type, analyses were repeated using measurement data
from Marylebone Road and North Kensington individually.

Two-pollutant models were used to evaluate the extent to which
estimated associations were confounded by particle mass, with EC, OC,
and TC being adjusted for PM10 and eBC and WC for PM2.5 reflecting the
particle size for each measurement. Sensitivity to modelling

assumptions was tested by varying the degree of smoothing applied to
both meteorological (2–10 df for daily mean temperature and relative
humidity) and temporal trend adjustments (4–12 df/year). Analyses
were also performed using the raw exposure data, that is, prior to the
imputation of any missing values. Diagnostic plots were used to assess
for deviances from linearity.

All models were fitted in R (version 4.0.4; R Development Core team
(2021)), using functions from the GAM package (version 1.20; T. Hastie
(2020)). Effect estimates were expressed as a percentage change in the
risk of mortality per interquartile range (IQR) increase in mass particle
concentrations. Significance was evaluated at a confidence level of 95%.

Table 1
Descriptive characteristics of study exposure and health outcome data collected for London between 2010 and 2019.

Availabilitya Mean SD Minimum Median Maximum IQR

Particulate Data
Elemental Carbon (24-h Avg, μg/m3)
Marylebone Road 96% 4.57 2.87 0.40 4.00 18.42 3.66
North Kensington 99%b 0.93 0.77 0.04 0.73 10.65 0.65
City-Average 99% b 2.85 1.61 0.32 2.54 10.74 2.10
Organic Carbon (24-h Avg, μg/m3)
Marylebone Road 96% 5.99 2.63 1.34 5.45 29.04 3.04
North Kensington 99% b 3.47 2.09 0.58 2.91 29.86 2.08
City-Average 99% b 4.76 2.20 1.18 4.22 29.45 2.36
Total Carbon (24-h Avg, μg/m3)
Marylebone Road 96% 10.54 4.97 1.99 9.65 38.12 6.35
North Kensington 99% b 4.41 2.74 0.78 3.69 36.68 2.76
City-Average 99% b 7.60 3.41 1.57 6.94 37.40 4.12
Equivalent Black Carbon (24-h Avg, μg/m3)
Marylebone Road 100% 6.10 4.21 0.26 5.13 27.41 5.47
North Kensington 100% 1.22 1.01 0.13 0.93 12.81 0.90
City-Average 100% 3.66 2.34 0.28 3.11 17.44 3.11
Wood-burning Carbon (24-h Avg, μg/m3)
North Kensington 92% 0.86 0.82 0.002 0.60 10.02 0.68
PM10 (24-h Avg, μg/m3)
Marylebone Road 98% 27.73 12.57 6.42 24.86 110.41 14.41
North Kensington 93% 19.40 10.92 3.16 16.61 84.65 10.90
City-Average 93% 23.63 11.32 4.88 20.74 90.67 12.18
PM2.5 (24-h Avg, μg/m3)
Marylebone Road 96% 18.25 10.15 3.05 15.50 95.77 10.96
North Kensington 99% 12.85 9.65 1.65 9.79 102.19 8.72
City-Average 96% 15.57 9.66 2.76 12.73 98.98 9.31
Mortality Data
Non-accidental
Total 100% 126 18.79 76 124 215 24
<65 years 100% 22 5.11 8 22 46 7
≥ 65 years 100% 104 17.00 62 102 185 22
Male 100% 62 10.47 33 62 106 14
Female 100% 64 11.50 31 63 126 15
Cardiovascular
Total 100% 37 7.69 16 36 74 11
<65 years 100% 5 2.41 0 5 17 3
≥ 65 years 100% 31 7.05 13 31 66 10
Male 100% 19 4.93 5 19 39 7
Female 100% 18 4.96 3 17 39 7
Respiratory
Total 100% 18 6.39 4 17 54 7
<65 years 100% 2 1.34 0 1 9 1
≥ 65 years 100% 16 5.96 4 15 50 8
Male 100% 9 3.68 0 8 30 5
Female 100% 9 4.06 0 9 32 5
Meteorological Data (24-h Avg)
Temperature (◦C) 100% 12.24 5.54 − 3.00 12.21 29.06 8.44
Relative humidity (%) 100% 73.33 9.99 41.93 73.68 99.48 14.51

Footnote.
Abbreviations: Avg = Average, IQR = Inter-Quartile Range, PM2.5 = Particulate matter with aerodynamic diameter <2.5 μm, in mass concentration (μg/m3), PM10 =

Particulate matter with aerodynamic diameter <10 μm, in mass concentration (μg/m3), SD = Standard Deviation.
a Availability of data is expressed as a percentage of the total number of study days (3608 days) and was calculated following the imputation of missing values.
b Measurement data available between January 1, 2010–November 12, 2018 - availability evaluated up to last recorded date.
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3. Results

3.1. Descriptive analyses

Descriptive characteristics of the study exposure and health outcome
data are shown in Table 1. Between January 1, 2010 and November 17,
2019, a total of 456,300 non-accidental deaths were registered in
Greater London, equating to an average of 126 deaths per day (IQR =

24). The mean daily number of deaths from cardiovascular causes was
37 (IQR = 11) and 18 (IQR = 7) for respiratory causes.

Particulate concentrations at Marylebone Road were greater than
those at North Kensington, as expected. Across the sites, daily mean
concentrations (and IQR) of EC, OC, eBC, and TC were 2.85 (2.10), 4.76
(2.36), 3.66 (3.11) and 7.60 (4.12) μg/m3, respectively, while the
average daily concentration of WC at North Kensington was 0.86 (0.68)
μg/m3. Particle concentrations varied seasonally, peaking in the winter,
this was particularly evident for WC and eBC (Supplementary Fig. S1) as
observed and discussed in Font et al. (2022) (Font et al., 2022).
Downward trends in particle concentration were observed over the
study period, most notably for eBC, with annual average concentrations
decreasing from 5.16 μg/m3 in 2010 to 1.42 μg/m3 in 2019. Large re-
ductions were also observed in EC (from 3.88 μg/m3 in 2010 to 1.69
μg/m3 in 2018; Supplementary Table S3).

Pearson correlation coefficients (r) between daily concentrations of
carbonaceous particles, PM10 and PM2.5, are shown in Table 2 (site-
specific correlations are shown in Supplementary Table S4). High cor-
relations were observed amongst the carbonaceous species, with the
exception of WC with EC and eBC (r = 0.38). Daily concentrations of
PM2.5 were strongly correlated with those of OC (r = 0.79) and TC (r =
0.70) but less so with WC (r = 0.61), eBC (r = 0.47), and EC (r = 0.42).
Similar correlations were observed for PM10.

3.2. Regression analyses

Fig. 1 shows the estimated associations between daily concentrations
of carbonaceous particles and daily mortality at different lag times.
Results are also provided numerically in Supplementary Tables S5–S7.

For non-accidental mortality, associations from single day lagged
models peaked at lag 1, including statistically significant percentage risk
changes observed for both WC (0.51% (95% Confidence Interval (CI):
0.19%–0.82%)) and OC (0.45% (95% CI: 0.04%–0.87%)). Estimates
based on particle concentrations averaged over the current and previous
3 days (lag03) were null, with the exception of WC (0.71% (95% CI:
0.26%–1.16%)).

Associations for respiratory mortality tended to be larger than those

for non-accidental mortality, but with wider confidence intervals. Sta-
tistically significant percentage risk changes were observed for WC at lag
1, 2, and 3 and OC at lag 2. Estimates from cumulative lag models were
larger than those at any single day lag. IQR increases in the concentra-
tion of WC lagged at lag03 were associated with a statistically significant
increase in the risk of respiratory mortality of 1.70% (95% CI: 0.64%–
2.77%). Similar magnitudes of association were observed for TC (1.28%
(95%CI: − 0.39%–2.98%)), OC (1.31% (95%CI: − 0.08%–2.71%)), and
eBC (1.32% (95%CI: − 0.92%–3.61%)).

Little evidence was observed for an association with cardiovascular
mortality. Estimates were generally small and negative with confidence
intervals spanning zero.

3.3. Stratified analyses

Estimates from stratified analyses by age, sex, and season, are shown
in Supplementary Figs. S2–S4. No meaningful differences were observed
when stratifying by age. In contrast, stratification by sex indicated that
associations with respiratory mortality tended to be more pronounced in
females, while season-specific analyses revealed effects of OC and TC
were greater during the warmer months (May–October). Site-specific
analyses were broadly consistent with the main study results (Fig. 2),
although more prominent associations were observed for eBC and res-
piratory mortality across all lags when using data collected at the North
Kensington monitoring site (see Fig. 3).

3.4. Sensitivity analyses

Effect estimates were robust to adjustment for PM mass concentra-
tion (PM10 or PM2.5) and, in some instances, increased in magnitude
(Fig. 2; Supplementary Tables S5–S7). This was most notable for WC
with adjustment resulting in significantly increased risk of cardiovas-
cular mortality at single day lags 2, 3, and cumulative lag03 (1.23% 95%
CI: 0.19%–2.28%).

Examining sensitivity to key modelling assumptions, such as the
degree of smoothing applied to time trends and weather-related vari-
ables did not yield any significant differences (data not shown), neither
did repeating the analyses using the raw exposure data. Diagnostic plots
supported a linear relationship between the carbonaceous particulates
and mortality.

4. Discussion

4.1. Main findings and interpretation

In this study, we investigated associations between daily concen-
trations of carbonaceous particles and daily mortality, using data
collected for London between 2010 and 2019. Based on our analyses, we
found short-term exposure to carbonaceous particles to be associated
with small, but statistically significantly increased risks of mortality
from both non-accidental and respiratory causes. Less evidence was
found for an association with cardiovascular mortality.

The most convincing of our findings was for an effect of carbona-
ceous particles from wood-burning, with significantly increased risks of
non-accidental and respiratory mortality observed at single-day lag 1, 2,
and 3 and cumulative lag03. These associations persisted after adjust-
ment for particle mass and, in some instances, increased in magnitude,
indicating a level of specificity of the effects of WC on health.

Most studies that have examined the health effects of wood-burning
particles are related to wildfires. Episodic increases in the levels of PM
from wildfires have been linked with a variety of detrimental health
outcomes, including the exacerbation of respiratory conditions, such as
asthma and COPD, and premature deaths (Reid et al., 2016; Karanasiou
et al., 2021). Experimental studies have also shown that wildfire PM is
more toxic than conventional PM, with a greater capacity to induce
inflammation and oxidative stress (Wegesser et al., 2010).

Table 2
Pearson correlation coefficients between daily city-wide average concentrations
of carbonaceous particles and PM mass for London between 2010 and 2019.

EC OC TC eBC WC PM10 PM2.5

EC 1.00 – – – – – –
OC 0.61 1.00 – – – – –
TC 0.86 0.92 1.00 – – – –
eBC 0.90 0.60 0.81 1.00 – – –
WC 0.38 0.71 0.63 0.38 1.00 – –
PM10 0.46 0.79 0.72 0.52 0.59 1.00 –
PM2.5 0.42 0.79 0.70 0.47 0.61 0.95 1.00

Footnote: Correlations calculated based on daily average city-wide particle
concentrations, except those for WC, where data was only available for North
Kensington. Values represent correlations for the full study period (01/01/2010-
17/11/2019), except pollutant pairs including OC, EC, or TC which were up to
November 12, 2018. Abbreviations: eBC = Equivalent Black Carbon, EC =

Elemental Carbon, OC = Organic Carbon, Carbon, PM2.5 = Particulate matter
with aerodynamic diameter <2.5 μm, in mass concentration (μg/m3), PM10 =

Particulate matter with aerodynamic diameter <10 μm, in mass concentration
(μg/m3), TC = Total Carbon, WC = Wood-burning.

R. Piper et al.
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Fig. 1. Percentage change (and 95% CI) in (a) non-accidental, (b) respiratory, and (c) cardiovascular mortality per IQR increase in the concentrations of carbonaceous particles lagged between the
current and previous 3 days. All estimates are based on daily city-wide particle concentrations for London, except those for WC (measurement data only available for North Kensington). IQRs for EC, OC, eBC, TC, and
WC were 2.10, 2.36, 3.11, 4.12, and 0.68 μg/m3, respectively. Abbreviations: CI = confidence interval, EC = Elemental Carbon, eBC = Equivalent Black Carbon, IQR = interquartile range, OC = Organic Carbon, TC =

Total Carbon, WC = Wood-burning Carbon.

R.Piper
etal.
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In London, WC has been shown to originate from diffuse urban
sources, with concentrations peaking in the evenings and on weekends,
reflective of residential wood combustion (RWC), e.g., from woodstoves
and fireplaces (Fuller et al., 2014; Font et al., 2022). With regard to the
health effects of PM from RWC, several time-series studies have reported
associations between PM and adverse respiratory health outcomes in
cities where RWC is a major contributor to outdoor air pollution (Boman
et al., 2003; Naeher et al., 2007; Sigsgaard et al., 2015). Similarly,
community intervention studies have demonstrated health improve-
ments following woodstove change-out programmes (Johnston et al.,
2013), there also exists some evidence linking short-term exposure to
potassium (K), a known tracer of RWC, with increased risks of all-cause
and respiratory mortality (Basagaña et al., 2015; Li et al., 2015).

The toxicological evidence for the effects of PM from RWC, however,
remains unclear. While some studies have reported associations with
increased levels of airway inflammation and oxidative stress (Barregard
et al., 2008), others have not (Riddervold et al., 2012). These in-
consistencies have been attributed, at least in part, to differences in how
PM is generated during the experiments (Kocbach Bølling et al., 2009).
Studies have shown that the physiochemical properties of PM from RWC
can vary greatly according to combustion conditions and technology, as
well as fuel type, e.g., wood species and water content (Kocbach Bølling

et al., 2009; World Health Organization, 2021).
Our results were also supportive of an adverse effect of OC on non-

accidental at lag 1 and respiratory mortality at lag 2, with increases of
0.45% (95% CI: 0.04%–0.87%) and 1.00% (95% CI: 0.05%–1.95%) per
IQR (2.36 μg/m3), respectively. These values are consistent with those
reported in the recent meta-analysis by Yang et al., which linked OC to
increases in non-accidental mortality of 0.35% (95% CI: 0.09%–0.61%)
and respiratory mortality of 0.68% (95% CI: 0.97%–1.89%) per median
IQR (2.83 μg/m3) (Yang et al., 2019). Studies have also linked acute
exposure to OC with increases in non-accidental (Yang et al., 2019;
Zhang et al., 2022) and respiratory hospital admissions (Zhang et al.,
2022; Peng et al., 2009). In London, both vehicle exhaust and wood-
smoke emissions are considered important sources of OC (Yin et al.,
2015); and thus, the observed associations for OC may be more broadly
reflective of an adverse effect of primary combustion particles.

We did not find evidence of a significant association between short-
term exposure to EC or eBC and mortality. These components are typi-
cally considered markers of road traffic emissions and, contrary to the
findings in this study, have been consistently linked with adverse health
outcomes (Chen and Hoek, 2020; McDuffie et al., 2020; Achilleos et al.,
2017).

Comparing our results to those of an earlier study that investigated

Fig. 2. Site-specific percentage changes (and 95% CI) in the risk of (a) non-accidental, (b) respiratory, and (c) cardiovascular mortality per interquartile
range increase in the concentrations of carbonaceous particles lagged between the current and previous 3 days. All estimates are based on daily city-wide
particle concentrations for London, except those for WC (measurement data only available for North Kensington). IQRs for EC, OC, eBC, and TC at Marylebone Road
were 3.66, 3.04, 5.47, and 6.35 μg/m3, and at North Kensington were 0.65, 2.08, 0.90, and 2.76 μg/m3. Abbreviations: CI = confidence interval, IQR = interquartile
range, eBC = Equivalent Black Carbon, OC = Organic Carbon, TC = Total Carbon, WC = Wood-burning Carbon.
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associations between EC and BC and mortality in London between 2011
and 2012, the authors did not find evidence of an effect on all-cause or
cardiovascular mortality (Samoli et al., 2016). However, they did report
significant associations for respiratory mortality (EC: 2.66% (95% CI:
0.11 to 5.28), BC: 2.72% (95% CI: 0.09 to 5.42) per IQR). The differ-
ences in the estimated health effects between our study and those
described above are likely due to the declines in the concentrations of EC
and (e)BC over time (see Supplementary Table S3), primarily driven by
the introduction of diesel particle filters as part of the Euro 5 vehicle
emission standards (Kamara and Harrison, 2021; Ciupek et al., 2021).
When restricting our analyses between 2011 and 2012, we obtained
similar results to the study by Atkinson et al. (data not shown). Further
confirmatory research is needed to identify whether the introduction of
particle filters is causatively linked to the observed reductions in the
associations between EC and (e)BC and mortality.

4.2. Interpretation of stratified analyses

In stratified analyses, associations for OC and TC were shown to vary
by season, with greater effects observed in the warmer months (May to
October). While this seems somewhat counterintuitive, given their
concentrations were generally lower in the summer, studies have re-
ported similar results when examining season-specific PM effects in
other European cities (Katsouyanni et al., 1997; Stafoggia et al., 2008).
One explanation for these findings is that higher temperatures may
impair an individual’s physiological response to air pollution (Gordon,
2003), thus resulting in greater levels of susceptibility, even on low(er)
pollution days. Work on mediation and effect modification by climatic
factors remains ongoing. It has also been reasoned that greater
summer-time effects may be due to increased outdoor activity, raising
exposure time, as well as lower background mortality rates, resulting in
a larger pool of susceptible individuals (Chen et al., 2013).

Associations between WC and mortality also appeared to be slightly
greater in the warmer season. This finding is unexpected given WC
concentrations in summer are minimal, as shown previously in Font
et al. (2022) (Font et al., 2022). The sources of WC in the summer likely
differ from those in the winter, with a higher contribution from bonfires,
fire pits, and patio heaters, rather than emissions from wood-burning
stoves. The warmer period is also associated with greater formation of
secondary organic aerosol from VOCs; biogenic emissions of VOCs, such
as isoprene, are also enhanced in summer (Redington and Derwent,
2013). The increase in the effect size for WC in the warmer period raises
the question of whether summer WC is serving as a proxy for emissions
from other sources. Differences in the sources of WC between seasons are
likely to cause variations in the chemical composition of WC, which may
account for the differences observed in the health effects. However, this
relationship is yet to be established. In addition, lower concentrations
and change in optical properties in the summer months may increase
uncertainty in exposure assessment.

Our results also suggested that females were disproportionately
affected by exposure to carbonaceous particles, with elevated risks of
respiratory mortality. While the literature is inconsistent with regard to
sex-specific PM effects (Shin et al., 2022; Clougherty, 2010), the
observed heterogeneity may result from differing lifestyle factors and
behaviours between men and women, such as occupation, socioeco-
nomic status, and physical activity levels. Biological factors such as lung
size/capacity and air-way reactivity may also play a role (Corsini et al.,
2019).

Stratified analyses were also conducted by site type. Typically, time-
series studies only use data collected at urban background stations;
however, these sites may not entirely capture the day-to-day variability
of air pollution in a metropolitan city like Greater London, given resi-
dents may live, work, or commute near busy roads. To better reflect the
daily average concentrations of air pollution in London, we combined

Fig. 3. Comparison of estimates from single-pollutant and PM adjusted models for the percentage change (and 95% CI) in the risk of natural (a), res-
piratory (b), and cardiovascular (c) mortality associated with an IQR increases in concentrations of carbonaceous particles lagged between the current
and previous 3 days. All estimates are based on daily city-wide particle concentrations for London, except those for WC (measurement data only available for North
Kensington). IQRs for EC, OC, eBC, TC, and WC were 2.10, 2.36, 3.11, 4.12, and 0.68 μg/m3, respectively. Abbreviations: CI = confidence interval, EC = Elemental
Carbon, eBC = Equivalent Black Carbon, IQR = interquartile range, OC = Organic Carbon, PM =Particle Mass, TC = Total Carbon, WC = Wood-burning Carbon.
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data from both a traffic and background monitor to calculate the main
exposure. When comparing the main study results to those from the site-
specific analyses, we observed broadly consistent patterns of associa-
tion. Having said this, associations between eBC and respiratory mor-
tality were greater at the urban background site than at the traffic site.
One explanation for this finding is that the daily variation in eBC at
North Kensington may be more representative of the daily variation of
the true population exposure to eBC, resulting in less measurement error
and, hence, better power to observe an exposure-response association.
Further research is needed to clarify these findings.

4.3. Implications for public health and air quality policy

This study contributes towards the growing understanding of the
health effects of specific components and sources of PM that can be used
to inform more targeted air-quality management policies.

Of particular importance are our findings related to the effects of
carbonaceous particles from wood burning. Over the past decade, wood
burning for domestic heating and energy production purpose has
increased in popularity across Europe and is projected to continue to do
so into the near future (Sigsgaard et al., 2015; Corsini et al., 2019). This
is partially due to the introduction of climate change policies promoting
the burning of wood/biomass as a “green” source of energy production,
but also the rising costs of fuel, forcing individuals to seek alternative
ways to heat their homes (Fuller et al., 2013; Vouitsis et al., 2015).

The potential upsurge in wood/biomass burning activity has been
noted as a cause for concern, threatening to undermine policies aimed at
reducing particle emissions in the UK/EU (Sandradewi et al., 2008;
Sigsgaard et al., 2015). For London, recent studies have demonstrated
downward trends in WC (Fuller et al., 2014), possibly due to a shift
towards cleaner wood-burning technologies, but the association be-
tween WC and mortality observed in this study indicates that this metric
should be monitored going forward. This would enable policymakers to
track changes in WC, assess whether the adoption of more efficient
woodstoves is sufficient to reduce emissions, and, if not, evidence a need
for further policy development.

4.4. Strengths and limitations

A key strength of our study was the length of time over which
exposure data were available. Given that the unit of observation in time-
series studies is days, a larger number of study days equates to greater
statistical power and thus, the ability to estimate the effects of particle
exposures with greater precision.

A further strength of our analysis was the fact that through use of
novel exposure assessment methodologies, we were able to directly
quantify the effects of PM from RWC on health. This has previously
proven difficult due to a lack of long-term measurements of specific
indicators of wood-burning particles (Kocbach Bølling et al., 2009).

With regards to the limitations of our study, firstly, we investigated
associations between carbonaceous particles and mortality in London;
therefore, findings may have limited generalisability to other cities and
populations across the UK/Europe. Secondly, using concentration data
from two fixed-site monitoring stations as a proxy for population-level
exposure will have introduced some degree of exposure measurement
error (ME). Exposure ME is a major concern in air pollution epidemi-
ology and is known to bias effect estimates, generally towards the null
(Samet et al., 2000; Zeger et al., 2000). The effects of ME are particularly
great when considering spatially heterogeneous exposures, e.g., those
associated with local sources such as road traffic, and may have led to
more pronounced attenuation of estimates for EC/BC (Zeger et al.,
2000). While this is less of an issue for WC, given concentrations have
been shown to be homogenous across London (Fuller et al., 2014), dis-
parities between ambient concentrations and personal exposures to WC
are likely to have resulted in further ME bias (Evangelopoulos et al.,
2021). Lastly, having studied the effects of carbonaceous particles on

broad categories of disease outcome, namely mortality from all respi-
ratory and cardiovascular causes, we may have failed to uncover re-
lationships for specific sub-types of disease. For example, previous
studies have shown significant associations between carbonaceous
particles and deaths from ischemic heart disease and stroke (Kim et al.,
2015; Lin et al., 2016). Additional work to quantify associations be-
tween carbonaceous particles and additional health outcomes would be
beneficial.

5. Conclusion

In summary, our results are supportive of an association between
short-term exposure to carbonaceous particles and all-cause and respi-
ratory mortality. The strongest evidence of an effect was for WC; this is
particularly important given the rising popularity of wood burning for
residential heating and energy production across the UK and Europe.
Additional studies are required to confirm our findings.
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