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Abstract
We are interested in identifying the complexity
of computing local explanations of various types
given a decision tree, when the Boolean conditions
used in the tree are not independent. This is usually
the case when decision trees are learned from in-
stances described using numerical or categorical at-
tributes. In such a case, considering the domain the-
ory indicating how the Boolean conditions occur-
ring in the tree are logically connected is paramount
to derive provably correct explanations. However,
the nature of the domain theory may have a strong
impact on the complexity of generating explana-
tions. In this paper, we identify the complexity
of deriving local explanations (abductive or con-
trastive) given a decision tree in the general case,
and under several natural restrictions about the do-
main theory.

1 Introduction
eXplainable AI (XAI) is a field that emerged a couple of years
ago [Gunning, 2019] in response to the general need for ex-
plainability in AI, as well as the opacity of most Machine
Learning (ML) models. In this paper, we deal with predic-
tions achieved by binary classifiers, i.e., mappings from a set
X of instances to the set L = {0, 1} of classes. More pre-
cisely, we focus on binary classifiers represented by decision

trees [Breiman et al., 1984; Quinlan, 1986]. We consider two
types of provably correct local explanations suited to deci-
sion trees. On the one hand, abductive explanations (see e.g.,
[Ignatiev et al., 2019]) aim to explain the classification of an
instance x 2 X as achieved by the decision tree. On the other
hand, contrastive explanations (see e.g., [Miller, 2019]) aim
to explain why an input instance x has not been classified by
the decision tree as expected by the explainee. Thus, abduc-
tive explanations are focused on the “Why?” question, whilst
contrastive explanations are about the “Why not?” question
[Ignatiev et al., 2020b]. In both cases, explanations can be
represented as subsets of the characteristics (i.e., the pairs
attribute-value) used to represent the instance x.

Decision trees are often considered as one of the leading
forms of interpretable models, so that more opaque models

can be distilled into decision trees to benefit from their im-
proved interpretability [Ras et al., 2022]. However, there
is no clear and consensual definition of what “interpretable”
means. In many papers, decision trees are said to be “intrin-
sically interpretable”, because the paths in the trees can be
directly read as classification rules. However, this character-
ization is not very satisfying. Indeed, a decision tree with
many paths and/or with very long paths can hardly be con-
sidered interpretable (and bounding the number of paths or
their depth would be arbitrary). Furthermore, the paths may
contain many redundant characteristics [Izza et al., 2022;
Marques-Silva, 2023].

As a step towards a more rigorous definition of what “inter-
pretable” means, [Audemard et al., 2021] identifies the com-

putational interpretability of an ML model as the set of XAI
queries that are tractable for the model, i.e., solvable in poly-
nomial time. Under this view, [Audemard et al., 2021] shows
that decision trees can be considered as more interpretable
than many other ML models. In order to take advantage of
such a setting, a set of relevant XAI queries must first be iden-
tified, which is a user-dependent issue. The objective is then
to help the user decide to trust (or not to trust) the model and
its predictions, by leveraging the answers he/she receives to
his/her queries of interest. Thus, a central issue as to com-
putational interpretability is to determine which XAI queries,
among those of interest for the user, are tractable.

The results reported in the paper are part of this research
direction. The tractability of eight explanation queries about
decision trees is investigated. To be more precise, our goal
is to determine the computational impact of leveraging a do-
main theory ⌃ in the task of generating abductive explana-
tions and contrastive explanations for instances given a de-
cision tree f . Such a theory ⌃ may have several origins: it
may come from the encoding of the attributes used at start for
learning the decision tree, it can be furnished by the explainee
when he/she has knowledge about the precise meaning of the
attributes and knows the extent to which they are logically
dependent, it may also result from a data mining procedure
run on the dataset considered for learning the tree. Whatever
the case, ⌃ makes precise how the Boolean conditions used
in f are logically connected. It is mandatory to take advan-
tage of ⌃ to avoid the derivation of explanations that would
be meaningless. We consider the general case when ⌃ is any
theory, and also the more specific case when ⌃ is tractable.



Computation problem: deriving ⌃ valid any ⌃ ⌃ tractable ⌃ Horn ⌃ Krom

One subset-minimal abductive explanation
p

+
p p p

All the subset-minimal abductive explanations ⇥ ⇥ ⇥ ⇥ ⇥

One minimum-size abductive explanation + + + + +

All the minimum-size abductive explanations ⇥ ⇥ ⇥ ⇥ ⇥

One subset-minimal contrastive explanation
p

+
p p p

All the subset-minimal contrastive explanations
p

⇥ ⇥ ⇥
p

One minimum-size contrastive explanation
p

+ + +
p

All the minimum-size contrastive explanations
p

⇥ ⇥ ⇥
p

Table 1: The complexity of deriving explanations given a constrained decision-function (f,⌃) when f is a decision tree. ⇥ means that the
problem is provably intractable, + means that the problem is intractable unless P = NP, and

p
means that the problem is tractable.

What we mean here by “tractable theory” ⌃ is the existence
of a polynomial-time algorithm for clausal entailment from
⌃: we suppose that a polynomial-time algorithm exists, that
takes as input ⌃ and any clause �, and returns true if and only
if ⌃ |= � holds.

As to tractable theories, we focus on two specific families,
the Krom one (i.e., CNF formulae consisting of binary clauses)
and the Horn one (i.e., CNF formulae where each clause con-
tains at most one positive literal). Krom theories are interest-
ing because domain theories encoding numerical attributes or
ordinal attributes are Krom theories. This is also the case
of theories encoding categorical attributes under some open
world assumption (i.e., when the domain of such an attribute
is not supposed to be fully known). Horn theories are also in-
teresting because they can be used for encoding hierarchical
attributes.

Our results are synthesized in Table 1. Each line of this
table corresponds to a computation problem, that consists in
deriving one (or all) explanations of a specific type for an in-
put instance x given a decision tree f and a domain theory ⌃.
Each column corresponds to an assumption about the under-
lying theory ⌃: ⌃ valid (i.e., all the attributes used in f are
considered as logically independent), any ⌃, ⌃ tractable, ⌃
Horn, and ⌃ Krom. Each cell contains one of the following
symbols: ⇥, +, or

p
. ⇥ means that the computation problem

given by the line and the column is provably intractable, i.e.,
there is no polynomial-time algorithm to solve it. + means
that the computation problem given by the line and the col-
umn is likely to be intractable, i.e., there is no polynomial-
time algorithm to solve the problem unless P = NP. Finally,p

indicates that the computation problem given by the line
and the column is tractable, i.e., there exists a polynomial-
time algorithm to solve the problem.

The results reported in Table 1 clearly show that the pres-
ence of a domain theory ⌃ heavily changes the picture as to
the computational complexity of deriving abductive or con-
trastive explanations for an instance given a decision tree f .
Especially, computing one subset-minimal abductive expla-
nation (or one subset-minimal contrastive explanation) for an

instance given a decision tree becomes NP-hard when ⌃ is
unconstrained, while both problems are solvable in polyno-
mial time when ⌃ is tractable. However, unlike what happens
when no domain theory is considered (i.e., when ⌃ is valid)
the tractability of ⌃ is not enough to ensure that computing all
the subset-minimal contrastive explanations for an instance or
computing one minimum-size contrastive explanations for an
instance is feasible in polynomial time. Interestingly, impos-
ing further restrictions to ⌃ may yield to additional tractabil-
ity results. Thus, the presence of a Krom theory ⌃ does not
lead to a complexity shift for the computation of abductive or
contrastive explanations in comparison to the case when no
domain theory is considered.

The rest of the paper is organized as follows. After some
preliminaries (Section 2), we explain in Section 3 why expla-
nations represented using the Boolean conditions that occur
in f have been chosen (instead of explanations based on the
characteristics used primarily for representing the instances
of the dataset from which f has been learned). We also de-
fine in formal terms the types of local explanations one looks
for (abductive or contrastive, subset-minimal or minimum-
size) and we recall known complexity results (they concern
the case when ⌃ is valid). Section 4 presents the complexity
results we have identified. Section 5 concludes the paper. For
space reasons, the proofs of the results presented in the paper
are available online at www.cril.fr/expekctation/.

2 Preliminaries
Classification Let A = {A1, . . . , An} be a finite set of at-
tributes, where each attribute is Boolean, categorical, or nu-
merical. The domain Di of Ai (i 2 [n]) is {0, 1} when Ai is
Boolean, a finite set of values that are not ordered when Ai

is categorical (for instance Di = {red , yellow , green}), and
(typically) Di = N or R when Ai is numerical. Note that the
type of an attribute Ai is a semantical piece of information
that must be part of its description (as a meta-data). Espe-
cially, it cannot be inferred from the values in the correspond-
ing domain Di (numbers can be used to denote values, like 0
for red , 1 for yellow , and 2 for green , but it does not neces-



sarily make sense in this case to consider that 0 < 1 < 2).
Furthermore, in the general case, domains Di are not pro-
vided in extension (this would not be possible for numerical
attributes Ai) but inferred from datasets. Accordingly, for
categorical attributes Ai, two assumptions can be made about
Di: a closed world assumption (Di consists precisely of the
values of Ai occurring in the dataset) or an open world as-
sumption (the values of Ai occurring in the dataset form a
proper subset of Di). Again, in general, meta-data are re-
quired to figure out which assumption is reasonable (if Ai

stands for the color of a traffic light and the three values red ,
yellow , green occurs in the dataset, considering the closed
world assumption makes sense; if Ai denotes the color of a
shirt, making the closed world assumption is more dubious).

An instance x over A is a vector from D1 ⇥ . . . ⇥ Dn.
Every x = (v1, . . . , vn) is also viewed logically as the
conjunctively-interpreted set tx of Boolean conditions (alias
the characteristics of x) {(Ai = vi) : i 2 [n]}. X is the set
of all instances. A classifier f over A is a mapping from X
to a finite set L. A binary classifier f over A is a mapping
from X to L = {0, 1}. An instance x 2 X is positive when
f(x) = 1 and it is negative when f(x) = 0.

A decision tree over A is a binary tree T , each of whose
internal nodes is labeled with a Boolean condition over Ai 2
A, and each leaf is labeled by an element of L. The value
T (x) of T on an input instance x is given by the label of the
leaf reached from the root as follows: at each node go to the
left (resp. right) child if the Boolean condition labelling the
node is evaluated to 0 (resp. 1) for x. The size of a decision
tree is the number of nodes in it. A stump is a decision tree
over A with a single internal node.
Example 1. Figure 1 depicts a decision tree T over A =
{A1, A2}, where A1 is a numerical attribute and A2 is a

Boolean attribute. The instance x = (45, 1) is such that

T (x) = 1.

A1 � 30

0 A2 = 1

A1 � 40

0 1

1

Figure 1: A simple decision tree classifier.

Boolean functions By Fn we denote the class of all
Boolean functions from {0, 1}n to {0, 1}, and we use Xn =
{x1, · · · , xn} to denote the set of input Boolean variables. A
Boolean vector x 2 {0, 1}n represents an interpretation over
Xn, i.e., a mapping from Xn to {0, 1}. x is a model of f if
f(x) = 1. Otherwise, x is a counter-model of f . [f ] denotes
the set of all models of f .

We refer to f as a propositional formula when it is de-
scribed using the Boolean connectives ^ (conjunction), _
(disjunction) and ¬ (negation), together with the constants
1 (true) and 0 (false). f is satisfiable if it has a positive in-
stance, and it is unsatisfiable otherwise. f is valid when it has

no negative instance. If f and g are two propositional formu-
lae over Xn, f entails g, noted f |= g, if and only if [f ] ✓ [g]
holds and f and g are equivalent, noted f ⌘ g, if and only
if [f ] = [g]. The class of decision trees over Xn is denoted
DTn. A literal `i is a variable xi 2 Xn (a positive literal)
or its negation ¬xi (a negative literal), also denoted xi. The
complementary literal ⇠ `i of literal `i is xi if `i = xi is a
positive literal, and xi if `i = xi is a negative literal. LXn

is the set of all literals over Xn. A term t is a conjunction
of literals, and a clause c is a disjunction of literals. In the
following, we shall often treat instances as terms, and terms
as sets of literals. A term t is an implicant of f if and only if
t |= f holds and t is a prime implicant of f if and only if t
is an implicant of f and no proper subset of t is an implicant
of f . A clause c is an implicate of f if and only if f |= c

holds, and c is a prime implicate of f if and only if c is an
implicate of f and no proper subset of c is an implicate of f .
A DNF formula is a disjunction of terms and a CNF formula is
a conjunction of clauses. The set of variables occurring in a
formula f is denoted Var(f).

For an assignment z 2 {0, 1}n, the corresponding canoni-
cal term is

tz =
n̂

i=1

x
zi
i where x

0
i = xi and x

1
i = xi

A term t covers an assignment x if t ✓ tx.

3 Representing and Computing Explanations
In this section, we present formal definitions for the notions
of local explanations we are interested in. Those explana-
tions are based on the Boolean conditions used in the deci-
sion tree that has been learned and not on the characteristics
corresponding to the set of attributes used to learn the tree.
We start by motivating this choice.
Two spaces of characteristics When every Boolean condi-
tion occurring in a decision tree T over a set A of attributes
is viewed as a Boolean variable from a set of variables Xn,
the decision tree T can be viewed as a Boolean function f

over Xn. Accordingly, two spaces of characteristics can be
used to describe the instances and their explanations when the
model used is a decision tree (and more generally, when it is
a tree-based classifier, e.g., a random forest [Breiman, 2001],
or a boosted tree [Freund and Schapire, 1997; Schapire and
Freund, 2014; Friedman, 2001]). Indeed, instances and ex-
planations can be represented as sets of characteristics based

on the initial set of attributes, but also as sets of characteris-

tics based on the Boolean conditions used in f .
Example 2 (Example 1 cont’ed). T can be viewed as a

Boolean function f over a set X3 = {x1, x2, x3} of Boolean

attributes where x1 = (A1 � 40), x2 = (A1 � 30), and

x3 = (A2 = 1). The instance x = (45, 1) over A corre-

sponds to the instance (1, 1, 1) over X3.

It turns out that considering the sets of characteristics based
on the Boolean conditions used in f is preferable from an
XAI perspective since it leads to explanations (abductive or
contrastive) that are more general than those defined when
the set of characteristics based on the initial set of attributes



is considered [Audemard et al., 2023], in the sense that they
cover more instances. The point is that generalizability is
valuable for explanations since it allows the explainee to an-
ticipate the outcome of the model in situations that may differ
from the explained one [Yang et al., 2019].
Example 3 (Example 1 cont’ed). As a matter of illustration,

let us consider a very simple loan granting scenario. Sup-

pose that the decision tree classifier T , depicted on Figure

1, is used to determine whether the requested loan must be

granted or not to the applicant. Two attributes are used pri-

marily to describe instances: A1 (numerical) gives the an-

nual incomes of the applicant, and A2 (Boolean) indicates

whether the applicant has reimbursed a previous loan.

Alice wants to get a loan. Alice’s annual incomes are equal

to $45 k and she has reimbursed a previous loan. Thus, Alice

corresponds to the instance x = (45, 1). Since T (x) = 1,

Alice will get the loan. The unique subset-minimal abduc-

tive explanation for x given T in the space of characteristics

considered at start is {(A1 = 45)}. Using words, the ab-

ductive explanation provided to Alice is ”you got the loan

since your annual incomes are equal to $45 k”. In the space

of characteristics of the predictor, two subset-minimal ab-

ductive explanations for x given f can be derived, namely

{(A1 � 40)} and {(A1 � 30), (A2 = 1)}. Those expla-

nations are better than the previous one {(A1 = 45)} since

they correspond to more general classification rules and they

reflect in a much more accurate way the behaviour of the pre-

dictor. Using words, ”you got the loan since your annual

incomes are greater than or equal to $40 k, but also because

your annual incomes are greater than or equal to $30 k and

you have reimbursed a previous loan”.

Consider now Bob, who also wants to get a loan. Bob has

reimbursed a previous loan, but his annual incomes are equal

to $20 k, only. Bob corresponds to the instance x0 = (20, 1).
Since T (x0) = 0, Bob will not get the loan. Using the defi-

nition provided in [Ignatiev et al., 2020a], the unique subset-

minimal contrastive explanation for x0
given T is {A1}. Us-

ing words, ”in order to get the loan, you have to change your

annual incomes”. This is correct, but insufficient since Bob

surely expects to know to which extent his annual incomes

must be updated in order to get the loan. The contrastive

explanation {(A1 � 30)} for x0
given f , represented in the

space of characteristics of the predictor, is a better explana-

tion. Indeed, it indicates that ”in order to get the loan, you

have to make your annual incomes at least equal to $30 k”.

To take advantage of their generality, we focus on expla-
nations represented in the space of characteristics of the de-
cision tree. Accordingly, from now on, any decision tree is
considered as a Boolean function f based on the Boolean
conditions labelling its decision nodes. By construction, f
may be based on Boolean conditions that are not logically

independent. This is the case when the Boolean conditions
in f come from the same (non-Boolean) attribute Ai used to
describe instances at start.
Example 4 (Example 1 cont’ed). In our running example,

the Boolean conditions (A1 � 30) and (A1 � 40) are not in-

dependent, since no instance may satisfy (A1 � 40) while not

satisfying (A1 � 30). As a consequence, some propositional

constraints forming a domain theory ⌃ and indicating how

the Boolean conditions used in f are logically connected must

be taken into account when computing explanations. Here,

⌃ = x1 ) x2 = (A1 � 40) ) (A1 � 30) (or any formula

equivalent to it) would be convenient.
1

Because feasible instances reduce to those satisfying ⌃,

leveraging ⌃ is mandatory to avoid the derivation of ab-

ductive explanations that are unnecessarily specific [Gorji

and Rubin, 2022]. It is also necessary to prevent from gen-

erating contrastive explanations that would correspond to

instances that are impossible [Yu et al., 2022], for exam-

ple, the contrastive explanation for x0
(associated with Bob)

given by {(A1 � 40)} that would correspond to the (impos-

sible) contrastive instance given by {(A1 � 40), (A2 =
1), (A1 � 30)}.

Abductive explanations and contrastive explanations
Since we are interested in deriving abductive explanations
and contrastive explanations that take account for a domain
theory, we first need to recall the notion of constrained
decision-function.

Definition 1 ([Gorji and Rubin, 2022]). Let Xn = {x1, . . . ,

xn} be a set of Boolean variables. A constrained decision-
function over Xn is a pair (f,⌃) where f 2 Fn and ⌃ is a

propositional formula over Xn. ⌃ indicates how the Boolean

variables from Xn are logically connected.

Abductive explanations and contrastive explanations given
a constrained decision-function can be defined as follows
[Audemard et al., 2023]:

Definition 2. Let (f,⌃) be a constrained decision-function

over Xn and x 2 [⌃] be an instance s.t. f(x) = 1 (resp.

f(x) = 0).

• An abductive explanation for x given (f,⌃) is a set t ✓
tx such that t ^ ⌃ |= f (resp. t ^ ⌃ |= f ).

• A subset-minimal abductive explanation for x given

(f,⌃) is an abductive explanation t for x given (f,⌃)
such that no proper subset of t is an abductive explana-

tion for x given (f,⌃).

• A minimum-size abductive explanation for x given

(f,⌃) is an abductive explanation t for x given (f,⌃)
such that no abductive explanation t

0
for x given (f,⌃)

such that |t0| < |t| exists.

Subset-minimal abductive explanations for x given (f,⌃)
are called sufficient reasons in [Gorji and Rubin, 2022].
When ⌃ is valid, such explanations correspond to PI-
explanations [Shih et al., 2018], also known as sufficient rea-
sons [Darwiche and Hirth, 2020] and as abductive explana-
tions [Ignatiev et al., 2020a].

Example 5 (Example 1 cont’ed). Given the constrained

decision-function (f,⌃) where f is represented by the de-

cision tree T given in Figure 1 and ⌃ = (A1 � 40) )
(A1 � 30), {x1 = (A1 � 40)} and {x2 = (A1 � 30), x3 =

1For the sake of clarity, in the following we write the Boolean
conditions in f using the attributes considered at start in A and not
using the corresponding Boolean variables in Xn.



(A2 = 1)} are the two subset-minimal abductive explana-

tions for the instance (1, 1, 1) over X3 corresponding to Al-

ice. {x1 = (A1 � 40)} is the sole minimum-size abductive

explanation for (1, 1, 1).

Definition 3. Let (f,⌃) be a constrained decision-function

over Xn and x 2 [⌃] be an instance.

• A contrastive explanation for x given (f,⌃) is a set c ✓
tx such that the vector xc 2 {0, 1}n that coincides with

x except on the characteristics of c (xc is a so-called

contrastive instance) is such that xc 2 [⌃] and f(xc) 6=
f(x).

• A subset-minimal contrastive explanation for x given

(f,⌃) is a contrastive explanation c for x given (f,⌃)
such that no proper subset of c is a contrastive explana-

tion for x given (f,⌃).

• A minimum-size contrastive explanation for x given

(f,⌃) is a contrastive explanation c for x given (f,⌃)
such that no contrastive explanation c

0
for x given

(f,⌃) such that |c0| < |c| exists.

When ⌃ is valid, subset-minimal contrastive explanations
are also referred to as necessary reasons [Darwiche and Ji,
2022] or contrastive explanations [Ignatiev et al., 2020a].
Example 6 (Example 1 cont’ed). Given the con-

strained decision-function (f,⌃) presented before,

{x2 = (A1 � 30)} is the unique subset-minimal con-

trastive explanation for the instance (0, 0, 1) over X3

corresponding to Bob (thus, it is also the unique minimum-

size contrastive explanation for (0, 0, 1)). Indeed, the

corresponding contrastive instance (0, 1, 1) is feasible (it

satisfies ⌃) and such that f((0, 1, 1)) = 1.

Clearly enough, every instance x has an abductive expla-
nation given (f,⌃) that can be obtained without any compu-
tational effort, since tx is such an explanation. Furthermore,
provided that x is known, every contrastive explanation c for
x given (f,⌃) entirely defines a corresponding contrastive
instance xc, and vice-versa, an instance xc 2 [⌃] such that
f(xc) 6= f(x) entirely defines a contrastive explanation c

for x given (f,⌃). Finally, it is obvious that minimum-size
abductive (resp. contrastive) explanations form a subset (in
general, a proper subset) of the set of subset-minimal abduc-
tive (resp. contrastive) explanations.

Beyond allowing to avoid the generation of abductive ex-
planations that are unnecessarily specific and the generation
of contrastive explanations that are impossible, the domain
theory ⌃ can also be exploited to simplify explanations:
Definition 4. Let (f,⌃) be a constrained decision-function

over Xn and x 2 [⌃] be an instance. Let e ✓ tx be an

explanation for x given (f,⌃) (it can be abductive or con-

trastive). e is said to be simplified w.r.t. ⌃ if and only if

8` 2 e, (e \{`})^⌃ 6⌘ e^⌃. A simplification of e w.r.t. ⌃ is

any subset s ✓ e such that s ^ ⌃ ⌘ e ^ ⌃ and s is simplified

w.r.t. ⌃.

Example 7 (Example 1 cont’ed). Given the constrained

decision-function (f,⌃) presented before, the abductive ex-

planation for (1, 1, 1) (associated with Alice) given by {x1 =
(A1 � 40), x2 = (A1 � 30)} can be simplified into the

subset-minimal explanation {x1 = (A1 � 40)}. {x1 =
(A1 � 40)} is the sole simplification of {x1 = (A1 �
40), x2 = (A1 � 30)} w.r.t. ⌃.

While the problem of deciding whether an explanation for
x given (f,⌃) is simplified w.r.t. ⌃ is NP-complete in the
general case, it is easy to show that testing whether an ex-
planation e is simplified w.r.t. ⌃ is tractable whenever ⌃ is
tractable for clausal entailment.2 In this case, generating a
simplification s of e w.r.t. ⌃ can be achieved in (determinis-
tic) polynomial time using a greedy algorithm based on suc-
cessive clausal entailment tests. Computing such a simplifi-
cation s can be useful when dealing with abductive explana-
tions e that are not subset-minimal, but not when abductive
explanations that are subset-minimal are considered. Indeed,
it turns out that subset-minimal abductive explanations are al-
ways simplified (thus, this is also the case for minimum-size
abductive explanations):
Proposition 1. Let (f,⌃) be a constrained decision-function

over Xn and let x 2 [⌃] be an instance. Let t ✓ tx. If t is a

subset-minimal abductive explanation for x given (f,⌃) then

t is simplified w.r.t. ⌃.

A contrario, subset-minimal contrastive explanations are
not necessarily simplified. Furthermore, simplifying a con-
trastive explanation c for x given (f,⌃) (i.e., computing a
simplification of c w.r.t. ⌃) may result in a set of literals
that no longer is a contrastive explanation for x given (f,⌃).
In such a case, applying a simplification process would be
counter-productive since it would question the status of the
explanation one starts with.
Example 8 (Example 1 cont’ed). Given the constrained

decision-function (f,⌃) presented before, the subset-minimal

contrastive explanation for (1, 1, 1) (associated with Alice)

given by {x1 = (A1 � 40), x2 = (A1 � 30)} is not simpli-

fied w.r.t. ⌃ since x1 ^ ⌃ ⌘ x1 ^ x2 ^ ⌃ holds. As shown

above, {x1 = (A1 � 40)} is the unique simplification of

{x1 = (A1 � 40), x2 = (A1 � 30)} w.r.t. ⌃. However,

c = {x1 = (A1 � 40)} is not a contrastive explanation for x
given (f,⌃) because the corresponding contrastive instance

(0, 1, 1) that coincides with (1, 1, 1) except on x1 satisfies ⌃
but verifies f((0, 1, 1)) = f((1, 1, 1)).

4 The Impact of Domain Theories
In the following, we focus on the issue of deriving abductive
explanations and contrastive explanations when f is a deci-

sion tree. We first recall known results for the case when no
domain theory connecting the Boolean conditions that occur
in f is available (or, equivalently, ⌃ is a valid formula). In
such a case, it has been shown that:

• As to abductive explanations:
– An instance x over Xn may have exponentially

many abductive explanations given f , and even ex-
ponentially many subset-minimal abductive expla-
nations, and exponentially many minimum-size ab-
ductive explanations in n [Audemard et al., 2022b;
2022a].

2For the sake of completeness, a proposition stating the result in
formal terms and its proof is provided as a supplementary material.



– Computing a subset-minimal abductive explanation
for x given f can be done in time polynomial in
the size of f and n [Izza et al., 2020], but it is
unlikely that we can enumerate subset-minimal ab-
ductive explanations for x given f in output poly-
nomial time [de Colnet and Marquis, 2022].

– Computing a minimum-size abductive explanation
for x given f is NP-hard [Barceló et al., 2020].

• As to contrastive explanations:

– An instance x over Xn may have exponen-
tially many contrastive explanations,3 but only
polynomially-many subset-minimal contrastive ex-
planations in n [Huang et al., 2021; Audemard et

al., 2022b].
– Computing all the subset-minimal contrastive ex-

planations for x given f can be done in time poly-
nomial in the size of f and n [Huang et al., 2021;
Audemard et al., 2022b].

– As a direct consequence, computing all the
minimum-size contrastive explanations for x given
f can be done in time polynomial in the size of f
and n.

Let us now show how the presence of a domain theory con-
necting the Boolean conditions used in f impacts the com-
plexity of deriving local explanations.

⌃ is any theory We first consider the general case when
⌃ is any propositional formula. In such a case, the presence
of ⌃ can make the derivation of some explanations computa-
tionally harder. Obviously, the case when no domain theory
is available (i.e., ⌃ is valid) is a specific case of the general
case (when ⌃ is unconstrained). As a consequence, all hard-
ness results obtained for the case when no domain theory is
available still hold in the general case:

• As to abductive explanations:

– An instance x over Xn may have exponentially
many abductive explanations given f and ⌃, and
even exponentially many minimum-size abductive
explanations in n.

– Computing a minimum-size abductive explanation
for x given f and ⌃ is NP-hard.

• As to contrastive explanations:

– An instance x over Xn may have exponentially
many contrastive explanations.

Let us now look at the remaining issues. We have derived
the following proposition:

Proposition 2. Let (f,⌃) be a constrained decision-function

over Xn, where f is a decision tree, ⌃ is a CNF formula, and

let x 2 [⌃] be an instance. Computing a subset-minimal

abductive explanation for x given (f,⌃) is NP-hard, even if

f reduces to a stump.

3Just because f may have exponentially many models and expo-
nentially many counter-models.

Subsequently, subset-minimal abductive explanations can-
not be enumerated in output polynomial time unless P = NP.

Similarly, for subset-minimal contrastive explanations, we
have that:
Proposition 3. Let (f,⌃) be a constrained decision-function

over Xn , where f is a decision tree, ⌃ is a CNF formula, and

let x 2 [⌃] be an instance. Computing a subset-minimal con-

trastive explanation for x given (f,⌃) (or just a contrastive

explanation for x given (f,⌃)) is NP-hard, and this holds

even if f reduces to a stump.

Unless P = NP, the previous result prevents from the
polynomial-time generation of all subset-minimal contrastive
explanations for x given (f,⌃), which is feasible when ⌃ is
valid. Actually, the result can be proved unconditionally due
to the number of subset-minimal contrastive explanations for
x given (f,⌃). Indeed, it can be the case that the minimum-

size contrastive explanations for x given (f,⌃) are exponen-
tially numerous in the number of features used, and this holds
not only in the general case when ⌃ is any theory, but also in
the specific case when ⌃ is a tractable theory. Indeed:
Proposition 4. Let (f,⌃) be a constrained decision-function

over Xn, where f is a decision tree, ⌃ is a CNF formula, and

let x 2 [⌃] be an instance. The number of minimum-size con-

trastive explanations for x given (f,⌃) can be exponential in

n, and this is the case even when ⌃ is a Horn CNF formula

or a CNF formula representing a set of domain constraints for

categorical attributes where each domain contains at least 3
elements.

⌃ is a tractable theory Let us now consider the case when
⌃ is a tractable theory. It turns out that supposing that ⌃ is
tractable for clausal entailment changes the picture concern-
ing the complexity of deriving a subset-minimal abductive ex-
planation:
Proposition 5. Let (f,⌃) be a constrained decision-function

over Xn, where f is a decision tree, ⌃ is a tractable theory,

and let x 2 [⌃] be an instance. Computing a subset-minimal

abductive explanation for x given (f,⌃) can be done in time

polynomial in the size of the input.

Focusing now on the generation of subset-minimal con-
trastive explanations, it is valuable to consider a further re-
striction on the tractable theory at hand, namely that ⌃ is a
Krom CNF formula (i.e., ⌃ is given as a conjunction of binary
clauses). Such theories are known as tractable for a while
[Even et al., 1976; Aspvall et al., 1979]. Interestingly, when
⌃ is a Krom CNF formula, the computation of all the subset-
minimal contrastive explanations for x given (f,⌃) can be
done in time polynomial in the size of the input. As a direct
consequence, the computation of all the minimum-size con-
trastive explanations for x given (f,⌃) can also be achieved
in time polynomial in the size of the input. So in the case
when ⌃ is a Krom CNF formula, the results obtained for the
case when ⌃ is valid still hold.
Proposition 6. Let (f,⌃) be a constrained decision-function

over Xn, where f is a decision tree, ⌃ is a Krom CNF formula,

and let x 2 [⌃] be an instance. Computing all the subset-

minimal contrastive explanations for x given (f,⌃) can be

done in time polynomial in the size of the input.



Notably, the theories ⌃ obtained by encoding numerical
and/or ordinal attributes are Krom CNF formulae. This is
also the case of theories encoding categorical attributes, pro-
vided that an open world assumption is made. What we
mean here is that if Di = {vi1, . . . , vipi

} is the set of values
of a categorical attribute Ai where the values v

i
j (j 2 [pi])

are those encountered in the dataset used to learn the deci-
sion tree f , then ⌃ is equivalent to the Krom CNF formulaV

vi
j ,v

i
k2Di|vi

j 6=vi
k
((Ai = v

i
j) _ (Ai = v

i
k), i.e., the values in

Di are mutually exclusive. So when considering decision
trees f based on numerical and/or ordinal features and/or cat-
egorical features under an open world assumption, the gener-
ation of all the subset-minimal contrastive explanations for an
instance x given (f,⌃) can be achieved in polynomial time.
And, as a consequence, the generation of all the minimum-
size contrastive explanations for an instance x given (f,⌃)
can be achieved in polynomial time as well.

We now focus on domain theories ⌃ that are tractable but
that do not reduce to Krom CNF formulae. Among them
are theories encoding categorical attributes, provided that a
closed world assumption is made, i.e., one supposes that the
domain of the categorical attribute Ai that is considered is
limited to its active (aka running) domain, i.e., to the val-
ues appearing in the dataset used to learn f . When Ai is
such an attribute with domain Di = {vi1, . . . , vipi

}, the cor-
responding domain theory ⌃ can be stated as the CNF for-
mula

V
vi
j ,v

i
k2Di|vi

j 6=vi
k
((Ai = v

i
j) _ (Ai = v

i
k) ^

W
vi
j2Di

v
i
j .

The conjunct
W

vi
j2Di

v
i
j has been added to the domain the-

ory considered when Di is interpreted under the open world
assumption in order to specify that no other values that those
listed in Di are possible for Ai. Though ⌃ is not a Krom
CNF formula when Di contains more than 2 values because
of the conjunct that has been added, ⌃ is tractable for clausal
entailment. Indeed, the clauses occurring in ⌃ are precisely
its prime implicates, thus to test whether a clause is a logical
consequence of ⌃, it is enough to test whether it is a logical
consequence of one of the clauses from ⌃.

Among the tractable theories of interest are also those con-
sisting of Horn CNF formulae. Such Horn theories can be
used for encoding hierarchical features, for instance the fact
that every plane geometry object that satisfies the property
“rectangle” and the property “diamond” must have the prop-
erty “square” as well, and vice-versa. Using symbols, ⌃ =
((Ai = rectangle) ^ (Ai = diamond)) , (Ai = square)
could be considered. This formula is equivalent to the
Horn CNF formula ((Ai = rectangle) _ (Ai = diamond) _
(Ai = square)) ^ ((Ai = square) _ (Ai = rectangle)) ^
((Ai = square) _ (Ai = diamond)), but not to any Krom
CNF formula. Because of Proposition 4, we already know
that, in general, the derivation of all subset-minimal con-
trastive explanations for an instance x given (f,⌃) cannot be
achieved in polynomial time when ⌃ is a Horn CNF formula
(so the result extends to tractable theories in the general case).
Thus, we need to focus on computationally easier problems,
namely the generation of one subset-minimal contrastive ex-
planation and the generation of one minimum-size contrastive
explanation.

As to the generation of one subset-minimal contrastive ex-
planation, we have obtained the following tractability result:
Proposition 7. Let (f,⌃) be a constrained decision-function

over Xn, where f is a decision tree, ⌃ is a tractable the-

ory, and let x 2 [⌃] be an instance. Computing one subset-

minimal contrastive explanation for x given (f,⌃) can be

done in time polynomial in the size of the input.

This tractability result does not extend to the case one
wants to derive one minimum-size contrastive explanation:
Proposition 8. Let (f,⌃) be a constrained decision-function

over Xn, where f is a decision tree, ⌃ is a tractable theory,

and let x 2 [⌃] be an instance. Computing one minimum-

size contrastive explanation for x given (f,⌃) is NP-hard

and this holds even if ⌃ is a pure Horn CNF formula and f is

a stump.

5 Conclusion
In this paper, we have shown that leveraging a domain theory
indicating how the Boolean conditions occurring in a decision
tree are logically connected may have a strong impact on the
complexity of generating provably correct explanations. As
shown in Table 1, none of the explanation problems that are
tractable when the Boolean conditions used in the tree are
independent (i.e., when ⌃ is valid) remain tractable when no
assumptions are made about the domain theory. Accordingly,
as it is the case in general for families of threshold classifiers
[Cooper and Marques-Silva, 2023], the presence of a domain
theory may question the computational intelligibility of the
ML model under consideration.

In the case of decision trees, ensuring that ⌃ is tractable is
enough to preserve the results about the computation of ab-
ductive explanations that hold when ⌃ is valid. Interestingly,
knowledge compilation techniques can be exploited to “ren-
der tractable” propositional formulae ⌃ that are not tractable
at start [Darwiche and Marquis, 2002]. Such algorithms can
be useful in practice to make tractable domain theories pro-
vided by explainees provided that their compiled forms re-
main small enough (which cannot be guaranteed in the gen-
eral case). Contrastingly, ensuring only that ⌃ is tractable
changes significantly the picture concerning the computation
of contrastive explanations given a decision tree. As a valu-
able exception, all the explanation problems that are tractable
when ⌃ is valid remain tractable when ⌃ is a Krom CNF for-
mula. The practical significance of this result comes notably
from the fact that the domain theories ⌃ obtained by encoding
numerical and/or categorical attributes under an open world
assumption are Krom CNF formulae.

A more intensive use of the domain theory under consider-
ation can be exploited to focus on some specific abductive ex-
planations [Cooper and Amgoud, 2023] (so-called “coverage-
based prime-implicant explanations”) given a classifier, at the
expense of a complexity shift (the identification of such ex-
planations becoming ⇧p

2-complete in the general case). A
perspective for further research will be to investigate to which
extent imposing specific conditions on the domain theory
used and focusing on decision tree classifiers is enough to re-
move at least one source of complexity, and even characterize
tractable restrictions of the problem.
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