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Abstract
PyXAI (Python eXplainable AI) is a Python li-
brary designed for providing explanations and cor-
recting tree-based Machine Learning (ML) models.
It is suited to decision trees, random forests, and
boosted trees, when used for regression or classi-
fication tasks. In contrast to many model-agnostic
approaches to XAI, PyXAI exploits the model it-
self to generate explanations, ensuring them to be
faithful. PyXAI includes several algorithms for the
generation of explanations, which can be abductive
or contrastive. PyXAI also includes algorithms for
correcting tree-based models when their predictions
conflict with pieces of user knowledge.

1 Introduction
The boom of Machine Learning (ML) through its numerous
high-stake applications (medical diagnosis, image and voice
recognition, autonomous driving, etc.) and the opacity of the
most accurate ML models has led to the rapid development
of eXplainable Artificial Intelligence (XAI) [Gunning, 2019]
with the goal to make ML models more transparent and more
trustable. More precisely, DARPA (Defense Advanced Re-
search Projects Agency) put forward the following objective
for XAI: ”to provide users with explanations that allow them
to understand the forces and the overall weaknesses of the
system in question, which allow them to understand how it will
behave in the future, or even to correct the system’s errors”.

Several criteria can be used to characterize XAI systems,
including (1) the family of ML models the system is suited to,
(2) the nature of the explanations it delivers, and the proper-
ties such explanations satisfy, (3) the other functionalities the
system provides, and (4) its target audience.

As to (1), unlike most existing approaches to explaining
ML models that generate model-agnostic explanations, PyXAI
is designed for tree-based models, i.e., decision trees (DTs),
random forests (RFs), and boosted trees (BTs), when used for
regression or classification tasks. Notably, BTs are among
the state-of-the-art ML models when dealing with tabular data
[Borisov et al., 2021]. Though DTs, RFs and BTs are tree-
based models, it turns out that DTs, RFs, and BTs do not
behave equally from an XAI perspective. Indeed, when they
are not too large, DTs are often viewed as interpretable by

design [Molnar, 2019]. Furthermore, even when they are large
enough, DTs are computationally intelligible [Audemard et al.,
2020] in the sense that many explanation / verification queries
about DTs can be treated using polynomial-time algorithms
[Audemard et al., 2021]. Contrastingly, RFs and BTs are
neither interpretable by design nor computationally intelligible
[Audemard et al., 2021].

PyXAI provides such XAI techniques for DTs, RFs, and
BTs. Often, explanations that are irredundant, i.e., not contain-
ing characteristics of the input instance that are unnecessary
for the explanation purpose, are looked for. One can even
look for minimal explanations, i.e., explanations containing
a minimal number of characteristics. Since computing expla-
nations is NP-hard in the broad sense in general, scalability
can be an issue for large datasets. Relaxing irredundancy or
minimality conditions about explanations is a way to deal with
this computational issue in practice.

As to (2), PyXAI generates explanations that are post-hoc,
local, and faithful. The goal is to provide explanations for
specific predictions, starting from a (tree-based) model that
has been learned. Being faithful (aka sound or correct) [Nauta
et al., 2023; Vilone and Longo, 2021; Zhou et al., 2021;
Yang et al., 2019] indicates that the explanations that are
provided actually reflect the exact behaviour of the model.
Faithfulness is paramount when dealing with high-risk or sen-
sitive applications, which is the type of applications that are
targeted by PyXAI. When faithfulness is not ensured, one can
find ”counterexamples” for the explanations that are gener-
ated, i.e., pairs of instances sharing an explanation but leading
to distinct predictions [Ignatiev et al., 2019b]. In particular,
[Ignatiev, 2020] shows that the amount of ”counterexamples”
can be high when using some of the most popular approaches
for computing model-agnostic explanations, namely LIME
[Ribeiro et al., 2016], Anchors [Ribeiro et al., 2018], and
SHAP [Lundberg and Lee, 2017]. In order to avoid the gen-
eration of unsound explanations, the approach followed by
PyXAI is to map tree-based models to Boolean circuits (alias
“transparent” or “white boxes”), exhibiting the same input-
output behaviors [Narodytska et al., 2018; Shih et al., 2018a;
2019]. Thanks to such mappings, XAI queries about tree-
based models can be delegated to the corresponding circuits.

As to (3), PyXAI provides correction methods for tree-
based models. This more tricky facet of XAI is seldom offered
by existing XAI systems. When some domain knowledge



is available and a prediction contradicts it, the model must
be corrected. Rectification is a principled approach for such
a correction operation, i.e., it is characterized by a set of
rationality postulates [Coste-Marquis and Marquis, 2021].

As to (4), PyXAI is suited to users that are not ML special-
ists. The users of PyXAI may have pieces of knowledge about
the domain that is targeted. Such pieces of knowledge can be
used to make predictions for some instances (maybe only few
of them when the user is more a layperson than an expert) and
to correct the model when needed. The PyXAI library also
deals with user preferences. Different kinds of preferences are
handled [Audemard et al., 2022a], and this is useful to provide
explanations that fit the user expectations in the best way.

2 A General Overview
As illustrated in Figure 1, PyXAI is organized into three sepa-
rate modules, dedicated to training, explaining, and rectifying
(respectively). You produce, load, save or import ML mod-
els with the learner module, you retrieve explanations from
these models using the explainer module, and you correct
the models using the rectifier module.
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Figure 1: User interaction with PyXAI

Figure 2 shows that with few lines of code, PyXAI allows
you to train a model, extract instances, and get explanations
about the predictions made. A time limit can be given as a
parameter to these methods.

In tree-based models, the conditions labelling the internal
nodes of the trees are, in general, non-independent. For in-
stance, one can find in a model a condition age ≥ 21 and
other conditions like age ≥ 18 or of age. Theories are rep-
resentations of pieces of knowledge about the dataset that
make precise how the conditions are connected (for instance,
(age ≥ 21 ⇒ age ≥ 18) ∧ (age ≥ 18 ⇔ of age)). PyXAI
provides the option to take advantage of a theory. This is useful
for deriving shorter abductive explanations [Gorji and Rubin,
2022], for avoiding to generate contrastive explanations that
are impossible, and for simplifying both the explanations that
are produced and the models obtained after a rectification step
[Audemard et al., 2023c].

from pyxai import Learning , Explainer

learner=Learning.Scikitlearn("iris.csv",
learner_type=Learning.CLASSIFICATION)

model=learner.evaluate(method=Learning.HOLD_OUT,
output=Learning.DT)

instance , prediction = learner.get_instances(
model, n=1, correct=True, predictions=[0])

explainer = Explainer.initialize(model, instance)
s_reason = explainer.sufficient_reason()
c_reason = explainer.contrastive_reason()

explainer.visualisation.notebook(instance, s_reason)

Figure 2: A simple example of Python code using PyXAI.

3 Computing Explanations
Using PyXAI, several types of (post-hoc, local) explanations
(also called reasons) for a given instance x can be calculated.
Among them, abductive explanations for x [Ignatiev et al.,
2019a] are intended to explain why the prediction made by
the ML model about x has been obtained. Using PyXAI, it is
possible to compute several types of abductive explanations,
called direct, majoritary/tree-specific and sufficient reasons.
Direct reasons are the easier to compute, but they are often
very redundant (hence, they are quite large in general). Shorter
abductive explanations correspond to other notions of reasons.
Irredundant abductive explanations (i.e., explanations that are
minimal w.r.t. set inclusion) are also called sufficient reasons
[Darwiche and Hirth, 2020] or PI-explanations [Shih et al.,
2018b]. They can be computed in polynomial time for the DT
model but not for the RF or the BT models (unless P = NP).
For the DT model, PyXAI gives an algorithm for computing
sufficient reasons [Audemard et al., 2022b]. PyXAI also gives
algorithms for generating majoritary reasons for the RF model
[Audemard et al., 2022c] and tree-specific reasons for the
BT model [Audemard et al., 2023b]. Majoritary reasons /
tree-specific reasons are abductive explanations that can be
computed in polynomial time. They can be redundant but in
practice, their sizes are close to those of sufficient reasons.
Regression models are also taken into account: PyXAI also
includes an algorithm for deriving tree-specific reasons for the
BT model [Audemard et al., 2023a]. Note also that algorithms
for computing minimal reasons (in terms of size) are also
offered by the library.

Unlike abductive explanations, contrastive explanations
[Miller, 2019] are intended to explain why x has not been
classified by the ML model as the user expected it. Algorithms
for the generation of contrastive explanations given a tree-
based model are also provided in PyXAI [Audemard et al.,
2023c].

When computing explanations, PyXAI can also take advan-
tage of user preferences [Audemard et al., 2022a]. Dichoto-
mous preference relations are handled, enabling to discard
explanations containing characteristics that are not intelligible
by a user from the explanations that are returned by PyXAI,
or contrastive explanations containing characteristics that are
not actionable (i.e., that cannot be changed). More gradual
preference relations, modeled by utility or cost functions over



the features, can also be considered.

4 Correcting Tree-Based Models
Whenever the user disagrees with a prediction made by the ML
model or with an explanation returned by PyXAI, she/he may
provide PyXAI with a classification rule, supposed to be reli-
able enough and which can be used to rectify the model. This
rule conflicts with the prediction / explanation that triggers the
correction, in the sense that it has compatible premises, yet a
distinct conclusion. It captures some domain knowledge that
should be incorporated into the ML model in order to achieve
better predictions, while preserving the explanation capacities
of the model.

By construction, the rectification of an ML model by a clas-
sification rule is an ML model of the same kind, which makes
the same predictions as those of the ML model at start, except
for the instances for which other predictions are demanded by
the rule, and for them, the resulting model provides the pre-
dictions that are required [Coste-Marquis and Marquis, 2023].
Thus, rectification is a conservative approach to the correction
of a model (no retraining is made, and only the predictions that
are questioned are modified). Notably, from a computation
complexity point of view, rectifying a tree-based model can
be achieved in time polynomial in the size of the input (the
representation of the model and the classification rule used to
correct it). This makes the approach practical enough.
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Figure 3: Rectifying a decision tree.

Figure 3 illustrates the rectification operation for a DT T
used to address a problem of credit allocation to bank cus-
tomers. Each customer is characterized by an annual income I
(in k$), the fact of having already reimbursed a previous loan
(R) and, whether or not, she/he has a permanent position (PP ).
The Boolean conditions used in T are I > 30, I > 20, R, and
PP . Consider the instance x = (I = 25, R = 1, PP = 1)
corresponding to a customer applying for a loan. The DT
T in Figure 3 (left) is such that T (x) = 1: the loan should
be granted. The user (a bank employee) disagrees with this
prediction. For him/her, the following classification rule must
be obeyed: whenever the annual income of the client is lower
than 30, the demand should be rejected. Figure 3 (right) shows
T after its rectification by this rule, once simplified.

5 Additional Facilities
Finally, PyXAI offers a few additional features that aim to
make it a full-fledge integrated XAI framework. Those addi-
tional facilities are useful to ease the implementation of an

ML protocol that includes the generation of explanations for
the predictions made and the correction of the model.
Importing Models PyXAI provides an easy way to import
models and is fully compatible with three ML libraries: Scikit-
learn [Pedregosa et al., 2011], XGBoost [Chen and Guestrin,
2016], and LightGBM [Ke et al., 2017].
Visualizing Explanations By default, explanations can be
shown in a notebook or saved in PNG format. PyXAI provides
an optional Graphical User Interface (GUI) to display, save and
load, instances and explanations for any dataset in a smart way.
PyXAI supports multiple image formats for image datasets.

Figure 4 shows the graphical interface for an image dataset
and the notebook display for a time series dataset.

Figure 4: Visualizing explanations with PyXAI.

Saving/Loading Models and Instances The PyXAI library
implements functions to save and load models and related
hyper-parameters for training, and to save and load selected
instances.
Installation and Documentation The PyXAI webpage1

gives access to a number of resources, including a video pre-
sentation and more than 10 Jupyter notebooks. The source
code of PyXAI is available on GitHub2. Installation is easy
thanks to PyPi.

6 Related Work
Unlike model-agnostic explanations for which many popular
libraries and toolkits exist (see [Le et al., 2023] for a recent
survey), as far as we know, there is no XAI library dedicated
to tree-based models, but PyXAI.

To be more precise, two algorithms are available for the gen-
eration of abductive explanations suited to tree-based models.
The first one is called XPlainer; it shows how to leverage
an SMT solver to compute sufficient reasons [Ignatiev et al.,
2019c] given a BT. The second one is called XReason; it re-
lies on another encoding scheme, based on MaxSAT [Ignatiev
et al., 2022]. Up to now, none of these algorithms has been
integrated with training algorithms into a fully-developed XAI
library for tree-based models. Finally, to the best of our knowl-
edge, apart from PyXAI, there is no library that would provide
algorithms for rectifying tree-based models.

1https://www.cril.univ-artois.fr/pyxai/
2https://github.com/crillab/pyxai
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