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Abstract

The propagation of an acoustic wave generated by a δ-pulse unit point force in a three dimensional
anisotropic medium is considered. A general expression for the retarded 3× 3 elastodynamic displace-
ment Green’s function is derived for arbitrary anisotropic symmetry. The initial integration problem of
four integrations is reduced to only one ϕ-integration problem combined with the problem of solving
three algebraic equations. The evaluation of expressions of the Green’s function for the behavior at
infinity yields the radiation condition and describes the acoustic wave propagation and gives the possible
distinguished propagation directions from the source point for outgoing acoustic waves (high symmetry
directions of the crystal beside other distinguished directions). For high symmetry directions of the
crystal this condition yields three outgoing singular acoustic waves, one with longitudinal and two with
transverse polarization. For elastic isotropy of the medium we obtain the result known from literature
[17] which was derived there by using other techniques. For hexagonal symmetry of the medium we
derive closed-form expressions of the farfield waves for the high symmetry directions (i.e. for propagation
directions parallel and in the plane perpendicular to the hexagonal c-axis).
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1 Introduction

In recent years the modeling of dynamic processes in composite structures has become of great interest
due to widespread applications in ultrasonics technology. In the description of the effective characteristics
Green’s function methods are powerful tools. Especially useful are closed form representations.
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In numerous papers Green’s functions of elastostatics have been derived. In the isotropic elasticity the
Green’s function of statics was derived by Kelvin (Sir Thomson) [4]. For the infinite medium of hexagonal
symmetry closed form representations of Green’s functions for displacements have been derived by Lifshitz
and Rosenzweig [6] and more compactly by Kröner [7]. For the electroelastic infinite medium of hexagonal
symmetry the explicit static Green’s function has been derived by Michelitsch [9] by employing an integral
transformation technique which is outlined in [10]. This closed-form formulation of the electroelastic
Green’s function has turned out to be a useful tool for the explicit evaluation of the electroelastic analogue
of the Eshelby tensor [11] which represents a key quantity in the treatment of inclusion problems. For the
semi-infinite piezoelectric medium of hexagonal symmetry closed-form expressions for the static Green’s
function are derived by Karapetian et al. [12] only recently by utilizing an advanced method in potential
theory that was discovered by Fabrikant [8].
A treatment of the space-frequency representation of the dynamic Green’s function which represents the
solution for the dynamic response of a time harmonic point force was given by Norris [13]. In that paper
time-harmonic Green’s functions for anisotropic piezoelectric, thermoelastic and poroelastic solids are
constructed where the similarity in the theories is outlined. Another representation of the frequency-space-
representation of the dynamic Green’s function was given by Willis [20] among other authors. The wave
propagation in elastic solids was analyzed by Achenbach in [18]. Only for the isotropic elasticity a full
closed-form solution for the frequency-space-representation of the dynamic Green’s function is known
in the literature [17]. In second order gradient electrodynamics retarded Green’s functions and related
quantities were derived by Lazar [19]. The time-domain dynamic response function which represents the
dynamic displacement response to a unit point force having Heaviside step function time dependence in
elastic anisotropic media was treated by Every and Kim [15]. In their paper special emphasis is given on
singularities and discontinuities that appear in dynamic response functions. A treatment of the dynamic
Green’s function of the space-frequency representation of the infinite transversely isotropic medium was
given by Tverdokhlebov and Rose [16]. In that paper a formula is developed for the case of weak anisotropy
that allows especially a convenient treatment of scattering fields in the farfield approximation. An advanced
analysis of the dynamic response of transient electroacoustic waves in piezoelectric solids was given by
Sosa and Khutoryansky (1999, 2001) [1, 2]. Utilizing this approach general expression for the Green’s
function was also derived by Daros and Antes (2000) [3].

In the present paper our goal is to develop a general method for the construction of the space-time
representation of the causal (retarded) Green’s function. Our approach complements the existing literature
and is closely related to that introduced by Sosa and Khutoryansky (1999, 2001) for piezoelectric solids,
but with focus on farfield expressions for purely elastic solids of arbitrary anisotropic symmetry. We show
that this approach yields useful representations especially for the farfield approximation of the dynamic
Green’s function. The constructed Green’s function represents the dynamic displacement-response of
a δ-pulse-point-force. We formulate our method for arbitrary symmetry and anisotropy of the infinitely
extended medium. The presented formulation of the dynamic Green’s function in the space-time domain
may be especially useful for a treatment of scattering problems, for instance the scattering of acoustic
waves at impurities or inclusions.

2 Equations of motion

We start with the field equations for the stress tensor σ and the elastic displacements u. The governing
equilibrium conditions are given by:

ρM
d2

dt2
ui = ∂jσij + fi , σij = σji (1)

∂j indicates the spatial derivatives with respect to the Cartesian space coordinates xj = (x, y, z), d
dt is the

time derivative, f the density of body forces and ρM the mass density. As constitutive equations we assume
the anisotropic Hooke’s law:

σij = Cijklεkl (2)

where Cijkl denote the elastic moduli. They have the symmetry properties Cijkl = Cklij = Cjikl = Cijlk. The
elastic displacement field u is related to the tensor ε of elastic strains by the ansatz
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εij = 1
2 (∂iuj + ∂jui) (3)

Putting ansatz (3) using (2) into the field equations (1) we obtain a 3× 3 second-order differential equation
(wave equation) for the displacement field u of the form:

[T (∇)− ρM
d2

dt2
1]u(r, t) + f(r, t) = 0 (4)

∇ indicates the spatial gradient operator, 1 denotes the 3× 3 unit tensor and r = (x, y, z) the space vector
and t the time coordinate. T (∇) indicates the fundamental 3× 3 second-order tensor differential operator
of elasticity and is given by:

Tij (∇) = Cipjq∂p∂q (5)

The displacement field u can then be represented by the dynamic 3× 3 Green’s function G according to

u(r, t) =
∫ ∫

G(r − r′
, t− t′)f(r′

, t
′)d3r

′dt′
(6)

The requirement that u must be a solution of (4) yields as defining wave equation for the dynamic Green’s
function

[T (∇)− ρM
d2

dt2
1]G (r, t) + δ3 (r) δ(t)1 = 0 (7)

where δ3 (r) and δ(t) represent the spatial δ-function and the time dependent δ-function, respectively. Above
defined dynamic Green’s function has the following physical interpretation:
Gij(r, t) gives the elastic displacement in xi-direction at spacepoint r and time t caused by a unit δ-
pulse-point-force at r

′ = 0 and t
′ = 0 in xj-direction. We furthermore observe the symmetry property

Gij = Gji.
Here we note an important observation: on the one hand, since equation (7) is a partial second-order

differential equation, its solution G has the property of time inversion symmetry being invariant against
the replacement t→ −t. On the other hand we have the physical requirement of causality for the Green’s
function to guarantee the fact that the displacement response at spacepoint r and time t can only take
place after being excited by a source at spacepoint r

′
and time t

′
< t. As a consequence thereof the causal

(retarded) Green’s function G must fulfill the property G 6= 0 for t > 0 and G = 0 for t < 0. This is an
obvious contradiction to the time inversion-symmetry-property of equation (7) that can only be eliminated
by introducing an infinitesimal first-order damping term ε ddt (ε→ 0+) into (7) and (4), breaking the time
inversion symmetry and guaranteeing causality as we shall show in the subsequent section. Simultaneously
this infinitesimal damping term is necessary to regularize our problem as we depict in the next section. The
(causal) dynamic Green’s function (often denoted as causal propagator) has the form

G(r, t) = Θ(t)G(r, t) (8)

where we introduced the Heaviside Θ-function (step function) which is defined by Θ(t) = 1 if t > 0 and
Θ(t) = 0 if t < 0.

3 Outline of the method

In this section our goal is to derive a general method that allows us to construct the causal dynamic 3× 3
Green’s function defined by equation (7) for the infinite medium with arbitrary symmetry. To that end we
represent the Green’s function G by Fourier transformation according to

G(r, t) = 1
(2π)4

∫ ∫
exp (iωt) exp (ik · r)G̃(k, ω)d3kdω (9)

The 3× 3 Fourier transform G̃(k, ω) of the Green’s function can then be obtained by using eq. (7)

G̃(k, ω) = [T (k)− ρMω21]−1 (10)

3



In order to obtain a convenient formulation we now introduce the (orthonormal) eigenvectors vλ(k)
with the eigenvalues ρMµ2

λ(k) (λ = 1, 2, 3) of Tij(k) = Cipjqkpkq which are defined by

T (k)vλ(k) = ρMµ
2
λ(k)vλ(k) , λ = 1, 2, 3 (11)

Because of elastic stability the eigenvalues fulfill the property µ2
λ(k) > 0 for k 6= 0. The µλ(k) can be physi-

cally interpreted as eigenfrequencies of three harmonic oscillators corresponding to three elastic waves
with wave vector k and polarization vector vλ(k). We observe that these three waves having wave vector k
represent homogeneous solutions of wave equation (4). Obviously there are three distinguished frequency
branches µλ(k). As a consequence of the symmetry property Tij = Tji the normalized eigenvectors vλ
represent an orthonormal basis and fulfill

vλ(k) · vµ(k) = δλµ (12)

together with the completeness property

3∑
λ

vλ(k)⊗ vλ(k) = 1 (13)

where ⊗ stands for dyadic multiplication. Using the set {vλ ⊗ vλ} as tensor basis we can represent the
T -tensor in its spectral representation

T (k) =
3∑
λ

ρMµ
2
λ(k)vλ(k)⊗ vλ(k) (14)

By employing these properties the Fourier transform (10) can be written as

G̃(k, ω) = 1
ρM

3∑
λ

vλ(k)⊗ vλ(k)gλ(k, ω) (15)

where we have introduced the abbreviation

gλ(k, ω) = 1
µ2
λ(k)− ω2 (16)

First we start with the calculation of G(k, t) which is given by

G(k, t) = 1
2π

∫ ∞
−∞

G̃(k, ω) exp (iωt)dω (17)

From equation (9) we observe that G(r, t) and G(k, t) are related by

G(r, t) = 1
(2π)3

∫
exp (ik · r)G(k, t)d3k (18)

We can rewrite eq. (17) as

G(k, t) = 1
ρM

3∑
λ

vλ(k)⊗ vλ(k)gλ(k, t) (19)

where we denote

gλ(k, t) = 1
2π

∫ ∞
−∞

gλ(k, ω) exp (iωt)dω (20)

Obviously integral (20) is not well defined because of the singularities of gλ(k, ω) at ω1,2 = ±µλ(k) which are
located on the real ω-axis (eq. (16)). In order to obtain a regularization of (20) we introduce an infinitesimal
damping ε → 0+ (ε > 0). The amplitude gλ(k, t) fulfills then the equation of motion of an infinitesimally
damped harmonic oscillator with eigenfrequency µλ > 0 excited by a δ-pulse{

d2

dt2
+ 2ε d

dt
+ µ2

λ(k)
}
gλ(k, t) = δ(t) (21)

For the regularized gλ(k, ω) we now obtain
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gλ(k, ω) = 1
µ2
λ(k)− ω2 + 2iεω

(22)

Expression (20) becomes with (22) a regular well defined integral. The integrand has now singularities at
ω1,2 = iε± µλ which are infinitesimally displaced from the real ω-axis into the upper complex ω-plane. In
order to evaluate integral (20) via residue theorem we have to find a closed integration path in the complex
ω-plane which contains on the one hand the real ω-axis and yields on the other hand in a limiting process
as only non zero contribution integral (20). At this point we apply a very common method of integration
that is described in many introductory textbooks of theoretical physics (see e.g. [21]). We therefore do not
repeat its detailed derivation here. Its brief description is as follows: For t > 0 we can calculate (20) using
residue theorem when we close the integration path by a semicircle around the upper complex ω-plane
(Imω > 0) with radius |ω| → ∞. For t < 0 we have to close the integration path by a semicircle around the
lower ω-plane (Imω < 0). In the limiting case when the radii of the semicircles tend to infinity (|ω| → ∞)
the contributions of the integrals over the semicircles to (20) are tending to zero faster than 1/|ω|. Since
the singularities ω1,2 are located in the upper complex ω-plane there are non zero contributions to (20) only
for t > 0. For t < 0 (20) is vanishing. We thus can write

gλ(k, t) = 1
2π

∮
gλ(k, ω) exp (iωt)dω

= 2πi
∑

Res[gλ(k, ω) exp (iωt)]
(23)

where Res[gλ(k, ω) exp (iωt)] denote the residues of function gλ(k, ω) exp (iωt). By evaluating this expression
we obtain

gλ(k, t) = Θ(t) exp(−εt)sinµλt
µλ

(24)

This result is well known as causal (retarded) Green’s function of the damped harmonic oscillator (e.g.
[21]). The exponential factor exp(−εt) can be omitted since we assume that ε is chosen small enough that
the limiting case tε→ 0+ is fulfilled for finite t. The Heaviside function (Θ-function) in (24) describes the
causality of the Green’s function. The causality is automatically fulfilled by introducing the infinitesimal
damping into eq. (21). Putting (24) into (19) then gives the causal G(k, t). The remaining task is now to
perform the k-integration of (19) by evaluating integral (18) which takes the form

G(r, t) = Θ(t)
(2π)3ρM

3∑
λ

∫ 2π

0
dϕ

×
∫ π

0
dϑ sinϑ 1

µλ(k̂)
vλ(k̂)⊗ vλ(k̂)

×
∫ ∞

0
dk k cos(kr cos(ϑ)) sin(tkµλ(k̂))

(25)

Here we have introduced k = kk̂ where k̂ denotes the unit vector in k-direction. We furthermore make use
of the homogeneity property

µλ(kk̂) = kµλ(k̂) (26)

The unit vector k̂ can be represented as

k̂(u, ϕ) = ξ(ϕ)
√

(1− u2) + e3u (27)

with ϑ denoting the angle between space vector r and wave vector k with u = cosϑ and +
√

(1− u2) = sinϑ
(0 ≤ ϑ ≤ π). e3 = r/r denotes the unit vector in the r-direction. The unit vector ξ is perpendicular to r and
has the form [9, 10]

ξ (ϕ) = e1 cosϕ+ e2 sinϕ (28)

The vectors ei form a useful orthonormal basis
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e1 = 1
ρ

 −yx
0

 , e2 = 1
ρr

 −zx−zy
ρ2

 , e3 = 1
r

 x

y

z

 , (29)

where ρ2 = x2 + y2, r2 = ρ2 + z2. The basis vectors ei fulfill ei = 1
2εijkej × ek. Here εijk denotes the

anti-symmetric permutation tensor. In order to evaluate (25) it is convenient to use the relation

sin(tkµλ(k̂)) = −1
kµλ(k̂)

d

dt
cos(tkµλ(k̂)) (30)

Then eq. (25) takes the form

G(r, t) =

− Θ(t)
(2π)3ρM

d

dt

3∑
λ

∫ 2π

0
dϕ
∫ +1

−1
du 1
µ2
λ(k̂)

vλ(k̂)⊗ vλ(k̂)

×
∫ ∞

0
dk cos(kru) cos(tkµλ(k̂))

(31)

where k̂ = k̂(u, ϕ) (eq. (27)). To simplify above equation a consideration of symmetry properties is useful:
the operator Tij(k) = Cirjskrks is a bilinear function of ki depending only on the products {krks} which

obviously are invariant under inversion k → −k. Consequently µ2
λ(k) and µλ(k) = +

√
µ2
λ(k) are even

functions under inversion

µλ(−k) = +µλ(k) (32)

since they are always functions of the set of products {krks} and not affected by the signs of the ki. As we
show below this symmetry property is crucial to obtain a very compact formulation of the Green’s function.
To that end we note that the eigenvectors fulfill the property

vλ(−k) = pvλ(k) (33)

with p2 = 1 thus p = ±1. This follows directly from the orthonormality relation (12). From these observations
we can conclude that obviously vλ(k̂)⊗ vλ(k̂)/µ2

λ(k̂) is an even function with respect to inversion. We then
observe that the surface-integral

0 =
∫ 2π

0
dϕ
∫ +1

−1
du
[ 1
µ2
λ(k̂)

vλ(k̂)⊗ vλ(k̂)

× sin(kru) sin(tkµλ(k̂))
] (34)

is vanishing since its integrand is an odd function under inversion. Using this property we arrive at 1

G(r, t) = − Θ(t)
(2π)3ρM

d

dt

3∑
λ

∫ 2π

0
dϕ
∫ +1

−1
du 1
µ2
λ(k̂)

×vλ(k̂)⊗ vλ(k̂)
∫ ∞

0
dk cos(k[ru− tµλ(k̂)])

(35)

Taking into account that the k-integration yields a δ-function we obtain

1We observe from eq. (34) that the term cos(k[ru − tµλ(k̂)]) could also be replaced by cos(k[ru + tµλ(k̂)]). Because of the
inversion symmetry µλ(−k̂) = µλ(k̂) both variants lead to the same result for the Green’s function (eq. (43) below).
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G(r, t) = − Θ(t)
8π2ρMr

d

dt

3∑
λ

∫ 2π

0
dϕ
∫ +1

−1
du

×
[ 1
µ2
λ(k̂)

vλ(k̂)⊗ vλ(k̂)

×δ
(
u− tµλ(u, ϕ)

r

)]
(36)

The (u, ϕ)-dependencies of µλ and vλ depend on the orientation of r (compare eq. (27)). We note here that
the eigenvalues µλ(k̂) = µλ(u, ϕ) are functions defined on the unit sphere |k̂| = 1. By choosing a coordinate
free representation we can write (36) alternatively as integral over the unit sphere |k̂| = 1: 2

G(r, t) = − Θ(t)
8π2ρM

d

dt

3∑
λ

∫
|k̂|=1

dΩ(k̂)

×
[ 1
µ2
λ(k̂)

vλ(k̂)⊗ vλ(k̂)δ(k̂ · r − tµλ(k̂))
] (37)

The contributions to (37) are determined by the zeros of the equations

k̂ · r − tµλ(k̂) = 0 , λ = 1, 2, 3 (38)

The solutions k̂λ(ϕ, t/r) = k̂(uλ(ϕ, t/r), ϕ) of (38) represent curves on the unit sphere |k̂| = 1 which can be
parameterized as follows:

k̂λ

{
ϕ,
t

r

}
= k̂

{
uλ(ϕ, t

r
), ϕ

}
k̂λ

{
ϕ,
t

r

}
=
√

1− u2
λ(ϕ, t

r
)ξ(ϕ) + e3uλ(ϕ, t

r
)

(39)

where the uλ(ϕ, t/r) denote only those zeros of the equations

u− tµλ(u, ϕ)
r

= 0, λ = 1, 2, 3 (40)

which fulfill additionally the condition

1− u2 ≥ 0 (41)

The solutions uλ of (40) which fulfill additionally (41) represent the zeros of the arguments in the δ-functions
in eq. (36). Condition (41) takes into account that the integration limits are u = ±1. For further evaluation
of (36) we have to determine these solutions.

To discuss the solutions of (40) it is convenient to introduce the minimum and maximum values µMin
λ

and µMax
λ with 0 < µMin

λ ≤ µλ(k̂) ≤ µMax
λ . We observe, because of the property µλ(u, ϕ)t/r > 0, that the

solutions of (40) always fulfill uλ(ϕ, t/r) > 0. However, only those solutions of (40) affect (36) which fulfill
additionally (41). In order to determine them three distinguished t/r-ranges have to be considered for each
fixed λ:

Range I:
tµMin
λ /r ≤ tµλ/r ≤ tµMax

λ /r ≤ 1; uλ(t/r, ϕ) < 1 for all ϕ.

Range II:
µMin
λ t/r ≤ 1 ≤ µMax

λ t/r; uλ(t/r, ϕ) < 1 is fulfilled for distinguished ϕ-ranges only.

Range III:

2Because of the inversion symmetry of the integrand of (37) we observe that both signs in δ(k̂ · r ± tµλ(k̂)) lead to the same
result.
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1 < µMin
λ t/r ≤ µλt/r ≤ µMax

λ t/r; uλ(t/r, ϕ) > 1 thus (40) has no solutions which fulfill (41).

In the general case of arbitrary symmetry of the medium the solutions of (40) which fulfill (41) for fixed
λ’s consist in several steady solution segments u

(sλ)
λ (ϕ, t/r) (sλ = 1, ..,mλ) where mλ = mλ(t/r) denotes the

number of steady solution segments. When the entire ϕ interval [0, 2π] is passed, the solutions passe all mλ

segments u
(sλ)
λ (ϕ, t/r) sequentially. Each segment u

(sλ)
λ represents the unique solution of (40) fulfilling (41)

for a certain ϕ-interval. The introduction of steady segments takes into account that the solutions of (40)
fulfilling (41) may behave discontinuously, jumping from one segment u

(p)
λ (ϕ, t/r) to the next u

(p+1)
λ (ϕ, t/r)

when ϕ is continuously passed. In our subsequent considerations segment index sλ is omitted whenever
possible.

In order to derive a compact formulation for the Green’s function from (36) it is convenient to introduce
characteristic functions Θsλ

(ϕ, t/r) with Θsλ
= 1 only in that very ϕ-interval where the solution assumes

segment u
(sλ)
λ and Θsλ

= 0 outside that ϕ-interval. Above introduced characteristic functions then fulfill the
condition

mλ∑
sλ

Θsλ
(ϕ, t

r
) = Θλ(t/r) (42)

with Θλ(t/r) = 1 for t/r in above defined range I, 0 < Θλ(t/r) < 1 for t/r in range II, and Θλ(t/r) = 0 for
t/r in range III.

Thus we finally obtain for the Green’s function (36) the representation

G(r, t) = − Θ(t)
8π2ρMr

d

dt

3∑
λ

mλ∑
sλ

∫ 2π

0
dϕΘsλ

(ϕ, t
r

)

×
[ Θ{1− u(sλ)

λ (ϕ, t
r

)}

B
(sλ)
λ [k̂(sλ)

λ (ϕ, t
r

)]µ2
λ[k̂(sλ)

λ (ϕ, t
r

)]

×vλ[k̂(sλ)
λ (ϕ, t

r
)]⊗ vλ[k̂(sλ)

λ (ϕ, t
r

)]
]

(43)

The B
(sλ)
λ are given by

B
(sλ)
λ [k̂(sλ)

λ (ϕ, tr )] = B
(sλ)
λ (u(sλ)

λ , ϕ)

= |1− t

r

dµλ
du

[k̂(u = u
(sλ)
λ , ϕ)]|

(44)

Above representation (43) of the Green’s function reduces our initial integration problem (9) considerably,
namely to only one single ϕ-integration-problem combined with the algebraic problem which consists in
finding the zeros uλ of the three equations (40) fulfilling (41). The Θ(1− uλ)-functions in (43) guarantee
that only those ϕ-ranges with uλ(ϕ, tr ) < 1 contribute to (43).

Expression (43) generally holds for infinite media with arbitrary elastic anisotropy and symmetry. In
view of (40) follows that for fixed r and t→∞ the step functions in (43) vanish in the entire ϕ-range [0, 2π].
As a consequence thereof the Green’s function is vanishing in the limiting case of t → ∞ for each fixed
space-point r. This can physically be interpreted by runtime effects.

Subsequently we show that above representation (43) of the dynamic Green’s function is highly
convenient in order to obtain in a direct way the full closed-form solutions for the isotropic medium (section
5) and for the farfield solution in the case of hexagonal symmetry of the medium (section 6). In the next
section we derive general asymptotic expressions for the Green’s function from eq. (43) at infinity r →∞
holding for arbitrary symmetry of the medium.

4 Asymptotic expressions for the Green’s function

In this section we derive asymptotic expressions for the Green’s function (43) far away from the source
point r

′ = 0 for r → ∞ and t > 0. To that end we have to consider the 1/r-expansion of (43) which is
obtained by evaluating the expression
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Sλ = d

dt

{
vλ(k̂λ)⊗ vλ(k̂λ)Θ(1− uλ)

µ2
λ(k̂λ)[Bλ(k̂λ)]

}
(45)

to arrive at

Sλ = −duλ
dt

{
vλ(k̂λ)⊗ vλ(k̂λ)δ(1− uλ)

µ2
λ(k̂λ)[Bλ(k̂λ)]

}
+O(1

r
) (46)

where the δ-function comes into play from the time derivative of the Θ-function and O(1/r) denotes
remaining terms of at least first-order in 1/r corresponding to a 1/r2-order term of (43). This is a
consequence of the property

duλ
dt

= µλ
r

+ t

r

dµλ
du

duλ
dt

(47)

Collecting terms duλ
dt we obtain an expression of order 1/r:

duλ
dt = µλ

r

(
1− t

r

dµλ
du

)

= µλ
r

pλ
Bλ

(48)

Here we have introduced pλ = sign(1− t
r
dµλ
du ) that can take the values ±1.

Equation (46) can now be evaluated by using (48). The factor µλ/r can be absorbed into the δ-function:

d

dt
Θ(1− uλ) = −δ(t− r

µλ
) pλ
Bλ

(49)

To obtain the farfield approximation in the evaluation of (43) only the δ-term of (46) has to be taken into
account as dominant term for r →∞. Thus (43) yields then an expression of the form

G∞(r, t) =
3∑

λ=1
G(λ)
∞ (r, t) (50)

where

G(λ)
∞ (r, t) = pλ

8π2ρMr

δ(t− r
µλ

)
µ2
λ

∫ 2π

0
vλ ⊗ vλ

dϕ
B2
λ

(51)

The quantities Bλ = Bλ(u = 1, ϕ) in general depend on ϕ whereas µλ(u = 1) = µλ(e3) in (51) do not. The
eigenvectors vλ depend on ϕ under certain circumstances as will be discussed. To evaluate (51) we have to
consider the expressions dµλ

du for u→ 1 since the δ-functions are contributing when uλ = µλt/r = 1. To that
end we write

k̂ = e3 + δk̂ (52)

where δk̂ is a small deviation given by (compare (27))

δk̂ = e3(u− 1) + ξ(ϕ)
√

1− u2 (53)

where e3 = r/r. We now assume that µλ can be expanded around e3 according to

µλ(e3 + δk̂) = µλ(e3) +α · δk̂ + 1
2δk̂

T
γδk̂ + . . . (54)

Here we denote

α = ∇kµλ(k = e3)

γ = ∇k ⊗∇kµλ(k = e3)
(55)
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where ∇k indicates the gradient operator with respect to k. By taking into account the u-dependence of δk̂
of (53) we obtain the representation

µλ(e3 + δk̂) = µλ(e3) + (u− 1)α · e3 +
√

1− u2α · ξ

+1
2e3γe3(u− 1)2

+1
2(ξγe3 + e3γξ)

√
1− u2(u− 1)

+1
2ξγξ(1− u2) +O(1− u)3/2

(56)

where O(1− u)3/2 denotes higher order terms containing the common factor (1− u)3/2. The derivative with
respect to u of (56) yields 3

dµλ
du

(e3 + δk̂) = α · e3 − u√
1−u2α · ξ

+e3γe3(u− 1)

+(ξγe3 + e3γξ)1
2

√
1−u
1+u(1 + 2u)

−ξγξu+O(1− u)1/2

(57)

For u→ 1 the term u√
(1−u2)

α · ξ tends to infinity if α · ξ 6= 0. For arbitrary elastic anisotropy there are only

few distinguished r-directions where α · ξ = 0. Only for these distinguished directions (57) yields finite
values. As a consequence thereof, in view of (51), propagation of farfield waves is possible only in these
directions. For all other r-directions where α · ξ 6= 0 the integral (51) is vanishing due the singular behavior
of (44). Then the propagation of farfield waves (and the corresponding energy flux) is suppressed. This is
an ultimate consequence of the elastic anisotropy which causes the u-dependence of µλ.

Before considering the possible distinguished propagation directions r/r = eS fulfilling α · ξ = 0 we
discuss the physical meaning of the term α · ξ: This term expresses (since ξ is perpendicular to r) the
derivative in the ξ-direction perpendicular to r. To clarify this we consider the gradient

∇kµλ(k) = k̂µλ(k̂) + ∇̃kµλ(k̂) (58)

which has the physical meaning of group velocity. This representation is obtained by using ∇k = k̂ d
dk + 1

k ∇̃k
together with the homogeneity property µλ(kk̂) = kµλ(k̂). Note furthermore that the first term in above
equation k̂µλ(k̂) has the physical meaning of phase velocity. When we now put k̂ = e3 = r/r we see
that the term α · e3 = µλ(e3) (u = 1) coincides with the phase velocity and α · ξ measures the deviation
between phase- and group velocity. Thus we can state (where we assume the source point being located
in the origin): In r-directions, where group- and phase velocities do not coincide, no radiation, i.e. wave
propagation occurs. This is caused by the singularity of Bλ at u = 1 for these points as a consequence of
α · ξ 6= 0 (compare eq. (57)). Physically this can be interpreted as follows: if group and phase velocity
does not coincide dispersion occurs, that is, a wave package cannot propagate stably and "survive" until
infinity (r →∞). Hence we can formulate the radiation condition in the anisotropic elasticity as follows:
the possible (distinguished) r-directions e3 from the source point in which propagation of farfield waves is
possible are determined by the condition

α · ξ = ξ · ∇kµλ(k = e3) = 0 (59)

For these directions k̂ = r/r then group- and phase velocity coincide and, as a consequence, a wave package
can stably propagate without dispersion in that directions without decay. The notation e3 = êS indicates
that there are only special distinguished directions which fulfill (59), namely high symmetry directions
beside a few other distinguished directions. For such directions (57) yields for u = 1 (corresponding to
k̂ = e3 = êS) finite expressions of the form

3Here superscripts λ of α and γ are omitted.
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d

du
µλ(êS) = µλ(êS)− ξγ(λ)ξ (60)

In the following we consider only high symmetry directions êS of the crystal. In that case all three µλ
(λ = 1, 2, 3) simultaneously fulfill (59). Thus we obtain for high symmetry propagation directions from the
source point three corresponding outgoing farfield waves. 4 Relation (60) can also be interpreted as follows:
the surfaces µλ(k) = const have the property of being perpendicular to r at stationary points (extremal
values) in directions êS . Without loss of generality we can choose the ei such (ξ(ϕ) = e1 cosϕ+ e2 sinϕ thus

e1 × e2 = êS) that the ei are eigenvectors of matrix γ(λ) with corresponding eigenvalues γ
(λ)
i . Taking this

into account we can write for (60):

d

du
µλ(eS) = µλ(eS)− (γ(λ)

1 cos2 ϕ+ γ
(λ)
2 sin2 ϕ) (61)

and correspondingly we obtain for Bλ by making use of the fact u = µλ(eS)t/r = 1 thus t/r = 1/µλ(eS) and
using equation (44)

Bλ(eS , ϕ) = 1
µλ(eS) |(γ

(λ)
1 cos2 ϕ+ γ

(λ)
2 sin2 ϕ)| (62)

Here we have to note that there are two types of points (directions) eS. Such directions where γ
(λ)
i are

both of the same sign (elliptic points on the surface µλ(k̂) = const ) and others having opposite signs of γ
(λ)
i

(hyperbolic points of µλ = const ). Equation (51) takes the form

G∞(r, t) = 1
8π2ρMr

3∑
λ=1

pλδ(t−
r

µλ
)Iλ (63)

where it is denoted

Iλ =
∫ 2π

0

vλ ⊗ vλ
B2
λµ

2
λ

dϕ

=
∫ 2π

0

vλ ⊗ vλ
|γ(λ)

1 cos2 ϕ+ γ
(λ)
2 sin2 ϕ|2

dϕ

(64)

Above integral is well defined only if the γ
(λ)
i have the same signs (elliptic case). In the case that the

γ
(λ)
i have opposite signs (hyperbolic case) integral (64) is not well defined since there appear zeros in

the denominator of the integrand of (64) for certain ϕ. This case requires a regularization technique by
introducing an infinitesimal imaginary part iε (ε→ 0+) into the denominator of the integrand of (64). Such
"catastrophic" singular behavior of the corresponding farfield amplitude can be classified by catastrophe
theory [14] and lies beyond the scope of this paper. Corresponding singularities and “sharp“ features
occurring also in the dynamic response function5 which represents the displacements caused by a point
force with Heaviside step function time dependence are treated elsewhere [15].

In this paper we confine ourselves on elliptic points, i.e. we assume sign(γ(λ)
1 ) = sign(γ(λ)

2 ) = pλ. As
already mentioned there may be two distinguished cases in the evaluation of integral (64):
Case I: The eigenvectors vλ in (64) are independent on angle ϕ. This is caused by equation (27) which
shows for u = 1 no ϕ-dependence of the eigenvectors vλ(k̂).
Case II (degenerate case): The sound velocities µ1,2 = µt of the transverse polarized waves are degenerate
since eS = v3 is an axis of rotational symmetry. As a consequence the curvatures coincide, i.e. γλ1 = γλ2 =
Hλ. Therefore the transverse polarization vectors v1,2 are only determined by spanning the degenerate
transverse subspace according to

v1 ⊗ v1 + v2 ⊗ v2 = 1− êS ⊗ êS (65)

4Additionally there are distinguished non high symmetry directions for which one single µλ may fulfill (59), corresponding to
only one single outgoing wave.

5The dynamic Green’s function represents the time derivative of the dynamic response function.
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For u = 1 the v1,2 actually have indefinite ϕ-dependence. But in order to define integral (64) uniquely for
this case it is required to continue the vector functions vλ(k̂λ) (λ = 1, 2) analytically for uλ → 1 in such
a way that integral (64) is a steady and unique function of uλ. This assumption leads to a (non-unique)
ϕ-dependence of the transverse polarization vectors. Without loss of generality they can be chosen as
v1 = ξ(ϕ) and v2 = d

dϕξ(ϕ).
Case I. We first discuss the case where the vλ do not depend on ϕ: then we can write Iλ = vλ ⊗ vλAλ

with Aλ given by

Aλ =
∫ 2π

0

1
(αλ + βλ cos 2ϕ)2 dϕ

= − d

dαλ

∫ 2π

0

1
(αλ + βλ cos 2ϕ)dϕ

(66)

where here it is denoted αλ = 1
2(γ(λ)

1 + γ
(λ)
2 ) and βλ = 1

2(γ(λ)
1 − γ(λ)

2 ). Only for |βλ| < |αλ| the integral is
regular, which corresponds to our assumption of elliptic points. Evaluation of Aλ then yields

Aλ = 2π |αλ|
(α2

λ − β2
λ)

3
2

= π
|γ(λ)

1 + γ
(λ)
2 |

(γ(λ)
1 γ

(λ)
2 )

3
2

= 2π |Hλ|
K

3
2
λ

(67)

In the last equation we have introduced the average curvature Hλ = (γ(λ)
1 + γ

(λ)
2 )/2 and the Gaussian

curvature Kλ = γ
(λ)
1 γ

(λ)
2 . With this result we finally obtain by using equation (63), when we assume that êS

corresponds for all λ = 1, 2, 3 to elliptic points (directions of propagation) the farfield approximation:

G∞(rêS , t) = Gt
∞(rêS , t) +Gl

∞(rêS , t)

= 1
4πρMr

3∑
λ=1

Hλ

K
3
2
λ

δ(t− r

µλ
)êλ ⊗ êλ

(68)

where êS indicates a high symmetry direction of the crystal from the source point. Here we have put êλ = vλ.
Without loss of generality we have v3 = êS denoting the longitudinal polarization vector corresponding
to the wave propagating with sound velocity µ3. Equation (68) describes three outgoing waves, one (Gl

∞)
being longitudinally polarized (λ = 3) and two (Gt

∞) with transverse polarization (λ = 1, 2).
Case II. We now consider the case of vλ being ϕ-dependent. Integral (64) then yields an expression of

the form

G∞(rêS , t) = Gt
∞(rêS , t) +Gl

∞(rêS , t) (69)

with

Gt
∞(rêS , t) = 1

8πρMr
( 1
H2

1
+ 1
H2

2
)[1− eS ⊗ eS ]δ(t− r

µt
)

Gl
∞(rêS , t) = 1

4πρMr
1
H2

3
eS ⊗ eSδ(t−

r

µl
)

(70)

where we have again assumed that êS corresponds to elliptic points for all λ = 1, 2, 3. Expression Gt
∞(rêS , t)

represents two transverse waves propagating with twofold degenerate sound velocity µt = µ1 = µ2 and
Gl
∞(rêS , t) describes one longitudinal polarized wave propagating with sound velocity µl = µ3.

In both cases I and II the expressions (68) and (70) describe three singular outgoing waves (one
longitudinal and two transverse) propagating with velocities µλ(êS) and polarization-directions vλ(êS).
Above results (68) and (70) represent the radiation of outgoing waves for the general anisotropic elasticity.
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In the case of elastic isotropy expression (68) simplifies considerably since the velocities µλ then
are constant and independent on the direction of propagation e3. Consequently then is Bλ = 1. When
we perform the limiting transition to elastic isotropy, above expressions (68) and (69) coincide with the
corresponding terms of δ-function type in the expression for the isotropic Green’s function (eq. (75) below).

From above expressions (68) and (70) of the asymptotic elastodynamic Green’s function in the space-
time-domain we obtain immediately its representation in the space-frequency-domain

G∞(r, ω) =
∫ +∞

−∞
exp(−iωt)G∞(r, t)dt (71)

Thus we obtain for G∞(r, ω) corresponding to (68) ff.

G∞(reS , ω) = 1
4πρMr

3∑
λ=1

Hλ

K
3
2
λ

exp
(
− iωr

µλ[e3]

)
êλ ⊗ êλ (72)

This expression represents the leading order in 1/r (farfield-approximation) of the Green’s function in the
space-frequency domain and the analogue result is obtained from eq. (70).

5 Application to the elastic isotropic medium

In this section we evaluate (43) for the case of an elastic isotropic medium. It is the only case that can be
evaluated in full closed-form.

In order to determine the eigenvalues and eigenvectors of the tensor Tij(k) = Cipjqkpkq we obtain for
(14)

1
ρM
T (k) = k2

[
µ

ρM
(1− k̂ ⊗ k̂) + (λ+ 2µ)

ρM
k̂ ⊗ k̂

]
(73)

where λ, µ denote the Lame-constants of the medium. From equation (73) we observe one longitudinal
eigenvector v3(k) = k̂ with eigenvalue µ2

3(k̂) = (λ + 2µ)/ρM and two transverse eigenvectors v1,2(k)
with the twofold degenerate eigenvalue µ2

1(k̂) = µ3
2(k̂) = µ/ρM . As a consequence of (13) the transverse

eigenvectors v1,2(k) fulfill the property

v1(k)⊗ v1(k) + v2(k)⊗ v2(k) = 1− k̂ ⊗ k̂ (74)

where the right hand side of this equation denotes the projection operator into the two-dimensional
transverse subspace. At this point we state that one longitudinal and two transverse eigenvectors of (73)
correspond to the polarization directions of acoustic waves: The longitudinal polarized wave is propagating
with phase-velocity vL =

√
(λ+ 2µ)/ρM and its polarization-direction v3 = k̂ is parallel to its propagation-

direction k. Both two transverse polarized acoustic waves propagate with phase velocity vT =
√
µ/ρM

and have polarization vectors v1,2 in the plane perpendicular to the direction k̂ of propagation. In other
words, for each wave vector k exist one longitudinal polarized and two transverse polarized acoustic
waves. We emphasize an important property of the isotropic medium: the eigenvalues (wave propagation
velocities) are independent on ϕ and u thus µλ(k̂) = const. Thus phase- and group velocities coincide for
any k-direction. Consequently no dispersion occurs as in the case of elastic anisotropy. This is the crucial
point that allows us to perform the ϕ-integration of (43) to obtain the Green’s function in full closed-form:
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G(r, t) = − Θ(t)
4πρM

t

r3

[
1− 3 1

r2 r⊗ r
]

×
{

Θ(1− vT t

r
)−Θ(1− vLt

r
)
}

+ Θ(t)
4πρMr

δ(t−
r

vT
)

v2
T

[1− 1
r2 r⊗ r]

+
δ(t− r

vL
)

v2
L

1
r2 r⊗ r



(75)

Here vL =
√

(λ+ 2µ)/ρM and vT =
√
µ/ρM indicate the longitudinal and transverse sound velocities,

respectively. The Θ-term only contributes for r/vL < t < r/vT . The right-hand side term proportional to
δ (r − vT t) describes a singular wave surface having its displacement perpendicular to the direction of
propagation (transverse polarized wave). The term proportional to δ (r − vLt) describes a singular wave
surface having its displacement parallel to the direction of propagation (longitudinal polarized wave). These
two δ-terms correspond to the asymptotic expression of eq. (69) as r → ∞ indicating the radiation of
three waves. The Θ-term describes the contributions for space points r on a sphere r during the time
period r/vL < t < r/vT between the faster wave having longitudinal polarization and the slower waves with
transverse polarization.

Expression (75) coincides with the known expression in the literature [17] which was derived there by
employing other techniques.

6 Application to a medium with hexagonal symmetry

In this section we apply equation (43) to hexagonal symmetry (transversely isotropy) of the medium with
special emphasis to the farfield solutions (eqs. (68) ff.). To that end we consider the wave propagation
along the hexagonal high symmetry directions, namely along the c-axis and in the plane perpendicular to
the c-axis. The wave propagation in the plane perpendicular to the c-axis is described by equation (68)
whereas for wave propagation along the c-axis hold equations (69) ff. For hexagonal symmetry the tensor
operator Tij(k) = Cirjskrks can conveniently be written as [9]

T (k) = Tb⊥eb⊥ ⊗ eb⊥ + Tbeb ⊗ eb
+Tbc(eb ⊗ ec + ec ⊗ eb) + Tcec ⊗ ec

(76)

with
k = kbeb + kcec (77)

The components kb =
√
k2
x + k2

y and kc = kz of k denote the k-components perpendicular and parallel to the
hexagonal c-axis, respectively. The unit vectors eb, eb⊥ are perpendicular and ec is parallel to the c-direction
and are determined by the orientation of the k-vector with respect to the c-axis:

eb = 1
kb

 kx
ky
0

 eb⊥ = 1
kb

 −kykx
0


ec =

 0
0
1


(78)

In (76) the quantities

Tb⊥ = C66k
2
b + C44k

2
c (79)
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Tb = C11k
2
b + C44k

2
c (80)

Tbc = (C13 + C44) kbkc (81)

Tc = C44k
2
b + C33k

2
c , (82)

have been introduced. C11, C44, C66, C13, C33 denote the 5 independent hexagonal elastic constants in Voigt’s
notation.

The evaluation of (43) requires the determination of the eigenvalues and eigenvectors of T (k). From
(76) we observe that obviously one eigenvalue µ2

1(k) is given by

µ2
1(k) = Tb⊥

ρM
(83)

with the corresponding eigenvector

v1(k) = eb⊥ (84)

The remaining problem consists in determining the eigenvalues and eigenvectors of a 2× 2 problem. The
eigenvalues of this problem are given by the roots of the characteristic equation

µ4 − µ2 (Tb + Tc)
ρM

+ TbTc − T 2
bc

ρ2
M

= 0 (85)

and we obtain the eigenvalues µ2
2,3(k)

µ2
2 = Tb + Tc − α

2ρM

µ2
3 = Tb + Tc + α

2ρM

(86)

Here we have put

α2 = (Tc − Tb)2 + 4T 2
bc (87)

The eigenvectors v2,3 can then be written as

v2 = 1√
2α
{−
√
α− βeb +

√
α+ βec}

v3 = 1√
2α
{
√
α+ βeb +

√
(α− β)ec}

(88)

where

β = (Tb − Tc) (89)

Let us consider (43) for the case where the direction of the spatial vector r is parallel to the hexagonal
c-axis:

r = rec (90)

where r = |z| and ec = ez. Note that in this case the quantities (79)-(82) are only functions of u = cosϑ but
due to the hexagonal symmetry independent on angle ϕ in (64). We then have α+ β = 0 and α = Tc − Tb.
The sound velocities µ1 = µ2 coincide and correspond to the degenerate eigenvectors v1,2 = (eb⊥,−eb)
which indicate transverse polarization. The longitudinal polarization direction ec then corresponds to the
sound velocity µ3. This allows us to rewrite (43):

G(r, t) = −Θ(t) 1
8π2ρMr

d

dt

3∑
λ

Iλ(uλ)Θ[1− uλ]
[Bλ(uλ)µ2

λ(uλ]
(91)
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whereBλ is given by (44). The basis vectors (78) assume the form eb = (cosϕ, sinϕ, 0), eb⊥ = (− sinϕ, cosϕ, 0)
and ec = (0, 0, 1). To evaluate (91) we have to determine the tensors Iλ (λ = 1, 2, 3) that are given by the
integrals

Iλ =
∫ 2π

0
dϕvλ(uλ, ϕ)⊗ vλ(uλ, ϕ) (92)

where the eigenvectors vλ are given by (84) and (88), respectively. To obtain (91) we have used the following
properties which are fulfilled for hexagonal symmetry only if r is parallel to the c-axis (i.e. r = |z|): only
the eigenvectors vλ for λ = 1, 2 depend on ϕ. The zeros of equations (40) uλ = uλ(t/r) are only functions
of t/r and the hexagonal material characteristics {Cab/ρM} but are independent on ϕ. A derivation of a
closed-form expression then is feasible. In that case the existing ϕ-integration problem consists only in
evaluating the integrals (92) to arrive at

I1 = π[1− ec ⊗ ec]

I2 = π

2α(uλ) [(α(uλ)− β(uλ))1 + (α(uλ) + 3β(uλ))ec ⊗ ec]

I3 = π

2α(uλ) [(α(uλ) + β(uλ))1 + (α(uλ)− 3β(uλ))ec ⊗ ec]

(93)

Farfield Solutions. Our next interest is focused on the wave propagation at infinity (r →∞) along high
symmetry directions of the hexagonal medium, i.e. the c-axis and the plane perpendicular to the c-axis.
First we treat the propagation along the hexagonal c-axis (r = rec). Expression (69) writes

G∞(rec, t) = Gt
∞(rec, t) +Gl

∞(rec, t) (94)

where the terms Gt,l
∞(rec, t) stand for transverse and longitudinal polarization directions, respectively. They

are obtained from eq. (70)

Gt
∞(rec, t) = 1

8πρMr
( 1
H2

1
+ 1
H2

2
)[1− ec ⊗ ec]δ(t−

r

µt
)

Gl
∞(rec, t) = 1

4πρMr
1
H2

3
ec ⊗ ecδ(t−

r

µl
)

(95)

where the Hλ denote the curvatures of the sound velocities µλ given in (67). The sound velocities µλ (where
µt = µ1 = µ2 and µl = µ3) are obtained as

µt =
√
C44
ρM

µl =
√
C33
ρM

.

(96)

To determine Hλ we put

ξ = eb (97)

By using the representation of the gradient operator

∇k = eb
∂

∂kb
+ 1
kb
eb⊥

∂

∂ϕ
+ ec

∂

∂kc
(98)

we obtain (compare eqs. (60) and (27) and (28)) γ
(λ)
1 = γ

(λ)
2 = Hλ which are defined by the expression

ξγ(λ)ξ. The average curvatures Hλ are obtained by performing the second order derivatives

Hλ = ∂2

∂k2
b

µλ(kb = 0, kc = 1) (99)

to arrive at
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H1 = C66√
ρMC44

H2 = 1√
ρMC44

(C11 −
(C13 + C44)2

C33 − C44
)

H3 = 1√
ρMC33

(C44 + (C13 + C44)2

C33 − C44
)

(100)

Expression (95) describes outgoing waves propagating with sound velocities µi and being polarized
perpendicular (for i = 1, 2) and parallel (for i = 3) to the hexagonal c-axis (propagation direction) corre-
sponding to the transverse (for i = 1, 2) and longitudinal (for i = 3) polarization directions.
When performing the limiting transition to the isotropic medium C66, C44 → µ, C11, C33 → λ+ 2µ and C13 → λ

(λ, µ indicate Lame’s constants), we see that expression (94) yields the δ-terms of the isotropic Green’s
function (75).

We now consider the wave propagation in the plane perpendicular to the hexagonal c-axis for r →∞.
The space vector then is r = reb where eb is a unit vector in that plane defined by (78). In this case we put
α− β = 0 and β = Tb − Tc. The farfield expression now can be written as (eq. (68))

G∞(reb, t) = Gt
∞(reb, t) +Gl

∞(reb, t) (101)

with = Gt,l
∞(reb, t) denoting the parts of transverse and longitudinal polarizations, respectively. Equation

(101) now indicates the representations

Gt
∞(reb, t) =

1
4πρMr

H1

K
3
2
1

δ(t− r

µ1
)eb⊥ ⊗ eb⊥

+ H2

K
3
2
2

δ(t− r

µ2
)ec ⊗ ec


(102)

and

Gl
∞(reb, t) = 1

4πρMr
H3

K
3
2
3

δ(t− r

µ3
)eb ⊗ eb (103)

where it is denoted (compare eqs. (67) )

Hλ = 1
2(γ(λ)

1 + γ
(λ)
2 )

Kλ = γ
(λ)
1 γ

(λ)
2

(104)

Now we only have to determine the quantities γ
(λ)
1 for r = reb. To that end we put (compare eqs. (60) and

(27) and (28))

ξ = ξ1eb⊥ + ξ2ec (105)

denoting the unit vectors perpendicular to r (ξ2
1 + ξ2

2 = 1). By using (98) we obtain for the γi (for λ = 1, 2, 3)

γ
(λ)
1 = 1

kb

∂

∂kb
µλ(kb = 1, kc = 0)

γ
(λ)
2 = ∂2

∂k2
c

µλ(kb = 1, kc = 0)

(106)

to arrive at
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γ
(1)
1 =

√
C66
ρM

γ
(1)
2 = C44√

C66ρM

(107)

γ
(2)
1 =

√
C44
ρM

γ
(2)
2 = 1√

ρMC44
(C33 −

(C13 + C44)2

C11 − C44
)

(108)

γ
(3)
1 =

√
C11
ρM

γ
(3)
2 = 1√

ρMC11
(C44 + (C13 + C44)2

C11 − C44
)

(109)

The quantities γ
(1,2)
i correspond to two transverse polarized waves which propagate with sound velocities

µ1 =
√
C66/ρM and µ2 =

√
C44/ρM having polarization vectors eb⊥ and ec, respectively. γ

(3)
i corresponds to

one longitudinal polarized wave propagating with sound velocity µ3 =
√
C11/ρM with polarization vector eb.

We observe again in the limiting transition to isotropy that expression (101) coincides with the δ-terms
of the isotropic Green’s function (75).

7 Conclusions

A general method for the construction of the dynamic 3× 3 Green’s function for the anisotropic elasticity for
an infinitely extended medium has been derived and applied to the cases of elastic isotropy and hexagonal
symmetry of the medium. The resulting representation of the elastodynamic Green’s function of the
anistropic infinite body (eq. (43)) reduces the initial integration problem of four integrations (compare eq.
(9)) to only one ϕ-integration problem (eq. (43)) combined with the solution problem of three algebraic
equations ((40) or (38)). As a consequence thereof the mathematical effort is considerably reduced and
makes the method useful for many applications. The method leads in a direct and immediate way to closed-
form farfield solutions for the transversely isotropic medium, as well as to the well known exact solution of
the elastic isotropic medium. The obtained expression (43) is highly convenient for applications to various
acoustic problems, e.g. acoustic wave propagation or scattering of acoustic waves at inhomogeneities.
Especially useful for many applications are the derived expressions (68) ff. for the asymptotic behavior at
infinity (r →∞) valid for any symmetry of the medium.
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Appendix

Here we consider the important relation between the elastodynamic Green’s function G(r, t) which
represents the displacements due to a unit point force with δ-time dependence and the response function
(susceptibility function) H(r, t) which represents the displacement response caused by a unit point force
with Θ-time dependence. We furthermore consider the relation between the dynamic response function
and the elastostatic Green’s function. The dynamic response function H is defined by

[T (∇)− ρM
d2

dt2
1]H (r, t) + δ3 (r) Θ(t)1 = 0 (A.1)

We observe in view of eq. (7) when we perform the time derivative of above equation the relation

H (r, t) = dG

dt
(r, t) (A.2)

To work out the relation between H and the elastostatic Green’s function Gstatic(r) we remember eq.
(24)

gλ(k, t) = Θ(t) exp(−εt)sinµλt
µλ

(A.3)

which fulfills equation (21) {
d2

dt2
+ 2ε d

dt
+ µ2

λ(k)
}
gλ(k, t) = δ(t) (A.4)

Integration of this equation with respect to time yields{
d2

dt2
+ 2ε d

dt
+ µ2

λ(k)
}
hλ(k, t) = Θ(t) (A.5)

where hλ(k, t) then is given by

hλ(k, t) =
∫ t

−∞
gλ(k, τ)dτ (A.6)

and yields

hλ(k, t) = Θ(t)(1− cos (µλt) exp (−εt))
µ2
λ

(A.7)

For finite times t the exponential factor exp (−εt) can be put equal to 1. This factor becomes important only
when we perform the limiting transition t→∞. Then the infinitesimal small but constant finite damping
ε becomes important and causes the physically required relaxation for t >> 1/ε. The functions hλ which
fulfill relation (A.5) and represent dynamic response functions (susceptibilities) of harmonic oscillators with
eigenfrequencies µλ. Using eq. (A.7) we can construct the complete dynamic response function by time
integration of (19) to arrive at

H(k, t) = 1
ρM

3∑
λ

vλ(k)⊗ vλ(k)hλ(k, t) (A.8)

with

H(r, t) = 1
(2π)3

∫
exp (ik · r)H(k, t)d3k (A.9)

The dynamic response function H fulfills (A.1) what can be seen also by time integration of eq. (7). Let us
consider now the relation between the dynamic response function H and the static Green’s function. We
have the postulation that the relation (see also Norris [13])

lim
t→∞

H (r, t) = Gstatic(r) (A.10)
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is fulfilled due to physical relaxation. We show now by using (A.7) that (A.10) is indeed fulfilled: From
equation (A.7) follows immediately (the exponential factor has now to be taken into account since it is
assumed that the damping ε is a infinitesimal small but finite constant)

lim
t→∞

hλ (r, t) = hλ∞ = 1
µ2
λ

(A.11)

This result also corresponds to the static solution of equation (A.5) and represents the static solution of
the harmonic oscillator with eigenfrequency µλ which we obtain when we put all time derivatives in that
equation equal to zero. Correspondingly the limiting case t→∞ of (A.8) becomes

H(k,∞) = 1
ρM

3∑
λ

vλ(k)⊗ vλ(k) 1
µ2
λ

= T−1(k) (A.12)

This expression coincides with the Fourier transform of the static Green’s function. Hence we observe
the demanded property (A.10) that H(r,∞) = Gstatic(r) by performing (A.9). Obviously H(r,∞) fulfills the
static equation

T (∇)H(r,∞) + δ3 (r) 1 = 0 (A.13)

In view of the limiting case (A.12) we decompose the response function H into a dynamic and a static
contribution

H (r, t) = Gstatic(r) + H̃(r, t) (A.14)

with vanishing dynamic part H̃(r, t)→ 0 for t→∞. This representation corresponds to those obtained by
Norris [13], (eq. (3.23) therein), with

H̃(r, t) = 1
(2π)3

∫
exp (ik · r)H̃(k, t)d3k (A.15)

and in view of (A.7) and (A.8) with

H̃(k, t) = −Θ(t) exp (−εt) 1
ρM

3∑
λ

vλ(k)⊗ vλ(k)cos (µλt)
µ2
λ

(A.16)

The contribution H̃(r, t) yields (compare eq. (37))

H̃(r, t) = − Θ(t)
8π2ρM

3∑
λ

∫
|k̂|=1

dΩ(k̂)
[ 1
µ2
λ(k̂)

vλ(k̂)⊗ vλ(k̂)

×δ(k̂ · r − tµλ(k̂))
] (A.17)

where we have now omitted the exponential damping factor. This leads to the final expression (compare
(43)) for the dynamic part of the response function

H̃(r, t) = − Θ(t)
8π2ρMr

3∑
λ

mλ∑
sλ

∫ 2π

0
dϕΘsλ

(ϕ)

×
[ Θ{1− u(sλ)

λ (ϕ, t
r

)}

B
(sλ)
λ [k̂(sλ)

λ (ϕ, t
r

)]µ2
λ[k̂(sλ)

λ (ϕ, t
r

)]

×vλ[k̂(sλ)
λ (ϕ, t

r
)]⊗ vλ[k̂(sλ)

λ (ϕ, t
r

)]
]

(A.18)

where the quantities herein are defined next to eq. (43). We note that above expression is related to eq.
(43) by time integration.
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