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Multi-Spectral Visual Servoing

Enrico Fiasché1,2, Ezio Malis2 and Philippe Martinet2

Abstract— This paper presents a novel approach for Visual
Servoing (VS) using a multispectral camera, where the number
of data are more than three times that of a standard color
camera. To meet real-time feasibility, the multispectral data
captured by the camera are processed using dimensionality re-
duction techniques. Instead of relying on traditional approaches
that select a subset of bands, the proposed method unlocks
the full potential of a multispectral camera by pinpointing
individual pixels that hold the richest information across all
bands. While sacrificing spectral resolution for enhanced spatial
resolution - crucial for precise robotic control in forested
environments - this fusion process offers a powerful tool for
robust and real-time VS in natural settings. Validated through
simulations and real-world experiments, the proposed approach
demonstrates its efficacy by leveraging the full spectral infor-
mation of the camera while preserving spatial details.

I. INTRODUCTION

The application of Visual Servoing (VS) techniques has
gained significant attention for various robotic tasks [1]. VS
involves controlling robot motion based on visual feedback
from a camera, enabling tasks such as object tracking,
manipulation, and navigation. In complex environment, such
as natural ones, accurate perception is crucial and the choice
of an appropriate camera system plays a vital role. Multi-
spectral cameras, a type of imaging system, have emerged as
promising tools for perception in challenging environments.
Unlike traditional RGB cameras that capture images in three
color channels (red, green, and blue), multispectral cameras
are capable of capturing images across a wider range of
wavelengths, composed from 5 to 15 bands. This provides
valuable spectral information beyond the visible spectrum,
offering significant advantages in natural environments where
comprehensive perception is essential. However, deploy-
ing VS techniques using multispectral cameras in real-
time natural scenarios poses a key challenge: processing
the large amount of multispectral data while maintaining
high temporal performance. Addressing these processing and
interpretation challenges is crucial to effectively utilizing
the spectral information provided by multispectral cameras.
Dimensionality reduction techniques play a crucial role in
this regard, as they enable the extraction of key information
while reducing the computational complexity of the analysis
[2]. In hyperspectral imaging (HSI), a type of multispectral
imaging with extremely high spectral resolution, various
approach such as feature extraction [3] and band selection
[4] have been explored to enable accurate and efficient
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classification of HSI images. Feature extraction combines
multiple bands to create a compressed but informative subset,
though it can be computationally demanding and may hinder
interpretability due to the creation of new features. Con-
versely, band selection techniques choose a subset of bands
from the multispectral data, preserving spectral meaning and
reducing computational burden [4]. Various unsupervised
and supervised methods have been proposed in the liter-
ature for band selection in hyperspectral data analysis. In
[5], the Multigraph Determinantal Point Process (MDPP)
approach efficiently finds the optimal band subset, while
Principal Component Analysis (PCA) prioritizes the energy
of variances in band images [6]. Another method, Sparse
Nonnegative Matrix Factorization (SNFM), is used to solve
the band selection problem [7]. Similarly, minimizing the
correlation of selected bands has been used to identify the
best subset [8]. In [9], an alternative approach involves
clustering original bands and selecting representative bands
from each cluster, proposed as an automatic band selec-
tion method. Furthermore, hybrid methods that combine
the advantages of previous techniques are introduced [10].
In the context of Multi-Spectral Visual Servoing (MSVS),
researchers have explored integrating VS techniques with
RGB cameras to enhance robotic vision and control. One
notable approach among these techniques is the colorimetry-
based approach [11]. The authors investigated the utilization
of visual features derived from the individual R, G, and B
components of the image. Their objective was to evaluate the
suitability of employing features derived from different linear
combinations of two or all three components for visual servo-
ing tasks. The results of their study illustrated the promising
potential of this approach for enhancing VS applications.
Another significant contribution comes from [12]. In this
work, authors presented innovative parametric models and
optimization methods for the robust and direct registration
of color images. Their methodology involved representing
a color image obtained by stacking n channels multiplied
by corresponding surfaces to achieve precise alignment with
a reference image. However, their methodology focused on
the use of only the readily available RGB channels. In a
different line of inquiry, researchers delved into frequency
domain [13]. Rather than analyzing the image itself in the
spatial domain, they explored its transformation into the
frequency domain. While these approaches have yielded
valuable insights, it’s important to note that they are limited
to RGB images and do not leverage the additional spectral
information provided by multispectral cameras. The primary
objective of this work is to bridge this gap and extend the
applicability of visual servoing techniques to multispectral



cameras with n bands, thereby harnessing the full potential
of multispectral imaging in the context of robotic control. To
the authors’ knowledge, this is the first work investigating
Visual Servoing for multispectral cameras’ data. This work
focuses on using the multispectral information to improve
the performance of visual servoing tasks, rather than empha-
sizing the control aspect.

II. BACKGROUND

To enhance the paper’s readability, prior to delving into
Multi-Spectral Visual Servoing, this section revisits the pro-
cess of band selection as outlined in prior research. Addi-
tionally, it introduces the notation used throughout the paper
and provides a brief overview of the foundational models
and methodologies employed.

A. Band Selection

The band selection problem is a well-known problem in
the field of remote sensing. It is defined as the process of
selecting a subset of bands from a hyperspectral image that
is most relevant to a given task. The goal is to reduce the
dimensionality of the data while retaining the most relevant
information. The band selection problem is a challenging
task due to the elevated dimensionality of the data and the
vast number of potential band combinations.

In a previous study [14], the authors employed the Rank
Minimization-Based Selector to extract the most informative
bands. This technique incorporates a spatial discrete gradient
operator to reveal the spatial structural information in the
band. Subsequently, it represents the spectral bands as a
linear combination of a dictionary D and a coefficient matrix
Z. The low-rank representation [15] is applied in order to
solve the problem. The authors applied a convex approxima-
tion method and introduced real-world noise considerations,
leading to the followings:

argmin
Z,E

||Z||∗ + λ||E||2,1

s.t. X = DZ+E
(1)

where || · ||∗ is the trace norm and ||E||2,1 is the ℓ2,1 norm.
Then, the problem can be effectively addressed through the
use of the augmented Lagrange multiplier method. Following
the acquisition of the coefficient matrix Z, the bands are
ultimately categorized into K distinct groups employing
spectral clustering techniques, as delineated in [16], using
the affinity matrix A = (|Z|+ |Z⊤|). Within a given cluster
C featuring R bands, the weight of each band xi ∈ C is
computed as follows:

Wi =

∑
xj∈C Ei

REj

∑
xj∈C,j ̸=i

Aij (2)

where the representation residual E in (1), and Ei =
∑

Eij .
The bands ultimately chosen consist of those with the highest
weights within their respective clusters. These bands are
anticipated to encompass the majority of the information
present in the original image cube.

B. Visual Servoing Notations

Let ||v|| and v′ to represent, respectively, the Euclidean
norm and a transformed version of the variable v. Addition-
ally, v∗ is employed to indicate that v is defined with respect
to the reference frame F∗. The notation vex(ω) is employed
to denote vex([w]×) = [w1;w2;w3].

C. Direct Visual Servoing

The Direct Visual Servoing (DVS) approach is a well-
known technique that is widely employed in the field of
robotics [13] [17]–[20]. It is a visual servoing technique that
is based on the minimization of the image error. Indeed,
instead of errors on features extracted from the image, the
error is defined as the difference between the current image
and the desired image. These methods typically aim to min-
imize a dissimilarity measure, such as the sum-of-squared
differences (SSD), between the reference image and the
current image using parametric models. While the frequency-
based approach, as demonstrated in [13], has shown promise
and potential for producing favorable results, a distinct
approach is pursued in this paper. It is worth noting that
the frequency-based approach remains an interesting avenue
for further exploration, which could yield valuable insights in
future research. One notable approach, as presented in prior
research [17], involves the direct estimation of the projective
transformation between a selected reference template and the
corresponding area in the current image. Beginning with an
initial prediction of the homography, the algorithm iteratively
refines the estimation to find the optimal homography that
minimizes the SSD between the reference pattern and the
current pattern. In [18], the authors define the geometric
parameters g = {G, e, ρ∗i }ni=1, where G is a projective
homography relative to a dominant (virtual) plane, e denotes
the epipole and ρ∗ is the projective parallax of the 3-D point.
The geometric parameters are estimated directly from pixel
intensities, allowing the application of the algorithm to object
of generic shape and texture. Within the framework of the
DVS, the control errors for translation and rotation, referred
to as εv and εω respectively, are as follows:

ε =

[
εv
εω

]
=

[
(H− I)m∗′

+ ρ∗e′

θµ

]
(3)

where ρ∗ ∈ R is the parallax of the chosen control point p∗.

H = K−1GK (4)

m∗′
= K−1p∗ (5)

e′ = K−1e (6)

the matrix K ∈ R3x3 contains the camera intrinsic parame-
ters

θ =

{
ψ, if trace(H ≥ 1)

π − ψ, otherwise
(7)

µ =
r

||r|| , r =
1

2
vex(H−H⊤) (8)



where ψ = real(arcsin(||r||)). Indeed, let the control inputs
be translational and rotational camera velocities, gather in
v =

[
v;ω

]
. The control law is defined by:

v = Γε (9)

with Γ = diag(γvI, γωI). In the study conducted by [18], it
was analyzed and demonstrated that the control law achieves
local asymptotic stabilization of the equilibrium state ε = 0.

III. MULTI-SPECTRAL VISUAL SERVOING

This section introduces the proposed Multi-Spectral Visual
Servoing technique, a novel approach designed to enhance
robotic capabilities through the integration of multispectral
imaging. Leveraging a multispectral camera system capturing
a diverse range of spectral information across n fixed bands,
the objective in this section is to leverage multispectral
information to empower robots for advanced perception,
tracking, and control in diverse real-world and natural sce-
narios. Multispectral imaging, with its rich spectral data,
poses challenges due to high dimensionality. While adapting
existing Direct Visual Servoing methods, the research work
paves the way for a paradigm shift in multispectral-based
robotic control. This novel integration unlocks the potential
of multispectral information within VS, enabling informed
robotic decision-making and ultimately leading to more
versatile and robust robotic systems capable of handling
diverse tasks in challenging environments.

A. Pixel Selection

The proposed approach to dimensionality reduction of
multispectral data fundamentally differs from the conven-
tional state of the art in a pivotal way: this approach do not
exclude any bands from consideration. The key distinction
here lies in the focus on spatial information. It is acknowl-
edged that each band within a given image may contain
distinctive spatial details, and a dedication to comprehensive
evaluation ensures that no potentially relevant information is
overlooked prematurely.

Fig. 1: Pixel Selection schema.

As shown in Fig.1, to further optimize the utility of
multispectral imagery, this approach implements a discrete
gradient operation on each band. This operation, applied
individually to every band, serves the paramount purpose
of highlighting regions where valuable information is con-
centrated, enhancing the contrast and making relevant data

more discernible. The proposed method conducts a pixel-
by-pixel analysis across all bands. This granular examination
enables us to identify, pixel-by-pixel, the band containing the
highest information content. To achieve this discrimination
and pinpoint the most informative bands for each pixel, it
is considered the multispectral images I = {I0, I1, . . . , In}
composed by n bands and their corresponding discrete
gradient represented as I∇ = {∇I0,∇I1, . . . ,∇In}. The
approach employs the following equation, which assesses the
spatial details:

k = max
i=1:n

{∇Ii[u]2 +∇Ii[v]2} (10)

where k is the band index, and ∇Ii[u] and ∇Ii[v] are the
horizontal and vertical gradients of the ith band, respec-
tively at the pixel [u, v]. This process is repeated for every
pixel in the image, resulting in a pixel-wise selection of
the most informative band. Consequently, it can directly
construct the new 2D image by taking the selected band
for each pixel from the original multispectral data. This
new image effectively compresses the essential data into a
singular image. This operation was performed this operation
on the reference image to encapsulate the most valuable
spatial information for further analysis and applied the same
pixel selection process to the multispectral current image.
The approach effectively recreates a similar image in the
multispectral domain, preserving the desired spatial details.
The proposed method prioritizes spatial details over spectral
resolution, achieving significant benefits in visual servoing
applications where precise spatial information is paramount.
While spectral resolution hold value in various applications,
it assumes a secondary role in visual servoing, making this
trade-off advantageous.

B. Visual Servoing Formulation

The focus shifts towards the application of Direct Visual
Servoing techniques. In this specific application, feature-free
visual servoing techniques are adapted and tailored based on
the principles outlined in the theoretical background to suit
the use of multispectral camera data. These techniques pro-
vide valuable advantages in scenarios where objects exhibit
generic shapes and textures. The implementation involves
adapting the approach to the multispectral camera setup and
optimizing it for precise positioning tasks in diverse real-
world and natural scenarios. The resulting estimated homog-
raphy serves as a crucial input for the MSVS approach. The
control error, ε ∈ R6 for the translation and rotation, is
calculated based on the estimated parameter G and is defined
using the equation (3). However, it is important to note that
the control error calculation has been customized to align
with the specific application. As suggested in [19], this work
uses a reduced version of the general control error as the
rotational control error is equivalent to the original one via
εω ≈ 2r ≈ 2θ−1||r||ε. In this setup, let the control inputs
be the translational and rotational velocities of the camera,
gather in the vector v =

[
v;ω

]
∈ R6, defined in (9). The

stability analysis was proven by [19].



IV. SIMULATION AND EXPERIMENTS RESULTS

A. Simulation Setup

In the pursuit of evaluating the effectiveness of the
propesed Multi-Spectral Visual Servoing (MSVS) approach,
this section reports a series of simulations using a multispec-
tral camera system. In all scenarios, the control objective
is to accurately position a six-degree-of-freedom (6-DoF)
controlled camera so that the current object image aligns
precisely with the image captured at the reference pose,
referred to as the reference image. The camera system,
known as TOUCAN [21], is a multispectral camera capable
of capturing data across ten distinct spectral bands. To repli-
cate real-world scenarios, four different images in natural
environments are used, all of which were captured with the
multispectral camera, in proximity to Inria laboratory. In
Fig.2 is shown an example of the multispectral images used
in the simulations. The first ten images show the original
multispectral data, and the result shows the corresponding 2D
images, which is the result of the pixel selection presented
in the previous section.

Fig. 2: From multispectral to 2D image.

In all simulations, a virtual camera system was simulated.
The image processing and the control law computation are
performed on a PC running Linux, equipped with a 14-cores
3.0 GHz Alder Lake. The code has been written in C using
OPENROX open source library [22]. Each of these images
presented unique challenges and characteristics, allowing for
a comprehensive evaluation of the approach under varying
conditions. Each image used in the system has dimensions
of 520x520 pixels, providing ample detail for the intended
assessments. To demonstrate robustness of the proposed
work, a comparison is made with a traditional approach.
The application of the same control law is compared in two
contexts: Multi-Spectral Visual Servoing (MSVS), utilizing
multispectral data, and the standard Direct Visual Servoing
(DVS), which relies on RGB imagery. Both methods are
evaluated based on their convergence and accuracy under the
influence of introduced Gaussian noise. The detailed results
of this comparison are presented in the next section.

B. Simulation Results

During the simulation phase, rigorous assessments are
conducted to evaluate the robustness and effectiveness of the
proposed Multi-Spectral Visual Servoing approach across a
range of different scenarios. As shown in [17], to simplify
the simulation setup, it is assumed that the scene is planar,

resulting in a value of ρ∗ equal to 0 in the control error (3).
In (9), a uniform value of 0.1 is chosen for the linear factor
γv and uniform value of 0.05 is chosen for the angular factor
γω across all six λi. In addition, for the reconstruction of the
current image in the virtual camera setup, a transformation
matrix is applied to the reference image, which serves as the
initial current image in all simulations. To show the robust-
ness of the proposed algorithm, a 0.4 meter displacement is
applied along the z-axis, coupled with a 150-degree rotation,
across various images. It is then evaluated the performance of
both MSVS and DVS in terms of convergence and accuracy.
The performances of the algorithms are compared in four
different scenarios, each influenced by Gaussian noise with
a mean of 0.05 and a variance of 0.020. The Gaussian noise
was added to the original multispectral image to simulate
real-world environmental disturbances. This involved apply-
ing the noise directly to each band of the multispectral image.
By incorporating Gaussian noise with defined parameters, the
robustness of the algorithm is evaluated, providing insights
into its performance in realistic conditions. In the first set
of positioning simulation, shown in Fig.3, the snapshot was
captured within a forest environment, with the objective to
aligning the image to a prominent tree trunk. The reference
image, in Fig.3a, shows the result of the pixel selection
process, and the other images constitutes the outcomes of
the MSVS approach.

(a) Reference (b) Initial (c) Final

Fig. 3: MSVS simulation using big trunk image.

(a) Translational error MSVS (b) Rotational error MSVS

(c) Translational error DVS (d) Rotational error DVS

Fig. 4: Convergence MSVS and DVS simulation with 0.4 m
displacement and 150 degrees of rotation around the z-axis.



During the simulation the approaches provided similar
results in terms of convergence and accuracy, as shown in
the example in Fig.4. By subjecting the proposed approach
to such challenges, the aim was to show MSVS ability to
achieve precise object positioning under varying conditions.
The control law is stable, both translational Fig.4a and
rotational Fig.4b errors converge to zero. At the conver-
gence the camera is positioned at the desired pose very
accurately. Similar results were observed for other images,
with both MSVS and DVS achieving consistent convergence
and accuracy. However, a significant difference emerged in
the fourth image. MSVS outperformed DVS, demonstrating
robust convergence with clear results, while DVS diverged.
This difference is attributed to the additional information
provided by the multispectral images, expanding the data
available for its control law to enhance navigation. Notably,
both systems employed the same control law, highlighting
the crucial role of image data in achieving accurate navi-
gation. This finding underscores the potential advantages of
multispectral cameras in situations where RGB cameras face
limitations due to homogeneous scenes such as forests.

(a) RGB image (b) RGB pixels (c) Infrared pixels

Fig. 5: Pixel comparison between RGB and MS images.

The Fig.5 shows the snapshot captured in a forest environ-
ment, capturing the vegetation. It is possible to see where the
most valuable information are located in the multispectral
image. The Fig.5a shows the original RGB image, while
Fig.5b highlights the regions containing the most valuable
Red, Green and Blue data in the multispectral image. In
Fig.5c, the areas with the most valuable infrared pixels are
represented. In this case, the multispectral image demon-
strates more robustness as it leverages infrared bands, which
contain crucial data about the vegetation. Both algorithms
were evaluated with different displacements and rotations
along all the axes, such as 0.5 m and 25 degrees, and the
results were always the same. The reference image in Fig.6a
shows the results of the pixel selection process, and the other
images constitutes the outcomes of the MSVS approach.

(a) Reference (b) Initial (c) Final

Fig. 6: MSVS simulation using vegetation image.

In Fig.7, it is shown the comparison results of the MSVS

and DVS approach. The MSVS control law is capable
of estimating the correct homography, leading to stability,
where both translational and rotational errors converge to
zero. However, the DVS control law is unable to estimate
the correct homography due to the noisy information coming
from the RGB image, which causes the control law to diverge
and become unstable. At the convergence the multispectral
camera is positioned at the desired pose very accurately.

(a) Translational error MSVS (b) Rotational error MSVS

(c) Translational error DVS (d) Rotational error DVS

Fig. 7: MSVS and DVS comparison using the vegetation
image under influence of Gaussian noise.

C. Real-World Experiments

Real world experiments were conducted outdoor in the
proximity of the laboratory at Inria. During the experiments,
the SCOUT MINI AgileX robot, controlled as a holonomic
robot, used ROS to interface with the multispectral camera
system. The robot was equipped with a TOUCAN [21]
multispectral camera. The robot task was to control the
camera to align the current image with the reference image.
The reference image was captured offline at a predefined
position. The robot and the camera were controlled using
the same PC system used in the simulations. An adaptive
gain strategy was employed in the experiments. Initially,
the robot used the gain proposed in the simulation. As the
robot approached the target, the gain was gradually increased
to speed up the alignment process without prolonging the
waiting time to reach the final position. This adaptive gain
strategy ensured efficient and timely convergence to the
desired alignment, improving the overall performance of the
proposed approach. In all experiments, the robot successfully
aligned the current image with its corresponding location
in the reference image, demonstrating the robustness of the
MSVS approach, as shown in the two real-world scenarios in
Fig.8 and in Fig.10. This was achieved even when starting
from different positions. By employing the pixel selection
technique, the multispectral data were significantly reduced,
allowing for real-time processing and control. In Fig.9 and
Fig.11 are presented the results of the experiments, showing



the evolution of position and orientation errors over time.
Both figures demonstrate a clear convergence of errors,
indicating the stability and effectiveness of the proposed
approach.

(a) Reference (b) Initial (c) Final

Fig. 8: First real-world scenario experiments.

(a) Position error (b) Rotational error

Fig. 9: First real-world scenario MSVS results.

(a) Reference (b) Initial (c) Final

Fig. 10: Second real-world scenario experiments.

(a) Position error (b) Rotational error

Fig. 11: Second real-world scenario MSVS results.

V. CONCLUSIONS

In conclusion, the proposed study has demonstrated the
feasibility of employing a multispectral camera system for
visual servoing. The paper introduced a novel technique
for transforming multispectral data into 2D images, which
facilitated the application of Direct Visual Servoing. Through
extensive simulations and experiments, system convergence
was successfully achieved, highlighting the potential of the
approach in enhancing robotic perception, tracking, and
control. The integration of multispectral information, as
evidenced by the methodology, opens up new possibilities for

robotics in diverse real-world scenarios. While this research
represents a significant step forward, it also suggests avenues
for further exploration and refinement.
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