
HAL Id: hal-04680351
https://hal.science/hal-04680351

Submitted on 28 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A general approach for expressing infeasibility in
implicit path enumeration technique

Pascal Raymond

To cite this version:
Pascal Raymond. A general approach for expressing infeasibility in implicit path enumeration tech-
nique. ESWEEK’14: TENTH EMBEDDED SYSTEM WEEK, Oct 2014, New Delhi India, France.
pp.1-9, �10.1145/2656045.2656046�. �hal-04680351�

https://hal.science/hal-04680351
https://hal.archives-ouvertes.fr

A General Approach for Expressing Infeasibility in Implicit Path

Enumeration Technique ∗†

Pascal Raymond
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

CNRS, VERIMAG, F-38000 Grenoble, France
Pascal.Raymond@imag.fr

Preprint – Sept. 10, 2014

Abstract

Static timing analysis aims at computing a guaran-
teed upper bound to the Worst-Case Execution Time
(WCET) of a program. It requires both an accurate
modeling of the hardware, and a precise analysis of
the program in order to reject infeasible executions (in
particular, all infinite ones). For the actual compu-
tation of the worst-case execution, most of the exist-
ing tools and methods are based on the Implicit Path
Enumeration Technique (IPET), which consist in en-
coding this search into a numerical optimization prob-
lem (Integer Linear Programming, ILP). An interest
of this approach is that it naturally integrates the loop
bounds. It also allows to implicitly prune infeasible
paths, as far as they can be expressed using linear
constraints. Several works on the subject are using
this ability in order to enhance the WCET estimation:
they identify specific property patterns (e.g., implica-
tions, exclusions) and propose ad hoc translation into
numerical constraints.
The goal of this paper is to go further than ad hoc

reasoning by proposing a general method for trans-
lating infeasibility in terms of numerical constraints.
It does not address the problem of finding infeasible
paths, only the one of characterizing them as precisely
as possible. Moreover the paper aims at exploring the
limits of the method, and thus, it does not try to en-
hance the result using additional methods (e.g., graph
transformation).

1 Introduction

Static timing analysis aims at computing, given a
binary code and the description of the architecture,
a proven upper bound to the Worst-Case Execution
Time (WCET) of the code (see [8] for an overview of
methods and tools). Existing methods and tools are
mainly organized in 3 steps.

(1) Data-flow Analysis considers the semantics of the

∗This work is supported by the french research fundation
(ANR) as part of the W-SEPT project (ANR-12-INSE-0001).

†Submitted to EMSOFT’14.

code (often requiring the availability of the source code,
e.g., C) in order to identify the paths in the CFG that
are actually feasible; this phase must at least find ac-
curate loop bounds, in order to retain only finite exe-
cutions.

(2) Micro-architecture Analysis builds the Control
Flow Graph (CFG) of the code, made of Basic Blocks
(BB) of sequential instructions connected by edges rep-
resenting the possible control paths. It then computes,
for each BB and/or edges, a local WCET estimation
(aka local weight), taking into account as precisely as
possible hardware features like memory cache, pipeline,
branch predictor.

(3) Worst-Case Path Search comes at last, to iden-
tify a/the worst-case execution path according to the
weights assigned to each BB and/or edges. For this
purpose, the mostly used methods are based on Im-
plicit Path Enumeration Technique (IPET), introduced
in [6].

The key idea of this method is to encode the problem
of finding a worst-case path into a numerical optimiza-
tion problem, more precisely, an Integer Linear Pro-
gramming problem (ILP). An integer variable is associ-
ated to each BB and/or edge, representing the number
of time the block/edge is traversed during an execution.
The structure of the graph can then be expressed as a
set of linear constraints, according to the well-know
principle that “incoming flow equals outgoing flow”,
and that the entry point of the program is executed
once. Other constraints, coming from the data-flow
analysis, are added to the numerical system, compris-
ing at least the ones that are necessary to bound all
loops in the graph. The objective function is then to
maximize the weighted sum of all these counters, and
it can be solved by a state-of-art Integer Linear Pro-
gramming solver.

A main interest of the IPET method, pointed out
since its first proposal [6], is its ability to implicitly
prune lots of infeasible paths by stating simple linear
constraints. The study of this ability is the subject of
this paper. To complete this introduction, we present
now some related works and some examples that illus-
trate the problem and motivate this work.

1

1.1 State of the art

To our knowledge, there is no previous work specif-
ically dedicated to the expression of infeasible paths
by means of ILP constraints. More precisely, almost
all works based on the IPET method are considering
this problem, but mainly as a complement to the one
of finding the properties that make the paths infea-
sible. Papers on this subject are numerous, and a
general characteristic is that they search for particular
property patterns leading to infeasible path, that are
translated into particular constraint patterns. These
patterns are mainly based on the notion of conflicting
edges: edges that cannot be all traversed during the
same execution. Papers are considering pairwise con-
flicts (conflict-pair), or more generally n-ary conflicts
(conflict-list).
For instance, [1, 4] are handling conflicting lists of

edges, that can be expressed as bounded sums; it is
similar to the notion of conflict we develop in this pa-
per, but only in the case of programs without loops.
Papers like [2, 3, 4] go further by considering proper-
ties holding in loop scopes, in the case of pairwise rela-
tions between edges (conflict pairs, exclusions, equal-
ities etc.). Moreover, almost all works notice (often
implicitly) that purely conjunctive linear programming
is unable to express all kind of conflicting properties.
The general solution is to define a mix of case-by-case
analysis and pure ILP. This kind of methods can be re-
ferred to as splitting-based methods, in the sense that
they consists in splitting the problem to make paths
more and more explicit. Technically, they can be based
on control-flow graph transformation, addition of extra
variables and/or disjunctive linear systems (in order to
express non convex domains [5, 6, 7]).

The work presented in this paper is somehow
transversal to these related works. In particular it does
not consider at all the problem of finding properties,
but only focusses on the expression of these proper-
ties as ILP constraints. We aim at considering in a
homogeneous manner programs with or without loops,
and relations between two or more edges (conflicting
pairs or lists). Moreover, we try to explore the limits
of pure ILP constraints, and thus we do not consider
splitting-based methods.

1.2 Examples

Program 1 shows an example of code written in
pseudo-C (left). The actual CFG, handled by the tim-
ing analyzing tool, is shown in the middle. For reason-
ing about path feasibility, we use the simplified graph
on the right: sequential blocks are abstracted to outline
the branching possibilities. Each transition is identified
by a letter (a,b,c, etc.) that helps to relate it with the
source C code.

In the classical IPET approach, an integer variable
is associated to each edge. This variable is a counter,
whose value is the number of time the edge is traversed
during one particular execution. We note these coun-

ters with the same letter than the corresponding edge.
Let E = {a, b, c, ...} this set of variables. The weights
(local WCET) computed during the micro-architecture
analysis are denoted wa, wb, etc. The IPET goal is to
maximize, under a set of linear constraints, the objec-
tive function: ∑

x∈E

wx · x

The CFG of Program 1 can be literally translated into
a set of structural constraints:

S =

{
1 = a+ d a+ d = g g + k = h+ ℓ
h = b+ e b+ e = c+ f c+ f = k

}
With these structural constraints only, there is triv-
ially no bound to the objective function: the estimated
WCET is infinite. This is why the control-flow analy-
sis must at least produce a bound for each loop in the
program. We suppose that such a constant bound n
is given (e.g. 100), and a new constraint is added to
obtain the basic set of constraints :

B = S ∪ {h ≤ n}

If we only consider the constraints set B (structural
and loop bounds), the interest of the ILP encoding is
not obvious. The WCET can be computed without
the help of a numerical solver by applying a simple
max/plus inductive algorithm:
1. The WCET of a sequence is the sum.
2. The WCET of a choice is the max.
3. The WCET of a loop bounded by n is n times the

WCET of one iteration.
The ILP method becomes interesting if there exist

additional information about edges that are not struc-
tural but rather semantical. Such an information is
for instance that two (distant) edges are incompatible
(or conflicting), in the sense that they cannot be both
taken during the same execution. The purpose of this
work is not at all to find these properties: we just make
the statement that they exist, and our goal is to express
them as precisely as possible in the IPET framework.
Let us now precise this notion of incompatibility on the
example.

Conflict within a loop On the example program,
one can observe that executing the branch e sets the
variable cond to true, and, as a consequence, makes
it impossible to take immediately after the branch f .
This kind of property is very easy to express as an ILP
constraint if the program has no loop: since each edge
is executed at most once, the constraint e+ f ≤ 1 pre-
cisely express that at most one edge can be executed.
Here the problem is slightly more complex because the
edges belong to a loop. A simple ad hoc reasoning
shows that the conflict holds at each iteration of the
for statement, and that the number of iterations is
precisely captured by the value of the edge counter h.
The conflict can be expressed by:

e+ f ≤ h

2

i f (i n i t) {
/∗ a ∗/

} else {
/∗ d ∗/

}
for (i =0; i<n ; i++){

i f (Y[i]) {
cond = not i n i t and Z [i] ;
/∗ b ∗/

} else {
cond = true ;
/∗ e ∗/

}
/∗ . . . ∗/
i f (cond){

/∗ c ∗/
} else {

/∗ f ∗/
}

}

χ

d a

g

h

k

l

be

cf

ϵ

Program 1: simplified C code, actual binary CFG and simplified CFG

χ

g”

h”

k”

l”

b”e”

c”f”

ϵ ad

e’ b’

c’f’

k’

h’

l’
g’

Figure 1: Unfolding the CFG of Program 1 to distin-
guish executions where a is taken or not.

Since we know that h is bounded by the constant n,
we may also directly write:

e+ f ≤ n

Most of the examples found in the literature are very
similar to this case: authors search for particular prop-
erty patterns that lead to particular constraint pat-
terns, typically a sum bounded by a constant.

Conflict across a loop A less obvious semantic re-
lation exists between the initial if statement and the
two statements inside the loop: if the variable init is
true, then in each loop, if Y[i] is true then cond is set
to false and branch c becomes unreachable. This is yet
another example of conflict, but involving three edges
instead of two: a, b and c. Moreover, these edges do
not belong to the same loop scope, making impossible
to simply bound their sum.

A usual solution to treat this kind of property con-

sists in splitting the problem according to several cases.
This split can be made explicitly by unfolding the CFG
as shown in Figure 1. We obtain a new graph, and thus
a new ILP system which is equivalent with respect to
the WCET computation. Note that the conflict pre-
viously discovered between e and f , simply applies to
the new “versions” of the edges; from now on we use
the more visual name of avatars to identify the several
versions of an edge: e′ + f ′ ≤ n and e′′ + f ′′ ≤ n.
Moreover, we can now precisely express the new con-
flict, that holds only for the prime avatars of b and c
(i.e., after the execution of a only):

b′ + c′ ≤ n

CFG transformation (unfolding, loops unrolling) is a
general solution for expressing any kind of infeasibil-
ity: the more detailed is the graph, the more explicit
are the paths. However it contradicts the spirit of the
IPET method, and it is technically limited by the com-
binatorial growing of the graphs.

A clever solution consists in keeping the splitting im-
plicit, by introducing as few extra variables as possible.
For instance, we can start with the original ILP system
of Program 1 and introduce only the avatars of b and
c. The following set of extra constraints, called A, is
sufficient to express the property:

A =


b′ + c′ ≤ n · a

b′′ ≤ n · d
c′′ ≤ n · d

b′ + b′′ = b
c′ + c′′ = c


In this system, a behaves like a Boolean oracle whose
value “chooses” between two different systems. If a =
0, then, because of the structural constraints, we have
d = 1 − a = 1 and the set A can be reduced to b ≤
n and c ≤ n, which is redundant with the structural

3

constraints. If a = 1, A can be reduced to the expected
conflicting constraint : b+ c ≤ n.
The solution of introducing extra variables is still not

really in the spirit of the IPET, since extra variables
are just a way to make paths more explicit.

In fact, for this particular case, ad hoc reasoning
shows that the property can be expressed exactly with-
out the help of a splitting method. The following con-
straint, involving only original variables, precisely cap-
tures the expected conflict:

n · a+ b+ c ≤ 2n

i f (i n i t) {
/∗ a ∗/

} else {
/∗ d ∗/

}
cond = . . . ;
for (i =0; i<n ; i++){

i f (cond){
/∗ b ∗/

} else {
/∗ e ∗/

}
/∗ . . . ∗/
i f (Y[i]) {

cond = not i n i t and Z [i] ;
/∗ c ∗/

} else {
cond = true ;
/∗ f ∗/

}
}

Program 2: Same CFG as Program 1, if statements are
reversed

Conflict between iterations Program 2 has the
same control flow graph as Program 1, but the order
of the if statements in the loop is reversed. As a con-
sequence, whenever a is taken, the conflict between b
and c does not occur during the same iteration, but
between two consecutive iterations: if c is taken, cond
is set to false, and in the next iteration (if it exists)
b cannot be taken. Even if it is not so different from
the previous example, this kind of inter-iteration prop-
erty is hardly handled in existing work. Here again
the problem can be solved by unfolding the graph or
introducing extra variables. However, here again, it is
not necessary to do so. Let n be the loop bound, the
following constraint precisely captures the conflict:

(n− 1) · a+ b+ c ≤ 2n

Here is an informal proof sketch:
• if n = 0, then b = c = 0 and the constraint be-
comes a tautology: −1 ≤ 0;

• if n = 1 or a = 0, the constraint becomes redun-
dant: b+ c ≤ 2n;

• if n ≥ 2 and a = 1 the constraint becomes b+ c ≤
2n−(n−1) = n+1. By doing a (virtual) unfolding

of the n iterations, on can exhibit n avatars of b
and c, denoted b1, · · · bn, c1, · · · , cn. Both b1 and cn
are unconstrained, and then, their sum is bounded
by 2. All others pairs (ck, bk+1) are conflicting and
thus ck + bk+1 ≤ 1. Since there are n − 1 such
pairs, the sum of all the avatars is bounded by
2 + (n − 1) = n + 1, which is the bound given by
the formula.

i f (i n i t) {
/∗ a ∗/

} else {
/∗ d ∗/

}
for (i =0; i<n ; i++){

i f (Y) {
cond = not i n i t and Z ;
/∗ b ∗/

} else {
/∗ e ∗/
cond = true ;

}
/∗ . . . ∗/
i f (cond){

/∗ c ∗/
} else {

/∗ f ∗/
}

}

Program 3: Same CFG as Program 1, conditions do
not depend on the current iteration

Limits of numerical constraints Unfortunately, it
is not possible to exactly reflect any conflict using only
the existing variables. Program 3 is very similar to Pro-
gram 1, except that the tests within the loop are not
depending on the current iteration. For this program,
if init is true, then depending on the value of Y, either
b = n and c = 0 or b = 0 and c = n. This property can-
not be expressed in classical (conjunctive) linear pro-
gramming since it requires to express a disjunction:
(b = n ∧ c = 0) ∨ (b = 0 ∧ c = n). Here again, splitting
oriented methods (graph unfolding, extra variable, dis-
junctive systems) can solve precisely the problem, but
they are not considered in this paper.

Nevertheless, for this program, the simple linear con-
straint n·a+b+c ≤ 2n still holds and, while not perfect,
may prune some infeasible paths.

1.3 Motivation and paper organization

The goal of this work to go further than ad hoc reason-
ing by proposing a general method to produce linear
constraints such as the ones presented in the examples
(e+f ≤ n, n ·a+b+c ≤ 2n, etc.). The method should
handle in a homogeneous manner programs with or
without loops, intra or inter loop properties.

For this purpose, a first requirement is to precise
the “nature” of an infeasibility property. Moreover,

4

we want to explore the limits of the ILP expressive-
ness without the help of any split-oriented method: no
graph transformation, no extra variables, no disjunc-
tion.
To summarize, a first definition of the goal is: given

a CFG and information on the incompatibility between
edges, find one or more linear constraint(s) that cut, as
precisely as possible, the corresponding infeasible path.

The paper is organized as follow: section 2 gives the
necessary formal definitions. We show that the notion
of conflicting sets is atomic with respect to path prun-
ing in the sense that any set of infeasible paths can be
described as a union of conflicting sets.
Section 3.1 gives a first general solution for trans-

forming conflicting sets into linear constraints. This
solution requires very few information about the in-
compatibilities, but the counterpart is that the result
may be rather imprecise. Section 3.2 presents a solu-
tion for capturing more precisely the incompatibilities.

2 Definitions and notations

2.1 Programs and unfoldings

A CFG (or simply a program) is a direct graph, possibly
cyclic, made of a finite set of vertices (V), a finite set
of edges (E ⊆ V × V), a particular entry vertex (ϵ),
and one or more exit vertex (X):

P = (V,E ⊆ V × V, ϵ ∈ V, ∅ ⊂ X ⊆ V)

In the sequel we use lowercase letters to identify
edges (e.g., a, b, c, etc., as in the CFG of Program 1).
A trace of a program P is a sequence of subsequent

edges starting in ϵ and ending in x ∈ X . The set of
traces of a program P is denoted T (P).

In the WCET framework, we are only interested in
programs that terminate in bounded time. It implies
that we always suppose the existence of a finite set of
actually feasible executions, which is, in general, a strict
subset of the program traces. We do not claim that this
finite set is precisely known, just that it exists. We call
it the set of actual executions and note it E ⊆ T (P).
We introduce now the notion of unfolding in order to

formalize the notion of “more precise” program graph.

Definition 1
An unfolding of a program P = (VP , EP , ϵP ,XP),
with respect to a set of executions E ⊆ T (P) is a pair
(U, δ) such that:

• U = (VU , EU , ϵU ,XU) is a CFG,
• δ is a mapping from U edges to P edges (i.e., a
decoding’):

δ : EU → EP

the induced trace mapping is denoted:

δ∗ : T (U) → T (P)

and the set of decoded traces is denoted:

T δ(U) = {δ∗(t), t ∈ T (U)}

l3

h3

b3

c3 f3

k3

e3
l2

h2
e2 f2

c2
b2

k2

a1d1

g1
l1

h1

e1 b1

c1f1

k1

l4

ϵ

χ

Figure 2: Acyclic unfolding ofProgram 1 (for n = 3).

• such that:
E ⊆ T δ(U) ⊆ T (P)

For instance, Figure 1 shows an unfolding of Pro-
gram 1, where the mapping consists in ignoring the
prime symbols; in this case the unfolding is not more
precise since T δ(U) = T (P).

Note that the definition of unfolding can be general-
ized by considering neutral edges in U : in this case the
mapping is a function δ : EU → EP∪{τ} where τ ̸∈ EP

is simply ignored when extending δ to sequences (i.e.,
δ∗(τ) = ε).
Among the unfoldings of P we are particularly in-

terested in those that are acyclic (i.e., DAGs): they
structurally reject the infinite traces of the original P .
In particular, an acyclic unfolding is exactly what we
get (implicitly) in classical WCET techniques when a
bound is assigned to each loop of the program. Fig-
ure 2 shows an acyclic unfolding of Program 1, in the
case that the number of iterations is bounded by n = 3.
Note that it trivially exists, within the acyclic unfold-
ings of P , a canonical program that exactly captures
the actual executions E (more precisely, a class of min-
imal graphs, equivalent modulo edge renaming).

In the sequel, we consider that we have an acyclic
unfolding of the program P : we do not require that it
must be precisely built or known, only that it virtually
exists.

2.2 Avatars and implicit paths

Let P be a program, E the set of actual executions and
(U, δ) an acyclic unfolding. From now on we call P the
concrete program (and its edges the concrete edges).
The edges in the reverse image of the concrete edge a
are called the avatars of a. We note ma the number
of avatars of a (ma = |δ−1(a)|), and, by convention,
we note the avatars with subscript indices, like in Fig-
ure 21:

δ−1(a) = {a1, a2, · · · , ama
}

1This does not mean that we consider a “natural” ordering
of the avatars, just think about them as a family of symbols.

5

Let us now come back to the IPET framework. In
IPET, sets of traces are characterized implicitly by
giving the number of occurrences of the edges. We
call these numbers the edge counters, and note, for in-
stance, |a|t the number of occurrences of the edge a
in the trace t. In order to simplify the notations, and
whenever the context clearly concerns a trace t, we will
simply note a for |a|t.

The basic relation between the counters of an un-
folded trace t and the corresponding concrete trace
t′ = δ∗(t) is trivially:

ma∑
i=1

ai = a

Another trivial property of the unfolded counters is
that they are either 0 or 1:

0 ≤ ai ≤ 1

2.3 Conflicting sets

Let P be a program, E the set of actual executions
and (U, δ) an acyclic unfolding. U structurally rejects
any infinite infeasible paths, however there is still a
precision gap represented by G = T δ(U) \ E which is
the set of infeasible finite paths not rejected by U .

Definition 2
Let C ⊆ EU be a set of edges, we note T δ

U (C) ⊆ T δ(U)
the set of traces of U that pass by all the edges in C:

• C is a conflicting set if T δ
U (C) ∩ E = ∅ and

T δ
U (C) ̸= ∅, i.e., it contains only infeasible paths,

among them at least one not rejected by U ;
• C is a minimal conflicting set iff any C ′ ⊂ C
is not a conflicting set;

• A set C = {C1, · · · , Ck} is a conflict covering
iff:

T δ(U) ⊆ E
⋃

1≤i≤k

T δ
U (Ci)

i.e., the conflicting sets of C are sufficient to reject
any infeasible path from U ;

• C is a minimal conflict covering iff it contains
only minimal conflicting sets, and any C′ ⊂ C is
not a conflict covering.

Theorem 1 For all (P, (U, δ), E), there exist a mini-
mal conflict covering.

Here is a sketch of a constructive proof, which is
indeed related to the notion of prime implicant in
Boolean algebra:

• there exist (at least) one conflict covering: the one
obtained form G = T δ(U)) \ E by interpreting the
paths as (unordered) sets of edges,

• if a conflicting set C in a covering is not minimal,
replace it by some other conflicting set C ′ ⊂ C,

• if a covering is not minimal, replace it by some
covering C′ ⊂ C.

This theorem is relatively trivial, but nevertheless
important since it justifies the fact that the notion of
conflicting sets is (implicitly) considered equivalent to
the one “pruning properties” in the literature.

In an unfolding, the incompatibility due to a con-
flicting set can be expressed exactly in terms of ILP
constraints. Consider a multiset of n concrete edges
(we use superscript indexes to avoid confusion with
avatar notation): ax for x = 1 · · ·n. Consider a set of n
avatars, one per each concrete edge ax: C = {axix |x =
1 · · ·n}. Note that we consider multisets of concrete
edges for the sake of generality: it is possible that dif-
ferent avatars of a same concrete edge are conflicting;
it arises for instance when a edge in a loop cannot be
taken in two consecutive iterations. If C is a conflicting
set, then, for any execution:

n∑
x=1

axix ≤ n− 1

For the same multiset of concrete edges, it is likely that
many others sets of avatars are also conflicting. This
leads to the notion of “conflicting from time to time”:
a multiset of (concrete) edges {{ax}} is conflicting s
times (i.e., is s-conflicting) if there exists s sets of their
avatars that are conflicting.

3 Completion of s-conflicting

3.1 Rough completion

3.1.1 Case of 3 edges

In order to make the presentation more clear, and to
keep the notations readable, we consider here the case
of 3 concrete edges, denoted a, b and c. Note that noth-
ing in the following reasoning requires the these edges
should be all different: |a, b, c| must be understood as
a multi-set containing 3 edge references (e.g. a and
b may refer to the same concrete edge). The reason-
ing can be easily extended to the general case of any
number of edge references.

Even if the reasoning is based on the existence of an
acyclic unfolding, we try to keep the information about
it as abstracted as possible; we suppose given:

• the number of avatars of each edge, denoted ma,
mb and mc;

• the number of conflicting sets of avatars, denoted
s.

In order to avoid confusion, we use different index
symbols for the avatars. Avatars are denoted ai for
i = 1 · · ·ma, bj for j = 1 · · ·mb, and ck for k = 1 · · ·mc.
The corresponding counters properties, holding for any
execution are:

a =

ma∑
i=1

ai, b =

mb∑
j=1

bj , c =

mc∑
k=1

ck

We know that {{a, b, c}} is s-conflicting. Thus, there
exists a set S of s triples (i, j, k) such that each

6

{ai, bj , ck} is a conflicting set. The sum of the cor-
responding linear constraints gives:∑

(i,j,k)∈S

ai + bj + ck ≤ 2s

The idea is now to complete this constraint in order
to get rid of the avatar details and come up with a
relation between the full counters only. Without any
other information than the number s, we can hardly do
better than complete the relation with all the triples
that do not belong to S. For these triples, such that
(i, j, k) /∈ S, the following trivial relation holds:

ai + bj + ck ≤ 3

Moreover, there are mambmc−s such triples. By sum-
ming all these trivial constraints with the conflicting
ones, we obtain, in the left hand side, mbmc times the
sum of all a avatars, that is, the complete a counter.
Similarly, the full b appears mamc times, and the full
c mamb times. Finally, we obtain a relation free of any
avatar details:

mbmca+mamcb+mambc ≤ 2s+ 3(mambmc − s)

or equivalently:

Formula 1

m

ma
a+

m

mb
b+

m

mc
c ≤ 3m− s

where m = mambmc

3.1.2 General case

The 3-edges formula can be easily generalized to the
incompatibility between any number of (possibly re-
dundant) edges: let X be a multiset of |X| concrete
edges. Each edge occurrence x ∈ X is characterized
by its number of avatars mx, and the incompatibility
is characterized globally by the number of conflicting
sets of avatars s:

Formula 2 ∑
x∈X

m

mx
x ≤ |X|m− s

where m =
∏
x∈X

mx

3.1.3 Inefficiency of rough completion

Let us consider the left hand part of Formula 2: each
edge counter x is, by definition, bounded by mx, thus
the whole left hand sum is intrinsically bounded by m∗
|X|. The gain in precision of the Formula is then only
s. Except for very special cases (big s, small number
of edges and/or small number of avatars), the formula
is unlikely to give a useful information.
One of the rare case where the Formula gives an

exact information is when ma = mb = mc = s, (i.e.

a cycle-free program with 3 incompatible tests): the
Formula

a+ b+ c ≤ 2

precisely “cuts” the infeasible paths.
As soon as the m’s are greater, the formula cuts very

few infeasible paths, and thus gives very imprecise re-
sults. Consider 3 edges within the same loop (executed
n times), conflicting at each iteration. The parameters
are ma = mb = mc = s = n and the formula gives:

a+ b+ c ≤ (3n2 − 1)/n

which is equivalent (since a, b, and c are integers) to:

a+ b+ c ≤ 3n− 1

The inefficiency is clearly a drawback of the comple-
tion, and not of the ILP approach, since we know that
there exist, for this particular example, a constraint
that precisely cuts the infeasible paths: a+ b+ c ≤ 2n.
The goal of the next section is to propose a method

for finding, when it exists, a precise ILP formulation of
the conflict.

3.2 Precise completion

3.2.1 Multiplicity and lack

The problem of the rough completion is that it intro-
duces a huge amount of useless information of the type
ai ≤ 1. We will try here to introduce the minimal
number of useless information. Consider the incom-
patibility relation:∑

(i,j,k)∈s

ai + bj + ck ≤ 2s

and focus for instance on the term involving the ai
avatars. This term is of the form:

ma∑
i=1

αiai with

ma∑
i=1

αi = s

The maximum of the αi is called the multiplicity of a
and denoted pa = MAXi=1···ma(αi).
For each αi, we define α′

i, its complement to pa: α′
i +

αi = pa.
Intuitively, the α′

i describe the avatars of a that are
missing in the conflict constraint:

ma∑
i=1

αiai +

ma∑
i=1

α′
iai = paa

Moreover, the details of the α′
i have no importance,

only their sum is important:

ma∑
i=1

α′
i = pama − s

We call it the lack of a in the conflict, and note ℓa =
pama − s.

7

Consider for instance Program 1 in the case n = 3,
and the corresponding acyclic unfolding in Figure 2.
The numbers of avatars are ma = 1 and mb = mc = 3.
There are s = n = 3 conflicting sets {a1, b1, c1},
{a1, b2, c2} and {a1, b3, c3}. The multiplicity of a is
3 (a1 appears 3 times in the conflicts), while the mul-
tiplicity of b and c is 1 (each avatar appears exactly
once in the conflicts). It follows that the lack of a
is ℓa = 3 × 1 − 3 = 0, and the lack of b and c is
ℓb = ℓc = 1× 3− 3 = 0. As a consequence, there is no
lack at all in the constraints: no avatar is missing in
the conflicts sets.
Consider now the example Program 2, with n = 3,

for which the CFG in Figure 2 is also an acyclic un-
folding. We still have ma = 1 and mb = mc = 3, but
there are now only s = 2 conflicting sets: {a1, b2, c1}
and {a1, b3, c2}. The multiplicity of a is 2, and thus the
lack is ℓa = 2×1−2 = 0. The multiplicity of both b and
c is 1, and thus the lack is ℓb = ℓc = 1× 3− 2 = 1. In-
tuitively, there is a lack in the conflict sets: one avatar
of b and one avatar of c are missing. Note that we do
not care about what particular avatar is missing or not:
only their numbers matter.

3.2.2 Lack completion

For each missing avatar, we can add a trivial constraint
stating that is it less than 1, and by summing all these
trivial constraints, we obtain:

ma∑
i=1

α′
iai ≤

ma∑
i=1

α′
i = ℓa

The same reasoning holds for the terms in b and c,
and finally we can build a global sum of the conflict
constraints and the three “lack” constraints that erases
the avatar details:

ma∑
i=1

αiai +
mb∑
j=1

βjbj +
mc∑
k=1

γkck ≤ 2s

ma∑
i=1

α′
iai ≤ ℓa

mb∑
j=1

β′
jbj ≤ ℓb

mc∑
k=1

γ′
kck ≤ ℓc

paa + pbb + pcc ≤ 2s+ ℓa + ℓb + ℓc

3.2.3 Precise completion (3 edges)

To summarize, in order to obtain a precise translation
in ILP of the incompatibility, we need:

• the numbers of avatars ma, mb and mc,
• the number of “times” the incompatibility holds s
(i.e., the number of avatar conflicting sets among
the mambmc possible ones),

• for each edge, its multiplicity in the conflict, that
is, the maximum occurrence of a particular avatar
ai in the set of conflicting sets: pa, pb and pc,

• from these information, we compute the relative
lacks of each edge, e.g., ℓa = pama − s,

• and then we can state that the (ternary) s-
conflicting formula holds:

Formula 3

paa+ pbb+ pcc ≤ 2s+ ℓa + ℓb + ℓc

3.2.4 Precise completion (general case)

This result can be easily generalized to the incompat-
ibility between any number of (possibly redundant)
edges. Let X be a multiset of |X| concrete edges. Each
edge occurrence x ∈ X is characterized by its number
of avatars mx. The incompatibility is characterized
globally by the number of conflicting sets of avatars s,
and, for each edge occurrence x, its multiplicity px, and
the corresponding lack ℓx = pxmx−s. The generalized
n-ary s-conflicting formula is:

Formula 4 ∑
x∈X

pxx ≤ (|X| − 1)s+
∑
x∈X

ℓx

3.3 Examples

Across-loop conflict In Program 1, the conflict be-
tween a, b and c holds for each of the n iterations,
thus:

• s = mb = mc = n and ma = 1,
• pa = n and thus ℓa = pama − s = 0,
• pb = pc = 1 and thus ℓb = ℓc = pbmb − s = 0,
• and finally:

n · a+ b+ c ≤ 2n

which is the precise translation of the incompat-
ibility, as it was obtained by ad hoc reasoning in
the introduction.

An even simpler example is when the 3 edges belong
to the same loop, and the incompatibility holds for each
of the n iterations:

• n = s = ma = mb = mc,
• pa = pb = pc = 1 and thus ℓa = ℓb = ℓc = 0,
• and finally:

a+ b+ c ≤ 2n

Note that the same reasoning works for edges that
are in distant loops: only the number of conflict mat-
ters, not the precise structure of the graph.

Nested-loops conflict Program 4 is another exam-
ple of ternary conflict, but where the conflict propa-
gates within nested loops. The edges a, b and c are
appearing (respectively) in nested loops executed lo-
cally n1, n2 and n3 times, thus:

• ma = n1,
• mb = n1n2,
• mc = n1n2n3,

8

for (i =0; i<n1 ; i++){
read (x) ;
i f (x)
{
/∗ a ∗/

}
for (j =0; j<n2 ; j++){
read (y) ;
i f (not x or y)
{
/∗ b ∗/

}
for (k=1;k<n3 ; k++){
read (z) ;
i f (not (x and y) and z)
{

/∗ c ∗/
}

}
}

}

χ

a

ϵ

b

c

Program 4: Example of ternary conflict in nested loops.

The conflict propagates to the whole nested loop, i.e.:
the first a is incompatible with the n2 first b and the
n2n3 first c, and so on. For this example, the avatars
are numbered form 0 to m− 1 in order to simplify the
notations. The incompatibility holds for all the triples:

(i, n2i+ j, n3(n2i+ j) + k)

with 0 ≤ i < n1, 0 ≤ j < n2, 0 ≤ k < n3.
It follows that:
• s = n1n2n3,
• pa = n2n3, pb = n3, pc = 1 and ℓa = ℓb = ℓc = 0
• and finally:

n2n3a+ n3b+ c ≤ 2n1n2n3

Conflict between different iterations Consider
the Program 2, where the conflict holds from one it-
eration to the following (i.e., if b is taken at loop i,
then c cannot be taken at loop i+ 1). In this case:

• n = mb = mc and ma = 1,
• s = n− 1, since all {a1, bi, ci+1} is conflicting,
• pa = n− 1, and thus ℓa = pama − s = 0,
• pb = pc = 1 and thus ℓb = ℓc = pbmb − s = 1; the
global lack is then 2s+ℓa+ℓb+ℓc = 2(n−1)+2 =
2n

• and finally:

(n− 1) · a+ b+ c ≤ 2n

Auto-conflict This example illustrates the fact that
conflicting concrete edges do not have to be different.
Consider Program 5: (1) the loop is bounded by the
constant n, (2) whenever a is executed, it becomes un-
reachable for the next iteration. This is an example of
pairwise conflict, covered by the general formula:

paa+ pbb ≤ s+ ℓa + ℓb

cond = read () ;
for (i =0; i<n ; i++){

i f (cond){
/∗ a ∗/
cond = 0 ;

} else {
cond = read () ;

}
}

χ

ϵ

a

Program 5: Edge a is “auto-conflicting” between two
consecutive iterations.

where, indeed, one has to keep in mind that a = b. The
parameters are ma = n, s = n − 1, pa = 1 and thus
ℓa = 1, and finally:

a+ a ≤ n− 1 + 1 + 1 ⇔ 2a ≤ n+ 1

4 Conclusion

This paper presents a general method for translating
infeasibility properties into Integer Linear Program-
ming (ILP) constraints, suitable for the use in IPET
method. The translation of infeasibility in terms of
ILP constraints is far from new, and numerous exam-
ples can be found in the literature. But the goal of
this work is not compete on precision or accuracy with
existing approaches. It is a theoretical study that pro-
poses a general formulation that in some sense encom-
pass the existing ones and outlines the fundamental
limits of the method. In particular, it does not con-
sider the problem of finding “pruning” properties, but
only the one of reflecting them as precisely as possible,
without the help of any complementary method (e.g.,
graph transformation). The reasoning is based on the
existence of an acyclic unfolding of the program. How-
ever this unfolding is kept mainly abstract: a rough
solution only requires to identify (1) the number of
times each particular edge is unfolded, (2) the number
of conflicting sets of edges in the unfolding. In order to
provide a finer solution, a more precise information is
necessary, that intuitively gives the number of time a
particular edge is involved in the infeasibility property.
Even with this finer solution, the formulation is some-
times not perfect, in the sense that it does not reject
all the infeasible paths. This is not a drawback of the
proposed method, but a general limitation of ILP, that
arises whenever the exact formulation requires to ex-
press disjunction. In this case, the general solution is
to combine ILP with by-case reasoning, but this some-
how orthogonal problem is not considered here since
the idea was to explore the limits of the strict conjunc-
tive ILP formulation.

References

[1] B. Blackham, M. Liffiton, and G. Heiser. Trickle:
automated infeasible path detection using all min-

9

imal unsatisfiable subsets. In Real Time and Em-
bedded Technology Applications Symposium, Berlin,
Germany, April 2014.

[2] J. Engblom and A. Ermedahl. Modeling complex
flows for worst-case execution time analysis. In
RTSS, pages 163–174, 2000.

[3] J. Gustafsson, A. Ermedahl, C. Sandberg, and
B. Lisper. Automatic derivation of loop bounds and
infeasible paths for WCET analysis using abstract
execution. In RTSS, 2006.

[4] C. Healy and D. Whalley. Automatic detection and
exploitation of branch constraints for timing anal-
ysis. IEEE Trans. on Software Engineering, 28(8),
August 2002.

[5] T. H. Kim, H. Bang, and S. D. Cha. A systematic
representation of path constraints for implicit path
enumeration technique. Softw. Test., Verif. Reliab.,
20(1):39–61, 2010.

[6] Y.-T. S. Li and S. Malik. Performance analysis
of embedded software using implicit path enumer-
ation. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 16(12), 1997.

[7] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient mi-
croarchitecture modeling and path analysis for real-
time software. In Proceedings of the 16th IEEE
Real-Time Systems Symposium, RTSS ’95, pages
298–, Washington, DC, USA, 1995. IEEE Com-
puter Society.

[8] R. Wilhelm, J. Engblom, A. Ermedahl, N. Hol-
sti, S. Thesing, D. Whalley, G. Bernat, C. Ferdi-
nand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The
worst-case execution-time problem - overview of
methods and survey of tools. ACM Trans. Em-
bedded Comput. Syst. (TECS), 7(3), 2008.

10

