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Abstract: In this paper, the decay rate estimation of solution and energy function for a
nonlinear flexible beam with nonlinear boundary damping are established. The nonlinear
boundary feedback criterion, which covers a large class of nonlinear functions, is based on a
negative feedback of the transverse velocity at the right boundary of flexible beam. Several
decay rates for the solution and energy are provided corresponding to various growth restriction
on the nonlinear boundary feedback near the origin. To verify the effectiveness of the results,
numerical simulations are shown by the finite element method.
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1. INTRODUCTION

Flexible materials are widely used in engineering practice
due to their light weight, low energy consumption and
other advantages, such as marine mooring lines He (2014),
flexible manipulators Hu (2008); Pereira (2010), marine
risers for oil transportation Do (2008), and crane cables He
(2013). However, flexible materials often modeled as beam
or string equations are more prone to vibration, which
will reduce work efficiency and damage product quality.
Boundary control with its own unique advantages is one
of the most effective methods to suppress the vibration
of flexible systems, for instance Morgul (1992); Geniele
(1997); Ge (1998); Krstic et al. (2008); Krstic (2008).

Considering the significant bending stiffness of flexible
materials, the vibration system of this structure should
be modeled as a beam equations Wu and Wang (2014);
Kelleche and Tatar (2017). When the amplitude of the
flexible beam is large, the disturbed strain shows strong
nonlinearity, which brings about analysis difficulties for
stability and well posed results. Ignoring the longitudinal
vibration of the beam, the disturbed strain relationship
can be approximated by the Kirchhoff function under the
quasi-static assumption Arosio (1993). In this context,
boundary stabilization of Kirchhoff beam equations had
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been addressed in Guo-Guo (2007), Kobayashi (2009) and
Cheng-Wu-Guo (2021a).

In this paper, considering the disturbing strains deduced
by the nonlinear geometric relations Ding and Chen (2009,
2011), we investigate the attenuation estimation of trans-
verse vibration for the nonlinear flexible beam described
by the following partial differential equation (PDE)

ρAwtt +EIwxxxx=[(EA+
P − EA√

1 + w2
x

)wx]x,

EIwxxx(L, t)− (EA+
P − EA√

1 + w2
x(L, t)

)wx(L, t)

= F (wt(L, t)),
w(0, t) = wx(0, t) = wxx(L, t) = 0,
w(x, 0) = g1(x), wt(x, 0) = g2(x),

(1)

for all x ∈ (0, L) and t > 0, where w(x, t) denotes the
transversal deflection of beam at time t and at the position
x, L is the length of beam, ρ is the mass per unit area, A
is the cross-sectional area of the beam, E is the Young
modulus, P is the initial tension, I is the moment of
inertia, F represents a nonlinear damping, g1 and g2 are
the initial displacement and the initial velocity of the beam
system, respectively. From a physical point of view, the
initial tension is usually much smaller than the tensile
stiffness (P ≤ EA).

When the deformation of the beam is limited but the
amplitude is small, the nonlinear tension EA+ P−EA√

1+w2
x

of

(1) can be reduced to P− P−EA
2 w2

x in view of 1√
1+µ2

≈ 1−
µ2

2 as |µ| � 1. In this case, the approximate equation of the



nonlinear beam (1) has been examined in Yang and Hong
(2002); Ding and Chen (2010); Kelleche and Tatar (2017).
It is worth mentioning that, by using nonlinear boundary
controls, the exponential stability of an axially moving
beam with same nonlinear tension as (1) is established
by the integral-type multiplier method in Cheng-Wu-Guo
(2021b).

The purpose of this paper is to establish the estimation
of vibration attenuation of the nonlinear flexible beam
(1) with nonlinear boundary damping F . In the present
paper, we identify a explicit criteria to choose a class
of nonlinear damping functions, for which we obtain a
explicit energy decay formula. When various growth con-
straints of nonlinear damping F at infinity and near the
origin are provided, the explicit solutions and energy decay
rates for the nonlinear flexible beam (1) are guaranteed
by a dissipative ordinary differential equation (ODE). By
invoking the method introduced by Lasiecka (1993), we
conclude that if we impose some additional restrictions
on the growth of nonlinear damping near the origin, we
find that when the damping term increases linearly near
the origin, the energy function decays exponentially, and
when the damping increases as a superlinear or sublinear
behavior near the origin, the energy function decays as a
polynomial.

The remainder of this paper is planned as follows. In Sect.
2, decay estimates of energy and solution for the nonlinear
flexible beam (1) are provided. The proof of main results
are given in Sect. 3. In Sect. 4, some simulation results
are shown to illustrate the theoretical results. A brief
conclusion follows in Section 5.

2. MAIN RESULT

In order to estimate the delay rate of energy function
for the nonlinear flexible beam (1), we need the following
assumptions on F :
Assumption 1. F is a non-decreasing continuous func-
tion on R with F (0) = 0 such that

0<F (s)s, ∀s 6= 0,

k1 ≤
F (s)

s
≤ k2, ∀ |s| ≥ N, (2)

for the given constants 0 < k1 ≤ k2 and N > 0.

Remark 1. It is easy to see that, we do not require explicit
change behavior of F near zero in Assumption 1. There-
fore, this condition is more generally compared with lope-
restricted condition Cheng-Wu-Guo (2021a) and slope-
sector condition Cheng-Wu-Guo (2021b).

Let

E(t) :=
ρA

2

L∫
0

w2
t dx+ (P − EA)

L∫
0

√
1 + w2

xdx

+
EI

2

L∫
0

w2
xxdx+

EA

2

L∫
0

w2
xdx, (3)

stand for the energy corresponding to the beam system
(1). In what follows, we mainly focus on the stability

analysis of closed-loop systems (1), since the proof of well-
posedness of the problem (1) is analogous to Cheng-Wu-
Guo (2021a,b), where the Faedo-Galerkin method is used
to complete the two estimates of solutions.

Now, we present the idea based on convexity arguments
from Lasiecka (1993), which will play a crucial role in
establishing the stability for the nonlinear flexible beam
(1). In this context, it is important to point out other
important works in the previous results that considered op-
timal energy decay estimates, such as Alabau-Boussouira
(2005, 2010); Alabau-Boussouira-Ammari (2011); Mar-
tinez (1999).

Assume that a function U(s) is concave and strictly
increasing for s ≥ 0, with U(0) = 0, satisfying

U(sF (s)) ≥ s2 + [F (s)]2, ∀ |s| ≤ N, (4)

for the constant N > 0 given in (2). In light of the property
of F (s), such a function U(s) can always be constructed,
for detail, see Lasiecka (1993). Set

Û(s) := U(
s

T
), ∀ s ≥ 0, (5)

where T is a constant to be determined later. For ξ > 0,
it is easy to check that ξI + Û is invertible and strictly
increasing, where I is the identity mapping. Define a map

P(s) := (ξI + Û)−1(ξ̂s) (6)

for a constant ξ̂ > 0, which is a strictly increasing, positive
and continuous function with P(0) = 0. Define Q(s) := s−
(I + P)−1(s) for s ≥ 0. Then Q(s) is also a positive,
strictly increasing and continuous function. Recalling an
ODE system given by{

d

dt
S (t) +Q(S (t)) = 0, t > 0,

S (0) = s0,
(7)

if P(t) > 0 defined in (6) for any t > 0, one has
limt→∞S (t) = 0, as discussed in Lasiecka (1993) (see also
Cavalcanti (2007)). From the above preliminary work, we
state our stability result.

Theorem 2. Let w(x, t) and E(t) be the solution and
energy function of the nonlinear flexible beam (1). Assume
that the assumption (2) on F is satisfied. Then there exist
a positive constant T0 > 0 such that

E(t) ≤ S (
t

T0
− 1) (8)

for all t > T0 with limt→∞S (t) = 0, where S (t) is the
solution of ODE system (7) with s0 = E(0). Moreover,

|w(x, t)|2 ≤ 2L2

EI
S (

t

T0
− 1) (9)

for any x ∈ [0, L] and all t ≥ 0.

It should be noted that the asymptotic stability of solu-
tions and energy function to the nonlinear flexible beam
(1) can only be guaranteed from the above theorem. Fur-
thermore, if the nonlinear damping function F satisfies
additional specific growth conditions at the origin, a ex-
plicit energy decay rate is deduced by applying Theorem
2, as discussed in Cavalcanti (2014). Hence, we present the
following further result.



Corollary 3. Under the assumptions of Theorem 2, assume
that there exists two positive constants k1, k2, such that

k1|s|p ≤ |F (s)| ≤ k2|s|1/p, ∀ |s| ≤ 1, (10)

where p ∈ [1,∞). Then the energy E(t) and the solution
w(x, t) of nonlinear flexible beam (1) satisfies

|w(x, t)|2 ≤ 2L2

EI
E(t) ≤ Ct

2
1−p , if p > 1, (11)

and

|w(x, t)|2 ≤ 2L2

EI
E(t) ≤ Ce−µt, if p = 1, (12)

where µ,C are positive constants, for any x ∈ [0, L] and
all t ≥ 0 .

3. PROOF OF MAIN RESULTS

In order to prove the main result, an auxiliary lemma needs
to be shown.

Lemma 4. Let w be the solution of nonlinear flexible beam
(1), then for any T > S > 0

E(T ) = E(S)−
T∫
S

F (wt(L, t))wt(L, t)dt. (13)

Proof. Due to (3), the derivative rule and integration by
parts show,

d

dt
E(t) = ρA

L∫
0

wtwttdx+ EI

L∫
0

wxxwxxtdx

+

L∫
0

(EA+
P − EA√

1 + w2
x

)wxwxtdx

=

L∫
0

{
ρAwtt − [(EA+

P − EA√
1 + w2

x(x, t)
)wx]x

}
wtdx

−[EIwxxx(L, t)− (EA+
P − EA√

1 + w2
x(L, t)

)wx(L, t)]wt(L, t)

+EIwxx(L, t)wxt(L, t) + EI

L∫
0

wxxxxwtdx

= −F (wt(L, t))wt(L, t), (14)

where the boundary conditions of (1) are applied. There-
fore, integrating on both sides of (14) from T to S, our
desired result follows.

Remark 5. Since F (wt(L, t))wt(L, t) ≥ 0, it easy to see
that the energy function E(t) is non-increasing and E(t) ≤
E(0) for all t ≥ 0.

Proof of Theorem 2.

Taking the inner product with xwx on both sides of the
first equation in (1) shows

ρA〈xwx, wtt〉+ EI〈xwx, wxxxx〉

= 〈xwx,
[
(EA+

P − EA√
1 + w2

x(x, t)
)wx

]
x
〉. (15)

Thanks to the basic derivative rules and integration by
parts, one gets

〈xwx, wtt〉=
L∫

0

[xwxwt]tdx−
L∫

0

xwxtwtdx

=

L∫
0

[xwxwt]tdx−
L

2
w2
t (L, t)+

1

2

L∫
0

w2
t dx,(16)

and

〈xwx, wxxxx〉 =
3

2

L∫
0

w2
xxdx+ Lwx(L, t)wxxx(L, t). (17)

Likewise, it follows that

∆ : = 〈xwx,
[
(EA+

P − EA√
1 + w2

x

)wx
]
x
〉

=Lw2
x(L, t)(EA+

P − EA√
1 + w2

x(L, t)
)

−
L∫

0

(EA+
P − EA√

1 + w2
x

)[w2
x + xwxwxx]dx. (18)

Then we can also deduce

L∫
0

(EA+
P − EA√

1 + w2
x

)xwxwxxdx

=

L∫
0

[
x
(EA

2
w2
x + (P − EA)

√
1 + w2

x

)]
x

dx

−
L∫

0

[EA
2
w2
x + (P − EA)

√
1 + w2

x

]
dx

= L
[EA

2
w2
x(L, t) + (P − EA)

√
1 + w2

x(L, t)
]

−
L∫

0

[EA
2
w2
x + (P − EA)

√
1 + w2

x

]
dx. (19)

The fact 0 < P ≤ EA leads to

s(EA+
P − EA√

1 + s
) ≥ EAs+ 2(P − EA)

√
1 + s,

for all s ≥ 0. Hence, inserting (19) into (18), this implies

∆≤−1

2

L∫
0

[EAw2
x + 2(P − EA)

√
1 + w2

x]dx

−L[
EA

2
w2
x(L, t) + (P − EA)

√
1 + w2

x(L, t)]

+Lw2
x(L, t)(EA+

P − EA√
1 + w2

x(L, t)
). (20)



Recalling the definition of energy function E(t), and sub-
stituting (16), (17) and (20) into (15) leads to

E(t) ≤ −ρA
L∫

0

[xwxwt]tdx+
ρAL

2
w2
t (L, t)

− L[
EA

2
w2
x(L, t) + (P − EA)

√
1 + w2

x(L, t)]

− LEIwx(L, t)wxxx(L, t)

+ [Lw2
x(L, t)(EA+

P − EA√
1 + w2

x(L, t)
)]. (21)

Taking the boundary condition in (1) into account, the
estimate above becomes

E(t) ≤− ρA
L∫

0

[xwxwt]tdx+
ρAL

2
w2
t (L, t)

− L

2
[EAw2

x(L, t) + 2(P − EA)
√

1 + w2
x(L, t)]

−LF (wt(L, t))wx(L, t). (22)

According to EA + P−EA√
1+s

≥ P (∀s ≥ 0) and Young’s

inequality, it holds that

−L
2

[EAw2
x(L, t) + 2(P − EA)

√
1 + w2

x(L, t)]

−LF (wt(L, t))wx(L, t)

≤−ρAPL
2

w2
x(L, t)+

L

4ε
F 2(wt(L, t))+Lεw2

x(L, t),(23)

where the fact that

[EAw2
x(L, t) + 2(P − EA)

√
1 + w2

x(L, t)]

=

w2
x(L,t)∫
0

(
EA+

P − EA√
1 + s

)
ds

≥ Pw2
x(L, t) (24)

is applied. In view of the arbitrariness of parameters ε > 0,
we can choose ε = ρAP

2 . Then insert (23) into (22) to get

E(t)≤−ρA
L∫

0

[xwxwt]tdx+
ρAL

2
w2
t (L, t)

+
L

2ρAP
F 2(wt(L, t)), (25)

which yields

E(t)≤−ρA
L∫

0

[xwxwt]tdx+Ĉ[w2
t (L, t)+F 2(wt(L, t))],(26)

where Ĉ = max{ L2

4PρA ,
L
2 }. It is easy to see that

ρA

L∫
0

xwxwtdx ≤
ρAL

2

L∫
0

(w2
x + w2

t )dx ≤ λE(t)

with λ = max{L, ρAPL }. This with Remark 5 implies

T∫
0

L∫
0

[xwxwt]tdxdt ≤ λ(E(0) + E(T )) ≤ 2λE(0). (27)

Integrate simultaneously both sides of (26) from 0 to
T (0 < T ), and invoke (27) to obtain

T∫
0

E(t)dt≤2λE(0)+Ĉ

T∫
0

[w2
t (L, t)+F 2(wt(L, t))]dt, (28)

where Ĉ is the constant given by (26). Letting T > T0, we
immediately see

T∫
0

E(t)dt≤C1E(0)+Ĉ

T∫
0

[w2
t (L, t)+F 2(wt(L, t))]dt. (29)

Due to (13), it follows from (29) that for T > T̂ :=
max{T0, C1},

E(T ) ≤ CT

T∫
0

[w2
t (L, t) + F 2(wt(L, t))]dt, (30)

where CT > 0 is a constant depending on T . Denote
ΣN := {t ∈ [0, T ]; |wt(L, t)| ≤ N}, with the constant
N ≥ 1 given by (4). From (2), it is easy to deduce that∫

[0,T ]\ΣN

[w2
t (L, t) + F 2(wt(L, t))]dt

≤ C2

∫
[0,T ]\ΣN

wt(L, t)F (wt(L, t))dt, (31)

where C2 =
1+k22
k21

. On the other hand, from (4) we obtain

∫
ΣN

[w2
t (L, t) + F 2(wt(L, t))]dt

≤
∫

ΣN

U(wt(L, t)F (wt(L, t)))dt. (32)

Based on Jensen’s inequality, it holds that∫
ΣN

U(wt(L, t)F (wt(L, t)))dt

≤ T · U

 T∫
0

wt(L, t)F (wt(L, t))

T
dt


≤ T · Û

 T∫
0

wt(L, t)F (wt(L, t))dt

 . (33)

From (30), we can find

E(T )≤CTT Û

 T∫
0

wt(L, t)F (wt(L, t))dt





+ CTC2

T∫
0

wt(L, t)F (wt(L, t))dt. (34)

Set ξ̂ = 1
CTT

and ξ = C2

T in (6), we can derive from (34)
the following inequality

P(E(T )) + E(T ) ≤ E(0), (35)

where P(s) is defined as (6). Using this result repeatedly,
we can show

P(E((n+ 1)T ))+E((n+ 1)T )≤E(nT ), n = 0, 1, · · ·.(36)

According to the Lemma 3.3 in Lasiecka (1993) with
sn = E(nT ), s0 = E(0), n = 1, 2, · · ·, then we can find
E(nT ) ≤ S (n), where S is the solution of the ODE
system (7). For t ≥ T , let t = nT + η, with 0 ≤ η < T and
n = 0, 1, 2, · · ·. Thus, we can derive

E(t) ≤ E(nT ) ≤ S (n) = S (
t− η
T

) ≤ S (
t

T
− 1). (37)

The definition of E(t) with Poincaré inequality implies

|w(x, t)|2 ≤ L2‖wxx‖2 ≤ 2L2

EI E(t) for any x ∈ [0, L] and
all t ≥ 0. The proof of Theorem 2 is complete.

Proof of Corollary 3.
The key point of the proof is to construct such a function
U(s) satisfying property (4). In view of (10), for any
|s| < 1 we have k1|s|p ≤ |F (s)| and |F (s)|p ≤ kp2 |s|.
Then we can set U(s) = (k

−2
p+1

1 + k
2p

p+1

2 )s
2

p+1 . It easy to
check that U fulfills the condition (4). Thus, define the map

P(s) = (ξI + Û)−1(ξ̂s), i.e., ξP(s) + Ck1,k2P(s)
2

p+1 = ξ̂s
where Ck1,k2 is a suitable constant depending on k1 and k2.
Recalling the map Q(s) = s− (I +P)−1(s) and when s is

very small, one gets P(s) ∼ Cs
p+1
2 and Q(s) ∼ Cs

p+1
2 with

some constant C > 0. Consequently, our desired estimates
(11) and (12) are demonstrated by solving (7) with Q(s)
as above and invoking Theorem 2.

4. NUMERICAL SIMULATION

In this section, two simulation examples are present for
the nonlinear flexible beam (1) to show the effectiveness
of the proposed results. The simulation is carried out by
using the finite element method, where the the quadratic
Lagrange basis of the finite element equidistant meshes is
applied.

To show the numerical results, the parameters of nonlinear
flexible beam (1) are assigned as follows. Consider a
flexible beam with Young modulus of elasticity E =
2.3 × 1011Pa, density ρ = 7900kg/m3, L = 1, A =
0.0045m2, the initial tension P = 7850N and I = 7.0846×
10−6m4. The initial displacement and velocity of the
flexible beam adopted in simulation are g1(x) = 0.4 sin(6x)
and g2(x) = 0.5 cos(4x). Two damping functions satisfying
the restrictive conditions (2) and (10) near infinity and
zero are present in simulation as follows:

F1(s) = 2s, (38)

F2(s) =

 2s− 8, s ≤ −1,
10s3, − 1 < s < 1,
3s+ 7, 1 ≤ s.

(39)

Fig. 1. Transverse displacements of the nonlinear flexible
beam (1) with the nonlinear feedback function (38).

Fig. 2. Norm of the nonlinear flexible beam (1) with the
nonlinear feedback function (38).

Fig. 3. Transverse displacements of the nonlinear flexible
beam (1) with the nonlinear feedback function (39).

The transverse vibration w(x, t) of the nonlinear flexible
beam (1) with the nonlinear damping (39) and the linear
damping (38) are illustrated in Fig. 1 and Fig. 3, which
indicates that the transverse vibration of the nonlinear
flexible beam has been suppressed. It is easy to see
that the corresponding norm ‖w(·, t)‖ of the nonlinear
flexible beam (1) with the nonlinear damping (39) and
the linear damping (38) are depicted in Fig. 2 and Fig. 4,
respectively, which coincides with the theoretical result
Corollary 3.

5. CONCLUSION

In this paper, the amplitude of vibration and energy decay
rates of the nonlinear flexible beam (1) are estimated. The
asymptotic stability of solutions of the nonlinear flexible



Fig. 4. Norm of the nonlinear flexible beam (1) with the
nonlinear feedback function (39).

beam is guaranteed by a dissipative ODE system. Under
the explicit growth of nonlinear boundary damping near
zero, the explicit decay rates of energy and solutions for
the nonlinear flexible beam can be obtained. If a time-
delay damping is applied at the boundary, the boundary
stabilization of the nonlinear flexible beam is still an open
problem and will be the focus of future work.
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