N
N

N

HAL

open science

Explainable AI for Process-Aware Attack Detection in
Industrial Control Systems
Léa Astrid KENMOGNE, Stéphane Mocanu

» To cite this version:

Léa Astrid KENMOGNE, Stéphane Mocanu. Explainable Al for Process-Aware Attack Detection
in Industrial Control Systems. SecSoft 2024 - 6th International Workshop on Cyber-Security in
Software-defined and Virtualized Infrastructures at the 10th IEEE International Conference on Net-
work Softwarization (IEEE NetSoft 2024), IEEE, Jun 2024, St Louis, MO, United States. pp.1-6,
10.1109/NetSoft60951.2024.10588940 . hal-04680302

HAL Id: hal-04680302
https://hal.science/hal-04680302
Submitted on 28 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04680302
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Explainable Al for Process-Aware Attack Detection
in Industrial Control Systems

Léa Astrid KENMOGNE
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG
38000 Grenoble, France
lea.kenmogne-mekemte @univ-grenoble-alpes.fr

Abstract—Industrial Control System cybersecurity has become
an important study area after the occurrence of several mediatic
events in the 2010’s (Stuxnet, BlackEnergy, Industroyer). Two
common characteristics of these attacks are the fact that they
were not violating the communication protocols being ‘“stealth”
for classical pattern-based detection methods and that they
explicitly target the physical process. In this paper we study the
performance and explainability of an artificial intelligence based
detection system for the detection of such sophisticated attacks.

Index Terms—Explainable Artificial Intelligence, Anomaly-
based detection, Industrial Control Systems

I. INTRODUCTION
A. ICS cybersecurity

Industrial control systems (ICS) are distributed computing
architectures dedicated to the control of a physical plant.
They are requested to comply with real-time response time
constraints and are hardened for industrial environment. They
are directly interacting with the physical process through
sensors and actuators in order to accomplish a control ob-
jective (like trajectory control, for instance) while keeping the
physical process and its environment safe. Traditionally, they
are not connected to Internet and do not include cybersecurity
controls. With the pervasive deployment of Internet technolo-
gies and remote interconnections, they become exposed to
cyberthreats.

Due to their critical mission, successful attacks on ICS may
have dramatic consequences for the safety of the physical
plant, the environment or the operators as the seen in (already)
classical ICS attacks like Maroochy Shire, Aurora attack,
Stuxnet, BlackEnergy, Industroyer [1]. Therefore, cybersecu-
rity of ICS become an important research domain especially
in the last fifteen years.

There are several common characteristic of the afore-
mentioned ICS cyberattacks. They have exploited the leak
of confidentiality and authentication in the communication
protocol and they were specifically targeting the physical
process by manipulating the values of sensors or the set points
of the actuators without violating the syntax or semantics

This work has been partially supported by the French National Research
Agency under the France 2030 label (Superviz ANR-22-PECY-0008). The
views reflected herein do not necessarily reflect the opinion of the French
government.

Stéphane MOCANU
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG
38000 Grenoble, France
stephane.mocanu @ grenoble-inp.fr

of the communication protocols. Such attacks are called in
the literacy process-aware attacks [2], and they are usually
difficult to detect as a classical analysis of communication
protocols headers is not sufficient.

B. Process-aware attacks detection

Process-aware attacks will attempt to trigger an legitimate
action in a an wrong process context, for instance, opening
the filling valve of a tank while the tank is full and overflow-
ing. They include manipulation of the sensors and actuators
values, forcing the execution of programs or modifying the
control program. A good overview of the various techniques
is provided by the MITRE ATT&CK® for Industrial Control
Systems matrix [3].

As the context (state of the physical process) is needed
in order to decide is a frame is legitimate or malicious the
pattern-based intrusion detection technique is not adequate
for process aware attacks detection. Therefore, behavior-based
anomaly detection techniques are studied. Several approaches
were developed based on the regularity of the traffic [4], the
analysis of the values of process variables [5] or the violation
of the safety properties of the physical process [2], [6].

In this work, we are interested in the safety properties
violation approach as it is explicitly relates to cybersecurity
violation and the physical process safety jeopardizing. More
precisely, we are interested into the application of explainable
artificial intelligence (XAI) techniques for learning safety
properties from the network traffic and detecting and explain-
ing the attacks that violate these properties.

The rest of the paper is organized as follows: in Section II,
we review the existing literature on intrusion detection in ICS.
In Section III, we propose the detection model coupled with
the Al-based explainable module. A practical test use case of
our module is described in Section IV, and the results obtained
are presented in Section V. Section VI concludes the work by
outlining the various perspectives.

II. STATE OF THE ART

In this section, we review two distinct categories of results
on intrusion detection systems (IDS) : the techniques based
on security properties (not necessarily Al) and the XAI
approaches for ICS (not necessarily security based). Both
categories are needed to position our work.

A. Security properties based IDS

Behavioral intrusion detection based on safety properties
needs, firstly, a methodology to identify the needed properties
then express them in an efficient manner in order to allow
an effective IDS implementation. We focus mainly on ap-
proaches based on runtime monitoring as they are able to
provide a fast response time. In such an approach, safety
properties are expressed as security patterns. A security pattern
expressing the fact that the filling valve of a tank shall
never be open if the tank is full may be described as :
never(valve_open)when(tank_full). The use of such secu-
rity patterns based on the temporal logic of signals is classic
in computer security [7]-[9]. The main difficulty in ICS is
the identification of patterns. Some approaches, like [10], will
attempt to mine predefined patterns into the network traffic;
others, as [6] will attempt to extract patterns from standard
specifications of the control system. The inconvenient of the
mining approach is that it may identify redundant patterns,
and therefore, a supplementary optimization step is needed
[10]. The standard-based approach relies on the availability
and completeness of the standards and then fails to identify
non-standard security properties.

Our approach does not use predefined patterns, and we do
not rely on standards. We build a learning model containing
process state variables features then we train the model on a
normal traffic dataset. In the detection stage we investigate the
impact of each feature.

B. XAI IDS for ICS

In existing works based on machine learning methods,
some authors have started with a benchmark study in which
they evaluate the model on several different algorithms and
compare the different results. This is the case of [11], in
which they train the model on supervised machine learning
algorithms. The main limitation of this work is the use of
supervised techniques, as they require the model to be pro-
vided with datasets containing a wide variety of attacks, which
is not suitable for our purpose. Other authors have oriented
their work toward unsupervised techniques, more specifically,
autoencoders. It is in this context that the work carried out
by Do Thu et al. [12] is set. They combine a Long Short
Term Memory (LSTM) Autoencoder and a One Class Support
Vector Machine (OCSVM) for detection. Firstly, the LSTM
Autoencoder is used to train the model which is then used by
the OCSVM to classify the samples (abnormal if it is out of
the boundary and normal otherw). Additionally, they introduce
a SHAP explainability module to help understand the model
predictions.

Explainability in machine learning refers to the ability to
understand and explain the decisions made by the model in
an understandable and transparent way, in order to justify
predictions. There are numerous methods for explaining the
machine learning models, which can be classified according
to three main criteria: i) depending on when the explanation
takes place: it may occur directly during the training phase for
those methods that are interpretable by their nature (intrinsic

methods), or the explanation may take place when the model
has already been trained (post-hoc methods), ii) depending
on the sphere of the data it explains: the explanation of the
model’s decision can be given on a particular instance (local
methods) or it can be given over the entire data distribution
(global methods), iii) according to the generalization of the
tools involved: the interpretation tools of some methods are
limited to specific classes of models (model-specific methods),
while for others, the tools can be used on any learning
model (model-agnostic methods). The survey [13] classifies
these different methods, emphasizing those that are used in
cybersecurity and which have been used in the literature.
Among them, SHAP is a well-used method in the context
of anomaly detection ([12], [14], [15]) due to its robustness
to interactions between features, while it makes possible to
identify the most important characteristics that pushed the
model to make a decision.

III. EXPLAINABLE ANOMALY DETECTION

In this section, we describe the autoencoder-based model
for anomaly detection in ICS and the explainability module to
interpret and better understand the model’s predictions. In our
work, we call an instance a message from our dataset.

A. Anomaly Detection based on Autoencoder

An autoencoder is a type of artificial neural network model
used for unsupervd learning of efficient data representations
that takes input data and transforms it into a reduced-
dimension representation, and attempts to reconstruct it into
a version close to the original data while minimizing the
difference between the input data and the reconstructed output
data. The goal of an autoencoder is to learn a compact and
efficient representation of data by compressing (through the
encoder) and reconstructing the inputs (through the decoder).
We work with the undercomplete autoencoder (the latent space
has a smaller dimension than the input data space), which
forces the model to learn a compressed representation of the
data while capturing only the most important features present
in the data. The reconstructed output is then compared to the
original input to evaluate the reconstruction error.

Since our aim is to detect anomalies, we train our model
on only normal data, as we can easily translate the normal
behavior of our system. Over time, the model learns to recog-
nize what is normal and will therefore be able to identify any
abnormal instances. Let us consider N = {X;, Xo,..., X,,}
the set of normal instances of our training dataset. For each
Xi € NX; = {z1,22,..., o}, wherez; € R™,j =
1,2,...,m. n represents the number of instances in the
training dataset and m the number of features. As shown
in Fig 1, the autoencoder is trained on N. Let us denote
T ={X],Xj,..., X, } the set of instances of our test dataset.
Each X{ € T has also m, features because the datasets were
both generated by the same system.

The test data is then passed to the trained model, and for
each X/ € T, the autoencoder produces an output X/, which
is the reconstructed data. We compute the difference and, in

X‘\

X1

Autoencoder

xn
X Training Model

SHAP

—_— ¥ Explainer

Explanation
(Feature
Importance
graph)

Explain
singles
anomalies

Xz O,

l
1
1
1

Latent —
: Encoder —{ﬁ—b Decader N ‘\-:
] [—
1 :
' ;
1 /

f’ Compute
\ |4>

yy 'Z\,\; xH*
=

Compute
Threshold (f]

—

Abnormal

I

Normal

XAl Module

Decision Process

Fig. 1. XAI Detection Module

order to have the reconstruction error for each insAtance, we
compute the Mean Square Error between X/ and X/.

m

1 , %
err; = EZ(Xj - X})? 1)

Jj=0

The final step is to determine whether the instance X/ is
normal or not. To do this, we compare the calculated error
(err;) with a defined threshold: if the reconstruction error
is smaller than the defined threshold, the model predicts the
instance as normal, otherwise, it is abnormal. We can therefore
remark that the definition of the threshold is very critical and
greatly influences the performance of our model. To define an
optimal threshold, we can use reconstruction score statistics.
Indeed, each instance is reconstructed with an error (which
is used to assign a reconstruction score to each instance).
Together, these scores form a distribution that can be used
to determine the optimal threshold. A well-known approach
is to use descriptive statistics (mean, standard deviation) to
categorize the distribution of scores. The threshold is then
selected on the basis of the number of standard deviations
above the mean. We use this method to determine the optimal
threshold and we consider 2 standard deviations above the
mean.

B. Explainable Artificial Intelligence Module

Recurrent neural networks are often regarded as black
boxes, due to the opacity of the algorithms used for the
various models. Hence, there is a need to interpret machine
learning models to determine when and why the model is
wrong, validate model consistency, limit the errors and im-
prove performance. In the literature, there is a considerable
variety of explainability methods. One such method is SHapley
Additive exPlanations (SHAP), which was introduced in 2017

by Lundberg and Lee [16] and aims to provide explanations
based on the contributions of each feature to the prediction of a
model. It is a post-hoc method that is applied after the model
training phase. SHAP is a model-agnostic method based on
Shapley values, which are in turn based on game theory and
represent the marginal contribution of each feature to model
prediction. If we denote by g the explainability model, X’
the vector representing the input values of the features, m the
number of features and X]’ the value of feature j in instance
X', the following formula allows us to describe the method:

9(X') = ¢o + Z%‘XJ/'
j=1
where ¢;, the SHAP value assigned to feature j is calculated
as the sum of prediction differences between feature sets .S
including and excluding feature j, weighted by the number of
possible permutations of these sets.

I(m —|S|—1)!
s BRI s 0 - 9]
SC{1,2,...,mN\{j}
where S is a subset of features without the j — th feature,
| S |, the number of features in the subset, g(S), the model
prediction when the features in S are fixed at their respective
values but excluding the j — th feature.

In our context, since we are working with autoencoders, we
are going to use Shapley values to evaluate the contribution of
each variable to the reconstruction of the input data and not
to the prediction directly, since the model makes a decision
based on the reconstruction error, which is strongly linked to
the reconstructed data.

SHAP' has several types of Explainer, each using a specific

¢ =

Uhttps://shap-Irjball.readthedocs.io/en/latest/index.html

method to calculate SHAP values and being designed for
specific data. We use SHAP’s Explainer, which is designed for
any machine learning model and also takes the least amount
of time. In this work, we use it to visualize the overall
contribution of our features to the model’s predictions, and
to explain the model’s predictions, for the anomaly instances
detected (XAI Module on Fig 1). For better interpretability
of local instances, we will plot the SHAP graph showing the
contribution of features to the reconstruction of the instance
with respect to a specific characteristic. For example, if we
consider an instance XZ(of the test set 71', the reconstruction
error (1) is calculated as the average of the squared difference
with respect to all features. In our case, instead of evaluating
the SHAP graph of the instance in relation to this average (and
therefore to all features), we will consider the feature with the

most significant value in the squared difference (X — X 2.

IV. TEST USE CASE

We present now the application of the methodology de-
scribed and the training of the model on a simple use case.

A. System description

We consider a remotely controlled valve. A controller
remotely opens or closes a valve while periodically reading
the state of the valve. The valve can be in only two states:
open (1) or closed (0). The different actions of the automaton
are Write(W) which controls the valve, Read(R) which reads
the state of the valve and then returns the response through
Answer(A). Fig 2 depicts the process thus described. We
assume that the W does not have acknowledgements.

bk

Valve

Controller
Write x
L
Read

Answer x

Fig. 2. Process Description

The normal behavior of the system follows the next rules:
1) After a write, the state changes accordingly.
2) The valve state may change only after a write.
3) A read request is always followed by an answer.
4) A write may occur only after the reading of a state (i.e.
after receiving an answer message)
5) There are no "useless” writes (like sending an “open”
command if the valve is open).
These different rules allow us to qualify all types of message
sequences that are part of our system’s normal behavior.

B. Dataset

Considering the predefined rules, we generate two datasets:

o A dataset containing only normal system behavior se-
quences of messages is used to train our model based on
autoencoders (100,000 samples)

o A dataset with the normal system behavior sequences of
messages but into which we inject some abnormal mes-
sages is used to evaluate our model (100,000 samples).

The dataset we are working on is made up of several mes-
sages (requests and responses). These include communication
in our system. A message is classified as normal or abnormal
according to the instance(s) that precede it. To ensure that we
maintain the link between instances and enable our model to
make decisions based on previous messages, we introduce the
notion of context into our dataset. The context for a given
instance will represent the state of the valve, the type and the
content of the previous message. Table I shows an extract from
the normal system behavior dataset containing 3 instances. An
example of a normal message sequence from this extract is W
1 followed by R - and then by A 1 .

TABLE 1
AN EXTRACT FROM THE DATASET WITH CONTEXT
Index | Action | Data | Last State | Last Action | Last Data
1 R - 1 W 1
2 A 1 1 R -
3 W 0 1 A 1

C. Attacks description

Our model classifies only messages, not the sequences of
messages. An abnormal message is one in which the effect of
the attack is visible. In Table II, the three rows represent a
sequence of messages, and each row is an instance of the se-
quence. The model qualifies only the last row as abnormal, as
it is this instance that highlights abnormal behavior occurring
throughout the sequence.

TABLE 11
EXAMPLES OF NORMAL AND ABNORMAL MESSAGES
15t Rule 274 Rule 5® Rule
Normal | Abnormal | Normal | Abnormal | Normal | Abnormal
Wi W1 Al Al R - R -
R - R - R - R - Al Al
Al A0 Al A0 w0 W1

Considering our behavior rules, we defined four anomalies
that we want to detect (although more can be defined) : i)
Answer 0 on 1 (Answer O when the last state is 1), ii)
Answer 1 on 0 (Answer 1 when the last state is 0), iii)
Write 0 on 0 (Write 0 when the last state is 0) and iv)
Write 1 on 1 (Write 1 when the last state is 1). Note that
these types of attacks correspond to security patterns of the
form absence never(Write S)while(state S) respectively chain
precedence (write(S)precedes(Read,Answer(S)).

We are interested in detection of weak signals, so we
introduce a few abnormal messages (exactly 14, chosen arbi-
trarily). Then only 0.014% of lines in the test dataset represent
anomalies (100,000 instances in total) and 99.986% normal
behavior instances, which is representative for stealth process
aware attacks. We are generating ourselves the attacks, then
we insert the following abnormal messages: 6 instances of

type i), 4 instances of type ii), 2 instances of type iii) and 2
instances of type iv).

V. RESULTS AND DISCUSSION

The trained model detects all 14 anomalies into the test
dataset. However, for our study, we are interested to know
how the model has learn the security patterns. Therefore, we
first identify the most important features of the model that
contributed to its overall predictions. We recall that the outputs
of our model are the reconstructed data: we therefore have
a multi-dimensional output corresponding to the number of
features (in our case 9 and not just 5 as in Table I due to
the categorical encoding of the variables “action” and “last
action”). The variables that had the greatest impact on our
predictions are “data”, “last state”, and “last data” with “data”
clearly dominating the two others.

TABLE III
MOST IMPORTANT FEATURES CONTRIBUTIONS IN RECONSTRUCTION
ERROR OF ABNORMAL INSTANCES

Attack Type Data Last State Last Data
Answer 0 on 1 | 8.43 x 10~° | 6.57 x 10~12 0.00
Answer 1 on 0 | 2.50 x 10~1 | 1.55 x 1013 | 3.55 x 10~1°

Write 0 on 0 | 8.84 x 107° | 8.57 x 10712 | 9.46 x 10~ 11

Write 1on1 | 2.50 x 10~! | 4.30 x 10~13 | 8.48 x 10—2

A first important remark while analyzing Table I is that, into
the same class of anomalies (i.e. wrong Answer or redundant
Write) if message data is 1 the anomaly will present a higher
reconstruction error and is more easily detected. Indeed, if one
inspects the model predictions for the four anomalies, one can
find that predicted “data” values are small (of order 10~2 when
message data is 1 and 10~* when message data is 0). This
is likely due to the “data” encoding (0 for “closed”, 0.5 for
“open” and 1 to fill in the absence of data in Read requests).

We can justify the importance of the feature “last state” in
the fact that the model is based on the previous state of the
valve to identify an anomaly; the feature “last data”, which
represents the last written value, also plays a significant role
because it is strongly linked to the state of the valve, and
the impact of the feature “data” is clear because its content
intrinsically gives the state of the valve.

While examining the values in Table III , data is the most
significant feature. We therefore show in figures 3, 4, 5 and 6
the SHAP contribution of features for an instance of type i),
ii), iii) and iv) respectively, in relation to the feature “data”.
For the attack of type Write 1 on 1, the contribution of
“last data” in the error is also significant, and therefore, for
an instance of this type, we also draw a graph representing
the impact of the features in relation to “last data” (Fig
7). The blue bars represent a negative contribution to data
reconstruction (the feature contributed to the detection of the
anomaly), and the red bars a positive contribution (the feature
had an opposite effect and instead pushed the model towards
a characterization of the instance as normal). The length of
the bars is proportional to the impact (SHAP values), but

for representational purposes, the SHAP values shown next
to them are approximations of the exact values.

For all four types of attacks, we obtain a positive contribu-
tion of data to anomaly detection. This is due not only to the
inconsistency with the previous state observed, but also to the
action taken: for Answer instances, it is normal to answer 0
when the last state is 0, which is considered an anomaly for
Write instances. We also note that in all 4 cases, Action_R
has a negative contribution (and therefore a positive impact
in predicting the anomaly). In fact, the action R is the only
action whose data value does not vary and which cannot take
on the values corresponding to the valve’s open and closed
states. Because of this, the model gives it a high weight in
computing the reconstruction error of feature “data”. While
considering Answer and Write messages, the contribution of
Action_R may be safely ignored. A similar reasoning may
be applied to the other contributing feature related to actions
whose values are 0 (Action_W, Last_Action_A, etc.).

Action_R 0.
Action_W
Last_Data
L_Action_R
Action_A
L_Action_A
L_Action_W 0

Last_State

-4 -03 02 01 00 01 02 03 0.4
SHAP value

Fig. 3. Explaining an instance of Answer 0 on 1

Action_R 0.06]
Data 0.05
L_Action_R
Action_A
Action_W 0, n1|
Last_Data ‘ +0.01
L_Action_ W ﬁ\‘
L_Action_A w:w\

Last_State 0

-04 03 02 01 00 01 02 03 0.4
SHAP value

Fig. 4. Explaining an instance of Answer 1 on 0

In both cases of instances of type Answer, we have Ac-
tion_A with the same contribution to a normal prediction,
which is correct because this variable simply describe the
action taken. Last_Action_R has also a contribution in the
same direction because it enables the model to verify the rule
3 (part of normal system behavior).

For Write instances, we note a positive contribution towards
prediction for the Action_W variable, which describes the
action taken. Comparing figures 5 and 6, we can see that the
contribution of the last data changes direction, and this may be
due to the way in which the values are encoded in the data:
although both are anomalies, the model tends to give more
weight to one value than the other (Fig 7). And so, in relation

|

Action_W - +0.15
Action R 012 |
Last_Data II +0.03
L_Action_R I| +0
Action_A I| +0
Last_State I| +0
L_Action_W l+0
L Action_A |
|

0.0 01 02 03 04
SHAP value

Fig. 5. Explaining an instance of Write 0 on 0

Action_R
Data
Action_W
Last_Data
L_Action_A
Last_State
L_Action R
Action_A

L_Action_W

04 03 02 01 01 02 03 04

0.0
SHAP value

Fig. 6. Explaining an instance of Write 1 on 1

to the specific context under study, it is necessary to choose a
data encoding that corresponds to the model’s expectations.

|
Last_Data -o. 04.

|
L_Action_R 0. u1|
|
Action_R 0. ml
|
Action_A 0. ';1|
1
L_Action_A |+u 01
L
Data Jro01
!
Last_State |+0
|
L_Action_W -o|

Action_W -0

-04 -03 -02 -01 01 02 03 04

0.0
SHAP value

Fig. 7. Explaining an instance of Write 1 on 1 (Last Data)

VI. CONCLUSION AND PERSPECTIVES

In this first approach to detect anomalies that violate security
pattern (process-aware attacks) we tested an unsupervised au-
toencoder model trained on a normal behavior dataset against
two types of attack patterns, a simple one (write) and a
complex one (violation of a chain precedence pattern).

On the positive side, the two types of attacks were correctly
detected and no false positives were registered. Moreover, the
model correctly identifies that the anomaly is related to the
“data” field of the requests. Shapley values analysis allowed
us to clearly identify the contribution of the various features to
the computing of the reconstruction loss of the “data” feature.
For the moment it is not possible to deduce the security pattern
from the Al explanation as our model is unsupervised.

A less positive point is that the quality of the detection
seems to be dependent on the encoding, and this point will be
more deeply investigated in the future.

Future research will be continued on two main directions:
extend the study to other classification models, consider more
types of attack patterns and test the trained models against
them into the explainable framework.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. McLaughlin, C. Konstantinou, X. Wang, L. Davi, A.-R. Sadeghi,
M. Maniatakos, and R. Karri, “The cybersecurity landscape in industrial
control systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1039-
1057, 2016.

O. Koucham, S. Mocanu, G. Hiet, J.-M. Thiriet, and F. Majorczyk,
“Detecting Process-Aware Attacks in Sequential Control Systems,” in
NordSec 2016 - 21st Nordic Conference on Secure IT Systems (NordSec
2016), Oulu, Finland, Nov. 2016, pp. p.20-36. [Online]. Available:
https://inria.hal.science/hal-01361081

MITRE — ATT&CK® for Industrial Control Systems, 2021, [Online]
https://attack.mitre.org/matrices/ics/, last accessed Apr. 2024.

R. R. R. Barbosa, R. Sadre, and A. Pras, “Exploiting Traffic Period-
icity in Industrial Control Networks,” International journal of critical
infrastructure protection, vol. 13, pp. 52-62, 2016.

A. Carcano, I. N. Fovino, M. Masera, and A. Trombetta, “State-based
network intrusion detection systems for SCADA protocols: A proof of
concept,” Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 6027 LNCS, pp. 138-150, 2010.

E. Hotellier, F. Sicard, J. Francq, and S. Mocanu, *“Standard
Specification-based Intrusion Detection for Hierarchical Industrial Con-
trol Systems,” Information Sciences, 2024, article 120102.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
international conference on Software engineering, 1999, pp. 411-420.
S. Konrad and B. Cheng, “Real-time specification patterns,” in Pro-
ceedings of the 27th international conference on Software engineering.
ACM, 2005, pp. 372-381.

O. Maler and D. Nickovi¢, “Monitoring Temporal Properties of Con-
tinuous Signals,” in International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems. Springer, 2004, pp. 152-166.
O. Koucham, S. Mocanu, G. Hiet, J.-M. Thiriet, and F. Majorczyk,
“Efficient Mining of Temporal Safety Properties for Intrusion Detection
in Industrial Control Systems,” in SAFEPROCESS, 2018, pp. 1-8.

R. C. Borges Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari,
and S. Pan, “Machine learning for power system disturbance and cyber-
attack discrimination,” in 2014 7th International Symposium on Resilient
Control Systems (ISRCS), 2014, pp. 1-8.

D. T. Ha, N. X. Hoang, N. V. Hoang, N. H. Du, T. T. Huong,
and K. P. Tran, “Explainable anomaly detection for industrial
control system cybersecurity,” IFAC-PapersOnLine, vol. 55, no. 10,
pp. 1183-1188, 2022, 10th IFAC Conference on Manufacturing
Modelling, Management and Control MIM 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896322018572
F. Charmet, H. C. Tanuwidjaja, S. Ayoubi, P.-F. Gimenez, Y. Han,
H. Jmila, G. Blanc, T. Takahashi, and Z. Zhang, “Explainable
artificial intelligence for cybersecurity: a literature survey,” Annals
of Telecommunications - annales des télécommunications, vol. 77,
no. 11-12, pp. 789-812, Dec. 2022. [Online]. Available: https:
//hal.science/hal-03965590

K. Roshan and A. Zafar, “Utilizing xai technique to improve
autoencoder based model for computer network anomaly detection with
shapley additive explanation(shap),” International journal of Computer
Networks & Communications, vol. 13, no. 6, p. 109-128, Sep. 2021.
[Online]. Available: http://dx.doi.org/10.5121/ijenc.2021.13607

L. Antwarg, R. M. Miller, B. Shapira, and L. Rokach,
“Explaining anomalies detected by autoencoders using shapley
additive explanations,” Expert Systems with Applications, vol. 186,
p. 115736, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417421011155

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 4768-4777.

