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Smart traffic manager for speed harmonisation and
stop-and-go waves mitigation dedicated to

connected autonomous vehicles
Léa Prade Njoua Dongmo, Jean Auriol, Member IEEE, Alessio Iovine, Member IEEE

Abstract—The present paper introduces a smart traffic man-
ager, conceived as an algorithm tasked with supervising vehicles.
It gathers and disseminates macroscopic traffic flow data among
Connected Autonomous Vehicles (CAVs) to facilitate their attain-
ment of string stability. This method combines machine learning
techniques and physics-based traffic flow models, establishing a
crucial connection between microscopic and macroscopic mod-
eling levels. It enables CAVs to utilize mesoscopic controllers
that effectively mitigate stop-and-go waves while ensuring speed
harmonization, thereby proving their disturbance string stability.
Simulation results demonstrate the efficacy of this proposed
solution.

Index Terms—Stop-and-go mitigation, string stability, micro-
scopic traffic control, macroscopic traffic control, mesoscopic
controllers, mixed ODE-PDE control systems, freeway traffic
congestion.

I. INTRODUCTION

THE advancement of cutting-edge traffic management
technologies, allowing vehicles to adjust their behavior

based on real-time traffic conditions, constitutes a significant
topic nowadays since it implies minimizing the frequency and
severity of traffic congestion, accidents, and gridlocks [1], [2],
[3]. Due to the new possibilities provided by the development
of intelligent infrastructures, Connected Autonomous Vehicles
(CAVs) using Vehicle-to-Infrastructure (V2I) and Vehicle-
to-Vehicle (V2V) communication technologies are a reality
in smart transportation [4], which categorizes them in the
Vehicle-to-Everything family (V2X).

In the present paper, we consider V2I technologies to
empower CAVs to establish seamless communication with
roadside infrastructure, thus showing how they play a vital
role in transforming mobility and making our roadways safer
and more efficient. Indeed, we ensure String Stability (SS)
[5], [6], i.e., the capability of vehicle platoons not to amplify
disturbances along the string of vehicles, which results in
shock-waves and stop-and-go phenomena mitigation. Without
loss of generality, the scenario we consider is an infinite
highway where we bypass the needs of identifying and/or
following a leader vehicle in a platoon. To this purpose,
we consider V2I communications to help provide the needed
(macroscopic) information, replacing the leader’s one with the
result of reducing the total exchanged amount of information.
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Fig. 1: The considered smart traffic manager and its interaction
with the CAVs via V2I communications. It comprises a data
collection layer (via communications or measurements), a data
aggregation and estimation layer, and a flow emulation layer.

A smart traffic manager is considered to gather and dissemi-
nate macroscopic information, both by measuring them or by
aggregating transmitted microscopic quantities. It is composed
of several layers (see Fig. 1):

• a data collection layer, which gathers the macroscopic
information, possibly both using measurements, e.g., via
cameras, or V2I communications, e.g., via smartphones
or dedicated devices;

• a traffic data aggregation one, which aggregates micro-
scopic quantities into macroscopic ones;

• a traffic flow emulator layer that reproduces the dynam-
ical evolution of the macroscopic traffic flow according
to the data collected.

According to the ideas presented in [7], [8] and leveraging
the connection among the macroscopic density and the vari-
ance of microscopic quantities as relative speed and position as
introduced in [9], the smart traffic manager provides the CAVs
the macroscopic information that is necessary to ensure string
stability. However, because of the utilization of macroscopic
information that depends on the whole traffic flow, it is impor-
tant to remark how the feedback loop implicitly defined by Fig.
1 is similar to when vehicles travel on a ring road [10]–[12].
More precisely, vehicles engage in reciprocal interactions, with
the initial vehicle having to take into account the final one for
control purposes, similarly as in ring topologies. Although the
road’s actual geometry may not be circular, CAVs’ control
structure elicits a similar pattern in vehicle responses, which
we term virtual rings [12]. For this reason, in the present paper,
we investigate analytical results for string stability in a ring
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road without loss of generality compared to the case of an
infinite straight highway.

To implement the smart traffic manager, we consider the
traffic system from macroscopic and microscopic points of
view. The macroscopic model we consider is the second order
Aw-Rascle-Zhang (ARZ) one [13]. It uses aggregated state
values to express the traffic flow as a fluid using hyperbolic
Partial Differential Equations (PDEs). In the meantime, the
physical interactions among the vehicles of a platoon are
described by Ordinary Differential Equations (ODEs) as a
chain of double integrators [5], which express inter-vehicular
dynamics. According to the results in [7], [8], the macroscopic
information plays the same role in the sharing of the platoon’s
leader vehicle information (acceleration, speed, or desired
speed) for each vehicle. Therefore, an essential reduction in the
amount of exchanged information is performed as the vehicles
communicate with the infrastructure their microscopic data,
and the infrastructure provides the vehicles with aggregate
information on the macroscopic variables. For each CAV, the
resulting control input is then designed using microscopic
quantities that the CAV can measure and a macroscopic
quantity that it receives. Therefore, the control action is said
to be mesoscopic. The proposed control scheme is based on
two levels:

-) at the lower level, each vehicle implements a meso-
scopic controller based on the desired distance from the
preceding vehicle and a measure of the macroscopic
density. Distance and relative speed with respect to the
preceding vehicle are supposed to be measured, e.g., by
radar or LIDAR, while V2I communications receive the
macroscopic information.

-) at the higher level, a centralized traffic manager quantifies
macroscopic information and provides it to the vehicles
on the highway. The macroscopic information can be
measured from the traffic flow, e.g., by using cameras or
computed by the received microscopic information from
the whole set of vehicles sharing it. In this last case, a data
aggregation methodology is needed. Furthermore, the
traffic manager simulates the traffic at the macroscopic
level via the ARZ model. Therefore, in a receding-
horizon-inspired approach, based on the past information
(measured or received), it can predict the current state of
the traffic and transmit it to the vehicles even in case of
missing updates.

To fulfill the goal of a smart manager that empowers
mesoscopic controllers for CAVs, the following intermediate
steps are provided in the present paper:

1) the extension of ARZ-based simulators to be multi-
regime, i.e., to consider both congested and free situa-
tions;

2) the definition of a relationship between the categorical
traffic models via a bottom-up equivalence. The ODEs
describing the microscopic model and the PDEs describ-
ing the macroscopic one must match the same reality.
Then we
2a) apply existing algorithms for the aggregation of the

microscopic information at the macroscopic level to

the ARZ model (see [14]);
2b) develop a machine learning predictor for estimating

fundamental diagram parameters;

3) develop an extension of the analytical investigation of SS
proposed in [8] to the case of ring roads. The investigation
of ring roads is of interest in the literature since a platoon
of vehicles that exhibits unstable dynamics on the ring is
string unstable on a straight road [11], [15];

4) introduce a receding-horizon-inspired sharing of the
macroscopic information when their measure or the col-
lection of microscopic ones is not available.

Much like the pieces of a mosaic, each aforementioned step
presented here is an essential part of the proposed method-
ology, coming together harmoniously to achieve the primary
goal. As far as we are aware, there has been no previous
research addressing the specific linkage of establishing a
connection between the two models, characterized by mul-
tiple ODEs and a PDE, for the purpose of string stability
analysis. The traffic manager proposed in this paper bridges
the gap between the two levels of information, enabling
consideration of the dynamic evolution of the macroscopic
model while reducing communication overhead by leveraging
V2I communications and a centralized infrastructure tasked
with collecting, aggregating, and predicting microscopic data
for dissemination to all vehicles. This extends the validation
of theoretical findings in [7], [8], where the macroscopic
information remains static and fails to address optimal traffic
flow objectives.

Compared to recent literature investigating machine learning
solutions for PDE problems [16], the present paper only
exploits machine learning techniques for the estimation of
the parameters of the PDEs while still considering the dy-
namical evolution to be model-based. Other approaches use
physics-informed neural networks but with different classes of
macroscopic models, e.g., [17]–[19]. Differently from classical
approaches as in [20]–[22], which investigates the existence
of analytical solutions for the mixed ODE-PDE problem,
we focus on the introduction of macroscopic information
in a microscopic framework, thus leading to a mesoscopic
dynamical model based on a bottom-up approach, similarly
to [8]. Mesoscopic models are a familiar presence in existing
literature. Typically, they emerge from integrating microscopic
data into macroscopic traffic flow models, following a top-
down methodology that targets traffic flow analysis [9]. A
common goal is to investigate the impact of microscopic
controllers on the traffic flow [23]. Differently, here, the
macroscopic information is estimated and adapted to actively
provide missing information to ensure SS, which is usually
provided by the knowledge of some variables of the leader
vehicle, e.g., its desired speed or acceleration. This bottom-up
approach is not new in the traffic control literature; however,
usually, SS is not investigated, e.g., [24], [25], or is based on
a model linearization (see [26], [27]). We leverage previous
results on mesoscopic controllers showing the feasibility of
the proposed approach [7], [8], and on the possibility of
controlling and estimating parameters of a macroscopic ARZ
model [28], [29]. The present paper presents similarities with
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the work in [30]; however, we explicitly target SS and the
identification of miss-matches among the PDEs and the ODEs
modeling the traffic, which are not considered in [30].

The rest of the paper is organized as follows. Section II de-
scribes the considered macroscopic and microscopic physics-
based models and the solution proposed in the current paper
for mitigating stop-and-go situations on highways. Section III
focuses on the machine learning-based mapping between the
microscopic car-following model and the macroscopic ARZ
one, describing both the considered approach for aggregating
the microscopic information at the macroscopic level and
the suggested algorithm for estimating the parameters of the
macroscopic model. Section IV introduces rigorous conditions
for ensuring string stability in a ring road, which is taken as
an approximation of the infinite highway. Also, it provides
information on how to use macroscopic quantities obtained
from the infrastructure. Section V describes simulations in
Python that verify the proposed approach, while Section VI
outlines conclusions and perspectives for future works.

II. MODELING

A. Macroscopic traffic model

In transportation systems, macroscopic models have been
widely used for simulation, observation, and/or traffic control
purpose(s) [31], [9], [13], [14]. They represent the traffic
dynamics at an aggregate level using hyperbolic PDEs that
govern traffic density and velocity dynamics evolution. The
most widely-used macroscopic traffic PDE models include
the classical first-order Lighthill-Whitham-Richards (LWR)
model [32], [33] and the state-of-art second-order Aw-Rascle-
Zhang (ARZ) model [34], [35]. The LWR model corre-
sponds to the conservation law of traffic density. It predicts
the formation and propagation of traffic shockwaves on the
freeway. Still, it fails to describe the stop-and-go oscillatory
phenomenon [36], which causes unsafe driving conditions,
increased fuel consumption, and delays in travel time. Subse-
quently, the second-order ARZ traffic model was conceived to
address this stop-and-go traffic pattern, introducing a velocity
PDE to augment the LWR model. The ARZ traffic model is
characterized by non-linear, second-order hyperbolic PDEs.
This category of models underwent extension in works such
as [37] and [38], which endeavored to describe freeway traffic
within intricate road network configurations.

In the sequel, we embrace the second-order macroscopic
ARZ model. We consider a road segment of length L > 0.
The dynamical evolution of traffic density and velocity is
described as{

∂tρ+ ∂x(ρυ) = 0

∂t(ρ(υ + p(ρ))) + ∂x(ρυ(υ + p(ρ))) = −ρ(υ−V (ρ))
τ

(1)
where ρ .

= ρ(x, t) is the density and υ .
= υ(x, t) the velocity

over space x and time t, x ∈ [0, L], t ∈ [0, T ]. The traffic
pressure p (ρ) is defined as an increasing function of the
density p (ρ) = υmaxρ

η/ρηmax. The coefficient η represents
the overall drivers’ property, reflecting their driving behavior
change to the density increase. The positive constant υmax

represents the maximum velocity, while the positive con-
stant ρmax is the maximum density defined as the maximum
number of vehicles per unit length. The equilibrium density-
velocity relation V (ρ) is given by Greenshield’s relation [13]:

V (ρ) = υmax − p (ρ) = υmax

(
1− ρη

ρηmax

)
. (2)

This relation corresponds to the natural steady-state value
of the velocity for a given steady-state density, i.e., for a
given steady-state density ρref , the corresponding steady-state
velocity is given by υref = V (ρref ). The positive constant τ
is the relaxation time representing the time scale for traffic
velocity υ adapting to the equilibrium density velocity rela-
tion V (ρ). To regulate freeway traffic and avoid the stop-and-
go oscillatory phenomenon, different traffic control strategies
have been developed and successfully implemented in the
literature for the traffic management infrastructures [14], [9].
A complete survey on freeway traffic control can be found
in [39]. Boundary controllers using ramp metering have been
developed for traffic control of a single freeway segment in
[40], [41], [13], [42], [43]. Extensions to road junctions have
been proposed in [28], [29], [44].

To simulate the ARZ model (1), we use a two-step Lax-
Wendroff algorithm [45], similar to what has been proposed
in [13]. As an example, we provide the simulation results of
both congested and free traffic conditions below. We consider
a simulation time of T = 60 s, with a sampling of dt = 0.25 s,
and a single-lane road of length L = 500m, which is
discretized with a space step dx = 10m. The reference
velocity is υref = 10m/s [36 km/h], while the reference
density is ρref = 0.12 vehicles/m [120 vehicles/km]. We
consider Greenshield’s model for speed-density relationships,
with τ = 60 s and η = 1, υmax = 40m/s [144 km/h] and
ρmax = 0.16 vehicles/m [160 vehicles/km].

In the first simulation case (congested regime), we choose
the same initial condition as in [13, Chapter 1], i.e., a small
amplitude sinusoidal wave acting like a perturbation around
the desired density ρref . The ongoing and outgoing flow at the
boundary of the considered section road, x = 0 and x = L,
are chosen to congest the traffic. Fig. 2 shows the evolution of
density and velocity along the road. The fluctuation of density
and velocity causes stop-and-go phenomena that can easily be
identified. On the contrary, Fig. 3 shows a simulation with
similar initial conditions but no inlet flow. We can observe the
progressive attenuation of the initial density wave, which tends
to stabilize around 0.8 vehicles/m while the velocity stabilizes
around 36m/s.

B. Microscopic traffic model

Microscopic traffic models, extensively explored in the
literature (see [46], [47]), are equally crucial as their macro-
scopic counterparts. These models delve into individual ve-
hicle dynamics for traffic management, targeting the mitiga-
tion of stop-and-go oscillations and shock waves resulting
from vehicle behavior [48] and their influence on overall
traffic patterns [49], [50], [51]. They are particularly adept
at capturing the behavior of vehicle platoons. For the sake
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(a) density evolution

(b) speed evolution

Fig. 2: Density and velocity evolution of the ARZ PDE model
in congested regime.

of notations, we consider a platoon of vehicles composed of
a leader vehicle, denoted with i = 0, and a set of follower
vehicles, denoted by IN = {1, 2, ..., N}, N ∈ N, N > 1.
The resulting set of all the vehicles forming the platoon is
defined as I0N = IN∪{0}. Each vehicle is characterized by its
longitudinal position on the road, pi ∈ R+, and its longitudinal
speed, 0 ≤ vi ≤ vmax, vmax ∈ R+, ∀ i ∈ I0N . Then, we define
the state of the i−th vehicle as

Xi = [ pi vi ]
T . (3)

The dynamical system corresponding to this scenario neglects
both reaction and communication time delays [50], [52], [53],
[11]. To offer a comprehensive depiction of the platoon, we
employ the predecessor-follower model and account for inter-
vehicular interaction by examining the state of each car-
following situation between the leading vehicle i− 1 and the

(a) density evolution

(b) speed evolution

Fig. 3: Density and velocity evolution of the ARZ PDE model
in free regime.

following one i as

χi = Xi −Xi−1 =

[
∆pi
∆vi

]
=

[
pi − pi−1

vi − vi−1

]
, i ∈ I0N .

(4)
The resulting microscopic dynamical model of the i−th car-
following, i.e., predecessor-follower, pair is [52]

χ̇i =

[
∆ṗi
∆v̇i

]
=

[
∆vi

ui − ui−1

]
, i ∈ I0N , (5)

where ui is the input representing both the acceleration and
brake actions of vehicle i, and ui−1 is considered received via
V2V communications or estimated by vehicle i, e.g., using
LIDAR technology. To define the equilibrium point of the
platoon, we consider the constant speed hypothesis for the
virtual leader i = −1 (see [54] and [55]). Let us denote
v̄ > 0 as a constant speed. Then p−1(t) = v̄ · t, v−1(t) =
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v̄, u−1(t) = 0, ∀ t ≥ 0. Assuming that ∆p̄ > 0 is the desired
inter-vehicular distance at the steady-state condition and that
∆p0(t) = −∆p̄ ∀ t ≥ 0, then the equilibrium point for the
i−th system of dynamics (5) corresponds to the case where all
the vehicles have the same speed and are at the same distance,

χe,i = [−∆p̄ 0]T , ∀ i ∈ I0N . (6)

Since the state vector (4) is defined with respect to the follower
vehicle, then the distance ∆pi and the relative speed ∆vi have
opposite signs. For this reason, the equilibrium distance in (6)
is −∆p̄ < 0. From the platoon point of view, we define the
lumped state and the lumped equilibrium point for u−1 = 0
respectively as

χ = [χT
0 χ

T
1 ... χ

T
N ]T (7)

and

χe = [χT
e,0 χ

T
e,1 ... χ

T
e,N ]T = [χ̄T χ̄T ... χ̄T ]T . (8)

C. String Stability and other definitions

Several concepts are needed to describe the control goals
for microscopic models. We refer to [6] for an overview of
the subject, where several definitions of String Stability (SS)
and Asymptotic String Stability (ASS) can be found. Another
definition of interest in this paper is the Disturbance String
Stability (DSS) [5]. In the sequel, we denote Pcl the closed-
loop system.

Definition 1: (String Stability) The equilibrium χe,i, i ∈ I0N ,
of Pcl is said to be String Stable if, for any ϵ > 0, there exists
δ > 0 such that, for all N ∈ N, for all t ≥ 0,

max
i∈I0

N

|χi(0)− χe,i| < δ ⇒ max
i∈I0

N

|χi(t)− χe,i| < ϵ. (9)

Definition 2: (Asymptotic String Stability) The equilibrium
χe,i, i ∈ I0N , of Pcl is said to be Asymptotically String Stable
(ASS) if it is String Stable and, for all N ∈ N,

lim
t→∞

|χi(t)− χe,i| = 0, ∀ i ∈ I0N . (10)

Definition 3: (Disturbance String Stability) The equilibrium
χe,i, i ∈ I0N , of Pcl is said to be Disturbance String Stable
(DSS) if there exist functions βd of class KL and σd of class
K∞ and constants δ > 0, δd > 0, such that, for any initial
condition χi(0) and disturbance d̄i satisfying

max
i∈I0

N

|χi(0)− χe,i| < δ, max
i∈I0

N

|d̄i(·)|[0,t]∞ < δd (11)

the solution χi(t) exists for all t ≥ 0 and satisfies

max
i∈I0

N

|χi(t)− χe,i| ≤ βd
(
max
i∈I0

N

|χi(0)− χe,i|, t
)

+ σd

(
max
i∈I0

N

|d̄i(·)|[0,t]∞

)
∀N ∈ N. (12)

In the sequel, we aim to show DSS for the ring road configu-
ration where the disturbances model errors in the transmission
of the data or the consideration of an averaged value for
the macroscopic function compared to a function tailored for
each vehicle i. To shed light on the distribution of control

effort between microscopic and macroscopic variables, we
specifically examine the scenario without disturbances, where
tailored macroscopic information is available for each CAV. In
this context, we outline conditions for ASS, which elucidate
the balance required between the weighting of microscopic
and macroscopic information for control applications.

D. Proposed solution: the smart traffic manager

To mitigate stop-and-go oscillations and prevent freeway
congestion caused by phenomena like shock waves, the pro-
posed approach emphasizes minimal information sharing by
enabling CAVs to receive macroscopic information. Therefore,
we are able to implement mesoscopic controllers and ensure
DSS, facilitated by the multi-level control scheme that is
enabled considering the suggested smart traffic manager.

At the higher level, the smart traffic manager collects and
transmits real-time macroscopic data via V2I communication
or measurements. In instances of missing data or transmission
issues, a receding-horizon-like approach generates macro-
scopic predictions based on past measurements, communicated
data, and the system’s dynamic evolution using the ARZ
model. At the lower level, CAVs utilize macroscopic informa-
tion to compensate for the absence of a platoon leader sharing
key knowledge for DSS. Leveraging previous SS results, we
ensure ring string stability through mesoscopic controllers.

Mesoscopic controllers are at the interface between macro-
scopic and microscopic models and offer significant advan-
tages in vehicular platoon control. However, employing such
controllers requires effectively expressing physical macro-
scopic information to define control inputs [7]. Both micro-
scopic and macroscopic models depend on specific constant
parameters. Their initial conditions and state variables differ
from one another, considering the same traffic conditions.
Our goal is to establish a coherent link between micro-
scopic predecessor-following (i.e., car-following) models, en-
compassing initial conditions, model parameters, and state
variables of freeway traffic, and the macroscopic ARZ model,
ensuring consistency across traffic conditions. This linkage
ensures a consistent logical and numerical portrayal of the
identical physical process across time. We can confidently
incorporate accurate macroscopic information into the micro-
scopic controller by achieving this coherence. This integration
allows us to retrospectively assess enhancements in the micro-
scopic evolution, presenting a novel and significant challenge
in the mixed ARZ and car-following model research arena.

III. ESTIMATION

A. Aggregation of microscopic information

The objective of this section is to reconstruct macroscopic
variables from microscopic ones via the process of aggrega-
tion. More precisely, using the data of a microscopic model,
we want to obtain the macroscopic variables corresponding
to the ARZ model. Several approaches have already been
proposed in the literature (see [9, chapter 6], [14], [56]). More
specifically, among other techniques, we targeted:

• The gradient expansion or Taylor approximations ap-
proach. It is useful for linear analysis, but its validity
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is limited by the fact that it requires small gradients, and
this does not fit the traffic jam situation, especially the
presence of negative speed.

• The linear interpolation approach. It performs well in
practical simulations but suffers from inconsistency since
the conservation of the vehicle’s number property is not
respected, and the corresponding macroscopic model is
too isotropic.

• A smooth particle hydrodynamics reminding approach;
it is a well-consistent approach that provides non-local
macroscopic derivation models. However, it usually suf-
fers from high complexity and requires significant com-
putation time.

1) Smooth Particle Hydrodynamics: The approach we con-
sider in this paper is adjusted from the smooth particle hy-
drodynamics approach sketched in [14]. We describe here the
relationships between the state variables of each autonomous
vehicle as described in (3) and the macroscopic ones used in
the definition of the ARZ model (1). We follow the algorithm
described in [14]. Let us consider a longitudinal discrete space
x at time t. We denote by i and i− 1 the nearest surrounding
vehicles in the platoon at that time t. Respectively denoting pi
and vi the position and speed of vehicle i at time t, we have
that pi ≤ x < pi−1, (pi, υi) . Then, the macroscopic average
velocity υ(x, t) is defined as

υ(x, t) =
vi(t)[pi−1(t)− x] + vi−1(t)[x− pi(t)]

pi−1(t)− pi(t)
, (13)

while its partial derivative with respect to x reads

∂υ

∂x
=
vi−1(t)− vi(t)
pi−1(t)− pi(t)

. (14)

The density ρ(x, t) is finally defined as

1

ρ(x, t)
= ∆pmin +

si(t)[pi−1(t)− x] + si−1(t)[x− pi(t)]
pi−1(t)− pi(t)

(15)
where si(t) = s (pi(t), x(t)) is the smoothing function around
a point x(t), and ∆pmin is the minimum distance between
two consecutive vehicles. This aggregation model will be
used to define the initial conditions of the ARZ model.
Below, we present a numerical example to illustrate the
proposed approach. Consider a platoon of vehicles actuated
using classical PID controllers (not necessarily ensuring ASS).
We aggregated the initial microscopic data before running the
ARZ simulator. Figure 4 shows the resulting values of density
and average speed. We notice the initial irregularity in the
simulation when the platoon is introduced. Over time, the
curves representing density and velocity gradually smooth out
and remain consistent, indicating the stability of the platoon.
In this simulation example, the different constant parameters
required in the ARZ model have been tuned following the
procedure presented in the next subsection.

B. ARZ parameters’ estimation

Due to the necessity of adapting the ARZ model to fit
possibly changing traffic or street conditions, we need to

(a) density evolution

(b) speed evolution

Fig. 4: The evolution of the density (a) and the speed (b) over
time of an isolated platoon in a section of road.

estimate some key parameters of the model easily. Specif-
ically, we target to estimate the function V (ρ) in equation
(1), representing the density-speed equilibrium relationship.
To this purpose, we consider the analytical expression of
V (ρ) given by the Greenshield’s model (2) with η = 1 (to
simplify the analysis). The maximum speed, υmax, and the
maximum density, ρmax, are the targeted parameters we want
to estimate. Several classical calibration methods are available
in the literature, e.g., least square (LS), weighted least square
(WLS) or Linear Regression (LR). However, they focus on
a single traffic regime, are sensitive to noise, and are often
computationally time-demanding. On the contrary, we aim to
develop a calibration method that is less sensitive to noise
and that could be run in real-time without being over-sensitive
to variations in the traffic conditions for platoons, thus being
multi-regime. As this is our objective, we contrast the potential
outcomes and performance of state-of-the-art algorithm LR
with those generated by a machine learning approach based on
Deep Neural Networks (DNN). This comparison allows us to
identify the strengths and weaknesses of each approach before
determining the preferred option. Therefore, we investigate a
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machine learning approach for estimating ARZ parameters,
namely maximum density and maximum speed using the high-
est frequencies of the signals describing the most important
characteristics of traffic behavior. We consider the 1D high-
frequency estimation method developed in [57], [58] for a PDE
estimation task, which considers the Fourier transform (see
[59], [60]), and extend it for 2D datasets.

Aggregated or not, whether simulated, collected from sen-
sors, or provided directly by the CAVs, the considered out-
put data (macroscopic density ρ(x, t) and velocity υ(x, t))
are spatio-temporal and somehow depend on Greenshield’s
function parameters υmax and ρmax that we want to esti-
mate. According to the considered road length simulation
time or historical data, this available 2D dataset could not
be easy to use for the required active memory space and
processing time. However, the spectrum of the macroscopic
density ρ(x, t) and velocity υ(x, t) should contain sufficient
information to distinguish the two relevant parameters υmax

and ρmax. By applying a Fast Fourier Transform (FFT) to
the functions ρ(x, t) and υ(x, t), we can obtain their spectra.
The 2-dimensional Fast Fourier Transform (FFT2) F (w, z) of
an input signal f(x, t) is defined in the frequency coordinate
(w, z) by

F (w, z) =

∫∫
f(x, t) ∗ e−i2π(wx+zt)dxdt. (16)

The function F is a complex function that corresponds to
the spectrum of the signal f . Several attributes characterize
it. Among them, we can cite the dominant peak, the number
of peaks, and the corresponding frequencies. The values of
some of these attributes are related to the parameters υmax

and ρmax we want to estimate. Thus, for a set of known
parameters that characterize the driver’s behavior (reference
speed, reference density, input traffic flux, output traffic flux),
we can run thousands of simulations, modifying the parameters
between each simulation. This gives us a set of data (known as
the training set) for which the correct values of the parameters
υmax and ρmax are known. The suggested algorithm will
learn from this data set and find suitable correlations between
the previously defined attributes and the unknown parameters.
Once adequately trained, the algorithm can be applied to make
accurate predictions for new data sets. Before training the
machine learning estimation algorithm, we need to design
an algorithm that can extract the relevant attributes from the
available 2D datasets. The proposed algorithm is described in
Algorithm 1, where we denote the input signal by f(x, t),
where (x, t) represents the spatio-temporal coordinates. As
first step, we compute the 2-dimensional Fast Fourier Trans-
form (FFT2) Then, we move the zero frequency to the center
of the F (w, z) by computing

Fshifted(w, z) = F (w, z) ∗ eπ(w+z). (17)

As a third step, according to what is described in
[60, chap. 4], we calculate the magnitude of the shifted
Fourier Transform Fshifted to obtain the magnitude spectrum
|Fshifted(w, z)|. Then, we flatten the magnitude spectrum and
sort it in descending order. Here, we denote by s the flattened
and sorted array of magnitude spectrum values. By selecting

the n highest frequency, we determine the threshold value and
set a threshold value s̄ such that s̄ is the n-th highest value
in s, that is s̄ ← s[n]. We can then append to our list values
of magnitude (and their coordinates (w, z)) that are greater or
equal to s̄. We define by highFreqList that list. This list will
contain the relevant attributes to train the learning algorithms.

Algorithm 1 2D-Signal-High-Frequencies-Extraction

1: procedure 2D-SIHIFREX(f(x, t), n)
2: F (w , z )←

∫∫
f(x, t) ∗ e−i2π(wx+zt)dxdt

3: Fshifted(w , z )← F (w , z ) ∗ eπ(w+z)

4: s← descendingSort(magnitudeSpectrumF (w , z ))
5: s̄← s [n]
6: highFreqList = []
7: for w, z in dim(Fshifted) do
8: frequv ← Fshifted(w , z )
9: if freqwz ≥ s̄ then

10: highFreqList .append([freqwz ,w , z ])
11: end if
12: end for
13: return highFreqList
14: end procedure

1) Dataset: origin and characteristics: We generate train-
ing data by simulating the PDE ARZ model using different
initial conditions, different pairs of values (maximum speed,
maximum density), but also different reference speeds and
densities, input traffic flux, and output traffic flux. For each
simulation, we extract the n = 10 highest frequencies using
algorithm 1.

2) Models and training: We aim to predict the maximum
speed and maximum density from traffic data. Because of the
considerable volume of data and its complexity, we opted
for comparing two methods, namely (LR) and (DNN), and
describe advantages and drawbacks before pointing out the
preferred choice. Indeed, the variation of initial conditions and
boundary conditions on a considered section road produces
a quite different profile of density and velocity for the fixed
couple (ρmax, υmax). For the LR, we used a TensorFlow Keras
normalization layer and one dense layer of 2 neurons for
output prediction (since we have two parameters to estimate).
On the other hand, the neural network model is built with a
normalized layer, 6 hidden layers, and an output layer with two
neurons. We used the function tanh as the activation function
for all units in the hidden layer. After careful evaluation of
several options, the hidden layers have been chosen to have
100 neurons, 90 neurons, and 64 neurons for the remaining
four layers. For both models, 1200 entries of the dataset have
been shuffled and split into 80% for training and 20% for
testing. The training set is internally divided into the actual
training set and validation set. Trained for 400 epochs for the
linear model and 1000 epochs for the DNN. Noise was added
to the different data.

3) Results and validation: The training and validation
losses are shown in Fig.5 and Fig.6 for linear regression
and the DNN, respectively. We recall here that the training
loss is the error computed by the DNN to compare the
training set examples with the model, taking into account
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the estimated parameters at that epoch of training. While the
validation loss is the error obtained predicting the validation
set using the model at the related epoch. Both trained models
exhibit certain similarities but also manifest differences. At
first, their validation losses and losses during training decrease
exponentially, maintaining a consistent rate and convergence.
This indicates an absence of risks related to underfitting or
overfitting. Nevertheless, the differences are worth noting.

As depicted in Fig. 5(a), although the LR model’s losses
(validation, test) decrease exponentially from 18 to 0.7 within
10 epochs, they plateau between 0.23 and 0.66 until the final
epoch. On the other hand, the losses of the DNN decrease
exponentially from 17 to a value below 2 around the 25th
epoch (see Fig. 6(a)). Subsequently, it follows a non-linear yet
nearly exponential decline to an error of 0.055 at 100 epochs,
with further gradual convergence to 0.04.

Another point to be mentioned is the comparison between
the test results for predicting maximum density (ρmax) and
maximum speed (υmax). This is illustrated in Fig. 5(b) and
6(b), which show predictions versus true values plots. Here,
the closer the elements are to the diagonal, the better the
prediction. In the considered case, Fig. 5(b) well exhibits
the weakness of the linear regression on generalizing the
density, although the performance on maximal velocity is
acceptable. On the contrary, Fig. 6(b) shows how the DNN
clearly outperforms the linear regression in predicting maximal
density and maximal velocity at the same time. This starkly
highlights the superior performance of the DNN over the LR
model and, therefore, leads to DNN selection.

For the sake of completeness, we provide here a few details
on the training time. The CPU time is 37.4 s for LR and 136 s
for DNN. The total time needed has been of 41.7 ss for LR
and 203 s for DNN. The mean absolute error is 0.632274 for
the LR and 0.037741 for the DNN. The test set accuracy is
convincing, highlighting the DNN model’s superior predictive
performance compared to the linear one. Exploring the optimal
high-frequency number represents a potential avenue for future
investigation.

IV. STRING STABILITY FOR RING ROAD

A. Ring road and macroscopic information modeling
When implementing a feedback controller that considers

an averaged value of the macroscopic density, vehicles en-
gage in reciprocal interactions where the leading vehicles
are influenced by the trailing ones. Consequently, even if
the road geometry is not circular, the control structure of
CAVs generates a pattern resembling ring topologies in vehicle
responses. For this reason, it is of interest to investigate DSS
for ring roads, also named ring stability. Differently from the
case of a platoon on a straight road with a leader vehicle, the
ring road configuration cuts the possibility to start investigating
stability from the head of the platoon and forces to consider
the whole set of vehicles as equal. To maintain consistency
with the modeling in Section II-B, we adopt a slight abuse
of notation by considering the predecessor of vehicle 0 to be
vehicle N . In other words, for i = 0, we treat i− 1 as N .

Let us define the function ψ as describing at the microscopic
level the error between the average macroscopic information

(a) Training and validation losses: loss and valloss, respectively.

(b) Test set prediction VS true values.

Fig. 5: FFT2 dataset: Loss and validation loss (a) during
training, and test set prediction (b) on trained LR.

related to the density and average velocity in a portion of
the road compared to the ideal one. To simplify the notation,
we focus on the density dependence ψ(ρ) as we consider
the average velocities to have a less significant contribution
to velocity. Clearly, from the perspective of the CAV i, this
averaged quantity can be seen as the sum of a tailored function
ψi(ρ), which is computed specifically for the leader vehicles
of the CAV i considering the ideal neighborhood providing the
most effective information for ensuring SS, plus a disturbance
di:

ψ(ρ) = ψi(ρ) + di. (18)

To highlight the dual nature of the variable ψ, we remark
that it is expressed as ψ = ψ(ρ) from a macroscopic point
of view while as ψ = g(χ) from a microscopic perspec-
tive (where χ is defined in equation (7)), thus leveraging
the dependence on an averaged value concerning the entire
platoon. Therefore, it is possible to express the relationship
ψ(ρ) = g(χ). In contrast, for a tailored function, it depends
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(a) Training and validation losses: loss and valloss, respectively

(b) Test set prediction VS true values.

Fig. 6: FFT2 dataset: Loss and validation loss (a) during
training, and test set prediction (b) on trained DNN.

solely on the vehicles within the relevant neighborhood, e.g.,
ψi(ρ) = g(χ0, ..., χi−1) in a string configuration as in [7].

Remark 1: Similarly to [7], [8], it is worth noticing that the
average and variance of microscopic parameters are related to
macroscopic traffic variables, such as traffic density, which is
defined as the reciprocal of the mean inter-vehicle distance
[61, ch. 2, p. 26]. Furthermore, various diagrams illustrate
the relationships between local and global factors, including
the speed-density diagram [9, ch. 4]. Therefore, it is realistic
to consider a connection among these quantities and that the
function ψ(ρ) obeys to condition on the boundedness to the
maximum values of the interconnected systems. Then, it is
possible to write that ψi(ρ) can be modeled as a K∞ function,
e.g., γi ∈ K∞, with γi such that it results

ψi(ρ) =γi

(
max
j∈I0

N

|χj(·)|[t0,t]∞

)
, (19)

and that there exists a constant γ ∈ (0, 1) such that

γi(s) ≤ γs. (20)

The mesoscopic controller we consider for each CAV is in
the form of

ui = hi(ψ(ρ), χi, χe,i, ui−1) (21)

where χi in (4), χe,i in (6), ui−1 and the ψ(ρ) describing
the evolution of the macroscopic density are the inputs of the
system, while hi is the output function used to compute the
control input ui. We suppose the value of ψ(ρ) is commu-
nicated to each CAV by the smart traffic manager via V2I
communications. Since the function ψ verifies ψ = g(χ), the
interconnected closed loop system for each CAV is in the form
of

χ̇i = fcl(χi) + gcl,i(χ), ∀ i ∈ I0N , (22)

where the generic functions fcl(χi) and gcl,i(χ) can be easily
computed once the formulation of the mesoscopic controller
is introduced. The modeling we consider for each CAV in a
ring road is consistent with the ones considered in [11], [12].
In the sequel, we show DSS of the model in (22) by taking
into account the disturbance di in (18).

Remark 2: If we consider the control input ui−1 not to be
exactly known, it is possible to define it as the sum of a known
quantity ũi−1 and a bounded disturbance d̃i, i.e.,

ui−1 = ũi−1 + d̃i. (23)

Then, we can refer to the case of known value by defining
the disturbance d̂i as the sum of the uncertainties on the
macroscopic variable and on the microscopic control input:

d̂i = di + d̃i. (24)

B. Theoretical result

In this section, according to the model in (18) and (22), we
examine an idealized case where each CAV possesses perfect
knowledge of the macroscopic function, even though it is
affected by a disturbance that deviates it from this ideal model.
This disturbance represents a realistic situation where the
knowledge of the macroscopic function is not perfectly aligned
with each CAV’s specific position, but it provides an averaged
value over a road segment. We incorporate insights from prior
research to establish that the resulting system maintains the
DSS property. Furthermore, we extend the analysis to an
even more constrained ideal scenario, i.e., one that excludes
disturbances. By doing so, we offer guidance on how to
allocate control efforts between microscopic and macroscopic
information utilization.

For the sake of clarity, we refer to the controller ui
implementing constant spacing policy in [7] but modify the
tailored function describing macroscopic information with the
averaged one ψ(ρ). However, the result introduced here is
general and not limited by this particular choice of controller
or spacing policy. Let the control ui be defined as

ui = ui−1 +∆v̇ri −K∆v(∆vi −∆vri )

− (∆pi +∆p̄)− ψ(ρ), (25)
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where ∆p̄ is the desired equilibrium in χe,i in (6), and ∆vri
is defined as

∆vri = −K∆p(∆pi +∆p̄). (26)

We consider the constant values K∆p > 0 and K∆v > 0
as desired control gains. We name the controller ui in (25)
a mesoscopic controller, since it considers both microscopic
quantities as distance and relative speed as well as the macro-
scopic quantity ψ(ρ).

Remark 3: The functions fcl(χi) and gcl,i(χ) of the closed
loop system in (22) when considering ui in (25) result:

fcl(χi) =

=

[
∆vi

−(K∆v +K∆p)∆vi − (1 +K∆vK∆p)(∆pi +∆p̄)

]
gcl,i(χ) =

[
0

−ψ(ρ)

]
.

Theorem 1: Let us consider the system χ = [χT
0 χ

T
1 ...χ

T
N ]T

representing a platoon of vehicles in a ring road, where the
dynamical system χi in (5), for i ∈ I0N = {0, 1, 2, ..., N},
N ∈ N, N > 1, describes a predecessor-follower interaction
between vehicles i− 1 and i, respectively, along the platoon,
i.e.,

χ̇i =

[
∆vi

ui − ui−1

]
, i ∈ I0N ,

with i−1 = N for i = 0, and with the control input ui defined
as in (25):

ui =ui−1 +∆v̇ri −K∆v(∆vi +K∆p(∆pi +∆p̄))

− (∆pi +∆p̄)− ψ(ρ),

where ∆p̄ is the desired spacing policy to track and ψ(ρ)
describes the macroscopic information. Let ψ(ρ) be defined
as in (18), i.e., as the sum of a tailored information for the
vehicle i and a disturbance di, ψ(ρ) = ψi(ρ)+di, where ψi(ρ)
is equivalent to a function aggregating microscopic quantities:

ψi(ρ) = g(χ) = γi

(
max
j∈I0

N

|χj(·)|[t0,t]∞

)
.

Let ψ(ρ) be bounded as composed by bounded quantities, and
such that there exists a γ ∈ (0, 1), with γi(s) ≤ γs. Then, the
resulting closed-loop system is DSS.

Proof 1: Let us describe the closed loop system dynamics
of the follower i with the equilibrium point χe,i in (6). We
investigate stability via the candidate Lyapunov function Wi

as

Wi =Wi,1 +Wi,2 =
(χi,1 +∆p̄)2

2
+

(χi,2 − χr
i,2)

2

2
, (27)

where, according to (26), the value χr
i,2 is defined as

χr
i,2 = −K∆p(χi,1 +∆p̄). (28)

The time derivative Ẇi reads

Ẇi =Ẇi,1 + Ẇi,2

=(χi,1 +∆p̄)χi,2

+ (χi,2 − χr
i,2)(χ̇

r
i,2 −K∆v(χi,2 − χr

i,2))

+ (χi,2 − χr
i,2)(−(χi,1 +∆p̄)− ψ(ρ)− χ̇r

i,2). (29)

By adding and removing (χi,1+∆p̄)χr
i,2, and considering (28)

and (18), we obtain

Ẇi =(χi,1 +∆p̄)(χi,2 + χr
i,2 − χr

i,2)

−K∆v(χi,2 − χr
i,2)

2

+ (χi,2 − χr
i,2)(−(χi,1 +∆p̄)− ψ(ρ))

=−K∆p(χi,1 +∆p̄)2 −K∆v(χi,2 − χr
i,2)

2

− (χi,2 − χr
i,2)(ψi(ρ) + di). (30)

Then, by Young’s inequality, we obtain

Ẇi ≤−K∆p(χi,1 +∆p̄)2 −K∆v(χi,2 − χr
i,2)

2

+ ||χi,2 − χr
i,2||2 +

||ψi(ρ)||2

2
+
||di||2

2
≤−K∆p||χi,1 +∆p̄||2 − (K∆v − 1)||χi,2 − χr

i,2||2

+
||ψi(ρ)||2

2
+
||di||2

2
. (31)

Then, from the quadratic structure of the time derivative in
(31), there exist functions βW

i ∈ KL, and γWi , θWi ∈ K∞
such that the following inequality holds

Ẇi(χ̃i(t)) ≤ −βW
i (|χ̃i(t0)|)+γWi (|ψi(ρ)|)+θWi (|di|), (32)

where χ̃i = χi−χe,i. Then, from (32) it follows that the Input-
to-State Stability (ISS) condition is satisfied [62, Theorem
4.19]. Therefore, by considering (19) it results

|χ̃i(t)| ≤ − βi (|χ̃i(t0)|, t) + γi

(
max
j∈I0

N

|χ̃j(·)|[t0,t]∞

)
+ θi

(
|di(·)|[t0,t]∞

)
, t ≥ t0 ≥ 0, (33)

where βi ∈ KL, and γi, θi ∈ K∞, and (19) describing the
contribution of ψi(ρ). Since (33) holds for all i ∈ I0N and
there exists a γ ∈ (0, 1) such that γi(s) ≤ γs, then it is
possible to apply Theorem 1 in [63] to prove that

max
i∈I0

N

|χ̃i(t)| ≤ βd
(
max
i∈I0

N

|χ̃i(0)|, t
)

+ σd

(
max
i∈I0

N

|di(·)|[0,t]∞

)
∀N ∈ N. (34)

for some function βd ∈ KL and σd ∈ K∞. This concludes
the proof. ■

Therefore, it is possible to ensure DSS in a ring road
configuration via the utilization of averaged macroscopic in-
formation, where the disturbance describes the difference with
ideal macroscopic information that is tailored for each CAV.
In the case di = 0, these results prove ASS.

C. Practical suggestions on how to weight microscopic and
macroscopic information in control strategies

Given the dual significance of both levels of information
in achieving shock-wave harmonization, it is essential to
determine the appropriate balance in control strategies between
them. To shed light on this optimal trade-off on which informa-
tion to rely more for control purposes, we examine the required
conditions under a more constrained scenario. Specifically, we



11

analyze the case with customized macroscopic information for
each CAV, assuming the absence of external disturbances, i.e.,
di = 0: ψ(ρ) = ψi(ρ) = gcl,i(χ). Therefore, the mesoscopic
controller in (25) can be rewritten as

ui = ui−1 + fu(χ̃i) + gcl,i(χ̃) (35)

The purpose here is to weight the contribution of the functions
fu and gcl,i, representing the control effort with respect to
microscopic and macroscopic information, respectively.
To better emphasize the role of macroscopic information
in closed loop, this investigation is carried out under the
following condition:

|gcl,i(χ̃)| ≤
N∑
j=0

kij |χ̃j |. (36)

where χ̃ = χ− χe and χ̃j = χj − χe,j .
Because of the specific goal we target here, there is no

interest in verifying SS. Therefore, we bypass the need to
prove SS due to the result in Theorem 1 and focus on the
possibility of ensuring ASS with a different technique than
the one considered in Theorem 1. Since SS is ensured for
each vehicle, by the converse Lyapunov theorem, there exists
a function Wi : R2 → R+ and constants α, ᾱ, α, α′ > 0 such
that

α|χ̃i|2 ≤Wi(χ̃i) ≤ ᾱ|χ̃i|2 (37)
∂Wi(χ̃i)

∂χ̃i
fcl(χ̃i) ≤ −α|χ̃i|2 (38)∣∣∣∣∂Wi(χ̃i)

∂χ̃i

∣∣∣∣ ≤ α′|χ̃i| (39)

By computing the time derivative of the Lyapunov function
Wi with respect to the system with non-zero interconnected
term, we obtain:

Ẇi =
∂Wi

∂χ̃i
(fcl(χ̃i) + gcl,i(χ̃))

≤ −α|χ̃i|2 +
∣∣∣∣∂Wi

∂χ̃i

∣∣∣∣ |gcl,i(χ̃))|
≤ −α|χ̃i|2 + α′|χ̃i||gcl,i(χ̃1, ..., χ̃N )| (40)

From (40), it is possible to remark how the constant values
α and α′ describe how the microscopic information described
as norm of χ̃i and the macroscopic one described by gcl,i(χ̃),
respectively, impact on the system.

Proposition 1: In case of tailored macroscopic information
ψi(ρ) = gcl,i(χ) respecting condition (36), CAVs’ mesoscopic
controllers targeting ASS need to satisfy

kii <
α

α′ ∀ i ∈ {0, 1, . . . , N} , (41)

where kii > 0 is the constant value considered in (36)
describing the contribution of the macroscopic information of
vehicle i on the predecessor follower system χi.

Proof 2: We focus on the possibility of ensuring ASS with
similar arguments to the ones given in [7]. Let us consider the
parameters ai > 0 and define the composite function Wc:

Wc(χ̃) =

N∑
i=0

aiWi(χ̃i) (42)

that satisfies

αc|χ̃|2 ≤Wc(χ̃) ≤ ᾱc|χ̃|2, (43)
αc = min

i∈I0
N

{ai}α, ᾱc = max
i∈I0

N

{ai}ᾱ. (44)

The time derivative of the composite function in (42) is

Ẇc(χ̃) =

N∑
i=0

aiẆi(χ̃i) (45)

By using (45) and (36), it results

Ẇc(χ̃) ≤
N∑
i=0

ai

−α|χ̃i|2 + α′|χ̃i|
N∑
j=0

kij |χ̃j |

 (46)

≤
N∑
i=0

ai

(−α+ α′kii) |χ̃i|2 + α′|χ̃i|
N∑

j=0,j ̸=i

kij |χ̃j |

 .
It is worth noting that the two terms −α + α′kii in (46)
describe the contributions coming from the microscopic and
the macroscopic information, respectively, for the stability
analysis of the term |χ̃i|2.

By defining the operator ϕ : R2(N+1) → RN+1 as

ϕ(χ̃) = [|χ̃0| |χ̃1| ... |χ̃N |]T (47)

then, equation (45) can be rewritten as

Ẇc(χ̃) ≤ −
1

2
ϕ(χ̃)TQϕ(χ̃), (48)

where the matrix Q is defined as

Q =


z0 −a1α′k01 · · · −anα′k0N

−a0α′k10 z1 · · · −a1α′k1N
...

...
. . .

...
−a0α′kN0 −a1α′kN1 · · · zN

 (49)

with zi = 2ai(α − α′kii), ∀i ∈ {0, 1, . . . , N}. The matrix Q
can be written as

Q
.
= (DS + STD), (50)

where
D = diag(a0, a1, ..., aN ) (51)

and S is an N + 1×N + 1 matrix whose elements are

sij =


α− α′kii, if i = j

−α′kij , if i < j

0, if i > j

(52)

According to [62, Lemma 9.7], in order to prove ASS using
(48) a necessary condition is for S in (50) to be a M−matrix,
such that Q > 0. Then, we must verify that each leading prin-
cipal minor of S is positive. Therefore, a necessary condition
for ASS is that

α > α′kii ∀ i ∈ {0, 1, . . . , N} (53)

thus to satisfy condition (41). Then, by [62, Lemma 9.7] there
exists a matrix D such that Q > 0. Consequently, Ẇc in (48)
is negative definite. It follows that Wc in (42) is a Lyapunov
function for the overall autonomous system ensuring ASS. ■
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The condition stated in (41) is not required for the scenario
explored in Section IV-B. This is because it stems from the
condition (36), which is not a prerequisite for the theoret-
ical analysis conducted in the case involving disturbances.
However, we find it valuable to present this condition as
it offers practical insights into how to balance the weight
of microscopic information relative to macroscopic data in
the mesoscopic controller. In essence, it emphasizes that the
primary control focus should be on microscopic information
while incorporating macroscopic data as an additional (but
necessary) factor. The higher the value of α, the larger the
allowed set of values for kii. On the contrary, the stronger
the macroscopic contribution, the smaller the gain to take it
into account. Therefore, under the realistic working hypothesis
to consider gains kii = kij , ∀ j ̸= i ∈ {0, 1, . . . , N},
i.e., to weight the several tailored macroscopic contributions
equally, condition (41) provides useful suggestions on how to
weight the contribution of the microscopic and macroscopic
information.

V. SIMULATIONS

We have conducted simulations using Python to validate the
proposed approach rigorously. Due to space constraints, we
refrain from displaying the complete array of cases detailed
in the paper and instead focus on the most illustrative ones.
As a result, we do not allocate a dedicated section to elucidate
the case where the macroscopic information is shared at
each macroscopic sampling time based on the aggregation
process. Our emphasis is directed toward scenarios where the
smart traffic manager seamlessly integrates the aggregation,
estimation, and ARZ model simulation to furnish the necessary
macroscopic data for the CAVs. Initially, it captures and
processes microscopic data to compute the aggregation, em-
ploying these values as initial conditions for the ARZ model to
generate and convey the required macroscopic information to
the CAVs. It is important to note that aggregation occurs only
at intervals of every fourth macroscopic sampling point. In
the interim, the macroscopic data stems from the ARZ model
simulation. Fig. 7 shows the suggested operating framework
for the exchange of information. Even if less competitive
in terms of performance, the considered framework is more
realistic than a continuous share of information among the
two levels of description of the traffic system, especially from
the perspective of communication reduction targets. Clearly,
the proposed method also offers the possibility to update
the ARZ model at each macroscopic sampling time in a
receding-horizon-like approach. Therefore, we consider two
main situations:

a) exchange of tailored information for each CAV;
b) exchange of averaged information for the whole platoon.
We investigate a platoon of N = 20 CAVs with a desired

inter-vehicular distance of ∆p̄ = 25m. The controller param-
eters are detailed in Table I. The microscopic control gains
denoted as K∆p and K∆v are chosen to be similar to those
used in a prior study [7]. It is worth noting that the theoretical
conditions specified in (19) and (20), which depend on the
values of K∆p and K∆v , are empirically met in the simula-
tions, although no formal computations are provided. Despite

Fig. 7: The considered time scales and the exchange of
information considered for simulations.

TABLE I: The values of the considered parameters.

Parameter Value Parameter Value
K∆p 1 K∆v 2
∆p̄ 25m vref 20m/s
Kmρ 80 Kmυ 0.1
dtARZ 1 s dtode 0.1 s

ρref
1

∆pref
υref vref

Veq Greenshield model ∆pmin 5m

the theoretical results are derived under unconstrained control
inputs, we introduce constraints on accelerations in simulations
for realism. Specifically, we set maximum acceleration and
deceleration limits as 7m/s2 and −7m/s2, respectively.

Simulations are carried out over a duration of 100 seconds,
with a microscopic sampling time, denoted as dtode, set at
0.1 s, and a macroscopic sampling time, denoted as dtARZ ,
set at 1 s. While we do not furnish formal proofs of conver-
gence for these particular sampling times, they are considered
sufficiently small to be integrated into the modeling of the
bounded disturbance. Nevertheless, it is essential to recognize
that the absence of real-time updates impacts performance
compared to the ideal scenario of instantaneous and frequent
data transmission. More details on sampling conditions for
DSS under mesoscopic approaches can be found in [64].

The initial inter-vehicle distances are randomly generated,
while the initial speeds are uniform among all CAVs. The
reference speed (vref ) for the leader vehicle remains constant
throughout the simulation. Each CAV is subject to a constant
disturbance of 0.1 m/s2 applied over the entire simulation
duration. Additionally, between time instances t = 20 s and
t = 25 s, an additional constant disturbance with a magnitude
of 1 m/s2 influences the control inputs of each CAV. Further-
more, between t = 35 s and t = 60 s, a sinusoidal disturbance
affects the control inputs. A consistent color legend has been
used for all figures. Each line in the figures corresponds to
the trajectory of a predecessor-follower variable. The color
scale employed ranges from a pink tint to cyan, indicating
the position of the vehicles within the platoon, from the front
(head vehicles) to the rear (tail vehicles).

A. Smart traffic manager implementation

We describe here how the smart traffic manager implements
the algorithm in Section III. The results of the proposed
implementation are communicated to the CAVs according to
the chosen tailored or averaged information paradigm.
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1) Microscopic information aggregation: At each macro-
scopic simulation time, the smooth particle hydrodynamics
algorithm takes the CAVs’ positions and speeds as parameters,
as well as the desired space discretization step. For the
sake of simplicity, this is considered equal to the desired
distance. Moreover, it requires the knowledge of the minimum
authorized distance to compute maximal density. It returns the
vehicle density on a section road occupied by the platoon
and the corresponding average velocity. The section road is
delimited in front by the leader and back by the last follower.

The smoothing function si(t) we consider is si(t) =
pi−1(t) − pi(t). To properly take into account the desired
quantities, we consider x ∈ D = [pN , pl], where pN is the
position of the last follower, and pl is the leader’s position
at time t. We consider ρref = 1

∆pref
= 1

∆p̄ . The numerical
values are depicted in Table I.

2) ARZ parameters estimation: The ARZ macroscopic
model depends on some constant parameters and, in particular,
on the density-speed equilibrium relationship (function V (ρ)
in equation (1)). To use this macroscopic model to derive our
mesoscopic controller, we need to estimate these key parame-
ters by following the methodology described in Algorithm 1.
The training of the machine-learning algorithm (DNN) was
done offline. Then, every time we send microscopic data to
generate macroscopic data (aggregation process that occurs
every fourth macroscopic sampling point), we run the neural
network to update the estimation of the ARZ parameters.

3) Traffic flow emulation and ψ function: Once the previous
steps are performed, the smart traffic manager implements
simulations of the ARZ model using the computed initial
conditions. It performs a simulation along four macroscopic
sampling times (similarly to a prediction horizon of four steps)
and provides the function ψ at each macroscopic sampling
time to the CAVs. We consider a function ψ as

ψ = Kmρ(ρref − ρ) +Kmυ (υref − υ) (54)

with Kmρ and Kmυ positive gains described in Table I,
where the solutions for ρ and υ derived from the ARZ model
in (1) exclusively pertain to the road segment occupied by
the platoon. If the smart traffic manager aimed to maximize
performance, it would perform aggregation and estimation
at every macroscopic time step to update the ARZ model
using a receding-horizon approach. However, this approach
would necessitate significant information exchange and com-
putational resources, which might not be feasible within the
specified time constraints. In the following, we explore a
scenario where the aggregation and estimation algorithms are
executed only every fourth macroscopic sampling time to
alleviate computational complexity.

B. Numerical results
As already mentioned, we consider two scenarios to show

that the provided traffic manager succeeds in providing the
macroscopic information that stabilizes the system.

1) Tailored information from the ARZ model: Fig. 8 and 9
depict the simulations in case of tailored information for each
CAV, i.e., each CAV receives the specific dedicated value of
ψi(ρ).

In the initial phase, the vehicles swiftly converge to their
target speeds and inter-vehicular distances. The deliberately
chosen non-ideal initial conditions, coupled with the con-
straints on the control laws, result in an initial state that
may appear disorderly. However, the trajectories of both inter-
vehicular distance and speed errors remain within bounds
during the transient period, which concludes in approximately
5 seconds (refer to Fig. 8). As demonstrated in Fig. 9, the high
perturbation resulting from the initial conditions is effectively
captured by the macroscopic function. This, in turn, causes
the vehicles to follow a variable reference distance, resulting
in a harmonious transient phase. Certainly, a shorter update
horizon for the aggregate microscopic values, resulting in more
frequent updates of macroscopic information, would have ac-
celerated convergence. Nevertheless, the system demonstrates
DSS even in scenarios where macroscopic updates lag behind
the rapid changes occurring at the microscopic level.

The CAVs implementing the mesoscopic controller exhibit
the ability to converge to the desired distances without signif-
icant perturbations, whether they are of constant magnitude,
small or large, or sinusoidal. Despite the presence of these dis-
turbances within the platoon, the sharing of macroscopic infor-
mation ensures that the system maintains bounded trajectories.
The efficacy of shock-wave mitigation is vividly illustrated in
Fig. 8 and in the zooms therein, as the CAVs exhibit smoother
dynamic behavior while traversing the platoon. Particularly
noteworthy are the segments depicted in the zoomed sections
around 20-25 seconds and 70-90 seconds. In these instances,
it becomes evident how macroscopic information contributes
to the smooth response of the follower vehicles in the face of
added constant disturbances and effectively counteracts the ef-
fects of sinusoidal disturbances. Even though the macroscopic
information is computed and shared every second, it proves
to be sufficiently informative to ensure DSS. This is clearly
exemplified in Fig. 9, which highlights the dependence of
control inputs on this shared information. Indeed, the steady-
state behavior exhibits both positive and negative peaks, which
arise from both the disturbances affecting the system and the
fluctuations in the considered macroscopic information.

We highlight the effective performance of the smart traffic
manager. As depicted in Fig.9, it successfully computes both
the aggregated values of ψi and those derived from the ARZ
model. While these two sets of values are not identical, they
exhibit a striking similarity. During the steady-state phase,
the variation in ψi can be attributed to the aggregation of
measured microscopic quantities. In contrast, the subsequent
steps, where the value increases, correspond to the ARZ
simulation and prediction of traffic flow. This observation
underscores the capability of the smart traffic manager to
manage both techniques efficiently. However, it clearly opens
the room for better improvements.

2) Averaged information from the ARZ model: Fig. 10 and
11 depict the simulations in case of averaged information
shared by the smart traffic manager to the whole set of CAVs,
i.e., each CAV receives the same value of ψ(ρ).

In a manner akin to the tailored scenario, the simula-
tions demonstrate the effectiveness of the proposed approach
in achieving the desired inter-vehicular distance and speed



14

(a) Distances.

(b) Differences of speed.

Fig. 8: Tailored information case: (a) distances and (b) differ-
ences of speed of the platoon of 20 vehicles.

differential, as clearly illustrated in Fig. 10. However, the
attenuation of disturbances is less pronounced. This is due
to the uniform distribution of information to the entire set
of vehicles, which subsequently acts directly on the control
input, as outlined in (25). Nevertheless, the control inputs
presented in Fig. (11) exhibit a behavior similar to those
in Fig. (9). It is noteworthy that the magnitude of control
efforts is less significant in the averaged case, as evidenced
by comparing Fig. (11) to Fig. (9). This is attributed to the
averaging behavior resulting from the sharing of a common
variable rather than using tailored variables. Additionally, the
macroscopic function ψ(ρ), depicted in Fig. (11), exhibits
a behavior akin to the one in Fig. (9). Indeed, both the
tailored and averaged macroscopic information computed by
the ARZ model (for the second, third, and fourth sampling of
the macroscopic cycle) do not perfectly align with the value
computed when aggregating microscopic information (for the
first sampling). However, it is worth noting that the averaged
quantity experiences fewer variations, and the predicted values
are close to those obtained by aggregation in both cases.
This suggests comparable performance for the smart traffic
manager. Naturally, the error increases over the samplings,
as one might expect, due to the greater distance from the
real values. Nevertheless, thanks to an approach similar to
the receding horizon method, the periodic aggregate measures
help in keeping the error bounded.

The simulation outcomes illustrate that both the tailored
and averaged functions empower CAVs to employ mesoscopic
controllers effectively. This is achieved by leveraging the
interplay between macroscopic and microscopic information,
which helps alleviate stop-and-go waves while ensuring speed

(a) Control inputs.

(b) Macroscopic function ψi(ρ)

Fig. 9: Tailored information case: (a) control inputs and (b)
macroscopic information ψi(ρ) of the platoon of 20 vehicles.

harmonization.
A notable concern that requires attention is the necessity

for customizing the road segment and selecting appropriate
neighbors for the computation of the average quantity. The
proposed solution encounters challenges when dealing with
small disturbances affecting a small road segment, as in the
case of simulations, and the performance deteriorates as the
size of the segment increases, despite the theoretical assurance
of string stability. The issue emerges due to the limited
influence and control over localized disturbances in the context
of the segment’s size. It is important to note that the approach
considered here does not incorporate a macroscopic feedback
mechanism that could modify microscopic values, such as
speed references or maximum speeds. The alignment of mi-
croscopic values with optimal macroscopic ones might offer a
potential solution to address this concern. Consequently, future
research will place emphasis on exploring these aspects.

VI. CONCLUSION

The primary objective of this investigation was to establish
a connection between microscopic and macroscopic traffic
representations, ultimately incorporating macroscopic infor-
mation into microscopic controllers to enhance overall traffic
performance. The resulting mesoscopic controller has been
formally verified to ensure disturbance string stability or string
stability in scenarios without disturbances. As demonstrated
throughout this paper and in simulations, this approach has
a notably positive impact on mitigating stop-and-go patterns,
reducing shock waves, and enhancing safety.
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(a) Distances.

(b) Differences of speed.

Fig. 10: Averaged information case: (a) distances and (b)
differences of speed of the platoon of 20 vehicles.

The proposed smart traffic manager demonstrates the ca-
pability to compute macroscopic information through two
phases: initial aggregation of macroscopic variables and sub-
sequent real-time calculation from a realistic macroscopic
model using a receding horizon approach. However, since
this paper primarily focuses on the microscopic perspective
and does not delve into macroscopic control, it outlines
limitations related to potential equilibria. Future research will
concentrate on closing the loop with a stabilizing macroscopic
feedback system designed to align with desired macroscopic
objectives, such as maximizing traffic throughput or achieving
a specific average speed. Additionally, the study will explore
mixed traffic scenarios involving both CAVs and human-driven
vehicles sharing the road.
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