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ABSTRACT: Halide perovskites are technologically interesting across a wide
range of optoelectronic devices, especially photovoltaics, but material stability has
proven to be challenging. One degradation mode of note is the meta stability of the
perovskite phase of some material compositions. This was studied by tracking the
change of CsPbI3 from its optoelectronically relevant perovskite phase to its
thermodynamically stable nonperovskite phase, δ-CsPbI3. We explore kinetics as a
function of surface chemistry and observe a quantitatively similar, ∼5-fold,
reduction in the phase transition rate between neat films and those treated with
CsI and CdI2. Using XPS to explore surface chemistry changes across samples, we
link the reduction in the phase transition rate to the surface iodide concentration.
When informed by previous theoretical studies, these experiments point to surface
iodide vacancies as the nucleation sites for δ-CsPbI3 growth and show that phase nucleation is the rate limiting step in δ-
CsPbI3 formation for CsPbI3 perovskite thin films.

Metal halide perovskites will likely grow to be
disruptive materials in the world of optoelectronics.
Their exceptional charge carrier mobilities,1 and

high photoluminescent quantum yields (PLQY),2 make for
solar cells with efficiencies as high as 26.1%.3,4 Coupled with
low processing costs,5 and the possibility for their integration
into tandem architectures,6 these solar cells promise to be
transformative in the energy sector. CsPbX3 (X = Cl, Br, I) are
the most widely studied class of all-inorganic halide perovskites
due to a high thermal stability and suitable bandgap for
photovoltaic applications.7 CsPbX3 exhibits three perovskite
phases: cubic (α, Pm3m), tetragonal (β, P4/mbm), and
orthorhombic (γ, Pbnm). At room temperature, it is common
for CsPbI3 to relax locally into the orthorhombic perovskite
phase.8,9 There also exists a nonperovskite, orthorhombic
phase (δ, Pnma) that does not strongly absorb solar irradiation
due to a wide band gap and has poor charge transport.10

Unfortunately, at room temperature the δ-phase is thermody-
namically favored.11 It is known that moisture catalyzes the
transition from the metastable γ-CsPbI3 into δ-CsPbI3. Also,
because of ion mobility, δ-CsPbI3 can form in mixed cation
formulations such as FAxCs1−xPbI3 (FA = formamidinium).12

Therefore, while this class of inorganic halide perovskites is
promising, the phase transition to the nonperovskite δ-phase
remains the most significant hurdle to commercial implemen-
tation.5

Such phase transitions are important beyond just CsPbI3. In
the hybrid organic inorganic lead halide perovskite methyl-

ammonium lead iodide (MAPbI3), moisture intercalates into
the crystal lattice, forming metal hydrates, disrupting the
structure.13,14 More similarly, a perovskite to nonperovskite
phase transition plagues formamidinium lead iodide (FAPbI3)
and FA-based alloys,12,15,16 the materials that form the
backbone of most of the highest performing devices,17

although FAPbI3 transforms into different nonperovskite
phases.18 Molecular dynamic simulations suggest that surface
moisture amplifies surface halide vacancies by strongly
solvating halide ions at the interface.19 This is also seen in
the moisture-assisted self-healing of halide perovskite films.20

Vacancies such as these locally deform the structure resulting
in octahedral tilting into the nonperovskite phase.21,22 This
previous evidence suggests that the moisture-induced phase
transition of inorganic lead halide perovskites is, at its core, a
function of surface halide vacancies and ion mobility more than
it is a consequence of water adsorption. In this study, we build
on previous experimental and theoretical work,22−27 to provide
a more conclusive experimental picture of the role that surface
halide vacancies play in the appearance of δ-CsPbI3 in
perovskite thin films.
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Surface treatment has proven to be an effective strategy for
improving the moisture resistance of perovskites,28,29 whether
using hydrophobic surface ligands such as oleylamine to limit
water adsorption and passivate defects,30 or filling specific
vacancies by treating a film with coordinating organic
ligands.31−33 Very recently, Guo et al. performed a
comprehensive theoretical investigation into the structural
collapse of CsPbI3.

22 From their calculations, they concluded
that kinetic, rather than thermodynamic, aspects dominate the
phase stability of CsPbI3 and that iodide vacancies provide the
nucleation sites. In this work, we aim to improve the
experimental evidence for or against an iodide vacancy driven
mechanism and to experimentally reveal the rate limiting step
in δ-CsPbI3 formation. To differentiate between X-site
vacancies and other effects, we passivated these vacancies
using both CdI2 and CsI treatments. We use the Johnson−
Mehl−Avrami−Kolmogorov (JMAK) model to describe the
transformation and extract kinetic information on surface
treatments with respect to increasing both CdI2 and CsI
concentrations, showing that each of these treatments slows
the phase transformation by a similar factor of ∼5. The
analogous behavior of the two treatments, in terms of both the
increase in surface iodide concentration and the slowed
transition, points toward iodide vacancy filling, rather than
Cs- or Pb-vacancies, as the dominant mechanism slowing the
δ-phase transition. Microscopy further supports nucleation as
the rate limiting step of the phase change.
In this report, CsPbI3 thin films spin coated on FTO glass

substrates are used as a representative system to track the
phase transformation. Two distinct film preparation methods
were used, one with a methyl acetate antisolvent,34 and one
with a simple one-step from DMF with no antisolvent.35 After
annealing, as-synthesized CsPbI3 films were treated with a CdI2
or CsI solution in IPA. To control the exposure of the films to
constant humidity and temperature, an ad hoc flow apparatus
was built (Figure 1A), which allowed for fine control over the
environment (Figure S1) by bubbling nitrogen through
deionized water. It should be noted that the humid air flow
in the system led to increased rates due to decreased boundary
layer thickness but yielded similar data to those of CsPbI3 films
in still air (Figure S2). The temperature of the substrate was
measured directly with a thermocouple. In this way, the
nitrogen flow rate determined the %RH, which allowed for a

high degree of control over the kinetics of the perovskite phase
transition.
The direct transmittance through the perovskite film was

measured, and the attenuation (absorbance plus scattering/
reflection) at 680 nm was used to track the phase transition
over time since the black perovskite phase is easily distinguish-
able from the yellow nonperovskite phase at this wavelength.
Figure 1B shows this phase transition as a series of attenuation
measurements taken over 20 min with the black curve showing
the perovskite phase at the start and the red trace showing the
nonperovskite δ-phase. This spectroscopic data was then used
to determine the phase fraction of the γ-CsPbI3 perovskite. To
do this, we assume the 100% perovskite phase initially at the
maximum attenuation (μ100) and the 100% nonperovskite
phase at the minimum attenuation (μ0) and relate these
linearly to the CsPbI3 perovskite phase fraction, x = (μ − μ0)/
(μ100 − μ0). A typical phase transition of a CsPbI3 film treated
only with IPA occurred over approximately 5 min at 20%RH
and 20 ± 1 °C in our flow apparatus. For a clear attribution of
these observed changes in the optical properties to a
crystallographic phase change, we require a direct experimental
probe of the structural properties. We thus confirmed by
powder X-ray diffraction (XRD) measurements that the initial
and final films are in fact 100% perovskite and nonperovskite
phase, respectively (Figure S3). Importantly, the dynamics of
the phase transition are the same as when measuring the
powder XRD pattern (Figure S4) as with UV−vis spectros-
copy, and the diffraction data show a quantitative agreement
between the disappearance of CsPbI3 perovskite and the
growth of δ-CsPbI3. The JMAK model, which is widely used to
describe phase transitions in bulk and thin film systems,36−41

takes the following form,

=x e kt( )n
(1)

where k is the effective rate constant, and n is the Avrami
constant, or shape factor. Both n and k consist of contributions
from phase nucleation and phase growth through multiple
dimensions.42 A natural log plot of time and the natural log of
the phase fraction extract the shape factor n as the slope of the
resulting straight line as well as the natural log of the effective
rate constant k at its intercept.

= +x n t kln( ln( )) ln( ) ln( ) (2)

Figure 1. A) Diagram of the atmosphere-controlled absorption spectrometer system used for many of these experiments, and B)
representative traces taken with this system as a CsPbI3 perovskite film undergoes a phase transition to the nonperovskite δ-phase. The inset
shows kinetic traces extracted at several different wavelengths from this data.
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The JMAK model is valid for particle growth and phase
transitions assuming that (i) the system is infinitely large in
comparison to the size of the germinating phase, (ii) the
nucleation is homogeneous throughout the material, (iii) the
growth of the phase terminates when it impinges on growth
from other nucleation sites, and (iv) the process is
isothermal.43−45 The phase transition of a black CsPbI3
perovskite film to the yellow nonperovskite δ-phase is well
described by JMAK kinetics (Figure 2 and Figure S4).
However, the geometry of the system requires a more careful
consideration. In thin film systems where it is possible that the
size of the phase germ is no longer negligible compared to the
thickness of the film, or when phase nucleation occurs at an
interface, the shape factor is predicted to become nonconstant
toward the end of the phase transformation when the
germinated cells impinge upon an interface.46,47 This, however,
should only be noticeable when the thickness of the film
reaches an appreciable size when compared to the phase
nucleation density.48 In the present experiments, film thickness
is approximately 500 ± 100 nm (Figure S5) and is significantly
smaller than the diameter of most nonperovskite domains in
partially transformed films (Figure S6). However, in some
experiments, a slight change in the shape factor is seen near the
end of the experiments (shown in Figure 2B by the slight
change in the slope as well as in some other experiments).
With this in mind, the JMAK equation is appropriate for
modeling CsPbI3 kinetics between samples if films are kept at
consistent thicknesses and the temperature is constant.
Looking more closely at the representative data in Figure 2,

noise is responsible for the deviation from the eq 2 model
when ln(−ln(x)) ≥ −2 due to the asymptotic nature of the y-
axis. The shape factor, n, was found to be 2.14 ± 0.29 across 10
different treated and untreated CsPbI3 thin films (Table S1,
Figure 3). If we assume that the majority of the phase
transition occurs within a 2D regime, the shape factor is
expected to be 2 if nucleation of the δ-phase is homogeneous
and 3 if nucleation is heterogeneous.42,49 Looking at SEM
images of partially transformed films (see inset, Figure 2A and
Figure S6), we see that the growth of the nonperovskite δ-
phase is often anisotropic. Anisotropic growth would tend to
reduce the shape factor. Taken together, the observed shape
factor suggests that the phase transformation appears to be a
mix of homogeneous and heterogeneous nucleation (from
surface adsorbed water) and occurs primarily in the 2D regime.
Overall, the phase transition is nucleation rate limited rather
than limited by the growth rate, as clearly seen by the sparse,
large crystallites in partially transformed films (Figure S6). This

is similar to experiments by Lin et al. that determined a
difference in these two rates of ∼10−1000 in their experiments
with CsPbI3 microcrystals.

50

While, in the present case, the contributions of phase
nucleation and phase growth are convoluted; nevertheless,
these results point to the immense importance of surface
chemistry in the phase transformation rate. Therefore, we
selected two different surface treatments, one with CsI and one
with CdI2, to explore their contributions to this rate. Both
treatments were done following standard CsPbI3 film
formation by coating the film with a CsI or CdI2 solution in

Figure 2. A) Transformed UV−visible spectroscopy kinetic data into phase fraction, x, of the CsPbI3 perovskite phase for a representative
CsPbI3 thin film, fit by eq 1 (black line). The inset shows an SEM image of a central δ-CsPbI3 region surrounded by γ-CsPbI3. B) The
transformation of (A) by eq 2 has a linear slope of the growth shape factor “n”.

Figure 3. Kinetics of phase change (from UV−visible spectroscopic
data) for CsPbI3 thin films treated with varying concentrations of
(A) CdI2, and (B) CsI in IPA. C) The rate constant extracted from
the JMAK fits (solid black lines) shows a quantitatively similar
change in phase change kinetics for both treatments.
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IPA and annealing. These two salt treatments were selected to
change the surface stoichiometry of the films to be richer in AX
or BX2 species and thus to elucidate how these surface
chemistry changes relate to the phase change kinetics.
By relating the change in attenuation at 680 nm to the phase

fraction as previously described, both CsI and CdI2 treatments
are shown to result in slower phase transition kinetics at
constant temperature and humidity, despite the fact that these
salts are both very soluble in water, which would make them a
poor physical barrier for moisture.51 Figure 3A,B shows plots
of the phase fraction of the perovskite phase over time for
different salt concentrations of CdI2 and CsI treatments,
respectively, in a constant environment. All phase transitions,
regardless of treatment, have shape factors within the range of
nontreated films, which suggests that the mechanism is
consistent across as-synthesized and treated films. Control
films treated with pure IPA showed an effective rate constant
of 5.8 × 10−3 s−1 while films treated with CdI2 (7.5 mM) and
CsI (10 mM) showed this rate reduced approximately 5-fold to
an effective rate constant of 9.6 × 10−4 s−1 and 1.7 × 10−3 s−1,
respectively. As these treatments do not lead to significant
changes in the initial film morphology (Figure S7), we propose
that the surface chemistry is the dominant cause of the rate
reduction. When the charge carrier recombination kinetics
were investigated by time-resolved photoluminescence
(TRPL), the treated samples showed longer lifetimes (Figure
S8), consistent with a surface passivation effect. To confirm
that this treatment was not limited to one specific film
fabrication method, we corroborated these findings with
CsPbI3 films made with a simple one-step process from
DMF (Figure S9) as well as in multiple side-by-side trials done
with films under uncontrolled ambient conditions.
Other treatments have also been found to successfully slow

the CsPbI3 δ-phase transition, but the specific mechanism has
remained somewhat obfuscated. Following a recent theoretical
investigation, however, Guo et al. described iodide vacancies
as, “the seed of the whole phase transition process.”22 Our

nearly identical effects observed with CsI and CdI2 treatment
also point to the common element, iodide, as the most likely
cause behind the reduced phase transformation rate with less
influence from the A- or B-site. Below, we propose a
mechanism for the γ-CsPbI3 to δ-CsPbI3 phase transition
based on our own observations, and informed by the literature
(Figure 4). While there have been studies identifying control
over transition rate through the relative stability of the γ- and
δ-CsPbI3 phases,52,53 thermodynamics alone cannot account
for the rate of the transition.22 The phase transition has been
shown via DFT by Chen et al. to be a multistep process
dominated by kinetics that are accelerated by iodine vacancies
(VI) at the surface (Figure 4B−D) when water is introduced.54
These vacancies lower the barrier to the first transition state by
mediating the first intermediate state with additional short-
lived states that are not present in the pristine lattice phase
transition pathway.22 Passivating VI, which in this study is done
via iodine salt treatment (Figure 4A−C), raises the overall
kinetic barrier and reduces the rate of δ-CsPbI3 nucleation.
Once the δ-phase has nucleated, however, the growth proceeds
rapidly in a domino effect.55,56 This study corroborates the
conclusion that the phase transition is slowed primarily by
limiting nucleation of δ-CsPbI3 as the shape factor from the
JMAK model is similar for both the treated and untreated
films, indicating that the growth mechanism is unaffected. To
fully understand the effect that the CdI2 and CsI treatments
have on the surface of the films, it is important to provide a
clearer picture of the surface chemistries in treated and
untreated cases to correlate the change in kinetics with VI
passivation.
To accomplish this goal, X-ray photoelectron spectroscopy

(XPS) measurements were performed on a range of samples,
with measurements taken at two points on each sample. XPS
allows for elemental quantification of the near-surface region,
with the signal coming mostly from the top ∼5 nm of the
sample. Thus, even though the measurement is surface-
sensitive, the compositional analysis extends over the surface

Figure 4. Schematic showing the proposed mechanism for the transformation from γ-CsPbI3 perovskite phase to nonperovskite δ-CsPbI3. A)
As-synthesized CsPbI3 film with surface iodide vacancies, B) rapidly forms δ-CsPbI3 germs because of the reduced kinetic barrier for phase
transformation caused by iodide vacancies. On the other hand, C) CdI2 (and CsI) treatments fill iodide vacancies, and lead to a reduced rate
of δ-CsPbI3 germ nucleation. D) Once nucleated, the δ-CsPbI3 phase spreads rapidly through the perovskite film.
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and the subsurface region of the probed sample. The samples
included thin films of CsPbI3 washed with pure IPA, CsPbI3
treated with saturated CsI (∼10 mM) in IPA, and 4 samples of
CsPbI3 treated with CdI2 at concentrations in a range from 1
mM to 10 mM in IPA. Across all of the measured samples, no
visible chemical shifts in the core level spectra or rise of
additional peaks stemming from a different oxidation state
were observed that would indicate a change in the chemical
environment of the key elements that comprise the perovskite
film (Cs, I, Pb), along with trace C and O contaminations. The
high energy resolution spectra for the Cs 3d, I 3d, Pb 4f, Cd
3d, and O 1s orbitals were used to quantify the surface
composition (Table S3). Of the 4 samples treated with
increasing CdI2, no specific trend was detected in surface
composition of any chemical species meaning that the
saturation of the surface chemical reaction is already reached
for the lowest concentrations of CdI2 (Figure S9, Table S4).
Therefore, only results for the sample treated with 10 mM
CdI2 are presented in the main text from this sample set.
The high-resolution photopeaks of the detected elements for

the samples treated with saturated CsI and 10 mM CdI2 in IPA
can be seen in Figure 5, with references to the as-synthesized
control sample. The C 1s core level is positioned at 285.2 eV
and presents a shape typical for adventitious carbon
contamination with effectively constant C concentration across
all samples. The O 1s core level indicates the presence of
oxygen contamination possibly from residual IPA, or surface
contamination, which is in agreement with the C−O and C=O
contributions to the C 1s spectra at higher binding energies. In
addition to C−O and C=O, another oxygen species was
detected at a lower binding energy of 531 eV on the treated
samples. This can be attributed to the formation of an oxidized

metal such as PbOX. However, due to the small chemical shift
between Pb2+ and Pb0, combined with the low oxide
proportion, no widening of the Pb 4f peaks could be identified.
The emergence of a Cd 3d5/2 peak at 406 eV also confirms the
presence of Cd at the surface (less than 1 atomic%) when
treating samples with CdI2.
To investigate variations in the cation and halide surface

concentrations, elemental ratios were calculated for the treated
and untreated samples (Figure 6). Taking the elemental ratio

helps to correct for differences in surface contamination (e.g.,
O and C signals) and provides a better basis for sample
comparison. The I/Pb ratio shows a moderate increase when
the films are treated with CsI, which confirms a rise in the
surface concentration of iodide after the treatment. A more
significant increase in the I/Pb ratio is seen for CdI2 treated
films; however, when the added Cd is taken into consideration
for the CdI2-treated sample by calculating the ratio I/(Pd

Figure 5. XPS measurements of the high energy resolution core levels spectra of C 1s, O 1s, Cd 3d, Cs 3d, I 3d, and Pb 4f for the untreated
control film, the one treated with CsI and the one treated with CdI2 (10 mM).

Figure 6. Comparison of key elemental ratios for the control film,
the film treated with CsI, and the film treated with CdI2 (10 mM).
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+Cd), we find that this new ratio is in line with the CsI treated
films.23 In contrast, the Cs/Pb ratio presents a negligible
increase compared with the sample treated with CsI and a
larger increase when treated with CdI2. This seemingly
perplexing observation that treating with CdI2 increases the
Cs+ surface concentration more than a direct CsI treatment
can be rationalized if Cd is filling Pb vacancies. In that case, we
would expect that the CdI2 treated films would have a Cs/(Pb
+Cd) ratio, which is in line with the neat films. In this case, the
Cs/(Pb+Cd) ratio is still slightly elevated when compared to
the control films and the CsI treated films, but less extreme.
Despite this evidence of Cd2+ substitution into the CsPbI3
crystal, the dominant effect, from a phase stability standpoint,
does appear to be the role that iodide vacancy filling plays
between these two samples.
Controlling the phase transition from meta stable perovskite

phases to nonperovskite δ-phases is critical to the stability of
the majority of the halide perovskite materials that are, at
present, more technologically interesting. In these experiments,
we used CsPbI3 perovskite as a model system to explore this
phase transition in greater detail. The phase transition between
the perovskite phase and the nonperovskite δ-phase was found
to be well-described by the JMAK model of solid-state phase
transitions. Surface treatments of the CsPbI3 films with both
CsI and CdI2 show quantitatively similar results; both surface
treatments slow the overall rate of the phase change by
approximately a factor of 5. Using XPS, we were able to
confirm that both treatments result in increased surface
concentrations of iodide, presumably helping to passivate or
slow the formation of iodide vacancies, while the CdI2
treatment also appears to result in Cd2+ filling Pb2+ sites.
These treatments did not change the phase transition
mechanistically. More importantly, they functioned quantita-
tively similarly in slowing the phase transition process with
similar increases in surface iodide concentrations despite
differences in the concentrations of other surface species.
Taken together with prior theoretical evidence, these experi-
ments point strongly to iodide vacancies as the key nucleation
sites for δ-phase formation in CsPbI3 perovskites. Because of
their high concentrations in CsPbI3 thin films, we believe that
the improved surface passivation of iodide vacancies will have a
large kinetic effect on CsPbI3 perovskite phase stability. These
findings, hence, denote a step toward the targeted design of
halide perovskite surfaces, which enables improved control of
the perovskite to nonperovskite phase transition and thus
eventually the improved reliability of halide perovskite-based
optoelectronic devices.
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