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Robustness Study of Optimal Geometries for Cooperative Multi-Robot
Localization

Mathilde Theunissen1,2, Isabelle Fantoni1, Ezio Malis2 and Philippe Martinet2

Abstract— This work focuses on localizing a single target
robot with multi-robot formations in 2D space. The cooperative
robots employ inter-robot range measurements to assess the tar-
get position. In the presence of noisy measurements, the choice
of formation geometries significantly impacts the accuracy of
the target robot’s pose estimation. While an infinite number of
geometries exists to optimize localization accuracy, the current
practice is to choose the final formation geometry based on
convenience criteria such as simplicity or proximity to the initial
position of the robots. The former leads to the selection of
regular polygon-shaped formations, while the latter results in
behaviour-based formations. Different from existing works, we
conduct a complete robustness study of formation geometries in
the presence of deviations from the desired formation and range
measurement errors. In 2D scenarios, we establish necessary
and sufficient conditions for formation geometries to be robust
against robot positioning errors. This result substantiates the
extensive use of regular polygon formations. However, our
analysis reveals the lack of robustness of the commonly used
square formation geometry, which stands as an exception.
Simulation results illustrate the advantages of these robust
geometries in enhancing target localization accuracy.

I. INTRODUCTION

Autonomous mobile robots crucially require reliable and
accurate localization. In the absence of GNSS reception, such
requirements can be achieved at a centimeter-precision level
using range or bearing measurements provided by wireless
positioning sensor networks. The deployment of range-only
positioning systems is the subject of this work.

Infrastructure-based positioning solutions aim to fix sen-
sors, called anchors, in the environment. When equipping the
infrastructure, it is essential to choose proper anchor geome-
tries due to their significant impact on the accuracy of the
target robot’s position estimation. This phenomenon, known
as Dilution Of Precision (DOP), has been characterized in
[1]. The widely-used metric for assessing DOP is the Position
Dilution Of Precision (PDOP) index, which indicates how
noisy range measurements affect the estimated state of the
target robot. Optimal anchor geometries are obtained by
minimizing the PDOP. This minimization is NP-hard to solve
[7] as it should reduce localization errors over the robot’s
workspace while minimizing the number of anchors [4] and
taking into consideration non-line-of-sight sensors. Bayesian
[8] and genetic [4], [5] algorithms combined with discrete
optimization variables [6] have mainly been used.
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Fig. 1: A range-only positioning system comprises N = 3
robots with M = 6 sensors for localizing a target robot.

In large environments, fixed anchor networks suffer from
several drawbacks. Firstly, the wider the workspace, the
larger the search set and the more complex the optimization
problem becomes. The optimality is traded for computation
time to obtain a feasible solution [6]. Secondly, [5] shows
that at least 3 line-of-sight anchors are necessary for estimat-
ing the target robot’s position through trilateration. To avoid
uncovered areas, a high density of anchors is inevitable.
Finally, minimizing the number of anchors leads to large
anchor-target distances. This reduces localization accuracy as
it increases measurement noise [3] and multi-path effect [2].

In this work, we have chosen to embed anchors on mobile
robots, as shown in Fig. 1, to avoid the previously mentioned
drawbacks. A formation of anchor robots is deployed to
track and localize a target robot. As anchor robots follow
the target, the search for the optimal formation geometry
is simpler than for fixed anchors because it eliminates the
coverage problem. The formation geometry is then obtained
by minimizing the PDOP at a single point – the position
of the target. This minimization can be solved analytically.
Its solutions have been fully characterized and classified in
[9]. Furthermore, [9] highlights the existence of an infinity
of optimal formation geometries.

Most of existing results have only been concerned with
characterization of optimal sensor placements for localization
tasks [9], [10], [17]. To the best of our knowledge, no study
focuses on assessing the performance of optimal anchor
placements. Consequently, the common practice considers



this infinity of optimal geometries to be equivalent. The
formation used for localizing the target robot is then chosen
based on subjective criteria such as simplicity or proximity
to the robots’ initial position. Indeed, N-regular polygons
(2D) [10], N-regular polyhedrons (3D) [17], and cone con-
figurations (3D) [12], [13] have been extensively studied due
to their simplicity and symmetric properties. The proximity
criterion gives rise to the behaviour-based formation control
which uses artificial potentials to drive aerial formations to
locally optimal formation geometries. In [18], such a field
is constructed using the gradient of PDOP to drive flying
anchor robots to the location that delivers optimal positioning
service. Following the same idea, the artificial potentials of
[19] attract the robotic system to a formation geometry that
improves the localization accuracy of all robots. In both
works, the gradient-descent approach makes the formation
converge to the closest local minimum.

In this work, we question the common belief in the
equivalence of the infinity of optimal geometries. We conduct
our investigation through assessing the impact of mobile
anchors’ positioning errors on the target’s state estimation.
Indeed, for fixed anchor networks, these positioning errors
are taken into account, and the resulting bias in the target
localization is mitigated by calibration techniques, as in [11].
Our extensive robustness analysis shows that not all optimal
geometries have the same robustness when experiencing a
small deviation from their desired geometry. In the 2D set-
ting, we characterize the necessary and sufficient conditions
for PDOP-minimal formations to be robust against robot
positioning errors. Our results show that regular polygon
formations respect these conditions. Interestingly, we find a
lack of robustness in the commonly used square formation.
Simulation results illustrate our robustness study.

II. PROBLEM STATEMENT AND THEORETICAL
BACKGROUND

A. Problem Statement
As presented in Fig. 1, we consider a collaborative local-

ization mission in 2D space. N anchor robots with M range
sensors distributed among them aim to localize a target robot
in a global inertial frame F0 = (O, i0, j0).

Let 0qi = [0xi,
0yi]

⊤, i ∈ {1, ...,M} denote the position
of the anchor i in the global frame F0. The unknown position
of the target robot, 0q = [0x, 0y]⊤, is reconstructed from
ranges ρi, i ∈ {1, ...,M} between itself and the anchor i:

ρi = ||0qi − 0q|| =
√
(0xi − 0x)2 + (0yi − 0y)2 (1)

We consider a coordinate change centered at 0q. In this
new frame FT = (OT , iT , jT ), the position of the anchor i
Tqi = [Txi,

T yi]
⊤ in FT is expressed in polar coordinates:

Tqi = [0xi − 0x, 0yi − 0y]⊤ = [ρi cos θi, ρi sin θi]
⊤ (2)

where
θi = tan−1

(
0yi − 0y
0xi − 0x

)
(3)

denotes the polar angle of anchor i. In the remaining of this
paper, all positions are expressed in FT . Therefore, the frame
specification is omitted: Tqi becomes qi = [xi, yi]

T .

B. Assessing Localization Precision through the PDOP

In presence of noisy range measurements, the accuracy
of the target robot’s position estimation is evaluated by the
PDOP [1]. This index is the ratio between the root mean
square of the target robot’s position estimation error and
the range error variance. Under white noise measurements
assumption, the PDOP is defined as:

PDOP :=
√

tr((H⊤H)−1) =

√
tr(H⊤H)

det(H⊤H)
(4)

where H is the Jacobian matrix of (1):

H =


∂ρ1(x1,y1)

∂x1

∂ρ1(x1,y1)
∂y1

...
...

∂ρM (xM ,yM )
∂xM

∂ρM (xM ,yM )
∂yM

 (5)

Substituting (2) into (5) yields:

H =

 cos θ1 sin θ1
...

...
cos θM sin θM

 (6)

Consequently, H⊤H is equal to:

H⊤H =


M∑
i=1

cos2 θi

M∑
i=1

cos θi sin θi

M∑
i=1

cos θi sin θi

M∑
i=1

sin2 θi

 (7)

From (7), the trace of H⊤H is a constant:

tr(H⊤H) =

M∑
i=1

(cos2 θi + sin2 θi) = M (8)

Furthermore, [14] shows that the determinant of H⊤H can
be written as:

det(H⊤H) =

M∑
i,j>i

sin2(θi − θj) (9)

By combining (8) and (9) with (4), we obtain the final
expression of the PDOP:

PDOP =

√
M∑M

i,j>i sin
2(θi − θj)

(10)

From (10), we can see that the PDOP is a function of
the anchor geometry parameterized by the polar angles
θ = [θ1, . . . , θM ]⊤. Note that the PDOP is independent
of anchor-target distances ρi.

Therefore, the optimization problem, which aims to reduce
the impact of noisy range measurements on the target robot’s
localization accuracy, is formulated as follows:

OM := argmin
θ

PDOP 2(θ) (11)

We use the square of the PDOP to simplify further compu-
tations without loss of generality.



C. An Infinity of Optimal Formation Geometries

By computing the critical points of (10), [15] and [16]
demonstrate that formation geometries satisfy (11) if and
only if:

M∑
i=1

sin(2θi) = 0 and
M∑
i=1

cos(2θi) = 0 (12)

In the remaining of the paper, we refer to these optimal
formation geometries as PDOP minimizers.

Under the conditions defined in (12), the computation of
the determinant of H⊤H shows that its upper bound is
det(H⊤H)∗ = M2

4 . Therefore, the minimal PDOP, denoted
as PDOP ∗, equals:

PDOP ∗ =

√
M
M2

4

=
2√
M

(13)

The conditions of (12) result in an infinite number of
PDOP minimizers for four reasons. Firstly, a new PDOP
minimizer can be obtained by applying an identical rotation
to all anchors of an optimal formation geometry. Secondly,
distances between the target robot and the anchors have
no effect on the optimality of the solution. Thirdly, central
symmetries (θj = θj + π) with respect to the target robot
position have no impact either. According to [17], these
formation geometries are called equivalent. Finally, combi-
nations of optimal geometries are also PDOP minimizers [9].
Indeed, given an arbitrary number of optimal geometries
which satisfy (12), their combination verifies (12) too, re-
gardless the combination choice. Interestingly, combinations
and central symmetries lead to asymmetric optimal formation
geometries.

III. ROBUSTNESS ANALYSIS OF OPTIMAL
FORMATION GEOMETRIES

A. A Local Analysis of Robustness

In the case of mobile anchors, the target robot’s local-
ization accuracy depends on the deviation of the formation
from its desired geometry. We conduct a complete robustness
analysis of optimal geometries in presence of this deviation.

We work under the assumption of small perturbations,
meaning that anchor deviations from their desired positions
are small in comparison to their relative positions. Thus, we
set the scope of this analysis to a local neighborhood of the
optimal formation geometry.

B. Robustness to Deviations from Optimal Geometry

A deviation of anchor i from its desired position q∗
i can be

divided into a polar angle error denoted by θ̃i and a distance
error. As highlighted in section II-B, the PDOP function is
completely independent of distances. Therefore, we analyse
the impact of polar angles deviations only.

We consider that anchors’ polar angles relative to the target
θ = [θ1, . . . , θM ]T , are the summation of the desired polar
angles θ∗ = [θ1

∗, . . . , θM
∗]⊤ ∈ OM , and the angular errors

θ̃ = [θ̃1, . . . , θ̃M ]⊤:

θ = θ∗ + θ̃ (14)

We introduce the bias ∆PDOP 2 which corresponds to
the difference between the actual and the desired PDOP 2:

∆PDOP 2 = PDOP 2(θ)− PDOP 2(θ∗) (15)

Under the small perturbations assumption, we approximate
∆PDOP 2 using the second order Taylor expansion:

∆PDOP 2 ≈ ∂PDOP 2

∂θ
(θ∗) θ̃ +

1

2
θ̃⊤ ∂2PDOP 2

∂θ2
(θ∗) θ̃

(16)
Since θ∗ ∈ OM , then θ∗ is a minimum. Therefore, the
gradient of the PDOP at θ∗, ∂PDOP 2

∂θ (θ∗), is null. We get:

∆PDOP 2 ≈ 1

2
θ̃⊤G (θ∗) θ̃ (17)

where G = ∂2PDOP 2

∂θ2 is the Hessian matrix of size (M×M).

Remark 1. Given a value of ∥θ̃∥, the bias ∆PDOP 2

reaches its maximum value, 1
2∥θ̃∥

2λmax, when the direction
of θ̃ is collinear to the eigenvector of G associated with its
maximal eigenvalue λmax.

Consequently, the objective is to reduce the maximal
eigenvalue of G to the smallest possible value while keeping
the PDOP to its lower bound. In summary, we aim to solve:

O′
M := argmin

θ∗
λmax

subject to θ∗ ∈ OM

(18)

We characterize the eigenvalues of G, in order to find the
minimal value of λmax. As shown in Appendix A, the matrix
G at θ∗ is:

G (θ∗) =
32

M3
.


1 c12 . . . c1M
c21 1 . . . c2M

...
...

. . .
...

cM1 cM2 . . . 1

 (19)

where cij = cos(2θ∗i − 2θ∗j ) = cji.
The symmetric matrix G has the following properties :
1) Constant trace: tr(G) = 32

M2 . Thus, the sum of the
eigenvalues of G is constant for all θ∗ ∈ OM .

2) Rank-deficiency: rank(G) ≤ 2. The complete demon-
stration is provided in Appendix B.

As a result, G has at most 2 non-zero eigenvalues λmin and
λmax linked by the trace of G.

λmax =
32

M2
− λmin (20)

According to (20), the minimal value of λmax is equal to
16
M2 when λmax = λmin.

Theorem 1. A PDOP minimizer θ∗ ∈ OM belongs to the
set O′

M , if and only if :
M∑
i=1

cos2(2θ∗i ) =
M

2
M∑
i=1

cos(2θ∗i ) sin(2θ
∗
i ) = 0

⇔


M∑
i=1

cos(4θ∗i ) = 0

M∑
i=1

sin(4θ∗i ) = 0



The purpose of Theorem 1 is to guarantee that any
formation geometry θ∗ ∈ O′

M is robust to anchors position-
ing errors through the minimization of ∆PDOP 2. Only a
subset of OM has this property. Consequently, not all PDOP
minimizers have the same performance in terms of robustness
against positioning errors. We provide the demonstration of
Theorem 1 in Appendix C.

C. The Particular Case of Regular Polygons

Here, we show that almost all M-sided regular polygons
belong to the set of robust optimal formation geometries O′

M .
A property of M-sided regular polygons is that θk = 2π

M k.
Therefore, the necessary conditions of Theorem 1 become:

∑M
k=1 cos(4θk) = Re

(∑M
k=1

(
exp

8π
M j

)k
)

∑M
k=1 sin(4θk) = Im

(∑M
k=1

(
exp

8π
M j

)k
) (21)

The geometric series in (21) can be simplify if M ̸= 4
(for which the denominator of (22) cancels):

∑M
k=1 cos(4θk) = Re

(
1−exp 8πj

1−exp 8πj
M

)
= 0∑M

k=1 sin(4θk) = Im
(

1−exp 8πj

1−exp 8πj
M

)
= 0

,∀M ̸= 4

(22)

Property 1. When M ̸= 4, M-sided regular polygons, are
solutions of O′

M .

The particular case of M = 4 gives:

4∑
k=1

cos(4θk) =

4∑
k=1

cos(2πk) = M ̸= 0 (23)

Therefore, the square formation /∈ O′
4. We can further

show that in this case, the rank of G is equal to 1 (see
Appendix B). Thus, G has a unique non-zero eigenvalue
which is equal to 32

M2 . The square formation corresponds to
the worst geometry of O4 as λmax is maximal.

IV. ANALYSIS OF PDOP CURVATURE

Section III presents the necessary and sufficient condi-
tions on θ∗ for formations to be robust against anchors’
deviation from their desired geometry. To completely define
the formation, we seek the values of anchor-target distances.
As the PDOP is distance independent, the common practice
in wireless positioning networks is to choose homogeneous
[10] and large anchor-target distances [22] to achieve better
localization performance in presence of target localization
uncertainty.

As seen in Sections II and III, measurement errors and
formation deviation create a bias on the PDOP. A higher
PDOP leads to an increase in the area AT of the target’s
uncertainty ellipse. The semi-minor and semi-major axis of
this ellipse correspond to the square roots of the eigenvalues
of the target position covariance matrix cov(q̃). Hence:

AT := π
√
det(cov(q̃)) = πσ

√
det ((H⊤H)−1) (24)

where σ is the standard deviation of range measurement
errors. By definition, cov(q̃) is equal to σ2(H⊤H)−1 [1].
Therefore, using (4), we obtain a proportional relation be-
tween the PDOP and the area AT :

AT =
πσ√

det(H⊤H)
∝ PDOP (25)

An increase in the PDOP leads directly to an enlargement
of AT . As the target robot is located within the uncertainty
ellipse, the smaller the PDOP value in this ellipse, the more
accurate the target position estimation. A smaller PDOP in
the uncertainty ellipse is achieved by a smaller curvature
of this function at q, which is the center of the target
uncertainty ellipse. The local PDOP curvature with respect
to q is characterized by the Hessian matrix of the PDOP:

∂2PDOP 2

∂q2
=

32

M3

[ ∑M
i=1

sin2 θi
ρ2
i

∑M
i=1

cos θi sin θi
ρ2
i∑M

i=1
cos θi sin θi

ρ2
i

∑M
i=1

cos2 θi
ρ2
i

]
(26)

Equation (26) is demonstrated in Appendix D. The two
eigenvalues λ1 and λ2 of ∂2PDOP 2

∂q2 are given by:

λ1,2=
16

M3

 M∑
j=1

1

ρ2j
±

√√√√√ M∑
j=1

1

ρ2j

2

− 4

M∑
j=1,k>j

sin2(θj−θk)
ρ2jρ

2
k


(27)

By definition, the two eigenvalues λ1 and λ2 are the principal
curvatures of the PDOP in the direction of their associated
eigenvectors. In the special case where ρ1 = ... = ρM = ρ,
(27) becomes:

λ1 = λ2 =
16

ρ2M2
(28)

From (27) and (28), we can notice that the higher the
distances ρj , the smaller the eigenvalues. Moreover, with
homogeneous distances, both eigenvalues are equal.

Property 2. Arc-shaped geometries, defined by
ρi = ρj ∀i, j ∈ {1, . . . ,M}, with a high anchor-target
distance and centered at the position of the target robot,
improve the target localization accuracy.

For arc-shaped formations, target position accuracy is
barely affected by a biased PDOP. Property 2 demonstrates
and justifies the observation of [22], who remarks that length-
ening a wireless positioning network improves the overall
localization precision. Note what, with most range sensors
(e.g. UWB nodes), an increase in anchor-target distance
induces noisier range measurements. A trade-off between
noise and localization accuracy should be found.

V. SIMULATION RESULT

In this section, we quantify the localization accuracy of the
target using the PDOP due to its proportional relation with
the target robot’s uncertainty area, as shown in (25). Optimal
formation geometries of OM (resp. O′

M ) are obtained by
solving (12) (resp. Theorem 1 with (12)) using the Newton-
Raphson method or a gradient-descent optimization.



A. Comparison between the Square and a O′
4 Formation

We assess the performance of the square formation dis-
cussed in III-C in comparison with an optimal formation
geometry C4 ∈ O′

4. Both formations with their PDOP are
shown in Fig. 2.

(a) C4 ∈ O′
4 (b) Square configuration /∈ O′

4

Fig. 2: Contour maps for optimal C4 and square formations.

We introduce to the formation θ a perturbation θ̃ in the
direction the eigenvector of G associated with λmax. Fig.
3 shows the evolution of ∆PDOP with respect to the
magnitude of θ̃. For both formations, a larger ||θ̃|| results
in a larger bias ∆PDOP , evidenced by the upward trend in
Fig. 3. As λmax is smaller for C4, the PDOP bias induced
by θ̃ is smaller for C4 than for the square formation. Thus,
for the square formation, the target position is estimated with
less precision as the target uncertainty ellipse increases.

The second experiment corresponds to a more realistic
formation control scenario. We assume that the positioning
error of each anchor robot q̃i follows a normal distribution
q̃i ∼ N (0, σ2

q ). σq has been chosen in order to have an
error at 3σq equal to 1m, which is a realistic error in
formation control experiments. We inject this random noise
to the position of the anchor robots for both formations
and we measure the PDOP of the target. The result of 500
simulations is presented in Fig. 4.

Subject to this random noise, on average, both formations
achieve similar performance in terms of accuracy, measured
by the PDOP. This is explained by the fact that the two
formations belong to the same super set O4.

On one hand, the square, with its single non-zero eigen-
value, performs better in the best case, where θ̃ is far from
the eigenvector associated with this non-zero eigenvalue.
It leads to a slightly smaller median PDOP. On the other
hand, the interquartile range is smaller for the C4 formation,
leading to better performance in terms of repeatability and
robustness. This smaller variance is explained by the fact
that, C4 has two equal eigenvalues. Furthermore, with a
smaller λmax, C4 performs better in the worst case, where θ̃
is collinear to the eigenvector associated with λmax.

B. Impact of Anchors Positioning Errors on Formations in
OM and O′

M

In this section, we generalize the observations made in V-
A for any M -anchor formations. We define CM , an optimal

Fig. 3: Impact of a perturbation θ̃ on the PDOP bias of the
target robot localized by the C4 and the square formations.

Fig. 4: Box plot representing the PDOP bias distribution in
presence of a random noise on the positioning error of the
anchor robots for the square and the C4 formations.
formation from OM and C′

M , an optimal formation from O′
M .

To have a fair comparison, we choose CM and C′
M to be both

arc-shaped geometries with the same anchor-target distance
(ρ = 7).

We choose to simulate the worst-case scenario where
anchors positioning errors are collinear to the eigenvector
of G associated with the λmax of each formation. The
PDOP bias is then maximal. Our robust formation C′

M should
outperform CM in this scenario as the design of O′

M focuses
on reducing the maximal PDOP bias. Simulation results are
shown in Fig. 5 for different values of M , where the vertical
axis denotes the difference between the PDOP of CM and
C′
M .

Fig. 5: PDOP difference between CM and C′
M as function of

||θ̃|| for different values of M .



In Fig. 5, as PDOP (CM )−PDOP (C′
M ) ≥ 0, formations

C′
M are more robust to anchors positioning errors than CM

formations. We can also notice that the higher the number
of anchors, the lower the difference between PDOP (CM )
and PDOP (C′

M ). In other words, the smaller the number
of anchors, the more beneficial are C′

M formations. The O′
M

set is particularly useful in practical applications, where the
number of anchors is usually smaller than M = 10.

C. Impact of Anchor-Target Distance on Localization Un-
certainty for O′

M Formation Geometries

In this section, we illustrate Property 2 stating that the
higher the anchor-target distance, the flatter the curvature of
the PDOP. Fig. 6 depicts PDOP contour lines in 2D space
for two formations ∈ O′

6 sharing the same geometry. In Fig.
6a, the formation C6,1 has a anchor-target distance of 6m,
which is half the anchor-target distance of C6,2 in Fig. 6b.

(a) C6,1 : ρ = 6m (b) C6,2 : ρ = 12m

Fig. 6: Two configurations of O′
6 with different anchor-tag

distances.

From Fig. 6, we observe that the PDOP curve is the same
up to a scaling factor between C6,1 and C6,2. It might give the
impression that the target uncertainty ellipse is larger for C6,1,
which is a false impression as the x and y scale are different
between the two subfigures. From the contour lines of Fig. 6,
we notice that increasing anchor-target distance results in a
flatter curvature of the PDOP. Therefore, at any point inside
the red uncertainty ellipse, the value of the PDOP for C6,2 is
smaller than for C6,1, except at the center where both PDOP
values are identical. The target position estimation is more
accurate for C6,2 compare to C6,1, thus attesting Property 2.

VI. CONCLUSIONS

This paper explores the robustness of range-only position-
ing formations in the presence of anchors positioning errors.
We provide the necessary and sufficient conditions for anchor
robots’ formations to be robust against formation deviations
while minimizing the effects of range measurement noise.
Even though the PDOP is independent of the anchor-target
distances, we demonstrate the benefit of arc-shaped forma-
tion geometries with high anchor-target distances on the tar-
get robot positioning accuracy. Simulation results highlight
the benefits of our approach particularly when dealing with
a small number of anchors.

So far, we have underestimated the target localization
uncertainty due to its approximation by the PDOP. Exper-
imental validation is our next step to confirm the benefits
of our robust formation geometries. We will equip robots in
OM and O′

M formations with ultra-wideband range sensors.
In presence of positioning errors, the experimental accuracy
and robustness of the target pose reconstruction using tri-
lateration will be compared with theoretical predictions for
both formations. Finally, we consider extending our work
for 3D target tracking to develop heterogeneous cooperation
between aerial and ground autonomous robots.

APPENDIX

A. Computation of the Hessian Matrix G at θ∗

To find the matrix G, the first and second order derivatives
of det(H⊤H) are computed from (9) at point θ∗. At critical
point θ∗, for which (12) holds, we obtain:

det(H⊤H)(θ∗) = M2

4
∂ det(H⊤H)

∂θi
(θ∗) = 0

∂2 det(H⊤H)
∂θ2

i
(θ∗) = 2

∑M
k=1 cos(2θ

∗
i − 2θ∗k)− 2 = −2

∂2 det(H⊤H)
∂θiθj

(θ∗) = 2 cos(2θ∗i − 2θ∗j )
(29)

Then, the coefficients of G = (∂
2PDOP 2

∂θiθj
)1≤i,j≤M are

computed by applying the quotient rule to (10). We get:{
∂2PDOP 2

∂θ2
i

(θ∗) = 32
M3

∂2PDOP 2

∂θiθj
(θ∗) = 32

M3 cos(2θ
∗
i − 2θ∗j )

(30)

which leads us, in a matrix form, to (19).

B. Rank of the Hessian Matrix G at θ∗

To determine the rank of G at point θ∗, we look for the
number of independent equations of:

G (θ∗) .v = 0 (31)

where v = [v1, . . . , vM ]⊤ is the eigenvector of G associated
with the null eigenvalue. This equation is equivalent to:

M∑
i=1

cjivi = 0,∀j ∈ 1, . . . ,M (32)

where cij = cos(2θ∗i − 2θ∗j ). By applying to the (M − 1)
last equations of (32) the trigonometric relation:

cji = cj1c1i − sj1s1i (33)

where sij = sin(2θ∗i − 2θ∗j ), we obtain:
M∑
i=1

c1ivi = 0

sj1

M∑
i=1

s1ivi = 0, j ∈ {2, . . . ,M}
(34)

On one hand, if ∀j ∈ {2, . . . ,M}, sin(2θ∗j − 2θ∗1) = 0,
then cos(2θ∗1 − 2θ∗j ) = 1. The system (34) simplifies to:

M∑
i=1

vi = 0 (35)



One equation remains. As a result, the eigenvalue 0 has
multiplicity M − 1, hence:

rank(G (θ∗)) = 1 (36)

This case corresponds to the square formation geometry,
which is further discussed in III-C.

On the other hand, if ∃j ∈ {2, . . . ,M}, such that
sin(2θ∗j − 2θ∗1) ̸= 0, (34) becomes:

M∑
i=1

cos(2θ∗1 − 2θ∗i )vi = 0

M∑
i=1

sin(2θ∗1 − 2θ∗i )vi = 0

(37)

resulting in 2 equations. The eigenvalue 0 has multiplicity
M − 2, giving:

rank(G (θ∗)) = 2 (38)

From (36) and (38), we conclude that:

rank(G (θ∗)) ≤ 2 (39)

C. Proof of Theorem 1

Theorem 1 states that:{∑M
i=1 cos

2(2θi) =
M
2∑M

i=1 cos(2θi) sin(2θi) = 0
⇐⇒ λmax =

16

M2
(40)

Proof. ( =⇒ ) We consider a formation geometry θ ∈ OM

such that: {∑M
i=1 cos

2(2θi) =
M
2∑M

i=1 cos(2θi) sin(2θi) = 0
(41)

The maximal eigenvalue λmax of G(θ) associated with
the eigenvector v is obtained by solving:

G(θ)v = λmaxv (42)

We introduce α = M3

32 λmax. Equation (42) is equivalent to:

M∑
i=1

cos(2θj − 2θi)vi = αvj ,∀j ∈ {1, . . . ,M} (43)

Using the cosine difference formula, (43) becomes:

cj

M∑
i=1

civi + sj

M∑
i=1

sivi = αvj ,∀j ∈ {1, . . . ,M} (44)

where ci = cos(2θi) and si = sin(2θi). Expressing (44) in
matrix form gives: c1 s1

...
...

cM sM

[
c1 . . . cM
s1 . . . sM

]
v = αv (45)

We select two rows indexed i and j of (45) for which
sij = sin(2θi − 2θj) ̸= 0. Such a selection necessarily
exists since θ satisfies (41). Without loss of generality, we
label the selected rows as 1 and 2. We get:[

c1 s1
c2 s2

] [
c1 . . . cM
s1 . . . sM

]
v = α

[
v1
v2

]
(46)

The first matrix of (46) is invertible as we have chosen θ1
and θ2 such that s21 = sin(2θ2 − 2θ1) ̸= 0. Then, we have:[

c1 . . . cM
s1 . . . sM

]
v =

α

s21

[
s2 −s1
−c2 c1

] [
v1
v2

]
(47)

Substituting (47) into (45) yields:

α

s21

 c1 s1
...

...
cM sM

[
s2 −s1
−c2 c1

] [
v1
v2

]
= αv (48)

Using the sine difference formula, we get:

v =
1

s21

 s21 s11
...

...
s2M sM1

[
v1
v2

]
(49)

By substituting (49) into (46), we obtain:

α

[
v1
v2

]
=

1

s21

[
c1 s1
c2 s2

] [
c1 . . . cM
s1 . . . sM

] s21 s11
...

...
s2M sM1

[
v1
v2

]
(50)

Further computations of (50) give:

α

[
v1
v2

]
=

1

s21

[∑M
i=1 c1is2i

∑M
i=1 c1isi1∑M

i=1 c2is2i
∑M

i=1 c2isi1

] [
v1
v2

]
(51)

We simplify (51), by developing each sum and using (41).
We get:

α

[
v1
v2

]
=

1

s21

[
s21

M
2 0

0 s21
M
2

] [
v1
v2

]
(52)

which leads to:

α =
M

2
⇐⇒ λmax =

16

M2
(53)

Equation (52) shows that v1 and v2 can be chosen in-
dependently because no relation links them. We substi-
tute [v1, v2]

⊤ with [cos(2θ1), cos(2θ2)]
⊤ and then with

[sin(2θ1), sin(2θ2)]
⊤ into (51). We obtain two orthogonal

eigenvectors u and v associated with λmax:

u =

 cos 2θ1
...

cos 2θM

 v =

 sin 2θ1
...

sin 2θM

 (54)

Proof. (⇐=) Let θ be a formation in OM such that λmax =
16
M2 is the non-null eigenvalue of G of multiplicity 2. We
have then: {

G.u = 16
M2u

G.v = 16
M2v

(55)

where u ⊥ v are two eigenvectors associated to λmax. We
choose:

u =

 cos 2θ1
...

cos 2θM

 and v =

 sin 2θ1
...

sin 2θM

 (56)



Substituting (56) into (55) yields:

∀j ∈ {2, . . . ,M},
32
M3

M∑
i=1

cos(2θj − 2θi) cos(2θi) =
16

M2
cos(2θj)

32
M3

M∑
i=1

cos(2θj − 2θi) sin(2θi) =
16

M2
sin(2θj)

(57)

We can further simplify the system (57) using the product-
to-sum formula for trigonometric functions:

∀j ∈ {2, . . . ,M},{
1
2

∑M
i=1 [cos(2θj) + cos(2θj − 4θi)] =

M
2 cos(2θj)

1
2

∑M
i=1 [sin(2θj) + sin(2θj − 4θi)] =

M
2 sin(2θj)

(58)

Using the formula for the cosine and sine of a difference,
we obtain:

∀j ∈ {2, . . . ,M},{
cos(2θj)

∑M
i=1 cos(4θi) + sin(2θj)

∑M
i=1 sin(4θi) = 0

sin(2θj)
∑M

i=1 cos(4θi)− cos(2θj)
∑M

i=1 sin(4θi) = 0

(59)

The system (59) can be reformulated as:

∀j ∈ {2, . . . ,M},

cos(2θj)

sin(2θj)

0

 .

M∑
i=1

cos(4θi)

sin(4θi)

0

 = 0


cos(2θj)

sin(2θj)

0

×
M∑
i=1

cos(4θi)

sin(4θi)

0


 .e3 = 0

(60)

Since two vectors can not be simultaneously normal and
collinear and that

[
cos(2θj) sin(2θj) 0

]T ̸= 0, it is clear
that solutions of (60) have to satisfy:{∑M

i=1 cos(4θi) = 0∑M
i=1 sin(4θi) = 0

⇐⇒

{∑M
i=1 cos

2(2θi) =
M
2∑M

i=1 cos(2θi) sin(2θi) = 0
(61)

D. Computation of the Hessian Matrix ∂2PDOP 2

∂q2

The Hessian matrix ∂2PDOP 2

∂q2 in (26) is defined as:

∂2PDOP 2

∂q2
=

[
∂2PDOP 2

∂x2
∂2PDOP 2

∂xy
∂2PDOP 2

∂xy
∂2PDOP 2

∂y2

]
(62)

Since (3) relates q with θ, we use the chain rule to compute
each coefficient of the Hessian matrix from (30). We get:

∂2PDOP 2

∂x2 = 32
M3

∑M
i=1

sin2 θi
ρ2
i

∂2PDOP 2

∂xy = 32
M3

∑M
i=1

− sin θi cos θi
ρ2
i

∂2PDOP 2

∂y2 = 32
M3

∑M
i=1

cos2 θi
ρ2
i

(63)

which leads us, in matrix form, to (26).
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