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Human arm stiffness changes in a ball-bouncing task and its effects on
stability and performance

Benoit Hureaux1,2, Maria Makarov1, Pedro Rodriguez-Ayerbe1 and Isabelle A. Siegler2

Abstract— This research focuses on a specific facet of human
motor control: the modification of the arm stiffness during ball-
bouncing. This study was prompted after observing variations
in arm stiffness during visual-motor rhythmic tasks. In previous
studies, stiffness varies during the task and seems to increase
before the impact between the ball and the racket. This paper
questions the effect of heightened stiffness at impact from the
point of view of closed-loop control. To this end, a closed-
loop system that replicates human motor control during ball-
bouncing from [1] is used. The simulation is modified with
an enhanced impact model that permits adjustments of the
arm stiffness. This paper presents a theoretical analysis of the
difference created by the stiffness modification in a simplified
version of the closed-loop system using a Poincaré map and
the eigenvalues of Jacobian linked to it. This analysis is
then compared to the results obtained on the non-simplified
simulation for further verification. The main conclusion of this
study is that stiffness plays a major role in reducing variability
in limit cases but has a lesser impact on the overall stability of
the system.

I. INTRODUCTION

Human motor control is the intricate process by which
our nervous and musculoskeletal systems work together to
produce coordinated movements. Theories from the field of
neuroscience are built to understand the mechanisms behind
how and why the brain influences human movement, ranging
from analysis of neuronal communication in diverse tasks to
in-depth studies of specific muscles [2]. The translation of
this understanding using engineering tools and its adaptation
can help design control strategies for interactive robots, rang-
ing from rehabilitation systems to human-robot interfaces.

This paper focuses on understanding the role of arm
stiffness modification in a rhythmic and hybrid task, such as
the ball-bouncing task, which is considered here as a bench-
mark. A previous study [3] observed that human participants
exhibited variations of arm stiffness during the ball-bouncing
task. The stiffness seemed to increase moments before the
ball and paddle impact and decrease afterward. The arm
stiffness adaptation has already been studied in many tasks
within the human motor control field, whether it was to
describe the arm reaction to an opposing force [4] or as a
feed-forward strategy [5]. An increase in stiffness seems to
be a typical human behavior against a perturbation, predicted
or not. However, overcompensating for a perturbation by
using too much stiffness or contracting the muscle during a
movement also seems to lead to instability. For example [6]
discussed how the Tai Chi practitioner always stays relaxed
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to ensure stability. Therefore, the contraction of the muscle
seems not to be an almighty solution, and it is in this prospect
that this paper will contribute to the understanding of human
motor control using a theoretical viewpoint. Starting from
a simulation that reproduces human motor control in a
ball-bouncing task [1], this paper will discuss the role of
changing arm stiffness in terms of stability and robustness.
This approach is distinct from usual analyses in human motor
control where the purpose is to identify the arm stiffness
resulting from a given task. A reverse path is followed here,
using a model of impact that can allow a change in the arm
stiffness. In Section II a new human motor control model for
the ball bouncing task is proposed, combining the kinematic
modeling using a neural oscillator [7] with a dynamic model
of the ball impact. In Section III the stability analysis of the
resulting dynamical and hybrid system is conducted using
Poincaré maps. Simulation results are discussed in Section
IV.

II. THE BALL-BOUNCING TASK MODEL

As a first understanding, the reader can visualize the ball-
bouncing task as using a racket to vertically bounce a ball in
the air (see Fig. 1 in [1]). The task is chosen as a rhythmic
task of the human arm. The usefulness of choosing this
task is that it allows the authors to study the continuous
motion control of the arm. Human experimentation has been
previously conducted on this task where the subjects were
asked to hit a simulated ball up to a specific target’s height
with a real racket [8]. Based on this experimentation, a model
for human motor control laws was developed [1]. Only the
motion of the ball in 1D along the vertical axis is considered.
For the sake of convenience, the kinematic chain made of the
forearm, the wrist, and the racket is reduced to a single rod
and only the elbow joint movement is considered.

A. Human motor control laws

According to [8], subjects tend to adapt their arm fre-
quency to match the ball and their movement amplitude to
reduce the target’s height error. This observation led [1] to
formulate a hypothesis on the control laws made by humans
with the following equations:

Ak+1 = Ak + λ(hp − hak
), (1)

Tr(k + 1) = Tb(k + 1), (2)

with Ak being the racket’s amplitude and hak
the ball’s apex

during the k-th cycle, hp the target’s height, Tr the racket
period and Tb the ball’s one and λ a control parameter.



These two laws (1)-(2) served as a base to develop a
human control model [1] and later were completed with a
third one that controls the human visual feedback on the task.
We will not discuss this last law here as the theoretical study
was conducted without it.

B. Closed-loop task modeling

The control laws (1) and (2) are represented in Fig. 1 in the
block diagram as the sensorimotor block and produce inputs
for the CPG block. The Matsuoka neural oscillator is widely
used in neuroscience to mimic human rhythmic behavior [9],
[10] and is thus used as a Central Pattern Generator (CPG).
The output ζ is then fed to the arm dynamic model [9].
The model is a fairly used mass-spring-damper system that
controls the arm trajectory with parameters deduced from
human experiments.
The ball, on the other hand, is quite simply following the
ballistic equation. The update on control laws is made each
time the ball reaches its apex using Tt and ha, respectively
the period and apex of the ball.

Fig. 1. Block diagram of [1] human motor control.

The limits of this model are the following:
1) The impact between the ball and racket is instanta-

neous and uses the coefficient of restitution equation,
leaving no use of the arm stiffness at impact as it does
not affect the arm movement.

2) The ball and racket masses and the ball radius are not
taken into account, which renders modification of the
perturbation produced at impact impossible.

To be able to see the arm stiffness effect on the task
behavior, the model is modified as presented in the next
section.

C. Racket and ball dynamics

The newly developed model for the impact is a double-
coupled oscillator. This model, shown in Fig. 2, was inspired
by the model of a tennis ball at impact from [11] and the
model of an arm at impact [3].

This model allows the impact stiffness to be adapted
by changing kr and enables the impact disturbance to be
modified by changing the mass mb of the ball. The damping
of the arm cr remains unchanged as an abrupt change leads
to instability [12], and the arm mass is fixed to 1kg for
simplicity’s sake. As for the ball damping cb, it is changed
to set the same quality factor as the one in [11].

Fig. 2. New impact dynamics for the closed-loop ball-bouncing modeling.

The challenging part is for the ball stiffness kb. In [11]
the stiffness is determined using an equation that would
have ensured the maximum velocity of the ball at the end
of the contact time Tc as it is a common hypothesis [13].
Tc is chosen in a range of [20-30] ms according to human
experimentation results obtained by [14].

However, coupling with another oscillator made the ball’s
stiffness equation from [11] irrelevant in our system. There-
fore, with the same method as used in [15] for the seismic
vibrator coupling system, we set the stiffness to ensure max-
imum ball velocity at the end of impact with the equation:

kb =
ω2mb(kr + ω2mr)

kr + ω2(mr +mb)
, (3)

with ω = π/Tc being half a natural period of the oscillator
in Fig. 2.

The model can be described by two coupled differential
equations (4) and (5) that we are solving with the explicit
Runge-Kutta method of order 8 implemented in the Scipy
library.

mbẍb = −mbg − (ẋb − ẋr)cb − (kb)(xb − xr − r) (4)

mrẍr = xrkr− (Vr− ẋr)cr+(ẋb− ẋr)cb+kb(xb−xr−r),
(5)

with r the ball’s radius, g the letter between f and h, xb,
xr, ẋb, ẋr the positions and speeds of respectively the ball
and racket, and Vr the speed of the unperturbed speed of the
racket as in [7] model.

The closed loop from Fig. 1 augmented by the new
impact model from Fig. 2 is now ready to be used to
study the influence of arm stiffness in the ball-bouncing task
modelization, starting with a theoretical analysis.

III. THEORETICAL STUDY OF STIFFNESS CHANGE

To conduct the theoretical study, a simple version of the
arm movement was considered instead of the Matsuoka os-
cillator in this section. The basis of the simplified assumption
is that the motion generated by the CPG in Fig. 1 could be
approximated with a sinusoidal trajectory when stabilizing
the ball-bouncing task [1]. The racket trajectory therefore
becomes:

xr = Aksin(wkt+ ϕk). (6)



A. System discretization and Poincaré map

1) Equations discretization: The ball-bouncing task is
considered a hybrid system as the physics of the ball in the
air and at impact with the racket are completely different.
During the ballistic phase, the racket follows (6), and during
impact, the ball and racket follow the equations (4) and (5).
The analysis is often made using a Poincaré map of the
moment of impact. In this article, we specifically consider
the time instant at the end of the impact phase. This analysis
can either be done in an open loop like in [16] or [17] or
with an added controller like in [1] or [7].

To define the Poincaré map, one must first define the
different equations used in the discretized version of the
system. Let’s first consider the fixed k-th point being the
end of the k-th impact between the ball and racket. By
combining equation (1) and (6) we can define the phase of
the discretized system as:

ϕk = asin

(
xr(k)

Ak

)
. (7)

ϕk is used to ensure that the racket movement in (6) is
continuous during all the simulations.

The second discretized state computed is δtk, the time
between the end of the previous impact and the new one,
which is the solution of the equation:

−Aksin(wkδtk+ϕk)+xr(k)+vb(k)δtk−0.5gδt2k = 0. (8)

The control of the racket period is connected to the two
previous definitions (7)-(8) with the equation (9) to ensure
compliance with (2):

ωk =
2π − ϕk

δtk
. (9)

The positions and speeds of both the racket and the ball at
impact, namely xr(δtk), xb(δtk), vr(δtk), vb(δtk) are quite
trivial once δtk is computed.

As the impact model is linear and invariant (we denote
the evolution matrix A in its state-space representation), the
coupled equations (4) and (5) can be solved for the time
of contact Tc. The solution is given in two steps, first the
perturbation due to impact is calculated

δX(k + 1) = eATcX(δtk) +A−1(eATc − I)U, (10)

with X(δtk) =
(
xr(δtk), xb(δtk), vr(δtk), vb(δtk)

)T
and

U =
(
0, 0,−g + rkb/mb,−rkb/mr

)T
.

Then the racket and ball movement is added to the course
of the racket and ball without perturbation, finally giving the
system’s state at the end of a cycle.


xb(k + 1)
xr(k + 1)
vb(k + 1)
vr(k + 1)

 =


Aksin(wk(δtk + Tc) + ϕk) + δX[0]
Aksin(wk(δtk + Tc) + ϕk) + δX[1]

δX[2]
δX[3]

 .

(11)
There were two main difficulties in computing the dis-

cretized version of the impact: first of all, as one can see

in (5), the system needs at each step the value of the
unperturbed racket speed, which is not constant. To address
this issue, the state was augmented with an unperturbed
version of the trajectory and speed of the racket as in
(6). The other limitation is the sensitivity to computation
errors. Indeed, the discretized system is highly prone to huge
variations compared to the continuous system if the accuracy
of the variables is not sufficient.

2) Comparison of the discretized system with the continu-
ous system: The discretized version is then compared to the
continuous system to check the reliability of the discretiza-
tion. Fig. 3 shows the evolution of the racket amplitude for a
constant target starting from different initial conditions. The
evolution obtained with the discretized model is the same as
the one obtained with the continuous model.

Fig. 3. System comparison with the discretized version for various control
parameter values. The continuous systems are the lines and their discretized
versions are the points. The continuous and discretized versions are both
simulated with only the same starting point and minor differences can be
observed.

3) Effects of the stiffness change in the discretized system:
The Poincaré map Ck+1 = f(Ck) can now be constructed
with the state Ck at the end of kth contact defined as
Ck =

(
Ak, ϕk, ωk, δtk, xb(k), xr(k), vb(k), vr(k)

)T
. The

phase plane in Fig. 4 illustrates the changes in the system’s
behavior when the arm stiffness varies.

Fig. 4. Phase plane trajectories for a system with high (red) and a system
with low (blue) arm stiffness. The limit cycles of the simulations in these
two different stiffness conditions are different albeit close.

Fig. 4 shows the evolution of the racket amplitude and
the ball speed at impact for low and high arm stiffness. The
figure displays that the attained equilibrium is a function of
the arm stiffness and that the amplitude in the equilibrium
point is smaller with higher stiffness.



B. Jacobian use for stability analysis

The Jacobian of the application f is then used to analyze
the stability of the system on a broad range of parameters.
The goal was to observe the behavior of the eigenvalues of
the matrix; one should be reminded that as the system is
considered discretized, the definition of stability is to have
||evk|| < 1,∀k ∈ n with n the Jacobian size, and evk the
k-th eigenvalue.

The application f has 8 state variables, which should
imply an 8x8 Jacobian matrix. Unfortunately, as mathematics
is always in the way of physics, the calculation of the
symbolic eigenvalues of a matrix this size is deemed to be
impossible according to Albert Rufini’s theorem.

The matrix is therefore downsized to a rank 4 matrix
because xb, xr, vr, and wk are dependent on the other
parameters. Indeed, using equations (6), (7), and (9) and
the assumption that the impact starts exactly when the ball
touches the racket and ends with the ball returning to its
radius r, we can rewrite the Poincaré map as in (10):

Ck =



Ak

ϕk

ωk

δtk
xb(k)
xr(k)
vb(k)
vr(k)


=



Ak

ϕk
2π−ϕk

δtk
δtk

Aksin(ϕk) + r
Aksin(ϕk)

vb(k)

Ak
2π−ϕk

δtk
cos(ϕk)


. (12)

This form only depends on the states Ak, ϕk, δtk and vb(k)
which allows us to write the newly reduced Jacobian in (13):

J =



∂Ak+1

∂Ak

∂Ak+1

∂ϕk

∂Ak+1

∂δtk

∂Ak+1

∂vbk
∂ϕk+1

∂Ak

∂ϕk+1

∂ϕk

∂ϕk+1

∂δtk

∂ϕk+1

∂vbk
∂δtk+1

∂Ak

∂δtk+1

∂ϕk

∂δtk+1

∂δtk

∂δtk+1

∂vbk
∂vbk+1

∂Ak

∂vbk+1

∂ϕk

∂vbk+1

∂δtk

∂vbk+1

∂vbk


. (13)

The Jacobian J , written in symbolic form and saved in
a file to reduce computation time, is then calculated at the
equilibrium point of the system to obtain the eigenvalues. If
we consider ϕ̄ such as ϕk+1 = ϕ̄ + 2π and vb(k + 1) =
vb(k) = V̄ , then using (1) and (8) we can figure out the
equilibrium of the last two states Ā and δt̄ as:

Ā =
hp − V̄

2g − r

sin(ϕ̄)
, δt̄ =

V̄ +
√
V̄ 2 + 2gĀsin(ϕ̄)

g
. (14)

Here one can notice that an expression of V̄ can be
calculated with the other states. However, the size of the
expression would have unsettled most of the readers.
In the next section, the eigenvalues of J are analyzed.

IV. RESULTS AND DISCUSSION

A. Results on the sinusoidal system

1) Numerical results on the eigenvalues: In this section,
the analysis is conducted using two values of the arm stiff-
ness: Klow = 25N/m corresponds to the value calculated
by [9] and is the baseline value; Khigh = 1025N/m
was selected according to the literature, as the human arm
endpoint stiffness on one axis can go up to 2000N/m [5].
Fig. 5 shows the variation of the maximal eigenvalue with the
ball mass for both stiffnesses. As eigvals primitive from the
Numpy library order the eigenvalues from highest to lowest it
is difficult for the authors to know if the highest eigenvalues
presented in Fig. 5 are always the same one.

Nevertheless, a pattern in the model’s eigenvalues could
be seen. One of the eigenvalues is always less than 10−15,
meaning that it is linked to a very quick converging variable,
most probably δtk as this variable converges the quickest.

The next two eigenvalues are conjugate imaginary num-
bers, meaning that the two variables linked to them should
be closely related. In that aspect, a plausible guess could be
that those eigenvalues are for Ak and vbk as the two have a
direct impact on each other.

For the last eigenvalue, the one with the highest versa-
tility, it should be from ϕk as it is the parameter with the
most undergoing change in dynamics during a simulation.
That said, those observations cannot be really verified and
therefore are not used further.

Fig. 5. Calculation of the highest eigenvalue of the system for different
control parameter values for each ball mass. The red dots are for high
stiffness simulations and the blue is for low stiffness simulations

2) Simulation results: For further analysis of the system,
we made temporal simulations on the discretized map for
Klow and Khigh. We introduced additional perturbation in
the system by changing the ball’s mass by 25% at the
25th impact. We could make two main observations on
the simulation. The first one is that the impact of control
parameter λ in (1) is far more important on the stability
convergence of the simulation than the stiffness at impact.
This is verified by using Optuna, a Python optimization
library, to check the factors that could reduce the biggest
eigenvalue of the system.

The second one is that with high stiffness the biggest
eigenvalue is smaller than the biggest eigenvalue obtained
with the same simulation in low stiffness. This tends to
support our first hypothesis that increasing stiffness was



indeed leading to more overall stability in the system.
However, the change is often too small compared to the
time scale of the system to notice a visible change. The
difference in value is indeed often between 5 and 15 percent
of the original eigenvalue ie the low stiffness eigenvalue.
The impact on convergence speed is therefore considered
negligible. Furthermore, if the perturbation was too small,
like a ball’s mass inferior to 20g, having a too high stiffness
is counterproductive as it induces instability in the system.

However, the change could be seen in the perturbation
resistance of the system. In limit cases, the high-stiffness
stimulation would resist a small perturbation whereas the
low-stiffness one would diverge. This is the case in Fig. 6
below where a perturbation in the form of a slight change in
the ball’s mass occurs at the 25th impact between the ball
and racket. In this figure, one can see that the two systems
are first stabilizing around the target’s height. But after the
perturbation hits, the high stiffness (diamond, red) system
converges back whereas the low stiffness system (circle,
blue) diverges.

Fig. 6. Simulation on a limit case where a slight change in the ball’s
mass is induced at the 25th impact. The blue dots are for the ball’s apex
of the low stiffness simulation and the red ones are for the high stiffness
simulation.

The biggest difference in simulation is not on the perfor-
mance of the system itself but as one can already observe in
Fig. 4 on the racket movement. The change in stiffness will
reduce the amplitude needed by the racket to get the ball
to the target’s height and will accordingly change the racket
phase. This change is to be expected as a higher stiffness
means a higher potential energy in the system which would
make it easier to restore a portion of that energy. However
this result is to be toned down as in human experimentation,
endpoint stiffness is closely related to the task’s dynamic
and thus to the racket movement. This means that reducing
amplitude while increasing stiffness won’t be observable in
human natural behavior.

B. Model comparison

To connect the simplified sinusoidal system used in Sec-
tion IV.A to the more realistic system with the Matsuoka
oscillator, a stability region comparison is performed. How-
ever, a strict comparison has to be taken with great care as the
control parameters had various meanings in both simulations.
In the Matsuoka simulation, λ is used to determine one of
the inputs sent to the oscillator, whereas, in the simplified

simulation, λ is the direct control of the racket’s amplitude.
The parameters used in the Matsuoka simulation were there-
fore the target height and ball mass. The stability criterion
was also changed to be the one used by [3] in his human
experiments; the ball apex needed to be at less than 2cm
from the target height for the simulation to be considered
successful. Fig. 7 below shows the differences between the
stability regions depending on the stiffnesses in the Matsuoka
simulation, and Fig. 8 the same differences in the simplified
simulation used in the theoretical analysis.

Fig. 7. Stability region comparison of the highest reachable height for the
Matsuoka system. The red diamonds are used for the high stiffness stability
region and the blue circles are for the low stiffness one.

To reduce bias, the simulations were repeated with random
starting conditions around nominal values ϕ0 for the dis-
cretized simulation and xb0 , vb0 for the Matsuoka simulation.
The overall test was considered successful if one of the
starting conditions could lead to a successful simulation. The
Matsuoka system had a smaller upper limit in the target’s
heights compared to the simplified version. This was because
the Matsuoka oscillator was a lot less stable outside of its
optimized height range, creating instabilities that did not
exist in the sinus modelization. This fact also explains the
reason why the high stiffness model could go higher than the
lower one, it reduces the instabilities created by the Matsuoka
during the simulation. This echoes the previous results shown
in Fig. 6 where high stiffness is used to reduce the variability
of the task in limit cases.

Fig. 8. Stability region comparison of the highest reachable height for the
simplified system. The red diamonds are used for the high stiffness stability
region and the blue circles are for the low stiffness one.

One can see in Fig. 7 and Fig. 8 that a higher stiffness
allows a bigger stability region, with an increase of an
average of 10cm in the Matsuoka system and more than
30cm in the simplified system. The difference between the



two systems can be explained by the fact that the simplified
system did not have perturbation created the higher they
went, making the system far more stable than the Matsuoka
one in higher target heights. The limitation of the simplified
system is, therefore, due to the energy that the system has
to produce to send the ball with enough speed to attain the
desired height rather than on the perturbations.

C. Limits of the study

As one can expect, this study has some limitations that
the authors will discuss here.

• First and foremost in the approximation of the Matsuoka
system by a sinus system, the racket movement was
closer to a 2 or even 3 sinus sum rather than just a
sinus. Even if a sinus is enough to explain the main
part of the movement, this could lead to instability in
the system that could not be found in the simplified
version of the system like the one in the upper bound
of the target’s height.

• Another limitation was that the visual feedback of
the Matsuoka system [1] was not implemented in the
simplified version. The main reason is that this feedback
was a continuous one which would have rendered the
discretization much harder to make. Attempts have
been made to add it but as of now, they have been
unsuccessful.

• The last main limit of the study was that the parameter
of the ball stiffness was linked to a chosen contact
time, in reality, it’s often a mix between both that is
seen. This constraint has limited the mass variation
range in this study. This was especially limiting on
the simplified version where an increase in ball mass
without an increase in contact time would lead to an
overstiff ball and a more stable simulation where in
reality the opposite effect should have been seen.

V. CONCLUSION

The stiffness comparison tends to show that in normal
use cases, change in stiffness does not play an active role
in ensuring faster stability convergence. Its key role is more
of a variability reducer in limit cases, meaning that high
stiffness seems useful in cases where a perturbation of the
system could tip the balance of stability. A high stiffness in
a small perturbed system could even seem counterproductive
in terms of stability and energy consumption which can be a
real issue in developing control laws for robotic arms. Those
results give a lead on why humans tend to change their
stiffness through the ball-bouncing task and a starting point
for the design of variable impedance control laws for robotic
arms. Therefore, this study is the first milestone in analyzing
the reasons for a fluctuation in endpoint stiffness in a ball-
bouncing task. Of course, the shortcomings of this simulation
make it difficult to give a definitive answer. However, by
going through this step, we gained insights into plausible
explanations of this phenomenon and its limitations. This
allows us a more precise understanding of how we will
design our future human experimentations with the end

goal being the implementation of impedance control laws
in robotic arms with stiffness variation based on human
behavior.
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