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Decentralized Collaborative Localization and Map Update with Buildings

Maxime Escourrou, Joelle Al Hage and Philippe Bonnifait

Abstract—In urban environments where GNSS performance
is degraded, localization can be performed using stable and
geo-referenced map features detected by on-board sensors.
Prior maps are prone to errors which have a direct impact
on localization accuracy. By exchanging observed features and
sharing their maps, vehicles can simultaneously improve their
localization and update the map. This paper deals with indirect
collaboration, where vehicles do not observe each other directly.
The features are obtained from building facades using 3D lidar
sensors. The paper emphasizes real-time decentralized collabo-
ration with direct communication between vehicles, without the
need for a central server. The collaboration takes place when
vehicles perceive the same geo-referenced facades. Vehicle poses
and maps are collaboratively updated using a Schmidt Kalman
filter that carefully manages the cross-covariance terms. To
maintain consistent estimates, the Kullback-Leibler Average is
used. We also present a lidar data processing pipeline to obtain
reliable observations from building facades. Real tests carried
out with experimental vehicles on the university campus are
reported. The results show that indirect collaboration makes a
significant contribution to localization and map update when
compared to a standalone method.

I. INTRODUCTION

Accurate and reliable localization is one of the funda-
mental tasks for safe navigation of autonomous vehicles. In
urban areas, Global Navigation Satellites System (GNSS) is
not sufficient to meet the localization requirements due to
multipath signals and obstructions [1]. In such environments,
vehicles can rely on stable and geo-referenced cartographic
characteristics detected by on-board sensors.

For multiple vehicles, Collaborative Localization (CL) has
demonstrated its ability to improve and robustify localization
[2]-[4]. CL is usually based on inter-vehicle measurements
that correlate the estimates of vehicle poses [5], [6]. In this
case, vehicles must be in the same field of view, which
limits the collaboration range. Collaborative Simultaneous
Localization and Mapping (C-SLAM) allows constructing
a common map while performing localization at the same
time [7]-[9]. Few studies on SLAM approaches with a prior
map can be found in the literature, such as [10]. Indeed,
some methods focus solely on localization within an existing
map without modifying it, while others construct their map
without prior information.

The objective of this work is to improve the localization of
multiple vehicles through indirect measurements by observ-
ing common landmarks in the form of building facades while
updating collaboratively the map. Buildings are very stable
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landmarks and among the most easily observable in urban
environments. They are nowadays very often referenced in
maps (e.g., OpenStreetMap — OSM) and can be efficiently
detected using 3D lidar measurements [11].

Collaboration can be performed through different archi-
tectures. The centralized architecture is easy to implement
but suffers from high computational cost since each ve-
hicle must send information to a central unit that per-
forms the processing. A decentralized architecture involves
a direct communication between vehicles. The system is
then scalable and more robust to faults. However, it may
suffer from overconfidence that results from the reuse of
the same information resulting from communication loops
(data incest). The channel filter allows the convergence to a
consistent global estimate in a decentralized way, while al-
lowing interrupted communications [12], [13]. However, this
method suffers from high computation cost where the state
of the whole system should be estimated. Another strategy
based on Covariance Intersection filter is well adapted to
decentralized data fusion but leads to pessimistic solutions
[14], [15]. Schmidt Kalman Filter (SKF) is well adapted for
decentralized architecture with communication constraints.
Indeed, it allows estimating only a part of the state vector,
while considering the impact of the non-estimated part [16]—
[18].

Exchanging point clouds for collaboration requires mas-
sive sharing of information between vehicles. Feature ex-
traction is instead performed to retrieve the key elements for
localization and map update.

Feature extraction from lidar point clouds has been studied
in many works. It allows operating on key elements of the
environment, ensuring a faster association, and a reduced
sensitivity to noise. For instance, the Lidar Odometry and
Mapping (LOAM) extracts two types of features: corners
and surfaces [19]. In this method, only geometric feature
points are used for scan-to-map registration, which may not
be sufficient for proper registration in some environments. In
[20], E-LOAM was developed to give some context to the
extracted features and optimize the registration step. For this
purpose, the method combines LOAM with Normal Distri-
butions Transform (NDT) [21]. Using OSM, the authors in
[22] propose the use of descriptors in the form of a vector of
distances each associated with an angle. Features in the form
of descriptors are offered in SegMatch [23] that represent
geometric characteristics and histograms. Descriptors can
also be obtained using machine learning approaches. For
example, SegMap creates descriptors from clustered objects
to do the association with a map that contains the same type
of descriptor [24].



In this paper, a fully decentralized CL with map update
based on vehicle-to-building measurements is presented. The
collaboration is done when at least two vehicles observe the
same building facades at the same time using their on-board
3D lidars. At this moment, they exchange vehicle poses,
covariances, cross-covariance, maps, and their lidar observa-
tions which are designed to be compact. The communicating
vehicles can then update their states with the SKF. The
poses of the non-communicating vehicles are not updated,
but their effect on the covariance is determined. Likewise,
each vehicle has its own map estimate (the poses of building
facades) which is updated at the same time. To maintain
consistency, a Kullback Leibler Average (KLA) [25] is used
to fuse the state of collaborating vehicles before applying
the SKF. Features in the form of facade poses are generated
from lidar point clouds to be used directly in the SKF.

The contributions of this paper are: (i) the presentation
of a novel method for decentralized CL with map update
using indirect measurements based on SKF, (ii) a landmark
extraction method in the form of poses from building lidar
point clouds, (iii) the experimental evaluation with real-world
data recorded with three vehicles.

The paper is organized as follows. Section II presents the
SKF used for CL and map update. Section III details the
observation generations from lidar point clouds. Section IV
reports experimental results carried out with three experi-
mental vehicles. An analysis of the performance achieved
through indirect collaboration is provided.

II. DECENTRALIZED COLLABORATIVE LOCALIZATION
BASED ON SCHMIDT KALMAN FILTER

A. Problem Statement

Let’s consider the localization of vehicles in urban en-
vironments with buildings referenced in an uncertain prior
map (e.g. OSM). Initially, this map is the same for all
vehicles where a unique identifier (ID) is associated with
each building facade and can be shared between vehicles.
The localization is done with respect to a local ENU frame
(East, North, Up) denoted M in which the coordinates of the
initial map elements are transferred. The map is uncertain in
the sense that the buildings are mapped with some errors. The
goal is to improve the localization accuracy and consistency
using collaboration between vehicles while updating the
map. Indeed, each vehicle indirectly shares its localization
information with the others via the map, which is refined
simultaneously.

Vehicles can collaborate when they observe the same
building facades (indirect measurements) at the same time.
To accomplish this, each vehicle uses wireless communi-
cation to locally broadcast the IDs of the observed facades.
These messages are then very short and consume a minimum
of bandwidth. Other vehicles in the vicinity check whether
the received IDs correspond to one of their own observations.
If there is at least one in common, they engage a peer-
to-peer communication with the sender, exchanging all the
necessary information required for a decentralized estimation
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Fig. 1: General architecture of the method. When two vehi-
cles observe a common landmark (/5 in pink), they exchange
their estimated states and fuse them with the KLA.

based on SKF. This includes sharing their maps, observa-
tions, poses and covariance matrices. The same procedure is
carried out by the other vehicles. As communication delays
are unavoidable, all observations are time-stamped with a
common date and each vehicle maintains a buffer to handle
out-of-sequence data to apply SKF updates at the right time.

The use of buildings for CL increases the range of collab-
oration. For example, even if the vehicles do not see each
other directly, they can help each other in their localization
tasks.

Consider a system of several vehicles (denoted V') and
landmarks (denoted L). The joint state vector corresponds to
the poses of the vehicles and the landmarks:

l]

Both vehicles and landmarks states are represented as 2D
poses X, = [z,y,0]7 and X; = [z,y,0]], with z and y the
position, and @ the orientation.

B. Decentralized Collaborative Estimation

Consider a vehicle v; and a subset of vehicles V; ob-
serving at least one landmark in common with v; € V.
The decentralized update of the system state using an SKF
needs a rearrangement of the state vector in two parts: an
estimated part s that includes the vehicles poses involved in
the collaboration and the landmarks poses, and a parameter
part p that contains the poses of the vehicles that do not
collaborate at this moment with v;. The p part is not updated,
but its effect on the covariance is determined. A choice was
made to consider all landmarks in the s part in this paper,
for simplification.

The state vector is then:

X
ezl e
where (X,)
X, = v/veV; , 3
{ (Xl)leL } )
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XP = (XU)1)¢% = (X'U)'UG‘Z', : )
The covariance matrix is of the form:
P, P,
P = ss sp :| . (5)
|: PPS PPP

At instant k, each vehicle has its own filter and can
make the prediction step independently of the others using
odometry data.

The predicted cross-covariance matrix between vehicles ¢
and j is

Pk = FiwPijeinFs (6)

where F; (respectively F}) is the Jacobian matrix associated
to the state transition of vehicle ¢ (respectively j). In the
absence of communication with vehicle j (i.e., 7 in p), its
evolution model is supposed to be static and F; = I.

Regarding the landmarks, the evolution model is static.
The prediction of cross-covariances between a vehicle ¢ and
a landmark j is performed similarly to (6), with F}, = I.

The update step uses the observation szj ‘ of landmark [;
done by vehicle v;, in the vehicle frame:

cosf,, sind,, O Ty — Ty,
Zl’; i=| —sinb,, cosf, O Y, — Yo, | +8
' 0 0 1 01, — Oy,
(7N

where (3 is the observation noise considered as white Gaus-
sian with covariance matrix Rl”j The construction of this
observation from the lidar data is detailed in section III. Con-
sidering the restricted communications and the decentralized
architecture, the observation vector of vehicle v; consists of
its own observations and those of the landmarks observed by
other vehicles that are common with v;.

The Jacobian matrix associated to the observation model
can be written as:

H=[H H)]. ®)

Since the used observations are between a vehicle in s and a
landmark in s, H,, is equal to zero. For more details, please
see [26].

The optimal Kalman gain for the s part in then expressed
in the form:

Kok = Pggpr HY, [HopPos 1 HD + R, 9)
where R, is the covariance matrix of the observation errors.
With the SKF, the p part is not updated, which can be
achieved by choosing the associated Kalman gain K, = 0.

Therefore, the update step of the SKF is given simply by:

Xpklk = Xpklk—15 (10)
Py kit = Ppp kjk—1 (11
Xoklk = Xopp—1 + Ks k(Zk — H(Xs ppp-1)),  (12)
Pys e = (I — Kok Ho 1) Pos k-1, (13)

with Z}. the observation vector and h the observation model
given in (7).

The cross-covariance between collaborating and non col-
laborating vehicles is computed as follows:

Py = (I — Ks 1 Hy 1) Pop g1 (14)

C. Fusion with Kullback-Leibler Average

Decentralization with communication constraints leads to
multiple map estimates and several versions of vehicle-map
cross-covariance. Indeed, each vehicle estimates its own map
and collaboratively refines it using observations from other
vehicles during update steps. This leads to differences in the
map estimates as well as in the cross-covariance with the
vehicles. v

VA
X7
tion of the full state (including all vehicles and landmarks)
by vehicle v;, and P"* the associated covariance matrix.

Before the update step of the SKF, an unweighted
Kullback-Leibler Average (KLA) [25] is used to fuse the
full states of collaborating vehicles:

In the following, we denote X" = the estima-

_ 1 & .
—1 vj —1
Pk\k—lzgz(Pmkq) ) (15)
j=1
Y D l ¢ Vj -1y
Xk\qupk\kqaz:(f’k\k_l) Xilk—17 (16)
j=1

where m in the number of collaborating vehicles. The KLA
is equivalent to the use of a covariance intersection filter,
resulting in a conservative fusion. After this step, the SKF
update step is applied (equations 9 to 14) using X k|k—1 and
Py as prediction.

The KLA guarantees consistent data fusion, provided that
the estimates to be merged are consistent. The part of the
state corresponding to vehicles in p is not predicted, and their
estimates were only updated during the last collaboration,
which may be very old. To keep a consistent estimate of
the full state, the uncertainty of the prediction of part p is
increased as follows:

P,

pp,klk—1 = Ppp,kfl\kfl + Qp (17)

where @), is the covariance representing the uncertainty fixed
according to the possible speed of the vehicles.

The general architecture of the proposed approach is
shown in figure 1.

III. FACADE OBSERVATIONS

The measurements used in the SKF are generated from
different lidar point clouds when observing facades. This
section describes the process to get the lidar observations.

A. Reference Frames

A facade is defined as a plane delimited by two 2D points
p1 and py located at ground level, and of sufficient height h
to characterize the entire surface with a Normal Distribution
(ND) grid (figure 2). By definition, a facade plane is plastered
to the exterior side of the building wall. The facade landmark
is defined by a normal vector located in the middle of the
facade, at ground level (figure 2). Each facade landmark has a
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Fig. 2: Facade plane representation. The ND grid, represented
as 3D blue ellipses, is fitted on the plane. A landmark is
represented with 2D pose [ located at the middle of [p; po]
with the normal vector.
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Fig. 3: Reference frames: L for lidar, V' for vehicle, M for
map and F; for facade [.

unique identifier, which is shared among all vehicles through
a common initial map. Since the CL is done in 2D, the
facade landmark is represented by a 2D pose [ located at
the middle of the segment [p; ps] with associated frame F;
(figure 3). These poses constitute the landmark map with
state X; (section II). For every vehicle, we also need to
manage a lidar reference frame L; and a vehicle frame V;,
which is the one to be localized.

B. Overview of the Processing Stages

In order to get the set of observations from a lidar point
cloud according to our representation of the map, five steps
are needed, illustrated in figure 4:

1) Classification: The lidar point cloud is classified in 3D
to keep only building points, using Cylinder3D, a 3D
convolution network for lidar segmentation [27]. This
step reduces the number of points to be processed and
keeps the relevant ones.

2) Registration: The building point cloud is aligned with
the prior map using the Normal Distributions Trans-
form (NDT) [28]. The transformation, obtained from
this 3D alignment with a 2D constraint, is not used for
localization, but only to perform the next step.

3) Clustering: Using the aligned point cloud, each point
is associated to the nearest facade in 2D, within a
maximum distance of 1 m.
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Fig. 4: Proposed architecture to generate the observations.

4) RANSAC: RANSAC is performed to eliminate a max-
imum of outliers [29].

5) Observation generation: An observation is extracted
from each facade fully perceived to be used in the SKF.

In the following, we detail steps 2 to 5.

Registration and clustering

In order to associate each lidar point classified as a
building with a facade, a global NDT registration is first
performed [21]. Each point is then associated to the nearest
facade, within a maximum distance. The NDT is used to
describe more precisely the shapes of the facades with less
storage compared to other methods like Iterative Closest
Point (ICP) [30].

To do so, each facade plane is divided into a grid that
contains 3D normal distributions, chosen uniformly [31]
(figure 2). Then, these normal distributions are transformed
from the facade frame F; to the map frame M, to perform
a global registration:

19)

Mmp  F

i =" T

M M F M T
Py =MRy Fopy MRL

where Wi and Fip, are the mean and covariance of
the ™ normal distribution of the I facade, Ty, is the
transformation matrix from the facade frame Fj to the map
frame M and M Rp, is the associated rotation matrix.

The registration consists in finding the optimal transforma-
tion between the constructed NDs from the map and the lidar
point cloud by minimizing a negative log-likelihood function
with a gradient descent optimization. The nearest ND to the
lidar input points is obtained by searching the centroids of
NDs using a kdtree. Even if a 3D point cloud is used, the
final transformation is constrained to a 2D pose by setting
the z translation,  and y rotations to O at each step, using
the projected gradient descent [32].

After the registration step, each point classified as “build-
ing” in the lidar point cloud is associated with the nearest
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Fig. 5: Point cloud projected on the RANSAC model and
observation generation. The extreme projected inliers £ and
E constitute the segment whose midpoint and normal are
retrieved to form the observation Zl”j L

facade by projecting the points on the segments that represent
the facades. If the association distance is greater than a
threshold (e.g., 1 m), the point is not considered.

Final refinement with RANSAC

A RANSAC is applied to the clustered points to keep only
the points that best represent the shape of the facade, whether
it is a straight line or a curve [29]. Two RANSAC models are
then applied, a 2D line and a circle. The model that gathers
the most inliers is selected. The points are then projected on
the selected RANSAC model (figure 5). This assumes that
the targeted facade is flat or circular.

Observation generation

The goal now is to get an observation in the form of a pose
(at most one per facade). We consider that an observation
can be built from a facade if it is fully observed by a
vehicle. In practice, this is done by checking that the ratio
of the measured segment length over the map facade length
is between 0.95 and 1.05.

For this purpose, the extremes E; and F, are chosen to be
the furthest inliers projected on the RANSAC model. Then
for these points, the middle and the normal of the segment
are computed (figure 5) in a comparable manner to what was
done for the map, so as to obtain the same orientation.

The observation Zl”j * is then obtained in the lidar frame,
and is transformed into the vehicle frame to be used in the
SKF.

IV. EXPERIMENTAL RESULTS
A. Real data collection

In this section, the approach is evaluated using experi-
mental data collected with three equipped vehicles. The data
acquisition was performed on the campus of the Université
de Technologie de Compiegne that presents a challenging
urban environment, as shown in figure 6. A difficult area
featuring narrow passages, metallic buildings, walkways, and
stairs, disturbs the localization and the lidar observation.
Each vehicle was equipped with a 32 layers Velodyne lidar
VLP32-C and odometry sensor using wheel speed and gyro
sensors. A SPAN CPT Inertial Measurement Unit (IMU)
with GNSS with Post Processed Kinematic (PPK) was used
for centimeter level accuracy ground-truth. Acquisition were
made at a frequency of 10 Hz for lidar measurements
and 100 Hz for dead-reckoning. GNSS was only used for
initialization and is therefore not part of the localization
system.

Fig. 6: The three experimental vehicles in an urban canyon.
An example of a ND grid is represented on the right along
with the facade plane and the normal vector in the middle [
of the segment.

The vehicles were driven along planned trajectories, which
are shown in figure 7. This figure illustrates the facade
IDs and also highlights indirect collaborations with black
connections. The initial map was retrieved from OSM with
some simplifications to merge a few collinear facades. The
recording and the processing of the experimental data was
done using ROS (Robot Operating System) and PCL (Point
Cloud Library) for point cloud manipulations. The NDT used

is a modification of the multithreaded PCL version!.

B. Scenario

The trajectories of the three vehicles are displayed in
figure 7. The vehicle name is the same as the color of
its trajectory. At the beginning of the experiment, vehicles
Blue and Green collaborate directly by crossing each other
until ¢ = 12s. Orange is in standalone until ¢ = 8s where
it joins the two other vehicles, the three vehicles are then
collaborating through the landmark 13. Blue is alone from
t = 12s while Orange follows Green in the canyon, where
they collaborate. Blue collaborates again with Green around
t = 30s and collaborates then with both vehicles for around
20 seconds. Finally, Blue continues alone from t = 47s,
and Orange follows Green until ¢ = 65s, where their paths
separate. They collaborate through the observations of the
landmarks 2 and 36 (among others). Orange and Green
have some occasions to collaborate with Blue through the
observation of the landmark 9 around ¢ = 60s, which shows
that long-range collaboration without line of sight is possible.

C. Results

The presented results aim to evaluate the contribution of
the collaboration, by comparing with the standalone case.
The comparison with a centralized filter is not studied in this
paper, but can be found in [26] in a simulation environment.

As there are unavoidable erroneous measurements, the
SKF has been robustified through a Fault Detection and
Exclusion (FDE) stage using residuals based on Mahalanobis

Thttps://github.com/koide3/ndt_omp
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vehicles involved in the collaboration (light green for two
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Fig. 9: Euclidean position errors of Orange (in solid lines),
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Fig. 10: Euclidean position errors of Blue (in solid lines),
with associated uncertainty (in dots).

distances between the observations and their predictions. The
faulty observations are then excluded from the data fusion.

Localization

Figures 8, 9 and 10 show the Euclidean position errors
with the corresponding uncertainty region for the three
vehicles. Results for both collaborative and standalone ap-
proaches are presented, incorporating FDE. For Green, an in-
crease in error in collaborative mode can be noticed between
t = 25s and t = 30s, which coincides with the start of the
complex area where the facades are difficult to detect. The
collaborative errors are higher than standalone ones, which
can be explained by undetected erroneous measurements.
Then the error decreases rapidly after collaborating with
Blue around ¢ = 30s and remains small until the end of
the collaboration at ¢ = 38s. This can be explained by the
augmentation of the number of observations thanks to the
collaboration. In standalone mode, the vehicle experiences
a more significant increase in error within the difficult area



Vehicle Mean absolute error (cm) Consistency (%)
Collaborative [ Standalone Collaborative [ Standalone
Blue 394 46.5 99.1 97.7
Green 50.9 62.6 95.4 85.3
Orange 57.9 64.6 82.0 71.7
[ All H 49.4 [ 57.9 H 92.2 [ 86.9 ]

TABLE I: Errors and consistency (99.7% uncertainty bound).
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Fig. 11: Position error of landmark 31 estimated by Orange.

as fewer observations are available. Indeed, within this area,
only one or two observations are made by the vehicle. The
collaboration adds one or two observations, which represents
a large increase in available information.

Regarding Blue, the standalone method encounters issues
around ¢ = 40s while traversing the difficult area. Green and
Blue assist each other through collaboration. Indeed, these
two vehicles approach from opposite directions. Collabora-
tion allows each vehicle to obtain an improved version of
the map. Starting from ¢ = 8s, Orange collaborates with
Green and follows it from ¢ = 20s. The error of Orange
increases between 40 and 60 seconds, which corresponds
to the difficult area. As observed with other vehicles, the
standalone method appears to have more difficulty correcting
errors in this area.

Table I shows the mean Euclidean position error for all the
vehicles. Collaboration enhances accuracy by approximately
15% compared to standalone mode.

Table I also presents the consistency obtained with the
proportions of errors exceeding the 3o region along the x
and y axes (equivalent to a proportion of 99.7% for a normal
distribution). It can be seen that collaboration improves
the consistency of localization compared to the standalone
method. Specifically, 92.2% of the errors fall within the
uncertainty region for the collaborative case, whereas this
value is only 86.9% for the standalone case. This is mainly
due to the increased number of observations used through
collaboration, enabling a better state estimation performance.

Map Update

A ground truth of the map carried out by surveyors is
available. As the representations of the facade lengths are
not always the same between the ground truth and OSM,
errors are only calculated along the facade normal.

The overall map average error remains in the same order
for collaborative and standalone methods, with 36.0 cm in
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Fig. 12: Position error of landmark 2 estimated by Blue.
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Fig. 13: Position error of landmark 6 estimated by Blue.

collaborative versus 36.7 cm in standalone. This similarity
can be attributed to an initial map with good relative posi-
tioning of landmarks. However, amelioration can be seen on
distinct landmarks.

Figure 11 illustrates the position error of landmark 31 as
estimated by Orange. The benefits of the collaboration are
clear in this case. Indeed, Orange is not the first vehicle
to observe this landmark; it collaborates with Green, which
observed it previously. As a result, Orange achieves a more
accurate estimation through collaboration.

Figure 12 shows the estimation of landmark 2 by Blue. In
standalone mode, the initial error of this landmark remains
unchanged, since landmark 2 is not observed by Blue.
However, through collaboration with Orange, Blue improves
the estimation of this landmark without directly observing it.
Better accuracy with less pessimistic uncertainty region can
be observed. This improvement is beneficial for Blue in the
future when it does observe this landmark, as it already has
a more accurate estimation with reduced uncertainty.

Figure 13 shows the example of an almost perfect land-
mark in the initial map (landmark 6), which is not directly
observed by Blue. In this case, collaboration results in a
slight increase in error compared to the initial value. In
the standalone case where this landmark is not updated, the
initial error in maintained. However, collaboration signifi-
cantly reduces the uncertainty while maintaining consistency,
making the landmark more valuable for localization.

Experimental results show that localization based on the
perception of buildings by a lidar with OSM priors can
achieve an average accuracy of 50 cm. This is an interesting



result, obtained without any absolute localization system
like GNSS (except for initialization). The results also show
that collaboration between vehicles improves both accu-
racy and consistency of localization and map estimation.
Collaboration via common landmarks enables long-range
collaborations (over 100 m) even in situations without a
direct line of sight between vehicles.

V. CONCLUSION

The fully decentralized CL with map update presented
in this paper uses vehicle-to-building observations. The
Schmidt-Kalman filter was used to estimate the poses of
communicating vehicles and to simultaneously update the
map in a consistent manner with KLA. A pipeline for feature
extraction from lidar building point clouds was proposed.

The proposed approach to estimate vehicle poses with
map update, in a decentralized way, demonstrates improved
localization performance in terms of accuracy and consis-
tency. This improvement is mainly due to the enhancement
of the map during navigation and the increased number of
observations. Collaboration occurs when at least two vehicles
observe the same building facade at the same time. Then,
vehicles can collaborate even when they do not see each
other, which increases the range of collaboration as shown
by the real data experiments carried out with three vehicles.

In future work, we intend to improve the feature extraction
method and to enable real-time implementation by avoiding
the exchange of entire maps.
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