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h i g h l i g h t s

• A nonlocal theory of sound propagation in porous media is validated.
• Porous media are rigid-framed and saturated with a viscothermal fluid.
• The validation geometry is taken to be cylindrical circular tubes.
• Results of nonlocal theory match with those of Kirchhoff’s exact solutions.
• Results based on Zwikker and Kosten’s local theory are also presented.
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a b s t r a c t

Amacroscopic nonlocal theory of sound propagation in homogeneous rigid-framed porous
media permeated with a viscothermal fluid has been recently proposed in this journal. It
accounts for the first time for the full temporal and spatial dispersion effects, independently
of the nature of the microgeometry. In this paper this new Maxwellian theory is validated
in the case of sound propagation in cylindrical circular tubes, by showing that it matches
exactly the long-known direct Kirchhoff–Langevin’s solutions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In a recent paper [1] a fundamental and new nonlocal macroscopic acoustic theory has been developed, describing
in a typically Maxwellian manner the phenomenon of linear sound propagation and attenuation in a macroscopically
homogeneous rigid-framed porous medium permeated with a viscothermal fluid, which is governed by the classical
Navier–Stokes–Fourier equations of near-equilibrium fluidmechanics [2] at the pore scale. Assuming for simplicity isotropy
or propagation along a principal axis, this macroscopic theory introduces a macroscopic acoustic velocity field V = ⟨v⟩,
where ⟨ ⟩ refers to a macroscopic averaging operation, and amacroscopic pressure stress field, denoted H .1 These two fields
appeared to play roles similar to those of the electric and magnetic macroscopic fields, E = ⟨e⟩ and H , in electromagnetic

∗ Corresponding author.
E-mail addresses: nnemati@mit.edu (N. Nemati), denis.lafarge@univ-lemans.fr (D. Lafarge).

1 In the absence of the mentioned symmetries, H becomes a symmetric tensor. The theory and procedures described in [1] can be generalized without
any difficulty. The permittivities become symmetric tensor operators.

0165-2125/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
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wave propagation in a medium [3]. The macroscopic pressure field H , in general different from the direct macroscopic
average of the pore-scale pressure field, is defined such as the ‘Umov’ productHV represents the ‘acoustic part of the energy
current density’, by analogywith a similar interpretation of its counterpart in electromagnetics [4], the ‘Poynting–Heaviside’
product E × H . Gaining in this manner the character of generalized susceptibility functions [5], [1, Section 2.4], the
corresponding two acoustic permittivities are determined in terms of two independent action–response problems.

The resulting theory, which must be valid in principle for all microgeometries of the porous medium, and fully takes –
for the first time – into account both temporal and spatial dispersion effects, lends itself to direct verifications in various
geometries. We give here a check on, in one of the simplest workable test cases: that of the propagation in amedium having
parallel cylindrical circular pores of radius R. The possible mode solutions, in the fluid-filled pores, are known since the
classical work of Kirchhoff [6] and Langevin [7,8].

We first describe in Section 2, how the general macroscopic acoustic nonlocal theory derived in [1], give in the
above simple geometry, definite predictions for the possible wavenumbers and impedances of the axisymmetric modes,
irrespective of the frequencies. In Sections 3 and 4, we present the details of the direct Kirchhoff–Langevin’s and alternative
nonlocal macroscopic Maxwellian computations of these quantities. In Section 5, we show numerically that the two
approaches give identical results, irrespective of the frequency range. This provides a clear validation of the new nonlocal
theory.

2. General ideas in nonlocal theory, and application to the special case of cylindrical pores

Wenote that there are usually two differentways to perform the smoothing-out represented by the averaging symbol ⟨ ⟩:
ensemble averaging or volume averaging, whichmay be associated to the names of J.W. Gibbs andH.A. Lorentz, respectively.
In the Gibbs conception the macroscopic theories do not refer to what happens in a given sample of the medium. They
describewhat happens, in an averaged sense, in an ensemble of realizations of themedium. Themacroscopicmean operation
⟨ ⟩ then designate expectation values performed at a given time and spatial position, over the complete set of realizations.
In the Lorentz conception, the macroscopic theories do refer to a given sample. The averaging operation ⟨ ⟩ is performed
by integrating over an averaging volume, at a given time. This volume should be taken sufficiently large to smooth out
the irregularities, which requires in general, satisfying some separation conditions on different length scales. Namely, a
‘Lorentz’ macroscopic wave theory will be well-defined only when the macroscopic medium spatial variations occur at
a scale sufficiently large compared to the wavelengths, themselves sufficiently large compared to the volume-averaged
scale; for a macroscopically uniform medium the former condition is automatically satisfied and it is sufficient that the
wavelengths be large compared to the size of the averaging volume.

We recall now the particular macroscopic acoustic issue we considered in [1], and the way we proposed to solve it.
Within Gibbs’s conception the whole space is assumed to be divided in two complementary phase regions which depend
on the realization ω: the void (pore) region Vf (ω) which is a connected region fully permeated with a single homogeneous
viscothermal fluid, and the complementary solid-phase regionVs(ω), set to remainmotionless and at ambient temperature.
The pore-wall region is denoted by ∂V(ω). Macroscopic homogeneity is assumed.

A small-amplitude acoustic wave disturbance propagates in the fluid in the macroscopic direction x, a principal axis of
the medium. At the pore level and for each realization the following classical Navier–Stokes–Fourier linear fluid-mechanics
equations can bewritten inVf (ω) (see Eqs. (1) and notations in [1]; b = ρ ′/ρ0 is the condensation, τ the excess temperature)

ρ0
∂v
∂t

= −∇p + η∇
2v +


ζ +

η

3


∇(∇ · v) (1a)

∂b
∂t

+ ∇ · v = 0 (1b)

γχ0p = b + β0τ (1c)

ρ0cp
∂τ

∂t
= β0T0

∂p
∂t

+ κ∇
2τ (1d)

with boundary conditions

v = 0, τ = 0 (2)

on ∂V(ω).
Extending to zero the fields in the solid region Vs(ω), and introducing the following macroscopic averaged fields (ex is

the unit vector along axis x):

Vex ≡ ⟨v⟩ , and B ≡ ⟨b⟩ (3)

we argued in [1] that there are ‘Maxwell’ acoustic density fields D = Dex and H , and susceptibilities operators ρ̂ and χ̂ , such
that the following macroscopic nonlocal ‘Maxwellian’ equations hold true:

field equations:

∂B
∂t

= −
∂V
∂x

,
∂D
∂t

= −
∂H
∂x

(4)
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constitutive relations:

D(t, x) = ρ̂V (t, x) =

 t

−∞

dt ′


dx′ρ(t − t ′, x − x′)V (t ′, x′) (5a)

H(t, x) = χ̂−1B(t, x) =

 t

−∞

dt ′


dx′χ−1(t − t ′, x − x′)B(t ′, x′). (5b)

As discussed in [3,9] in the electromagnetic case, suchmacroscopic difference-kernel constitutive equations are themost
general ones that can bewritten. They only express the spatial and time homogeneity of thematerial properties, and the fact
that, since V and B are not completely independent but related by the first Eq. (4), it is useless to add a convolution B term
in (5a) or a convolution V term in (5b). Regarding these Eqs. (4) and (5), the only question then to be asked is: how are the
kernel functions ρ(t, x) and χ(t, x), or their Fourier coefficients ρ(ω, k) and χ(ω, k), determined by the microgeometry?
The answer to this question has been conjectured in [1] to be simple, provided the following fundamental thermodynamic
definition of the H field is applied:

H⟨v⟩ = ⟨pv⟩. (6)
It refers to Schoch’s interpretation of the quantity pv as an ‘acoustic part of energy current density’ in the fluid [10], implying
that the product HV defined by (6) possesses the same interpretation at the macroscopic level. It makes the macroscopic
acoustic stress fieldH akin to themacroscopicmagnetic fieldH , which defines through the productE×H an ‘electromagnetic
part of energy current density’. Making appropriate use of this definition (6) (see [1, Section 4]), the constitutive Fourier
coefficients ρ(ω, k) and χ(ω, k) have been conjectured to be directly related to themacroscopic response of the permeating
fluid subject to a harmonic fictitious pressure termP (t, x) = P0ei(kex·x−ωt) added to the pressure, either in theNavier–Stokes
equation (1a), or the Fourier equation (1d). Once the functions ρ(ω, k) and χ(ω, k) are determined, the normal wave
wavenumbers along the x-axis in themedium kl, with l = 1, 2 . . . , canbe computed as the possible solutions of the ‘Maxwell’
dispersion equation

ρ(ω, k)χ(ω, k)ω2
= k2 (7)

directly obtained from Eqs. (4) and (5) by passing over to the Fourier transform. For a given solution kl, and thanks to the
fundamental identification (6) of the H field, the associated characteristic impedance Zl can be defined by setting Zl = H/V .
Again passing over to the Fourier transform of Eqs. (4) and (5), there follows the expression of the characteristic impedance

Zl =


ρ(ω, kl)χ−1(ω, kl). (8)

We notice that these normal wave quantities kl and Zl describe, within the macroscopic Gibbs viewpoint, ‘coherent fields’
in the language of the multiple-scattering theories; they do not involve a scale separation condition for their definition. As
such, they remain meaningful irrespective of the frequencies. In particular, and because the set of random translations of a
given periodicmedium leads to an homogeneous Gibbsmedium, the nonlocal theory is capable to predict thewavenumbers
of the periodic medium Bloch modes and define their characteristic impedances, irrespective of the frequencies.

Within Lorentz’s conception the macroscopic wave propagation is formulated in a similar, but restricted manner. Here,
we are given a unique sample of the medium, which is macroscopically homogeneous in a volume-averaged sense. The
Eqs. (1) and (2) are respectively written in the corresponding Vf , and on its boundary ∂V . The volume averaging ⟨ ⟩ is
best performed in Russakoff’s manner by convolution with a test function—a signal analysis refinement of Lorentz’s ball
average [11–13]. The macroscopic equations (3)–(8) and upscaling action–response procedures determining the functions
ρ(ω, k) and χ(ω, k) are the same, but these equations and procedures now make sense only as far as the spatial variations
of the fields respect the long-wavelength separation condition.

In what follows we consider an especially simple geometry that falls under the scope of both Gibbs’s and Lorentz’s
conception. To establish in a simple, yet nontrivial, manner the nonlocal theory’s upscaling procedures, determining ρ(ω, k)
and χ(ω, k) and stated in [1, Section 4], we consider a medium having parallel cylindrical circular pores of radius R and axis
x. Through the solution of the ‘Maxwell’ dispersion equation (7) and the insertion of the solution in Eq. (8), the nonlocal
theory should predict all possible wavenumbers kl and characteristic impedances Zl in the medium, without any limitation
on frequencies.2 As the different pores are equivalent, they carry the samewave fields, and the averaging operation ⟨ ⟩, either
Gibbs or Lorentz, is expressed in terms of a cross-section average ⟨ ⟩p performed over one single pore: ⟨ ⟩ = φ⟨ ⟩p with φ
the porosity. Therefore, the wavenumbers kl should coincide with those predicted by Kirchhoff–Langevin theory of sound
propagation in a fluid-filled cylindrical circular tube. Apart from the porosity factor, the associated Zl should also coincide
with those predicted by Kirchhoff–Langevin theory when substituting ⟨ ⟩p for ⟨ ⟩ in Eq. (8) and making the cross-section
averaging. In what follows we make abstraction of the irrelevant porosity factor φ and omit the index p.

2 Here, we have no frequency limitation in the Lorentz conception, because the averaging volume – a cross section – is of zero thickness, ensuring the
separation condition. As regards the Gibbs conception it runs as follows. Within the ‘total volume’ normalization of the Gibbs average ⟨ ⟩, as defined in [1]
Section 3.1, we imagine that we are given an ensemble � of samples ω, each obtained by random translation in two radial directions, of one reference
sample ω0 . This sample presents identical parallel pores of radius R, which are directed in the axial direction x, distributed in periodic manner in the two
radial directions, and permeated with the fluid. The ensemble-average operation over the space �, becomes the cross-section average ⟨ ⟩ in a single pore,
multiplied by the porosity. In fact, the fields relating to the harmonic action–response problems considered in [1] have the form a(ω, k, r)e−iωt+ikx , with r
the radial coordinate in one pore and with amplitudes a(ω, k, r) independent of x, and thereby, needed to be averaged only over a cross-section.
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3. Kirchhoff–Langevin theory: computation of the wavenumbers and impedances in cylindrical circular tubes

The issue of sound propagation in a hollow solid cylindrical circular tube filled by the air has been solved long ago
by G. Kirchhoff [6], accounting for the effects of viscosity and thermal exchanges. The boundary conditions (2) have been
applied on the tube wall (r = R) and justified by the neglect of solid wall vibrations, and the very large heat capacity and
heat conduction coefficient of the solid part compared to the fluid part. In Kirchhoff’s treatment, the air is an ideal gas (the
thermal expansion coefficientβ0 is replaced by 1/T0) and the second viscosity is neglected. P. Langevin [7,8], later completed
Kirchhoff theory by considering the full Navier–Stokes–Fourier linear equations (1). We recall here Kirchhoff–Langevin
theory in some detail, in order to use it later for Maxwellian developments.

We first substitute the state Eq. (1c) in the Fourier equation (1d) and use the general thermodynamic identity (Eq. (25)
in [1]) to obtain the following alternative form of (1d)

∂τ

∂t
=

γ − 1
β0

∂b
∂t

+
κ

ρ0cv
∇

2τ . (9)

Following Rayleigh’s presentation [14], using a temperature variable τ ′
= β0τ/(γ − 1), and introducing the reference

adiabatic ca and isothermal ci sound speed, which verify ρ0χ0c2a = 1, c2a = γ c2i , the Eqs. (1c) and (9) are written in simpler
forms

p
ρ0

= c2i b + (c2a − c2i )τ
′ (10)

and

∂τ ′

∂t
=

∂b
∂t

+
κ

ρ0cv
∇

2τ ′. (11)

Assuming that the variables v, b, p, τ ′, vary with time like e−iωt , and eliminating the pressure and condensation, give rise to
the following velocity–temperature equations

−iωv −
η

ρ0
∇

2v = −∇X (12a)

X =


c2a −

η

3 + ζ

ρ0
iω


τ ′
+

κ

ρ0cv iω


c2i −

η

3 + ζ

ρ0
iω


∇
2τ ′ (12b)

∇ · v − iωτ ′
−

κ

ρ0cv
∇

2τ ′
= 0. (12c)

Eliminating the velocity, results in the excess temperature wave equation

ω2τ ′
+


c2a − iω


κ

ρ0cv
+

4η
3 + ζ

ρ0


∇

2τ ′
+

κ

ρ0cv iω


c2i − iω

4η
3 + ζ

ρ0


∇

2
∇

2τ ′
= 0. (13)

Letλ1 andλ2 be the two, small and large, solutions of the associated Kirchhoff–Langevin free-fluid characteristic equation

ω2
+


c2a − iω


κ

ρ0cv
+

4η
3 + ζ

ρ0


λ +

κ

ρ0cv iω


c2i − iω

4η
3 + ζ

ρ0


λ2

= 0. (14)

The small solution – mainly real – describes propagating acoustic waves with small absorption, and the large solution –
purely imaginary – highly damped diffusive entropic waves. The temperature variable τ ′ solution to (13) will write

τ ′
= A1ϕ1 + A2ϕ2 (15)

with the functions ϕ1 and ϕ1 verifying: ∇2ϕ1 = λ1ϕ1 and ∇
2ϕ2 = λ2ϕ2. The velocity v will write v = v ′

+ B1∇ϕ1 + B2∇ϕ2,
with v ′ the vortical part, such that

∇
2v ′

=
−iωρ0

η
v ′, ∇ · v ′

= 0. (16)

The relations B1,2 =

κ/ρ0cv + iω/λ1,2


A1,2 between coefficients B and A follow from (12c).

Considering now the axisymmetric fields propagating in the right-going x direction in a cylindrical tube of radius R filled
with the visco-thermal fluid, we want to determine normal modes proportional to e+iklx, as functions of radial coordinate r ,
where the kl’s,ℑ(kl) > 0, l = 1, 2, . . . , are complex wavenumbers to be specified as functions of frequency and tube radius.
In what follows, for convenience, the index l labeling the different axisymmetric mode solutions will be omitted.

For these mode solutions the operator ∇, resp. ∇
2, can be replaced by ikex + er∂/∂r with er the radial unit vec-

tor, resp. ∂2/∂r2 + ∂/r∂r − k2. The different fields a(t, x) can be replaced by their amplitudes a such that a(t, x)
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= a(r)e−iωt+ikx. By elementary calculations, there follows that the corresponding amplitudes ϕ1 and ϕ2 will be described
by Bessel functions ϕ1,2 = J0


r


−λ1,2 − k2

. Writing the vortical velocity v ′ in the form v ′

= u′ex + q′er , with axial

and radial amplitudes u′ and q′ independent of azimuthal angle, it is easy to see that Eqs. (16) imply u′ is the solution to
∂2/∂r2 + ∂/r∂r


u′

=

−iω/ν + k2


u′, where ν ≡ η/ρ0 is the kinematic viscosity and q′ is determined by the relation:

q′
=

−ik/(−iω/ν + k2)


(∂u′/∂r). As a result: u′

= Aϕ, where ϕ is the Bessel function ϕ = J0

r

iω/ν − k2


, and

q′
= A


−ik/(−iω/ν + k2)


(∂ϕ/∂r). Gathering these expressions and writing the total velocity as v = uex + qer , we find

that u and q are given by

u = Aϕ + ik


κ

ρ0cv
+

iω
λ1


A1ϕ1 + ik


κ

ρ0cv
+

iω
λ2


A2ϕ2 (17a)

q =
−ikA

−iω
ν

+ k2
∂ϕ

∂r
+


κ

ρ0cv
+

iω
λ1


A1

∂ϕ1

∂r
+


κ

ρ0cv
+

iω
λ2


A2

∂ϕ2

∂r
. (17b)

Because of the vanishing of velocity and excess temperature at the tubewall, the expressions (17a)–(17b) and (15) vanish
at r = R, giving three homogeneous equations which have nontrivial solutions only if their determinant is zero. In this
manner the following dispersion equation is obtained:

κ

ρ0cv
+

iω
λ1


1

ϕ1w

∂ϕ1

∂rw
−


κ

ρ0cv
+

iω
λ2


1

ϕ2w

∂ϕ2

∂rw
−

k2
−iω
ν

+ k2


iω
λ1

−
iω
λ2


1
ϕw

∂ϕ

∂rw
= 0. (18)

The index w indicates that the functions and derivatives are evaluated at the tube wall. Eq. (18) is the well-known
Kirchhoff–Langevin dispersion equation. It has a series of discrete complex wavenumber solutions kl(ω), ℑ(kl) > 0,
l = 1, 2, . . . , which can be sorted by convention in ascending order of the values of ℑ(kl): ℑ(k1) < ℑ(k2) < · · ·. To
determine these numbers kl(ω), a simple Newton scheme can be used.

In the lossless limit η, ζ , κ → 0, (18) simplifies and tends to the equation J1

R


ω2/c2a − k2


= 0, yielding the following

k0l starting values for the Newton scheme: k20l = ω2/c2a − x2l /R
2, where xl ≥ 0 are the successive zeros of the function J1(x).

As J1(0) = 0, the first zero is x1 = 0, and the first starting value is k01 = ω/ca. Without losses, at a given frequency, there are
one (k01), or more, real positive solutions, describing right-going propagating waves, followed by an infinite discrete set of
purely imaginary solutions with ℑ(k0l) > 0, describing evanescent waves. In general, a few Newton iterations are sufficient
to make these starting lossless purely real or purely imaginary solutions k0l (to which may be added small imaginary or real
parts), converge towards the complex solutions kl. As we consider the waves propagating in the direction +x, which can be
created by a source placed on the left and thus attenuate on the right, we select the solutions with positive imaginary parts,
which dampen like e−ℑ(kl)x.

There remains to see how to define and compute the associated impedances Zl(ω). For a given mode solution l, the fields
depend on only one independent arbitrary complex amplitude constantA. It corresponds to the arbitrary choice of the sound
pressure level and phase. Writing the two independent conditions expressing the vanishing of τ ′ and u at the tube wall, we
find, between the amplitudes A, A1 and A2, relations having the form: A = Aik (iω/λ1 − iω/λ2) ϕ1wϕ2w , A1 = −Aϕwϕ2w
and A2 = Aϕwϕ1w . The fields then write as follows

u
ikA

=


iω
λ1

−
iω
λ2


ϕ1wϕ2wϕ −


κ

ρ0cv
+

iω
λ1


ϕwϕ2wϕ1 +


κ

ρ0cv
+

iω
λ2


ϕwϕ1wϕ2 (19a)

q
A

=


iω
λ1

−
iω
λ2


ϕ1wϕ2w

k2
−iω
ν

+ k2
∂ϕ

∂r
−


κ

ρ0cv
+

iω
λ1


ϕwϕ2w

∂ϕ1

∂r
+


κ

ρ0cv
+

iω
λ2


ϕwϕ1w

∂ϕ2

∂r
(19b)

b
A

= −


1 +

κ

ρ0cv iω
λ1


ϕwϕ2wϕ1 +


1 +

κ

ρ0cv iω
λ2


ϕwϕ1wϕ2 (19c)

p
−Aρ0

=


c2a + c2i

κ

ρ0cv iω
λ1


ϕwϕ2wϕ1 +


c2a + c2i

κ

ρ0cv iω
λ2


ϕwϕ1wϕ2 (19d)

τ ′

A
= −ϕwϕ2wϕ1 + ϕwϕ1wϕ2. (19e)

The expressions on the right determine normalized modal field patterns which are fixed as soon as one substitutes for k,
one of its possible values kl.

As we have insisted, in the proposed nonlocal macroscopic theory, we define a macroscopic pressure field H by means
of the Eq. (6). Here, as we identify the mean operation ⟨ ⟩ with a cross-section average, for a given mode, the field H is
computed by inserting the fields (19a) and (19d) in the equation H⟨u⟩ = ⟨pu⟩, where ⟨f ⟩ =

1
πR2

 R
0 dr

 2π
0 rdϑ f . In this
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manner, the characteristic complex impedance Zl(ω) is unambiguously defined by setting

H = Zl⟨u⟩, i.e. Zl =
⟨pu⟩
⟨u⟩2

. (20)

Using the known formulae giving the cross-section average ⟨ ⟩ of Bessel functions ϕ, ϕ1 and ϕ2 and their products, the
impedance factor Zl(ω) is a function of ω parametrized by k = kl, which writes analytically as a ratio of sums containing 6
terms, each made up of a product of 6 Bessel’s functions multiplied by expressions involving ω, k2l , λ1 and λ2.

Knowing the complex wavenumber kl(ω) and impedance Zl(ω) of a given radial mode solution l, an equivalent-fluid
complex density ρl(ω) and bulk modulus χ−1

l (ω) might be defined through setting relations having the usual form (see

e.g. [15]) kl = ω/cl = ω
√

ρlχl and Zl = ρlcl =


ρlχ

−1
l , i.e.

ρl(ω) =
kl
ω
Zl =

kl
ω

⟨pu⟩
⟨u⟩2

, χ−1
l (ω) =

ω

kl
Zl =

ω

kl

⟨pu⟩
⟨u⟩2

. (21)

Like the impedance factors Zl(ω) in (20), the densities and bulk modulii ρl(ω) and χ−1
l (ω) in (21) are the expression of

closed-form functions of ω parametrized by kl, F(ω, kl), directly computable once kl is evaluated.

4. Nonlocal Maxwellian theory: computations of the same wavenumbers and impedances

We describe now, the alternative computation of these same quantities kl(ω), ρl(ω), χl(ω), and Zl(ω), that must be
possible as explained in Section 2, using the method of the macroscopic nonlocal Maxwellian theory [1]. We need first
to determine the nonlocal susceptibility functions ρ(ω, k) and χ(ω, k).

4.1. Determination of the nonlocal density ρ(ω, k)

To compute ρ(ω, k), we consider the response of the fluid subjected to the action of an external driving bulk force f
(per unit volume), which derives from a fictitious harmonic pressure waveform inserted in the Navier–Stokes equation (see
Sections 2.9 and 4 in [1]). Thus we consider solving the action–response problem given by the Eqs. (1) written in the tube
r < R, with external driving bulk force f = −∇P = −ikexP0e−iωt+ikx inserted in the right-hand side of Eq. (1a), and
boundary conditions (2) at the tube wall r = R.

With calculations similar to those which have been done before, the velocity–temperature equations (12) and temper-
ature equation (13) are the same, with source terms +f /ρ0 and −k2P/ρ0 inserted in the right-hand sides (13) and (12a),
respectively. A particular solution of the temperature equation is τ ′

p = Ck2P/ρ0, with

C =


ω2

−


c2a − iω


κ

ρ0cv
+

4η
3 + ζ

ρ0


k2 +

κ

ρ0cv iω


c2i − iω

4η
3 + ζ

ρ0


k4
−1

.

The complete temperature solution is this particular solution added to the general solution (15) of the homogeneous equa-
tion (13)

τ ′
= τ ′

0 + τ ′

p = A1ϕ1 + A2ϕ2 + C
k2

ρ0
P . (22)

Similarly, the complete expression of the velocity is v = uex + qer = u0ex + q0er + vp, where u0 and q0 are written as in
(17a)–(17b), and vp = upex is the particular solution determined by (12c) with τ ′

= τ ′
p, giving, ikup =


iω − κk2/(ρ0cv)


τ ′
p.

Only the x component u is required to compute ρ(ω, k). However, the radial component q needs also to be written as it
is involved in the boundary conditions, by means of which the amplitudes A, A1 and A2 are finally fixed. Both components
write accordingly

u = Aϕ + ik


κ

ρ0cv
+

iω
λ1


A1ϕ1 + ik


κ

ρ0cv
+

iω
λ2


A2ϕ2 +


−iω +

κ

ρ0cv
k2

C
ik
ρ0

P (23a)

q =
−ikA

−iω
ν

+ k2
∂ϕ

∂r
+


κ

ρ0cv
+

iω
λ1


A1

∂ϕ1

∂r
+


κ

ρ0cv
+

iω
λ2


A2

∂ϕ2

∂r
. (23b)

Now,we seek the excess pressure solution as the last required quantity. It has the complete form: p = p0+pp. The particular
solution pp is determined by (1c), written in the form of (10), with τ ′

= τ ′
p, b = bp, and iωbp = ikup. Thus

p
ρ0

=


c2a + c2i

κ

ρ0cv iω
λ1


A1ϕ1 +


c2a + c2i

κ

ρ0cv iω
λ2


A2ϕ2 +


c2a − c2i

κ

ρ0cv iω
k2

C
k2

ρ0
P . (24)
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The boundary conditions imply that the three quantities, excess temperature (22) and the two components of velocity (23a)
and (23b), should vanish at the tube wall r = R. This yields a linear system, whose solution uniquely determines the three
response amplitudes A, A1 and A2, in terms of the driving pressure amplitude constant P0. Knowing the response fields u in
(23a) and p in (24) as functions of ω, k and r , is all we need to compute the density ρ(ω, k). According to the conjectured
upscaling procedure [1] Section 4, we assume that in the present action–response problem, the role of themacroscopic field
H in the Eqs. (4) and (5) is played by the field P+P , where P is the macroscopic part of the response pressure field p, which
is defined by

⟨pv⟩ = P⟨v⟩, i.e. ⟨pu⟩ = P⟨u⟩. (25)

This assumption leads to Eq. (69) in [1], which gives here

ρ(ω, k) =
k(P + P )

ω⟨u⟩
. (26)

Putting the expressions (23a) and (24) in (26) and using the known formulae giving the cross-section average ⟨ ⟩ of Bessel
functions ϕ, ϕ1 and ϕ2 and their products, the nonlocal density is obtained as a function ofω and k, which writes analytically
as a ratio of sums containing 12 terms in the numerator, 10 terms in the denominator, eachmade up of a product of 6 Bessel’s
functions multiplied by factors involving ω, k2, λ1 and λ2. To save time, instead of seeking its most compact final form, we
have done a direct Matlab programming for this lengthy function expression of ρ(ω, k), with ω and k as input arguments.

4.2. Determination of the nonlocal bulk modulus χ−1(ω, k)

The same type of calculations can be performed to compute χ−1(ω, k). Here, we consider the response of the fluid
subjected to the action of an external driving bulk rate of heat supply Q̇ (per unit volume and unit time), which derives
from a fictitious harmonic pressure waveform inserted in the Fourier equation (see Sections 2.9 and 4 in [1]). Thus we
consider solving the action–response problem given by the Eqs. (1) written in the tube r < R, with external driving rate of
heat supply given by Q̇ = β0T0(∂P/∂t) = −iωβ0T0P0e−iωt+ikx inserted in the right-hand side of Eq. (1d), and boundary
conditions (2) at the tube wall r = R.

With calculations similar to those which have been done before, the velocity–temperature equations (12) and tempera-
ture equation (13) are the same, with source terms −iωγχ0P and −(iω − νk2)γ χ0iωP , respectively inserted in the right-
hand sides (12c) and (13). A particular solution of the temperature equation is τ ′

p = −C(iω − νk2)γ χ0iωP , with the same
constant C as before. The complete excess temperature solution is this particular solution added to the general solution (15)
of the homogeneous equation (13)

τ ′
= τ ′

0 + τ ′

p = A1ϕ1 + A2ϕ2 − C(iω − νk2)γ χ0iωP . (27)

Likewise, the complete velocity solution is in the form: v = uex + qer = u0ex + q0er + vp, where u0 and q0 are written as
in (17a)–(17b), and vp = upex is the particular solution determined by (12c) with the source term −iωγχ0P inserted and
τ ′

= τ ′
p, giving ikup = (iω − κk2/ρ0cv)τ ′

p − iωγχ0P . We obtain for the two components of the velocity

u = Aϕ + ik


κ

ρ0cv
+

iω
λ1


A1ϕ1 + ik


κ

ρ0cv
+

iω
λ2


A2ϕ2 +


−iω +

κ

ρ0cv
k2

C(iω − νk2) − 1


γχ0

ω

k
P (28a)

q =
−ikA

−iω
ν

+ k2
∂ϕ

∂r
+


κ

ρ0cv
+

iω
λ1


A1

∂ϕ1

∂r
+


κ

ρ0cv
+

iω
λ2


A2

∂ϕ2

∂r
. (28b)

The complete pressure solution, similarly, is written as p = p0 + pp, where pp is determined by (1c), written in the form of
(10), with τ ′

= τ ′
p and b = bp, iωbp = ikup. Thus we have

p
ρ0

=


c2a + c2i

κ

ρ0cv iω
λ1


A1ϕ1 +


c2a + c2i

κ

ρ0cv iω
λ2


A2ϕ2

− C(iω − νk2)iω

c2a − c2i

κ

ρ0cv iω
k2


γχ0P − c2i γχ0P . (29)

The condensation solution will now also be required. It may be written from (10) and the expressions (27) and (29), which
yield

b =


1 +

κ

ρ0cv iω
λ1


A1ϕ1 +


1 +

κ

ρ0cv iω
λ2


A2ϕ2 − C(iω − νk2)iω


1 −

κ

ρ0cv iω
k2


γχ0P − γχ0P . (30)

As before, the boundary conditions imply that the three quantities, excess temperature and the two components of velocity
(27), (28a) and (28b), should vanish at the tube wall r = rw = R. This yields a linear system whose solution uniquely de-
termines the three response amplitudes A, A1 and A2, in terms of the driving amplitude constant P0. Knowing the response
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Table 1
Fluid properties used in all computations.

ρ0 (kg/m3) T0 (K) c0 (m/s) η (kg m s−1) ζ (kg m s−1) κ (Wm−1 K−1) χ0 (Pa−1) cp (J kg−1 K−1) γ

1.205 293.5 340.14 1.84 × 10−5 0.6η 2.57 × 10−2 7.17 × 10−6 997.54 1.4

fields u in (28a), p in (29) and b in (30) as functions of ω, k and r , is what we need to compute the bulk modulus χ−1(ω, k).
According to the conjectured upscaling procedure [1, Section 4], we assume that in the present action–response problem,
the role of the macroscopic field H in the Eqs. (4) and (5) is played by the field P + P , where P is the macroscopic part of
the response pressure field p, which is defined as before by (25), and at the same time, the role of the macroscopic field B is
played by the averaged field ⟨b + γχ0P ⟩. This leads to Eq. (73) in [1], which writes here

χ−1(ω, k) =
P(ω, k) + P

⟨b(ω, k, r)⟩ + γχ0P
. (31)

Putting the expressions (28a), (29), (30) in (25) and (31), and using the known formulae giving the cross-section average
⟨ ⟩ of Bessel functions ϕ, ϕ1 and ϕ2 and their products, the nonlocal bulkmodulus is obtained in analytical form, as a function
of ω and k. It is a very lengthy expression involving a number of terms of the type seen before for ρ(ω, k). As before to save
time, we have done a direct Matlab programming for this function χ−1(ω, k), with ω and k as input arguments.

4.3. The matching with Kirchhoff–Langevin theory

Given the functions ρ(ω, k) and χ(ω, k), the possible wavenumbers kl in the medium are found by solving the ‘Maxwell’
dispersion equation (7). The associated impedances Zl are found by (8). For the proposed macroscopic nonlocal theory to
be correct, this ‘Maxwell’ dispersion equation (7) should be mathematically equivalent to the original Kirchhoff–Langevin
dispersion equation (18). Both equations ought to have the same set of solutions kl; moreover, the macroscopic impedances
Zl (8) and (20) ought also to be the same. Using the point of view of both approaches, this matching holds if and only if, the
following equalities l = 1, 2, . . . are satisfied:

ρl(ω) =
kl
ω
Zl = ρ(ω, kl), χ−1

l (ω) =
ω

kl
Zl = χ−1(ω, kl). (32)

The calculations to be performed in order to study the mathematical equivalence of (18) and (7) appear very tedious,
because of the large number of terms to be collected and rearranged in order to express the mean term ⟨pu⟩. Additionally,
it is even not obvious that the mathematical identity between the two forms of the dispersion equation would directly
appear, once the calculations are done. Thus in what follows, the easier way to establish the validity of the theory, is to
make a direct numerical check on the relations (32). The quantities on the left, computed entirely along Kirchhoff–Langevin
theory, will be referred by the index K for Kirchhoff–Langevin; the quantities on the right, computed entirely within the
nonlocal Maxwellian theory and its upscaling procedures, will be referred by the indexM for Maxwell.

5. A check on the nonlocal Maxwellian theory

Wedescribe inwhat follows the validation of the nonlocal theory through three frequency regimes referred to as ‘narrow’
tube, ‘wide’ tube, and ‘very wide’ tube, in acoustic literature [16]. In all calculations the parameters of the air are set to
the values shown in Table 1. Given the radius R and the frequency f , we proceed as follows to evaluate the different
quantities. To evaluate Zwikker and Kosten density and bulk modulus ρZ and χ−1

Z , the formulae (A.6), (A.7) and (A.9),
reported in the Appendix, are used. As shown in this Appendix, these Zwikker and Kosten’s values correspond to a local
Maxwellian description which neglects the phenomenon of spatial dispersion. To evaluate Kirchhoff–Langevin’s density
and bulk modulus of a given mode – not necessarily the least-attenuated mode considered in Zwikker and Kosten theory –
we first determine Kirchhoff–Langevin’s mode wavenumber kK by solving, via the Newton scheme, the dispersion equation
(18) which is an equation of type F(ω, k) = 0. We have an explicit analytical expression of the function F(ω, k), which also
yields in analytical form the partial k-derivative. Once a wavenumber k = kK solution to (18) is determined, the density ρK
and bulk modulus χ−1

K can be analytically computed using the relations (21).
To evaluate anew the density and bulk modulus for a given macroscopic normal wave, entirely within the nonlocal

Maxwellian theory, we now first determineMaxwell’s wavenumber kM by solvingMaxwell dispersion equation (7). Because
the corresponding function F(ω, k) is given by a Matlab program, its partial k-derivative is now evaluated numerically.
Compared with Kirchhoff–Langevin dispersion equation (18), the Newton scheme for Maxwell dispersion equation (7) is
less stable and requires more iterations to converge. Once a possible wavenumber k = kM is determined, Maxwell’s density
ρM = ρ(ω, kM) and bulk modulus χ−1

M = χ−1(ω, kM) can be computed analytically for the corresponding wave, using the
Matlab programming of the lengthy functions (26) and (31).
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Table 2
Narrow tubes—least attenuated plane mode. Density
and Bulk modulus.

ρZ 1.6066193 + 23.39190009i
ρK 1.60661313809 + 23.391900424437i
ρM 1.60661313809 + 23.391900424437i
χ−1
Z 99620.16441 − 1043.52791i

χ−1
K 99620.16409534 − 1043.53176900i

χ−1
M 99620.16409534 − 1043.53176900i

5.1. Narrow tubes: R = 10−4 m, f = 100 Hz

This configuration is the same as the one considered by Stinson [17]. Such radius and frequency are typical regarding pore
dimensions of porous materials and frequencies involved in low-frequency noise control applications [18]. By definition, in
the low frequency range the viscous skin depth δ = (2ν/ω)1/2 and thermal skin depth – of the same order for air – are
greater than R. Here, with a viscous skin depth, two times the radius, the fundamental least-attenuated mode is mostly
diffusive and the higher order modes are highly attenuated. For the least attenuated mode, which is named the plane wave
mode as its pressure profile is quasi flat, the computed values of the density and bulk modulus are given in Table 2.

Zwikker and Kosten local theory is very satisfactory. Themain relative discrepancies are in the order of 10−6 and concern
the real part of the density and the imaginary part of the bulk modulus. Notwithstanding, a clear validation of the upscaling
procedures is provided by the exactmatching observed in Table 2, betweenKirchhoff–Langevin directmathematical solution
and nonlocal Maxwellian solution. Within the local theory, the value 1.6 of the real part of the density is interpreted as
the ambient density ρ0 = 1.2, times the visco-inertial factor α0 = 4/3. This value corresponds to the fully developed
parabolic ‘Poiseuille’ flow established in this frequency range (see e.g. [19] (21) for the significance and definition of α0).
The imaginary part ℑ(ρ) is interpreted as η/(ωk0), where k0 = R2/8 represents the tube permeability. The real part of
the bulk modulus is interpreted as the ambient atmospheric pressure: as the compression is mostly isothermal, one finds
ℜ(χ−1) = γ −1χ0 = P0. Its imaginary part is interpreted as the quantity−[(γ −1)/γ ](ωk0/ν ′)P0 (easily deduced using the
low-frequency expansions in [19]), where ν ′

≡ ν/Pr ≡ κ/(ρ0cp).
We note that, in Kirchhoff–Langevin’s calculations, the Newton convergence towards wavenumber kK is relatively

insensitive to the starting value. Convergence is obtained by starting from the lossless case solution k = ω/ca, the
Zwikker–Kosten solution, or the value k = 6+ 2i taken in [17]. On the contrary, in Maxwell’s calculations, the convergence
towards thewavenumber kM is sensitive to the starting value. Ameaningless unattenuated valuewhich is not reported here,
is found when using as starting value the lossless-relating solution k = ω/ca. For the first higher order mode, the imaginary
part of the wavenumber is already in the order of 5 × 104i. This leads to a large imaginary part in the complex arguments
of the Bessel functions ϕ and ϕ1,2, which may prevent doing reliable computations with Matlab. The bulk modulus seems
very close to zero and is not estimated in a reliable manner.

5.2. Wide tubes: R = 10−3 m, f = 10 kHz

The same configuration is considered in [17].With radius R now beingmore than 50 times of the viscous skin depth δ, the
least attenuated plane wave mode is a well-propagating mode. For this least attenuated plane wave mode, the computed
values of the density and bulk modulus are reported in Table 3. As expected, Zwikker and Kosten local theory is still very
satisfactory in this regime.3 It yields the results corresponding to the Johnson et al. [20] and Champoux–Allard [21] high-
frequency asymptotic expansions of the density and bulkmodulus, in terms of the viscous and thermal characteristic lengths
Λ and Λ′ (both equal to the tube radius, here). The relative discrepancies with Kirchhoff–Langevin exact theory are in the
order of 10−3 for the imaginary part of the density and bulkmodulus. Maxwell values are remarkably indistinguishable from
Kirchhoff–Langevin’s, which by itself, again provides a validation of the upscaling procedures. Notwithstanding, because of
lower imaginary parts in the Bessel functions, a precise numerical verification of the higher order modes is now feasible. It
shows the wanted coincidences.

Let us show, as an example, the results relating to the first higher-order axisymmetric mode. Its cutoff frequency, around
207 kHz, is well beyond the computation frequency 10 kHz. While this mode is still mostly evanescent, its macroscopic
characteristics ρ, χ−1, shown in Table 4, are precisely obtained. The relative discrepancies, in the order of 3 · 10−9 on the
real part of the density and 7 · 10−9 on real part of the bulk modulus, are not meaningful. Their origin must be traced
back to the loss of precision in the Matlab Bessel functions. It is interesting to notice, for these higher order modes, the
negative real part of the bulk modulus. This is the type of behavior described for metamaterials made of daisy chained
Helmholtz resonators [25], a negative real part of the wavenumber also being present and associated with the phenomenon
of negative group velocity. Spatial nonlocality plays an essential role in this behavior. Indeed, without spatial nonlocality
the local Zwikker and Kosten description would be obtained. No higher-order modes would exist.

3 The radius is still a small fraction – 1/34 – of the wavelength, which justifies Zwikker and Kosten’s simplifying assumptions, see Appendix.
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Table 3
Wide tubes—least attenuated plane mode. Density
and Bulk modulus.

ρZ 1.2315315 + 0.0274330i
ρK 1.231530808362 + 0.027453005128i
ρM 1.231530808362 + 0.027453005128i
χ−1
Z 137957.879 − 1406.1i

χ−1
K 137957.823561287 − 1407.920077798i

χ−1
M 137957.823561287 − 1407.920077798i

Table 4
Wide tubes—first higher-order axisymmetricmode.
Density and Bulk modulus.

ρK 3662717.006 − 109385009.002i
ρM 3662717.005 − 109385009.001i
χ−1
K −323505053.99 + 28854278537.01i

χ−1
M −323505053.93 + 28854278536.78i

Table 5
Very wide tubes—least attenuated mode. Density
and Bulk modulus.

ρZ 1.2054 + 0.0004i
ρK 0.7210323319 − 4.5486444405i
ρM 0.7210323319 − 4.5486444405i
χ−1
Z 139391.4 − 20.6i

χ−1
K 82793.27306 − 526992.34910i

χ−1
M 82793.27306 − 526992.34910i

Table 6
Very wide tubes—first five modes. Densities and Bulk modulii.

ρ (kg/m−3) χ−1 (Pa)

0.72103233188 − 4.54864444048i 82793.273058 − 526992.34910i
0.389255008 − 80.473941133i 31495.2156 − 9359957.04375i
−0.371923523 − 389.4963732483i −111665.822 − 45594436.85207i
−4.537814 − 2808.960059i −1053940.56 − 335497383.40i
−15.689167 − 10386.487842i −3933561.2 − 1278741768.38i
−25.61790 − 17487.62974i −6706462. − 2194904861.7i

5.3. Very wide tubes: R = 10−2 m, f = 500 kHz

Here, the radius is about fifteen times greater than the wavelength. Thus, the separation condition assumed in Zwikker
and Kosten theory, λ ≫ R, is no longer satisfied. In this regime the least attenuated mode is not a plane mode; the sound
energy tends to be concentrated near the walls [16]. The computed values of the density and bulk modulus for this mode
are indicated in Table 5.

The considerable differences compared to Zwikker and Kosten values indicate the crucial effects of the spatial nonlocality
in this regime. We recall that in Zwikker and Kosten local theory, the pressure is viewed as a cross-sectional constant and
no essential difference is established between the pressure, the mean pressure, and the field H (see Appendix). Zwikker and
Kosten local theory also leads to considering, here, that the velocity profile is nearly flat: the boundary layers at the tube
wall have a micrometric extent which is a tiny fraction (≈3 × 10−4) of the radius. Thus, the Zwikker and Kosten real part
of the density, necessarily tends to the ambient value ρ0 = 1.205. The actual, significantly lower value ℜ(ρ) = 0.72 of the
real part of the effective density, is a direct signature of the breakdown of the assumptions incorporated in this Zwikker and
Kosten treatment. As the pressure and the axial velocity are now both variable across the section, the macroscopic pressure
field H is actually to be carefully distinguished from the mean pressure field.

In these circumstances, the precise matching obtained between Kirchhoff–Langevin and Maxwell values in Table 5, is
a clear validation of the upscaling. This matching is precisely obtained, also, for the higher order modes. For example, we
report in Table 6 the densities and bulk modulii of the first six least attenuated modes, indicating the decimals which are
found to be the same, in the Kirchhoff–Langevin andMaxwellian computations. It can be noted that, from the second higher
order mode, negative–negative densities and bulk modulii are found.
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6. Conclusion

In this paper, considering the easily workable case of a material having cylindrical circular identical pores, we have given
a simple validation of a new nonlocal macroscopic theory, recently developed in [1] with the aim of providing a general
description of sound propagation in homogeneous rigid-framed porous materials permeated with a viscothermal fluid.
It has been observed that this theory, thanks to its fundamental Umov–Heaviside–Poynting–Schoch definition (6) of the
macroscopic acoustic stress field H , properly takes into account the nonlocal behavior of the macroscopic fields. It describes
all different macroscopic waves (cross-sectional averaged axisymmetric modes, here), in various physical regimes of the
wave propagation classified in [16].

After presenting briefly the general method to determine the complex effective densities and bulk moduli, or
wavenumbers and impedances through nonlocal theory, we have shown how to compute them for the particular case of
axisymmetrical sound wave modes in circular tubes. In order to conveniently and easily present the method of calculating
these quantities in this geometry, we have taken advantage of the way in which Kirchhoff–Langevin dispersion equation
could be obtained. The validation of the nonlocal theory was based on comparing the results of these calculations, according
to this theory on one hand, and the Kirchhoff equation on the other hand. In addition, using the Zwikker and Kosten local
theory, complex density and bulkmodulus associatedwith the least attenuatedwave, the onlymodewhich can be described
by this method, have been computed. This allowed to observe the discrepancies appearing between the results coming from
Zwikker and Kosten local theory, and the results coming from nonlocal theory or Kirchhoff equation, especially, in the very
wide tubes regime.

It may be highlighted that the new nonlocal-relating upscaling procedures are non-perturbative procedures, fundamen-
tally different from the perturbative procedures derived through the conventional two-scale asymptotic homogenization
process [22–24]. In forthcoming papers, applications of these precise acoustic nonlocal homogenization procedures will
be made for the case of nontrivial geometries, including metamaterials. Indeed, while in the case of cylindrical ducts the
present complete non-perturbative inclusion of spatial and temporal dispersion effects leads only to relatively small or
marginal extensions of the local treatment, it will be seen that it leads, in the case of nontrivial geometries, to the interest-
ing metamaterial behaviors [25].

Appendix. Zwikker and Kosten local theory

Kirchhoff–Langevin theory of sound, describe the possible wave field solutions to the Navier–Stokes–Fourier linear
equations (1) in the fluid-filled cylindrical circular tube r < R, subject to the boundary conditions (2) at r = R. It has been
shown in this paper that, once suitably averaged over the cross section, Kirchhoff–Langevin axisymmetric wave fields can be
described in terms of the nonlocal macroscopic Maxwellian theory developed in [1]. Kirchhoff–Langevin theory is relatively
heavy, however; in acoustic applications, the much simpler Zwikker and Kosten theory [15] is most often sufficient. In a
long-wavelength limit, λ ≫ R, it gives results indistinguishable, in practice, from those of the full nonlocal theory.

In this Appendixwe show that Zwikker andKosten theory, allowing for temporal dispersion only, is a ‘local’ simplification
of the complete Maxwellian theory. The aim of this theory is to find frequency-dependent density and compressibility
functions, ρZ (ω) and χZ (ω), such that in harmonic regime

ρZ (ω)
∂V
∂t

= −
∂P
∂x

, χZ (ω)
∂P
∂t

= −
∂V
∂x

(A.1)

where V and P are the cross-section averages of velocity and pressure. Knowing ρZ (ω) and χZ (ω)would entirely specify the
tube propagation characteristics. It would give one propagation constant, kZ = ω

√
ρZ (ω)χZ (ω), and one characteristic

impedance, ZZ =


ρZ (ω)χ−1

Z (ω), where the index Z stands for ‘Zwikker and Kosten’. These refer in fact to the least
attenuated wave, which is named in this context the ‘plane wave’ mode (the pressure profile is quasi plane over the cross
section). We note that, in the framework of these simplifications, one also admits the existence of a relation having the form

ρ ′

Z (ω)
∂⟨τ ⟩

∂t
= β0T0

∂P
∂t

(A.2)

with ⟨τ ⟩ the cross-section average of the excess temperature, and ρ ′

Z (ω) another complex frequency-dependent response
function. The necessity of this relation, simply comes from the similarity between (1a) and (1d). It is easy to find the relation
between ρ ′

Z (ω) and χZ (ω). Combining (1b) and (1c) and averaging over a cross-section, an exact general relation between
∂P/∂t , ∂⟨τ ⟩/∂t , and ∂V/∂x is obtained: γχ0(∂P/∂t) = −∂V/∂x + β0(∂⟨τ ⟩/∂t). Putting in this equation the relation (A.2)
and using the general thermodynamic identity (Eq. (25) in [1]), the relation between the two functions is found to be

χZ (ω) = χ0


γ − (γ − 1)

ρ0cp
ρ ′

Z (ω)


. (A.3)

Now we observe that the Eqs. (A.1) can be put in exactly the same form as the Maxwellian equations (4)–(5) with,
however, the notable difference that they do not include the phenomenon of spatial dispersion.
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field equations:

∂B
∂t

= −
∂V
∂x

,
∂D
∂t

= −
∂H
∂x

(A.4)

constitutive relations:

D(t, x) =

 t

−∞

dt ′ρZ (t − t ′)V (t ′, x) (A.5a)

H(t, x) =

 t

−∞

dt ′χ−1
Z (t − t ′)B(t ′, x), H ≡ P (A.5b)

(the real kernel functions ρZ (t) and χZ (t) are defined to have the complex Fourier amplitudes ρZ (ω) and χZ (ω) involved in
Eqs. (A.1)).

The interpretation of the equivalenceH ≡ P is that the pressure profile is assumed to be flat. This is addressedmore fully
below. For themoment, we note that, as the Eqs. (A.5) are purely local in space, the Eqs. (A.4) and (A.5) are incompatiblewith
the Eqs. (1) and (2). Indeed, as we have seen, Eqs. (1)–(2) consistently lead to Maxwellian macroscopic acoustic equations
(4)–(5)which are nonlocal in space. Thus,what Zwikker andKosten theory is doing to arrive atmacroscopic equations having
the local form (A.1), is not to solve the complete Eqs. (1)–(2), but some truncated simplified versions of the latter. These
simplified equations, determining the functionsρZ andχZ , can be obtainedby applying the classic two-scale homogenization
theory and retaining the leading terms only (see e.g. [24, Appendix A]). We can guess here the correct Zwikker and Kosten
functions even more easily, on the simple physical ground that the necessary simplified equations will have to neglect the
spatial dispersion.

Because spatial dispersion is discarded, the spatial variation of the pressure gradient term in Eq. (1a) should be neglected
for the purpose of determining the fluid velocity pattern. This suggests solving the fictitious action–response problem:
∂v/∂t = ν∇

2v + f /ρ0 and ∇ · v = 0, for r < R, with v = 0 at r = R, and driving force given by f = −∇P = exf0e−iωt . The
incompressibility condition arises here, because, in considering f0 as a spatial constant, we are actually making abstraction
of the dilatation–compression of the fluid. The corresponding density ρZ (ω), such that, −iωρZ (ω)⟨v⟩ = f , or, to compare
with (26), such that (with v = exu0e−iωt ), ρZ (ω) = f0/(−iω⟨u0⟩), is the wanted Zwikker and Kosten density. It is found by
elementary calculations to be given by

1
ρZ (ω)

=
1
ρ0

[1 − ξZ (ω)] (A.6)

where ξZ (ω) is the following Zwikker and Kosten relaxation function

ξZ (ω) =
2J1

( iω

ν
R2)1/2


( iω

ν
R2)1/2J0


( iω

ν
R2)1/2

 . (A.7)

In a similar manner, the spatial variation of the time derivative pressure term in Eq. (1d) should be neglected for the
purpose of determining the excess temperature pattern. This suggests solving the fictitious action–response problem:
∂τ/∂t = ν ′∇

2τ + Q̇/(ρ0cp) for r < R, with τ = 0 at r = R, and driving rate of heat supply Q̇ = β0T0(∂P/∂t) = Q̇0e−iωt .
The corresponding function ρ ′

Z (ω), such that, −iωρ ′

Z (ω)⟨τ ⟩ = Q̇ , by elementary calculations, is found to be

1
ρ ′

Z (ω)
=

1
ρ0cp

[1 − ξZ (ω Pr)] (A.8)

where ξZ (ω) is the previous relaxation function (A.7) and Pr = ηcp/κ is the Prandtl number. Finally, since ρ ′

Z is related to
the compressibility χZ by the general relation (A.3), Zwikker and Kosten’s end result for χZ (ω) is

χZ (ω) = χ0 [1 + (γ − 1)ξZ (ω Pr)] . (A.9)

As long as one neglects spatial dispersion, viscous and thermal effects are separated. The former determine the density, and
the latter the compressibility.

In conclusion we note that, since the pressure gradient term in Eq. (1a) is represented by the spatially constant term f ,
and the pressure time derivative term in Eq. (1d) is represented by the spatially constant term Q̇ , the excess pressure p itself
is assimilable to a constant over the cross-section. Thus, when writing the fundamental definition ⟨up⟩ = H⟨u⟩ of the H
field, the excess pressure p can be extracted from the averaging symbol and it turns out that H = p = P (since a constant
coincides with its mean). As such, no distinction appears between the mean wave pressure P and the effective macroscopic
wave pressure H .
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