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CHAPTER 2

Acoustic Metamaterial
JUN XU, NAVID NEMATI, NICOLAS VIARD and
NICHOLAS FANG∗

Massachussetts Institute of Technology, USA

DENIS LAFARGE

Laboratoire d’Acoustique de l’Université du Maine, France

2.1. Introduction

Over the past decade, electromagnetic metamaterials have shown
tremendous potential in many disciplines of science and technol-
ogy, and have led to a broad interest in devising techniques for
manipulating different classes of waves with unconventional materi-
als. Among them, acoustic metamaterials show the greatest promise
for manipulating acoustic waves in a novel fashion for imaging, com-
munication, detection and sound protection applications. Because of
similar governing equations of electromagnetic waves and acoustic
waves, which are the Maxwell equations and Helmholtz equations,
respectively, the successes of metamaterials study in electromag-
netic wave can be extended to the acoustic community. Permittivity
and permeability of materials are used to describe electromagnetic
wave properties, while acoustic wave properties are determined by

∗Corresponding author: nicfang@mit.edu
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Table 2.1. Analogy between electromagnetic and acoustic variables and mate-
rial characteristics.

Electromagnetism (TMz) Acoustics Analogy

∂Ez

∂x
= −iωµyHy

∂P

∂x
= −iωρxvx

∂Ez

∂y
= iωµxHx

∂P

∂y
= −iωρyvy

∂Hy

∂x
− ∂Hx

∂y
= −iωεzEz

∂vx

∂x
+
∂vy

∂y
= −iωχP

Electric field Ez Acoustic pressure P P ↔ −Ez

Magnetic field Hx, Hy Particle velocity vx, vy vx ↔ −Hy, vy ↔ Hx

Permittivity εz Dynamic compressibility χ χ ↔ εz

Permeability µx, µy Dynamic density ρx, ρy ρx ↔ µy , ρy ↔ µx

the mass density and compressibility of materials. Moreover, in a
two-dimensional (2D) case, when there is only one polarization mode,
the electromagnetic wave has scalar wave formulation. The two sets of
equations for the electromagnetic and the acoustic waves in isotropic
media are dual of each other by the replacement as shown in Table 2.1
and this isomorphism holds for anisotropic medium as well. Table
2.1 presents the analogy between acoustic and transverse magnetic
fields in 2D under harmonic excitation. It is noted that this analogy
between the electromagnetic and acoustic waves is not unique. We
can also have the one-to-one mapping between the acoustic and trans-
verse electric field. The latter analogy, which is presented in Table
2.2 for 1D propagation case (here, according to x-axis), is used, in
particular, within the nonlocal description of acoustic wave propa-
gation (see Section 2.2). From the equivalence shown in Tables 2.1
and 2.2, the desirable effective density and compressibility need to
be established by structured material to realize unusual sound wave
properties. Therefore, the basic question in acoustic metamaterials
is to build “acoustic artificial” atoms, on a scale much smaller than
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Table 2.2. Analogy between macroscopic electromagnetics and macroscopic
acoustics in 1D, including temporal and spatial dispersion. Macroscopic acoustic
variables are described in page 75.

Electromagnetism Acoustics Analogy

∂Bz

∂t
= −∂Ey

∂x

∂B

∂t
= −∂Vx

∂x

∂Dy

∂t
= −∂Hz

∂x

∂Dx

∂t
= −∂H

∂x

Dy(ω, k) = ε(ω, k) Ey(ω, k) Dx(ω, k) = ρ(ω, k) Vx(ω, k)

Hz(ω, k) = µ−1(ω, k) Bz(ω, k) H(ω, k) = χ−1(ω, k) B(ω, k)

Sx = Ey Hz Sx = H Vx

Electric field Ey Velocity field Vx Vx ↔ Ey

Electric displacement field Dy Acoustic Dx field (momentum
density)

Dx ↔ Dy

Magnetic Bz field Acoustic B field (condensation) B ↔ Bz

Magnetic Hz field Acoustic H field (pressure) H ↔ Hz

Pointing vector (x-component)
Sx

Acoustic part of energy current
density Sx

Sx ↔ Sx

Effective permittivity ε(ω, k) Effective density ρ(ω, k) ρ↔ ε

Effective permeability µ(ω, k) Effective compressibility χ(ω, k) χ↔ µ

the relevant wavelength, to achieve effective parameters beyond the
properties existing in nature.

There are several ways to design acoustic “atoms” in acoustic
metamaterials. One option is to use mechanical oscillation to build
deep subwavelength local resonators. Due to the resonant properties
of the artificial structures, they can exhibit novel effective parame-
ters for acoustic waves (i.e. singly or simultaneously negative mass
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Fig. 2.1. (a) Cross section of a coated lead sphere that forms the basic man-made
“atom” with local resonance; (b) Unit cells arranged in an 8 × 8 × 8 sonic crystal,
which is the block of acoustic metamaterial that was experimentally tested; (c)
A simple cubic structure of coated spheres from 200 to 2000 Hz. Three modes
(two transverse and one longitudinal) are distinguishable in the [110] direction,
to the left of the Γ point. The two transverse modes are degenerate along the
[100] direction, to the right of the Γ point. Note the expanded scale near the Γ
point.1

density and compressibility) in a certain frequency range.1–7 The
effective parameters of the acoustic metamaterials can be retrieved by
analyzing the acoustic wave scattering coefficients. Further studying
the oscillation modes of the resonators, we can find either monopolar
or dipolar resonances, which lead to negative compressibility or mass
density. Some analytical analysis have been applied on simple geome-
tries, e.g. cylindrical or spherical resonators.8,9 Experimentally, the
negative mass density has been demonstrated by immersing core-shell
structures (lead core in rubber shell) in epoxy matrix,1 as shown in
Fig. 2.1. In addition, the structure of air bubble in liquid has also been
explored because of the different orders of Mie scattering, which lead
to monopolar or dipolar resonance at different frequencies to achieve
negative compressibility or negative mass density.4 Recently, another
type of resonators — Helmholtz resonators — has been studied to
demonstrate negative compressibility.3,4,7,10,11 A typical Helmholtz
resonator (as shown in Section 2.2.2, Fig. 2.3(a)) can be presented as
a series of inductance and capacitance. The fluid inside the cavity is
much easier to be compressed compared with that in the neck part.
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Moreover, the pressure gradient along the open neck is much greater
than that inside the large cavity. Therefore the cavity displays capac-
itive property and leaves the smaller neck as an acoustic inductor.
According to the transmission line method12 (see Section 2.2.1), the
negative properties of the acoustic metamaterials can be designed
by an array of subwavelength Helmholtz resonators. Experimentally,
the negative compressibility was achieved in 1D Helmholtz resonator
array,3 and focusing effect by negative index acoustic metamaterial
(mass density and compressibility are negative simultaneously) was
demonstrated in 2D Helmholtz resonator array.13 In addition, using
the long-wavelength approximation, the effective mass density and
compressibility can also be retrieved from reflection and transmission
coefficients.14,15

Recently, a new design paradigm called conformal mapping and
coordinate transformation has inspired a series of key explorations to
manipulate, store and control the flow of energy, in the form of either
sound, elastic waves or light radiation. In electromagnetism, because
of the coordinate invariance of Maxwell’s equations, the space for
light can be bent in almost any arbitrary ways by providing a desired
spatial distribution of electric permittivity ε and magnetic perme-
ability µ.16,17 A set of novel optical devices were proposed based on
transformation optics;18–21 they usually call for complicated medium
with anisotropic and spatially varying permittivity and permeability
tensors to accomplish the desired functionality. Recent advances in
synthetic structured metamaterials22,23 whose properties are deter-
mined by subwavelength structures, offer the potential to physically
implement these complicated media. By modifying the shape and
arrangement of these subwavelength constituent elements, anisotropy
and spatial variation can be achieved in the artificial metamateri-
als. Due to the coordinate invariance of Helmholtz equations, the
concept can be extended to the acoustic waves as well, which is
called transformation acoustics. Similar to the optical metamate-
rials, generally, we need spatially varying mass density and com-
pressibility tensors to manipulate the acoustic wave in the desired
fashion.
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The central theme of this chapter is to introduce the design and
realization of acoustic metamaterials aimed at controlling and guid-
ing acoustic waves in applications such as acoustic imaging or com-
munication. We will first describe the approach to build an acoustic
metamaterial unit cell — Helmholtz resonator — based on the trans-
mission line model. The basic concept and derivation of lumped acous-
tic circuit will be introduced (Section 2.2.1). The realization of neg-
ative dynamic compressibility for the acoustic wave using Helmholtz
resonator array will be demonstrated (Section 2.2.2). Newly devel-
oped nonlocal theory of the acoustic wave propagation in Helmholtz
resonator array will be discussed (Section 2.2.3). By this theory, the
effective medium parameters are calculated, and the behavior of the
effective modulus which appears negative near the resonance will be
shown to be a consequence of the nonlocal effects in this material
exhibiting local resonance phenomenon. As a promising application in
acoustic imaging, the lens with negative index by acoustic metamate-
rials will be presented (Section 2.2.4). Both the theoretical and experi-
mental studies demonstrate the focusing of ultrasound waves through
the negative index lens, which is implemented by a two-dimensional
array of subwavelength Helmholtz resonators. We will also introduce
a subwavelength focusing using two-dimensional Helmholtz resonator
array based on strong local resonance mode (Section 2.2.5). In the next
section (Section 2.3), we will focus on the realization of acoustic cloak
in various ways. The design of acoustic cloak is based on transforma-
tion acoustics. The mathematical background, numerical simulation
results, and experimental characterization results will be given then.

2.2. Acoustic Metamaterials Made of Helmholtz
Resonators

In this section, we first review the simple principles of the acous-
tic transmission line method, followed by the application of the
method to design metamaterials with Helmholtz resonator as the
material building block. In Section 2.2.2, we describe the first appli-
cation related to the one-dimensional subwavelength metamaterial,
whose elastic modulus is found to be negative experimentally near
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resonance frequency.3 This metamaterial, consisting of an array of
Helmhotz resonators, exhibits local resonance phenomena in the
long-wavelength limit where the wavelength is much larger than the
unit cell composed of one resonator. This medium property which
leads to negative modulus is described precisely in Section 2.2.3,
by a nonlocal theory of sound propagation taking into account the
effects due to spatial dispersion and also viscothermal dissipation.24

In Section 2.2.4, we present the focusing of a point source from a
designed ultrasonic metamaterial consisting of a planar network of
subwavelength Helmholtz resonators which has been experimentally
investigated in Ref. 13. Transmission line method has been employed
to guide us for designing this material and analysing the experimental
results. In Section 2.2.5, we demonstrate the extraordinary focusing
in an array of Helmholtz resonator.25 We explain the experimental
observations based on an analytical effective-medium model as well
as finite-element calculations.

2.2.1. Transmission line method

We will review in the following an analogy which can be estab-
lished between acoustic systems and electrical circuits. This analogy
is based on the equivalence of the fluid motion in the acoustic system
and the current in the electrical circuit. In the acoustic counterpart
of the electrical circuit, acoustic capacitance and inductance can be
defined in the framework of a parameter model. This model is valid
when the length of the acoustic medium is much smaller than the
wavelength. The effective density and compressibility of the network
structure are found to be related to the capacitance and inductance
in this lumped circuit.

Acoustic impedance of a tube

We consider a hollow cylindrical tube of length l and cross section
area S, open at one end and closed at the other end with impedance
Z. The origin of coordinates is chosen to be coinciding with the
position of the open end of the tube. We assume that the diameter
of the tube is sufficiently small so that the waves travel down the tube
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with plane wave fronts. For an initial pressure wave traveling in the
positive x direction, p+ = p̃+ exp(ikx − iωt), the reflected wave at,
traveling in the negative x direction writes as p− = p̃− exp(−ikx −
iωt). The corresponding particle velocity can be written as v+ =
(p̃+/Zc) exp(ikx− iωt), and v− = −(p̃−/Zc) exp(−ikx− iωt), where
Zc = ρ0c0 is the characteristic impedance of the fluid in the tube, and
ρ0, and c0 are the density and sound velocity in the fluid, respectively.
The total pressure and total velocity at a given position and time
are p(x, t) = p+(x, t) + p−(x, t), and v(x, t) = v+(x, t) + v−(x, t),
respectively. This yields the impedance at x

Zx =
p

Sv
=
Zc

S

p̃+eikx + p̃−e−ikx

p̃+eikx − p̃−e−ikx
(2.1)

We can immediately obtain the impedances Z0 at the open end
x = 0, and Zl at x = l. This gives Z0 as a function of Zl

Z0 =
Zc

S

Zl − iZc
S tan kl

Zc
S − iZl tan kl

(2.2)

Acoustic inductance

We consider that the tube is acoustically rigid and open on both ends
[Fig. 2.2(a)]. Since all quantities are in phase when the dimension of
the tube is much smaller than the corresponding wavelength, the
fluid moves as a whole under the action of an unbalanced force. The

(a) (b)

Fig. 2.2. A pipe with (a) open and (b) rigid ends is analogous to an acoustic
inductor and an acoustic capacitor, respectively.
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whole fluid moves without appreciable compression because of the
open ends. We substitute Zl = 0 in (2.2)

Z0 = −iZc

S
tan kl (2.3)

Since l is much smaller than the wavelength, kl is a small value.
Therefore we can use the Taylor series to write tan kl = kl + (kl)3

3 +

2 (kl)5

15 + · · · . Then (2.3) becomes Z0 = −iω ρ0l
S − iω3 ρ0l3

3Sc20
+ · · · . When

l < λ/16, we can keep only the first term and neglect the higher
order terms within about 5% error. Thus, the acoustic inductance
for an open end tube can be written as

LA � ρ0l

S
(2.4)

Taking into account the radiation impedance, l should be
replaced by an effective length of the tube l′, and augmented with a
correction factor: l′ = l+ 8r/3π = l+ 0.85r, where r is the radius of
the tube.

Acoustic capacitance

If the tube is rigidely closed at one end [Fig. 2.2(b)], we substitute
Zl =∞ in (2.2)

Z0 = i
Zc

S
cot kl (2.5)

For a small value of kl, cot kl = 1
kl − kl

3 − (kl)3

45 , and consequently
(2.5) becomes Z0 = i

ω
1

(V/ρ0c20)
− iω lρ0

3S + · · · . This impedance is valid
within 5% for l up to λ/8 as a combination of acoustic inductance and
capacitance in series. Furthermore and as before, when l < λ/16, we
can keep only the first term and neglect the higher order inductance
term within about 5% error, such that the impedance

CA � V

ρ0c
2
0

(2.6)

where V is the volume of the tube.
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(a) (b)

Fig. 2.3. (a) Schematic cross-sectional view of a Helmholtz resonator. The sam-
ple is made of aluminum, consisting of a rectangular cavity of 3.14 × 4× 5 mm3,
and a cylindrical neck 1-mm long and 1-mm in diameter. The cavity and neck
are filled with water, and are connected at the same side to a square water duct
with a 4 × 4 mm2 opening. The resonators are placed in a periodicity of 9.2
mm. The inset illustrates the analogy between a Helmholtz resonator and an
inductor-capacitor circuit, showing the fluidic inductance due to the neck, and
the acoustic capacitance due to the cavity. (b) Illustration of the setup of the
ultrasonic transmission experiment.3

Helmholtz resonator

A typical Helmholtz resonator as in Fig. 2.3(a) can be presented as
a combination of inductance and capacitance. The fluid inside the
cavity is much easier to compress compared with that in the neck
part. Moreover, the pressure gradient along the open neck is much
greater than that inside the large cavity. Therefore, the cavity dis-
plays capacitive property and leaves the smaller neck as an acoustic
inductor.

2.2.2. Negative bulk modulus

A new class of ultrasonic metamaterials is presented in Ref. 3 with
subwavelength resonant structural units, which leads to the nega-
tive bulk modulus near the resonance. The building block of this
ultrasonic metamaterial, the Helmholtz resonator, consists of a cav-
ity of known volume with rigid walls and a small hole in one side
[Fig. 2.3(a)]. The material is embedded in water, and the periodicity
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is considerably smaller than the corresponding longitudinal wave-
length in water (d � λ/5). A pressure variation in the channel causes
the plug of fluid in the hole to oscillate in and out, producing adia-
batic compression and rarefaction of the liquid enclosed in the cavity.
Such a resonator, as it has been mentioned above, is analogous to
an inductor-capacitor circuit [Fig. 2.3(a)], with the enclosed cavity
acting as the capacitor with capacitance C � V/ρ0c

2
0, and the neck

acting as the inductor (L � ρ0(L′/S)), where V is the volume of the
cavity, ρ0 is the density of water, c0 is the sound speed in the water,
L′ is the effective length of the neck, and S is the cross-sectional area
of the neck. Because the Helmholtz resonator does not use typical
standing waves to create a resonance, the dimension of each element
can be made much smaller than the acoustic wavelength (at 33 kHz,
λ = 4.4 cm in water).

Following the formalism of electromagnetic response in metama-
terials,26,27 the combination of many Helmholtz resonators into a
periodic array allows the material to behave as a medium with an
effective modulus χ−1(ω) that can be expressed in the form

χ−1(ω) = χ−1
0

[
1− Fω2

H

ω2 − ω2
H + iΓω

]
(2.7)

where F = V/Scd is a geometrical factor, Sc the cross-sectional area
of the main conduit, ωH = c0

√
S/L′V is the resonant angular fre-

quency, and Γ is the dissipation loss in the resonating Helmholtz
elements due to viscous effects. In Fig. 2.4(a), the imaginary part
of the modulus has a negative sign because the acoustic analogue of
permeability corresponds to χ. This frequency dependent response
is essential to the negative modulus over a range of frequencies. At
frequencies near resonance, the induced displacement in the neck
becomes very large, as is typical in resonance phenomena. The large
response represents accumulation of energy over many cycles, such
that a considerable amount of energy is stored in the resonator rela-
tive to the driving field. This stored energy is significant to maintain
the sequence of displacement near resonance even when the excitation
field changes the sign. That is, as the frequency of the driving
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(a) (b)

Fig. 2.4. (a) The calculated effective bulk modulus in the one-dimensional sub-
wavelength Helmholtz resonators. (b) Measured and calculated dispersion of
ultrasonic metamaterial. The red circles represent data measured from the peri-
odical array of Helmholtz resonators in the duct, the black triangles represent
the data in the duct without Helmholtz resonators, and the blue solid line is
calculated using a sum of lossless Bloch waves.3

pressure field is swept through the resonance, the instantaneous
velocity of the mass centre in the unit cell flips from in-phase to out-
of-phase with the driving field, and the material shows a negative
response. Similarly, a polariton effect is also observed in the electro-
magnetic response of metamaterials, where a negative permittivity
or permeability (generally on the higher frequency side of the reso-
nance) implies a purely imaginary wavevector in the bulk medium.
Here, this idea has been implemented in the context of elastic com-
posites at ultrasonic frequencies. By varying the size and geometry
of the structural unit, we can tune the effective elastic moduli to
negative values at desired frequency ranges.

Theory on the lossless resonators predicts that a full bandgap
opens up between 32 and 34 kHz, whereas away from this dip the
dispersion behaves linearly. However, experimental data show that
possible propagation modes can exist in the bandgap with a back-
bending of the dispersion curve, which suggests an antiparallel rela-
tion between group and phase velocities. This is a direct result of
the loss in the system. When ultrasonic metamaterials approach
resonance, the complex modulus χ−1 = −|�(χ−1)| + i�(χ−1) =
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−α − iβ is expected in the spectral dip as a result of friction dis-
sipation (α, β > 0 as shown in Fig. 2.4(b)), where �(χ−1) indi-
cates the imaginary part, and α, β are parameters corresponding
to the real and imaginary parts of the complex modulus. It is
straightforward to write the propagation constant in the system as
k = (−α+ iβ)1/2ω

√
ρ0/(α2 + β2), with a small real component

�(k) = −ω
2

√
ρ0

α2 + β2

{√
α2 + β2 − α

}1/2
(2.8)

characterizing a propagating mode in the bandgap, whereas the imag-
inary part

�(k) = +
ω

2

√
ρ0

α2 + β2

{√
α2 + β2 + α

}1/2
(2.9)

describes the decaying length of the pulse. The dispersion of these
complex wavevectors can be well captured in our experiment by
sweeping in real frequencies. Taking into account a small propagating
component as an effect of resonant re-emission in parallel to the dom-
inant tunnelling process in the transmission dip, the dispersion rela-
tionship can be characterized in the experimental results [Fig. 2.4(b)].
In addition, as frequency increases above the band edge, the atten-
uation (β) increases leading to the reduction of the real wavevector
�(k), resulting in the back-bending of the dispersion curve observed
in Fig. 2.4(b). The loss term (Γ = 2π×400 Hz) is determined empir-
ically by fitting the calculated transmission data along the edges of
the experimental expectral dip.3

2.2.3. Nonlocal description of sound propagation

We employ here a generalized macroscopic nonlocal theory of sound
propagation in rigid-framed porous media saturated with a viscother-
mal fluid28 to describe the behavior of an acoustic metamaterial made
of an array of Helmholtz resonators filled with air [see Fig. 2.5(a)].24

Inspired by the electromagnetic theory and a thermodynamic con-
sideration relating to the concept of acoustic part of energy current
density, this macroscopic theory allows us to go beyond the limits of
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(a) (b)

Fig. 2.5. (a): A unit cell in a 2D array of Helmholtz resonators. The dimensions
are L = 1 cm, Σ = 0.2 L, σ = 0.015 L, and l = 0.15 L. (b): Illustration of slit
portions and plane waves propagating in different parts of the resonator. Different
positions are indicated by m, and different amplitudes by Am, m = 1, . . . , 10.

the classical local theory and within the limits of linear theory, to
take into account temporal and spatial dispersion. By macroscopic
theory we mean that the theory is concerned with averaged fields
only. Assuming that there is a suitable ensemble of realizations of the
medium, the macroscopic theory then is developed to describe the
dynamics of the ensemble-averaged fields. A special case will be that
of a periodic medium. The ensemble will be the collection of configu-
rations generated by random translations of a single sample, and the
ensemble average will be related to cell average of one sample. In the
framework of the new approach, a homogenization procedure is pro-
posed, through solving two independent microscopic action-response
problems each of which related to the effective density and effective
bulk modulus of the material. Contrary to the classical (two-scale
asymptotic) method of homogenization, no asymptotic approach has
been employed and there is no length-constraint to be considered
within the development of the new method. Thus, there would be
no frequency limit for the medium effective properties to be valid; in
addition, materials with different length scales can be treated. The
homogenization procedure offers a systematic way of obtaining the
effective properties of the materials, regardless of their geometries.
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These characteristics of the nonlocal approach permits the descrip-
tion of the porous media with specific geometries causing meta-
material behavior. A metamaterial with periodic structure will be
studied: two-dimensional array of Helmholtz resonators connected in
series.

By local theory, we refer to space locality. Nonlocality in time,
or temporal dispersion, has been already taken into account through
models for wave propagation in porous media.29–32 That is, in Fourier
space the effective density and bulk modulus depend on the frequency
ω. In other words, the field dynamics at one location retains a mem-
ory of the field values at this location but is not affected by the
neighboring values. The local description is usually based on retain-
ing only the leading order terms in the two-scale homogenization
method.32–38 An asymptotic two-scale approach is applied in terms
of a characteristic length of the medium, the period L in periodic
media, which is assumed to be much smaller than the wavelength
λ.39,40 Efforts have been performed to extend the asymptotic method
of homogenization to higher frequencies for the periodic compos-
ite materials41,42 and rigid porous media43 by introducing another
type of scale separation to which the asymptotic multi-scale proce-
dure applies. An enhanced asymptotic method has been adapted to
describe sound propagation in rigid porous media with embedded
damped Helmholtz resonators44 exhibiting scattering different from
Bragg scattering at high frequency in periodic media.

An effective medium approach has been proposed for periodic
elastic composites based on surface responses of a structural unit
of the material,45 which can describe the macroscopic parameters
beyond the frequencies within the long wavelength limit. Unlike the
classical methods, based on the introduction of two-scale asymp-
totic expansions, or coherent potential approximation46 based on
the effective-medium parameters minimizing scatterings in the long-
wavelength limit, the homogenization scheme presented in Ref. 45
uses matching the lowest-order scattering amplitudes arising from a
periodic unit cell of the metamaterial with that of a homogenized
material. As such, local resonant scattering can be captured as well
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by the latter method in the elastic metamaterials. The asymptotic
method of homogenization has been enhanced to provide the weak
nonlocal effects as a small correction to the local behavior.47 An
approach has been presented48 for random elastic composites based
on ensemble averaging of the material responses to a body force,
giving rise to effective parameters of the medium depending on fre-
quency and wavenumber. By this method, the case of periodic media
can be treated as well.

The nonlocal theory we use here takes fully the temporal dis-
persion and spatial dispersion into account. The medium is assumed
unbounded and homogeneous in the stationary random statistical
sense; therefore, the spatial dispersion refers only to the dependence
of the permittivities, i.e. effective density and bulk modulus, on the
Fourier wavenumbers k present in the macroscopic fields.49 As men-
tioned above, the theory can be applied with certain considerations
to a periodic medium; in particular it gives the Bloch wavenumbers
and defines Bloch impedances. The materials susceptible to show-
ing the nonlocal behavior may be classified into two main groups
regarding their microgeometry. The first comprises the materials
which exhibit this behavior in sufficiently high frequency regime. The
second one concerns materials with microgeometry constituting the
resonators, which exhibit spatial dispersion phenomena even at not
very high frequencies; the resonance phenomena act as a source gen-
erating nonlocal behavior. In this article, we investigate the second
type of these geometries in the form of daisy-chained Helmholtz res-
onators. A material made of an array of Helmholtz resonators filled
by water has been studied experimentally, and has been found to
show negative bulk modulus in the resonance frequency range3 (see
Section 2.2.2). Later, Helmhotz resonators as structural units were
used to design novel metamaterials for focusing ultrasound waves13

(see Section 2.2.4 and broadband acoustic cloaking50).
Here, we apply the nonlocal theory to quantatively describe the

macroscopic dynamics of such a metamaterial filled with air as a
viscothermal fluid, in 2D. Using a simplified analytical solution of
the complete equations, we present the method of obtaining the
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nonlocal efffective density and effective bulk modulus. When these
effective parameters satisfy the dispersion equation based on the non-
local theory, we can compute the wavenumber of the least attenuated
mode, among other modes. We can then check that the wavenumber
resulting from the macroscopic nonlocal theory coincides with the
wavenumber associated with the Bloch wave propagating and atten-
uating in the medium. The Bloch solution is determined using the
same simplifying way of solving as in the nonlocal modeling. Thus the
results based on the two calculations should be comparable. Finally,
as a check of the validity of the simplifying assumptions introduced in
our modeling calculations, we have performed direct Finite Element
Method (FEM) computations based on the exact equations in the
framework of nonlocal homogenization.

First, we review briefly the general framework of the nonlocal
theory which is used in this section. The microscopic equations gov-
erning sound propagation in a rigid porous medium are summarized,
before mentioning the macroscopic Maxwellian equations describing
the macroscopic nonlocal dynamics of the homogenized equivalent
fluid. Then, we will see the nonlocal modeling allowing the calcu-
lation of the effective parameters and the wavenumber of the least
attenuated wave in the medium. The direct calculation of the Bloch
wavenumber, using similar simplifications, is presented next, followed
by the results and analysis of the three different calculations.

General Framework of the Nonlocal Theory

In the following, we state the microscopic equations applied at the
pore level, and the nonlocal Maxwellian macroscopic equations that
describe the dynamics of the material as a homogeneous equivalent
fluid medium. Then, we recall briefly the upscaling procedures allow-
ing to obtain the frequency and wavenumber dependent effective
parameters of the macroscopic equivalent fluid medium, i.e. effective
density and effective bulk modulus. This section is a summary of the
results which have been discussed in detail in Ref. 28. Hence, we will
frequently refer to Ref. 28, for the in-depth explanations.
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Microscopic Equations

The dynamics of a small amplitude perturbation in a rigid-framed
porous material filled with a viscothermal fluid is governed by the
linearized equations of the mass, momentum, and energy balance,
and a general fluid state equation as follows: in the fluid region Vf

ρ0
∂v

∂t
= −∇p+ η∇2v +

(
ζ +

η

3

)
∇(∇ · v) (2.10a)

∂b

∂t
+ ∇ · v = 0 (2.10b)

γχ0p = b+ β0τ (2.10c)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ (2.10d)

where v, b ≡ ρ/ρ0, p and τ , are the fluid velocity, excess conden-
sation, thermodynamic excess pressure, excess temperature, respec-
tively, and ρ is the excess density. The fluid constants ρ0, η, ζ, γ,
χ0, β0, cp, T0, κ, represent the ambient density, first viscosity, sec-
ond viscosity, ratio of the heat capacity at constant pressure to heat
capacity at constant volume cp/cv , adiabatic compressibility, coeffi-
cient of thermal expansion, specific heat capacity per unit mass at
constant pressure, ambient temperature, and coefficient of thermal
conduction, respectively.

In the (rigid) solid phase region Vs, energy balance equation is
reduced to ρscsp(∂τ s/∂t) = κs∇2τ s, where ρs is the constant solid
density, τ s solid excess temperature, and κs solid coefficient of ther-
mal conductivity. On the fluid/solid interface ∂V, we have the condi-
tions of continuity of the excess temperature τ = τ s and the heat flux
κ∇τ = κs∇τ s. We admit that the coefficient of thermal conductivity
of the solid is much larger than that of the fluid κs � κ, and the
heat capacity at constant pressure of the solid part is much larger
than that of the fluid part, i.e., (1− φ)ρscsp � φρ0cp; where φ is the
fluid volume fraction (porosity). The latter assumptions combined
with the Fourier heat diffusion in the solid, and the temperature and
heat flux continuity relations, generally result in the vanishing of the
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fluid excess temperature at the fluid/solid boundaries. In addition,
we assume no-slip condition on the fluid/(rigid) solid interface. The
boundary conditions for the velocity and excess temperature on ∂V
are finally written as

v = 0, τ = 0 (2.11)

Macroscopic Maxwellian Acoustics
Before going through the macroscopic equations for sound propaga-
tion in rigid-framed porous media, and the homogenization proce-
dure, we will precise the notion of field averaging in the nonlocal
approach.

Averaging: The present macroscopic theory is statistical in nature
and has been developed in principle for fluid-saturated rigid-framed
media which are homogeneous in an ensemble-averaged sense; this is
the case of stationnary random media. The macroscopic properties
represented in the theory refer to the ensemble of realizations. Thus,
for example, the propagation constants of the medium would refer
to the propagation constant of coherent waves in multiple-scattering
theory. Here, the material we wish to study is not defined by station-
ary random realizations. It belongs to the important class of periodic
materials. The macroscopic theory can still be applied by considering
the ensemble obtained through random translation of one sample. It
turns out that the ensemble-average 〈 〉 properties of the space are, in
this case, precisely computable by spatial averaging over a periodic
cell in a single realization. This, in a sense, reminds of ergodicity in
stationary random media.

The macroscopic condensation and velocity are defined as the
average of pore scale microscopic fields: V ≡ 〈v〉, and B ≡ 〈b〉; aver-
age over the periodic cell in the case of the periodic media. A macro-
scopic equation can be obtained directly by averaging Eq. (2.10b),
using the commutation relation 〈∇.v〉 = ∇.〈v〉 which is automati-
cally satisfied owing to (2.11) (see Eq. (56) in Ref. 28). The second
macroscopic field equation, as well as the macroscopic constitutive
relations, are written using the electromagnetic analogy. This anal-
ogy suggests that the system of macroscopic equations can be carried
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through by introducing new Maxwellian fields H and D, as well as
linear operators ρ̂ and χ̂−1. The field equations and constitutive rela-
tions are written as (see Section 3.3 in Ref. 28)

Field equations:
∂B

∂t
+ ∇ · V = 0,

∂D

∂t
= −∇H

(2.12)

Constitutive relations: D = ρ̂V , H = χ̂−1B

(2.13)

where the integral operators of density ρ̂ and bulk modulus χ̂−1 are
such that

D(t, r) =
∫ t

−∞
dt′
∫
dr′ρ(t− t′, r − r′)V (t′, r′) (2.14a)

H(t, r) =
∫ t

−∞
dt′
∫
dr′χ−1(t− t′, r − r′)B(t′, r′) (2.14b)

We notice that the kernels ρ and χ−1 depend on the difference
t − t′ and r − r′, which is due to the homogeneity of the medium
with respect to time and space. Therefore, we can write (2.14a) and
(2.14b) in the Fourier space, respectively, as

D(ω,k) = ρ(ω,k)V (ω,k), H(ω,k) = χ−1(ω,k)B(ω,k) (2.15)

provided that

ρ(t− t′, r − r′) =
∫
dω

2π
dk

(2π)3
ρ(ω,k) e−iω(t−t′)+ik.(r−r′)

χ−1(t− t′, r − r′) =
∫
dω

2π
dk

(2π)3
χ−1(ω,k) e−iω(t−t′)+ik.(r−r′)

In other words, because of the medium homogeneity with respect to
time and space, D(ω,k) is related to V (ω,k), and H(ω,k) is related
to B(ω,k), for the same values of ω and k.
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In nonlocal theory, the macroscopic H field is defined through
the Poynting-Schoch condition of acoustic part of energy current den-
sity28,51 which is postulated as (see Section 3.4 in Ref. 28)

S = HV = 〈pv〉 (2.16)

As a result of this definition, the density and bulk modulus
operators become susceptibility functions determinable, in principle,
through independent action-response problems (see Section 2.4 in
Ref. 28). Regarding Eqs. (2.14) and (2.15), it is visible that the
theory allows for both temporal dispersion, shown by integration
over time variable t′ in physical space and frequency dependence
in Fourier space, and spatial dispersion, shown by integration over
space coordinates r′ and wavenumber dependence in Fourier space.
We will recognize the quantities in physical space (t, r) and Fourier
space (ω,k) by their arguments. Now, in order to clarify the relation-
ship between constitutive operators and microgeometry, the kernel
functions ρ(ω,k) and χ−1(ω,k) are needed to be determined, by
introducing action-response procedures coarse-graining the dissipa-
tive fluid dynamics of the pore scale.

Procedures to Compute Effective Density and Bulk
Modulus

In the 1D case of macroscopic propagation along a symmetry axis,
for instance x-axis with the unit vector x̂, we will have D = Dx̂ and
V = V x̂, r = xx̂, and k = kx̂ in the above equations (2.12–2.16).
To determine the Fourier functions ρ(ω, k) and χ−1(ω, k) for the 1D
acoustic propagation in a medium with porosity φ, we solve two
independent action-response problems (see Section 4 in Ref. 28). For
computing the effective density we consider the macroscopic response
of the fluid subject to a single-component (ω, k) Fourier bulk force.
The effective bulk modulus is related to the response of the fluid
subject to a single-component Fourier rate of heat supply.

Two sets of equations to be solved

The two systems of equations to be solved are written as
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In the fluid region Vf :

∂b

∂t
+ ∇ · v = 0 (2.17a)

ρ0
∂v

∂t
= −∇p+ η∇2v +

(
ζ +

1
3
η

)
∇ (∇ · v)

+ F e−iωt+ikx︸ ︷︷ ︸
Added for determination of density

(2.17b)

ρ0cp
∂τ

∂t
= β0T0

∂p

∂t
+ κ∇2τ

+ Q̇e−iωt+ikx︸ ︷︷ ︸
Added for determination of bulk modulus

(2.17c)

γχ0p = b+ β0τ (2.17d)

On the fluid/solid interface ∂V:

v = 0, τ = 0 (2.18)

For convenience the excitation amplitudes are written as: Q̇e−iωt+ikx

= β0T0(∂/∂t)(Pe−iωt+ikx), and F e−iωt+ikx = −∇(Pe−iωt+ikx).
Here, it is important to note that the excitation variables ω and
k are set as independent variables. The solutions to the above sys-
tems for the fields p, b, τ , and components of v take the form
p(t, r) = p(ω, k, r)e−iωt+ikx, and so on. Recall that the theory is
formulated for a geometry that is stationary random, and the aver-
aging operator 〈 〉 refers to the ensemble averaging. Thus, here, the
amplitude fields v(ω, k, r), p(ω, k, r), b(ω, k, r), and τ(ω, k, r), are
stationary random functions of r. Passing to the case of periodic
geometry, we can limit ourselves to considering one periodic sample.
The fields become periodic functions over a cell, and 〈 〉 is interpreted
as a volume average over a cell.

Frequency and Wavenumber Dependent Effective Density and Bulk
Modulus

Once the two systems of equations are solved independently, using
the right hand Maxwellian macroscopic equations in (2.12) and
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(2.13), we arrive at the following expressions for the nonlocal effective
density and bulk modulus

ρ(ω, k) =
k (P + P (ω, k))
ω 〈v(ω, k, r)〉 (2.19a)

χ−1(ω, k) =
P (ω, k) + P

〈b(ω, k, r)〉 + φγχ0P (2.19b)

where P 〈v〉 = 〈pv〉, which has been inspired by (2.16).

Wavenumbers, Constants of the Medium

Contrary to the case of local theory, here, since we fully take into
account spatial dispersion, several normal mode solutions might
exist, with fields varying as e−iωt+ikx. Solutions should satisfy the
following dispersion equation

ρ(ω, k)χ(ω, k)ω2 = k2 (2.20)

which is easily derived from the Maxwellian macroscopic equa-
tions. With each frequency ω, several complex wavenumbers kn(ω),
�(kn) > 0, n = 1, 2, . . . , may be associated.

Frequency Dependent Effective Parameters

With each wavenumber kn solution of the nonlocal dispersion equa-
tion (2.20) are associated a frequency-dependent density and bulk-
modulus, such that

ρn(ω) = ρn(ω, kn(ω)) (2.21a)

χ−1
n (ω) = χ−1

n (ω, kn(ω)) (2.21b)

The fact that at each frequency ω, we can obtain several modes
propagating and attenuating in the medium, with wavenumbers
kn(ω) constants of the medium, and effective parameters ρn(ω)
and χ−1

n (ω), is a direct consequence of the nonlocal description.
In other words, the existence of multiple wavenumbers at each fre-
quency, associated with unique effective parameters, is a signature of
the nonlocal effects or spatial dispersion in the medium. In what
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follows, with the aim of obtaining the nonlocal effective density
ρ1(ω), effective bulk modulus χ−1

1 (ω), and wavenumber k1 of the
least attenuated mode, we will apply this theoretical framework
in analytical simplified manner, to a 2D array of Helmholtz res-
onators, illustrated in Fig. 2.5(a). Sound propagation through this
material exhibits resonance phenomena resulting in metamaterial
behavior.

Nonlocal Modelling

For 2D structures, we proceed to determine the functions ρ(ω, k)
and χ−1(ω, k) sufficiently precise to give an appropriate modeling of
the least attenuated mode, which results then in purely frequency
dependent functions ρ(ω) and χ−1(ω). For this purpose, we do not
need to consider in full detail the microscopic fields v and p. In the
waveguide t and cavity c, instead of the microscopic fields, we can
use the mean values Vt(c) = 〈v〉S · x̂ and Pt(c) = 〈p〉S , where 〈 〉S
denotes the average at a given x over the waveguide or the cavity
width; and in the neck n, we can use the mean values Vn = 〈v〉S · ŷ
and Pn = 〈p〉S , where 〈 〉S denotes the average at a given y over
the neck width, and ŷ is the unit vector in the y direction. At the
same time, we make some simplifications consistent with describing
the propagation of these averaged quantities in terms of the Zwikker
and Kosten densities ρ(ω) and bulk moduli χ−1(ω), in the differ-
ent slit portions. These depend only on the slit half-widths, which
we shall denote by st, sn, and sc, in the tube, neck, and cavity,
respectively. The different slit-like tube portions are illustrated in
Fig. 2.5(b). The main tube t is divided in two Zwikker and Kosten
ducts, a left duct, and a right duct, oriented in the x direction. The
same separation is made for the cavity c, whereas the neck n is not
divided but viewed as one Zwikker and Kosten duct oriented in y

direction.

Determination of nonlocal effective density

Considering the periodic cell of Fig. 2.5(a), and the corresponding
cell average operation 〈 〉, we look for the response of the fluid when
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a harmonic driving force f(t, x) = fe−iωt+ikx in the direction of x̂ is
applied. If we can determine the microscopic response velocity and
pressure fields v, p, then we will have the function ρ(ω, k) through
the relation (see Eq. (2.19a))

ρ(ω, k) =
f − ikP(ω, k)
−iω〈v(ω, k, r)〉 (2.22)

with P(ω, k) = 〈pv〉/〈v〉, where the v is the x-component of the micro-
scopic velocity v.

In [51, Appendix], the Zwikker and Kosten local theory is
expressed for tubes of circular cross-section. For 2D slits, exactly the
same general principles of modeling may be used; only some details
of the calculations are changed. In particular, the Bessel functions J0

and J1 are replaced by cosh and sinh functions. Zwikker and Kosten’s
effective densities ρα(ω) and bulk modulii χ−1

α (ω) in the guide, neck
and cavity, will be52

ρα(ω) = ρ0


1−

tanh
(√−iωρ0s2α/η

)
√−iωρ0s2α/η



−1

(2.23a)

χ−1
α (ω) = γP0


1 + (γ − 1)

tanh
(√−iωρ0cps2α/κ

)
√−iωρ0cps2α/κ



−1

(2.23b)

for α = t, n, c, where the indexes t, n, and c are related to the tube,
neck, and cavity, respectively; P0 the fluid pressure at rest. The corre-
sponding wavenumbers kα(ω) and characteristic admittances Yα(ω)
are expressed as kα = ω/cα, and Yα(ω) = 2sα/(ραcα), for α = t, n, c,
where cα = 1/

√
ραχα, is the corresponding Zwikker and Kosten’s

phase velocity. Notice that we include the slit width 2sα (resp. Σ, σ,
and L − Σ − 2l in the resonator, see Fig. 2.5(a)) in the definition
of the characteristic admittance, because it simplifies the subsequent
writing of continuity conditions.
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We start writing the Zwikker and Kosten’s equations in the dif-
ferent parts of the periodic cell. For the tube and the cavity, i.e.,
α = t, c, we have

−iωρα(ω)
Sα

Vα = −∂Pα

∂x
+ feikx (2.24a)

iωSαχα(ω)Pα =
∂Vα

∂x
(2.24b)

where, Vα = VxSα is the flow rate field across the cross section Sα,
with Vx the x-component of the velocity in the sense of Zwikker
and Kosten (averaged over the section), and Pα is the Zwikker and
Kosten’s pressure. In the neck, the external excitation having no
y-component, we have

iω
ρn(ω)
σ

Vn =
∂Pn

∂y
(2.25a)

iωσχn(ω)Pn =
∂Vn

∂y
(2.25b)

where, Vn = Vyσ is the flow rate, with Vy the y-component of the
velocity, and Pn is the Zwikker and Kosten’s pressure in the neck.

The general solution of the non homogeneous equations in the
tube and the cavity, (Pα, Vα), α = t, c, is written as the sum of
the general solution (Pα,h, Vα,h) of the homogeneous equations and
a particular solution (Pα,p, Vα,p) of the non homogeneous equations.
A general solution of the homogeneous equations (2.24) is written as(

Pα,h

Vα,h

)
=
(

1
Yα

)
A+eikαx +

(
1
−Yα

)
A−e−ikαx (2.26)

where A+ and A− are the amplitudes of the plane waves in direction
of the positive x-axis and negative x-axis, respectively. The following
particular solution can be considered(

Pα,p

Vα,p

)
=
(
Bα

Cα

)
feikx (2.27)

where Bα and Cα represent four constants (for each ω) to be deter-
mined. Substituting (2.27) in (2.24) gives the four constants Bt =
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ik/(ω2ρtχt− k2), Ct = iωχtΣ/(ω2ρtχt− k2), Bc = ik/(ω2ρcχc− k2),
and Cc = iωχc(L − Σ − 2l)/(ω2ρcχc − k2). The particular solution
is the same in the left and right portions of the tube and the cavity.
On the contrary and because of the presence of the neck, the general
solution will have different amplitude constants in the left and right
portions. Thus, the general solution of Eqs. (2.24) can be written as(

Pt

Vt

)
=
(

1
Yt

)
A1,3fe

iktx +
(

1
−Yt

)
A2,4fe

−iktx +
(
Bt

Ct

)
feikx

(2.28a)(
Pc

Vc

)
=
(

1
Yc

)
A7,9fe

ikcx +
(

1
−Yc

)
A8,10fe

−ikcx +
(
Bc

Cc

)
feikx

(2.28b)

where (2.28a) with amplitudes A1 and A2 corresponds to the left
part of the tube, and with amplitudes A3 and A4 to the right part
[Fig. 2.5(b)]; similarly for (2.28b): A7 and A8 for the left part of the
cavity, and A9 and A10 for the right part [Fig. 2.5(b)]. These eight
amplitudes are to be determined. The general solution of Eqs. (2.25),
(Pn, Vn) has the form(

Pn

Vn

)
=
(

1
Yn

)
A5fe

ikny +
(

1
−Yn

)
A6fe

−ikny (2.29)

where A5 and A6 are the neck amplitude-relating constants to be
determined (Fig. 2.5(b)).

Indeed, in the framework of our simple plane-wave modeling,
there are 10 relations concerning the flow rate and pressure, which
are assumed to be verified. These continuity relations involve the
values of the fields at different locations indicated by numbers
m = 1, . . . , 10, in Fig. 2.5(b). As such, we have 10 equations for
10 unknown amplitudes A1, . . . , A10.24 Once these are determined,
we will have all the Zwikker and Kosten’s fields through Eqs. (2.28)
and (2.29). At this point, we can easily obtain the cell averages 〈v〉
and 〈pv〉, regarding the fact that the Zwikker and Kosten’s flow rate
has no component along the y-axis.24 Subsequently, we can obtain
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explicitly the effective density function ρ(ω, k) through Eq. (2.22). In
the next section, the effective bulk modulus is computed in a similar
way but with a different excitation term, and with exactly the same
conditions on the flow rate and pressure fields at different junctions.

Determination of nonlocal effective bulk modulus

Considering the periodic cell [Fig. 2.5(b)], when a harmonic heat-
ing Q̇(t, x) = Q̇0e

−iωt+ikx = −iωβ0T0Pe−iωt+ikx is applied in the
medium, we write the Zwikker and Kosten’s equations, in each part
of the resonator: tube, neck, and cavity. The aim is to obtain the
function χ−1(ω, k) as it is indicated in Eq. (2.19b). In the main tube
and the cavity, for α = t, c, we write

−iωρα(ω)
Sα

Vα = −∂Pα

∂x
(2.30a)

iωSαχα(ω)Pα + iωSα (χα(ω)− γχ0)P =
∂Vα

∂x
(2.30b)

The second term in the second equation might not seem to be obvious
but follows the very procedure of obtaining (2.19b). In the neck, the
equations are written as

iω
ρn(ω)
σ

Vn =
∂Pn

∂y
(2.31a)

iωσχn(ω)Pn + iωσ (χn(ω)− γχ0)P
〈
eikx

〉
σ

=
∂Vn

∂y
(2.31b)

where the term P〈eikx〉σ comes from the averaging of Q̇ over the
neck cross section. Here also, the second equation might not appear
obvious, but follows the procedure of the determination of (2.19b) in
nonlocal theory.28

As before, the general solution of the non homogeneous equations
(2.30) in the right or left part of the tube and the cavity, is written
as the sum of the general solution (Pα,h, Vα,h) of the homogeneous
equations and a particular solution (Pα,p, Vα,p) of the non homoge-
neous equations. A general solution of the homogeneous equations
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(2.30) is written as Eq. (2.26). The following particular solution can
be considered (

Pα,p

Vα,p

)
=
(
Bα

Cα

)
Peikx (2.32)

where Bα and Cα are four constants to be determined. Substituting
(2.32) in (2.30) gives the four constants Bt = ω2ρt(χt − γχ0)/(k2 −
ω2ρtχt), Ct = ωk(χt − γχ0)Σ/(k2 − ω2ρtχt), Bc = ω2ρc(χc −
γχ0)/(k2−ω2ρcχc), and Cc = ωk(χt−γχ0)(L−Σ−2L)/(k2−ω2ρcχc).
Thus, the general solution of Eqs. (2.30) can be written as Eqs. (2.28),
replacing f with P. The amplitudes A1, A2, A3, A4, A7, A8, A9, and
A10 (Fig. 2.5(b)) are to be determined.

As for the tube and the cavity, the general solution of the non
homogeneous equations (2.31) in the neck, is written as the sum of
the general solution (Pn,h, Vn,h) of the homogeneous equations and
a particular solution (Pn,p, Vn,p) of the non homogeneous equations.
We can find a particular solution in the following form(

Pn,p

Vn,p

)
=
(
Bn

Cn

)
P (2.33)

where Bn and Cn are two constants which will be determined by
substituting (2.33) in (2.31):

Bn = (2/kσ)(γχ0/χn − 1) sin(kσ/2), and Cn = 0. To obtain the
above expression for Bn, the average 〈eikx〉σ can be easily calcu-
lated.24 Therefore, the general solution of Eq. (2.31) in the neck can
be written as(

Pn

Vn

)
=
(

1
Yn

)
A5Peikny +

(
1
−Yc

)
A6Pe−ikny +

(
Bn

0

)
P

(2.34)

where A5 and A6 are amplitude-relating constants to be determined
[Fig. 2.5(b)].

As noted previously, in the framework of our modeling, there are
10 relations which are assumed to be verified, allowing to relate the
flow rates and pressures at different indicated points in Fig. 2.5(b).
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These relations result in 10 equations by which we can compute the
amplitudes A1, . . . , A10.24 Consequently, all Zwikker and Kosten’s
fields will be found. After the averages 〈v〉, 〈pv〉, and 〈b〉 are cal-
culated24 for the actual fields, the expression for χ−1(ω, k) will be
obtained.

Bloch Wave Modeling

In this section, without using the principles of the nonlocal macro-
scopic theory but within the same plane wave modeling, we directly
seek the macroscopic Bloch wavenumber kB of the least attenuated
wave propagating in the direction of positive x-axis, such that(

P
(4)
t

V
(4)
t

)
= eikBL

(
P

(1)
t

V
(1)
t

)
(2.35)

with the field constituted of 10 Zwikker and Kosten’s slit waves,
as illustrated in Fig. 2.5(b), are associated 10 complex amplitudes
A1, . . . , A10. As before, between these 10 amplitudes there are a set
of 10 relations; where two of them express the Bloch condition (2.35),
and 8 relations are based on the continuity equations. Here, all these
relations are homogeneous relations, so that nontrivial solutions will
be obtained only if the determinant of the coefficient matrix van-
ishes. This condition will give the analytical expression for Bloch
wavenumber kB , as follows

kB = − i
L

ln

(
D

2
±
√
D2

4
− 1

)
(2.36)

whereD = 2cos ktL−i(Yr/Yt) sin ktL, Yr = V
(5)
n /P

(5)
n is the entrance

admittance of the resonator (see Eq. (31) in Ref. 24).

2D structure filled with air

For the geometry considered in Fig. 2.5(a), to perform the com-
putations, we have set L = 1 cm, Σ = 0.2 L, and σ = 0.015 L.
The functions ρ(ω, k) and χ−1(ω, k) are first determined within the
approximations of our nonlocal modeling. Given these expressions,
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we know that according to nonlocal theory the possible wavenum-
bers in the medium will be the solutions of the dispersion relation
(2.20). Solving the equation (2.20) by a Newton-Raphson scheme, we
have checked that the obtained expressions for ρ(ω, k) and χ−1(ω, k)
are such that a complex solution k(ω) to (2.20) exists, which is
very close to the value kB(ω) in (2.36). The frequency dependent
effective density ρ(ω, k(ω)) = ρ(ω), and effective bulk modulus
χ−1(ω, k(ω)) = χ−1(ω), are then obtained by putting k = k(ω) in
the aforementioned excitation terms.

Solving the equation (2.20) by the Newton-Raphson method, we
varied frequency step by step, taking as initial value for k(ω) at a
given frequency, the solution value obtained at the preceding fre-
quency. Only for the starting frequency ω0 in the range of interest,
we have chosen the value kB(ω0) with a 10% discrepancy. In order to
ascertain the validity of the modeling, we have also performed direct
FEM simulations to solve the action-response problems, giving, sub-
sequently, FEM evaluations of the functions ρ(ω, k) and χ−1(ω, k).
Based on these functions, the computation of the wavenumber of
the least attenuated wave was performed in the same way as just
seen, with the only difference that (due to computation time) the
initial k(ω) value at a given frequency was systematically taken to
be kB(ω) with 10% discrepancy. Finally, FEM evaluations of the
frequency dependent effective density ρ(ω, k(ω)) = ρ(ω), and effec-
tive bulk modulus χ−1(ω, k(ω)) = χ−1(ω), were obtained by putting
k = k(ω) in the aforementioned excitation terms. The FEM compu-
tations have been performed using FreeFem++,53 an open source
tool solving partial differential equations. Adaptive meshing was
employed. According to all of the calculations, the effective density
remains practically constant and, therefore, does not play an impor-
tant role in the macroscopic dynamics of this material.

We see in Fig. 2.6(a), that the real and imaginary parts of k(ω)
computed by nonlocal theory via Newton’s method converge exactly
to the real and imaginary parts of kB which have been computed
by a simple Bloch-wave modeling without any use of nonlocal the-
ory. The horizontal axis is the dimensionless frequency k0L/π, where
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Fig. 2.6. Wavenumber (a) and bulk modulus (b) in terms of a dimensionless
frequency, for the 2D structure filled with air. For the wavenumber, results by
three calculations are compared: Bloch-wave modeling, nonlocal modeling, and
nonlocal theory by FEM.24

k0 = ω/c0. The results based on the Finite Element Method (FEM)
simulations are also in good agreement with those obtained by the
Bloch wave modeling and nonlocal modeling. The frequency range
has been chosen so that it covers the resonance regime. In the same
frequency range, Fig. 2.6(b), shows the real and imaginary parts of
K(ω) = φχ−1(ω), representing the effective bulk modulus, computed
by nonlocal FEM simulations and nonlocal modeling. Here also, we
see excellent agreement between the two calculations. We notice the
metamaterial behavior demonstrated in the real part of effective bulk
modulus which becomes negative in a frequency range within the
resonance regime. It is clear that the results by FEM computations
based on the exact microscopic equations, can be considered more
precise compared with our two modeling results in which we have
applied simplifying approximations. As such, the good agreement
between FEM results and others, validate the modeling framework.
The discrepancies between the results based on the models and FEM
simulations can be due in particular, to the fact that the model
describes the admittance of the resonator Yr, without considering
the length correction of the neck; what might generate errors in the
calculation of the wavenumber.
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We observe here the same kind of behavior for the wavenum-
ber and bulk modulus as it has been demonstrated experimentally
in Ref. 3 (see Figs. 1 and 2 in that reference) for the case of the
3D material embedded in water. We have observed that removing
the thermal effects by decreasing the coefficient of thermal conduc-
tivity κ to a value close to zero, would have a negligible effect on
the wavenumber and the effective bulk modulus. That is the case
also for the second viscosity ζ, associated with losses in the com-
pressional/dilatational motions in the bulk fluid. On the contrary,
the material dynamics in terms of the macroscopic wavenumber and
bulk modulus is quite sensitive to the values of the shear viscosity η.
In a frequency range, for instance, between k0L/π = 0.1 and 0.4, a
maximum and minimum appear for the real part of the wavenumber.
By decreasing the value of the shear viscosity, the maximum becomes
sharper and finally diverges as the viscosity tends to zero at the reso-
nance frequency of the ideal fluid ωH = c0[σ/l(L− 2l)(L−Σ− 2l)]

1
2 ,

namely k0L/π = 0.15 here; the minimum flattens and a bandgap
is created. As a matter of fact, the important feature, here, is the
resonant behaviour which induces important values of the velocity in
the neck, and thus also important viscous dissipation. Furthermore,
at small enough η, at frequencies close but smaller than resonance
frequency, the corresponding neck flow becomes predominant and
the effective wavelength is drastically reduced, leading to a so-called
slow speed. However, when the shear viscosity increases, the neck flow
adjusts to a smaller value, eventually leading to the disappearance of
the slow speed. The viscous losses also smooth out the extrema of the
real and imaginary parts of the modulus in Fig. 2.6(b). Consequently,
a wider frequency range of the negative real part of the bulk modulus
is achieved by increasing the viscous losses. The thermal boundary
layers close to the cavity walls, where the fluid bulk modulus passes
from adiabatic to isothermal value, mainly bring a small correction
to the cavity spring constant (the cavity dimension is much larger
than the boundary layer thickness δt = (2κ/ρ0cpω)

1
2 ). Therefore,

their presence do not affect much the effective bulk modulus.
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As explained before, the dynamics of the material will be very
sensitive to the width of the neck, where a considerable part of the
viscous losses take place. In our case (see values of the parameters
in Fig. 2.5), between the frequencies k0L/π = 0.1 and 0.4, the ratio
of the viscous boundary layer thickness δv = (2η/ρ0ω)

1
2 to the width

of the neck, insensibly changes from 0.35 to 0.39. We observed that,
in general, to maintain the similar behavior of the wavenumber and
modulus, this ratio should remain in the same order, regardless of
changing the scale of the material or the saturating fluid. Here, well
above the resonance, at k0L/π = 0.5, we can check that the effective
wavelength in the material λeff is comparable to that in air λ0:
λeff/L ∼ 5, and λ0/L = 4. At the resonance frequency k0L/π =
0.15, we find that λeff/L ∼ 8. Roughly, this is a reduction by a factor
of two of the wavelength in air (λ0/L ∼ 13.33), and an illustration of
the mentioned trend of a slow speed close to the resonance. Although
this structure represents a subwavelength material, and therefore, can
be regarded in the large wavelength limit λeff � L, the local theory
based on the two-scale homogenization at order zero does not predict
correctly the acoustics, ignoring the resonance behavior. The origin
of the failure is the presence of widely different length scales, allowing
for resonances.

The same modeling framework has been used to study the case
of 3D materials.24 It has been noted that,24 if the structure with
the same geometrical parameters is embedded in water, there would
be less loss as the the viscous boundrary layer thickness is smaller
compared with that of air. To keep the same dynamic behavior with
water as with air, it would be necessary to very significantly decrease
the width of the neck; at this point it should be in mind that the
complicated effect of nonlinearities would certainly have to be taken
into account. Furthermore the thermal effects in water are not impor-
tant. The general thermodynamic identity γ− 1 = β2

0T0/ρ0cp, shows
that the deviation of γ ≡ cp/cv from unity, is a second order effect
on the thermal expansion coefficient β0. For a liquid, like water, β0

is very small; what implies that γ is practically 1. In this case, adi-
abatic bulk modulus χ−1

0(adiab) and isothermal bulk modulus χ−1
0(isoth)
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are very close, since in general, χ−1
0(adiab) = γχ−1

0(isoth). Therefore, ther-
mal exchanges have practically no effects.

2.2.4. Sound focusing and negative index

acoustic metamaterials

The first experimental demonstration of focusing ultrasound waves
through a flat acoustic metamaterial lens composed of a planar net-
work of subwavelength Helmholtz resonators has been presented in
Ref. 13. A tight focus of half-wavelength in width at 60.5 kHz by
imaging a point source has been observed. This result was in excel-
lent agreement with the numerical simulation by transmission line
model in which the effective mass density and compressibility has
been derived.

Negative Refractive Index Lens

The refractive index is a fundamental parameter describing the inter-
action between waves and material. In late 1960s, Veselago54 first
considered the theoretical possibility for a medium having simultane-
ous negative permittivity and negative permeability. When ε(ω) < 0,
µ(ω) < 0 at certain frequency, the refractive index is n = −√εµ and
the negative sign is taken to satisfy causality. When light passes
from a positive (n > 0) to a negative (n < 0) medium, Snell’s law
implies that the angle of refraction is negative, showing the refracted
ray emerges on the same side of the normal as the incident ray. In
2000, Pendry55 proposed that a thin slab of metamaterial with neg-
ative refractive index could make a perfect lens without any loss of
details. A conventional lens cannot focus light onto an area smaller
than a square wavelength due to the diffraction limit. The reason
for this limit is that the evanescent waves which carry the subwave-
length details of the object are exponentially decaying, leading to
the loss of those fine features in the image. However, utilizing neg-
ative refractive index material, a perfect lens can focus propagation
waves and also amplify evanescent waves to generate subwavelength
imaging.
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(a) (b)

Fig. 2.7. A flat lens brings all the diverging rays from an object into two focused
images (a). The NI medium can enhance the evanescent waves across the lens, so
the amplitude of the evanescent waves are identical at the object and the image
planes (b).

As shown in Fig. 2.7, negative refraction allows a flat slab lens of
negative index (NI) to focus all the diverging light rays from an object
into two images: one inside the slab and the other one outside the
slab. The evanescent waves have been enhanced across the lens and
decay again after emerging from the negative index lens. Therefore
the amplitude at the two image planes reaches their original level.
At the same time, the propagating waves pass through the negative
index lens with a reversed phase front, leading to zero phase change
at the image planes. By completely recovering both propagating and
evanescent waves in phase and amplitude, a perfect image is obtained.

An approximation of the perfect lens called as super lens was
built in optical frequency range under near-field condition. In the
near field, since the electric and magnetic components are decou-
pled, the super lens only needs negative dielectric permittivity for
one polarization light. The optical superlensing effect on the scale
of 60 nm (λ/6) was observed by excitation of surface plasmons56

through the metal/dielectric layer structure. The sub-diffraction-
limited image was recorded by optical lithography at 365 nm
wavelength. In microwave frequency, subwavelength focusing was
realized by different groups. An example of subwavelength focusing in
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microwave frequency has been realized using a planar transmission-
line structure.57 The negative index lens is a planar slab consisting
of a grid of printed metallic strips over a ground plane, loaded with
series capacitors and shunt inductors. In the experiment, the loaded
grid is sandwiched between two unloaded printed grids that act as
effective homogeneous media with a positive refractive index.

Sound Focusing by Acoustic Transmission Line Network

Figure 2.8 shows the experimental setup to study the focusing
phenomena of the acoustic metamaterial. To prepare the sample,
we machined a 2D array of periodically connected subwavelength
Helmholtz resonators in an aluminum plate and the resonators are
filled with water. As shown in previous work,58–60 a main transmis-
sion channel with recurrent side branches, which are closed at the

Fig. 2.8. Schematic showing the experimental setup. The sample with PI-NI
interface is composed of an array of different designed Helmholtz resonators
machined from an aluminum plate. Unit cells of each half part and the corre-
sponding inductor-capacitor circuit analogy are shown in the insets.13

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch02 page 94

94 Handbook of Metamaterials and Plasmonics — Volume 2

outer end, is analogous to a circuit of a series of inductors with
shunt capacitors. On the other hand, when the side tubes inserted
in the main channel are open on the outer end, the acoustic system
can be described by a lumped network of a series of capacitors with
shunt inductors. The left and right half parts in the sample are 2D
periodic versions of those different types of topology, respectively.
One unit cell from each half part is enlarged and shown in the two
insets, respectively.

The left half part is composed of a 2D array (40 × 40) of large
cavities connected with main channels. The volume of the cavity is
around 10 times that of one section of the channels. Such an acoustic
system is analogous to an inductor-capacitor circuit as shown in the
inset of Fig. 2.8 with the channels acting as a series of inductors
(LP ) and the cavity providing the stiffness element as capacitors
(CP ). The periodicity (3.175 mm) of the sample is one-eighth of the
wavelength at around 60 kHz frequency range. Given this value, the
lumped circuit model is a valid approximation for the distributed
acoustic system with only 10% error.62 Following the approach of
EM circuit analysis (see also Section 2.2.1),27,57,61 the effective den-
sity and compressibility of this network can be expressed in the form
as ρP = LPSP/dP , χP = CP /SPdP , where dP is the periodicity and
SP is the cross section area of the channels. Both effective density
and compressibility are positive. Effective relative acoustic refractive
index nP can be determined by nP = c0

√
LPCP/dP where c0 is the

speed of sound in water. We call this half part the effective posi-
tive index (PI) medium. Such an acoustic system is described as a
lumped network with a series of capacitors (CN ) for the main channel
part and a shunt inductor (LN ) due to the orifice. The periodicity is
the same as that in the left part, so the effective mass density and
compressibility can be similarly estimated as ρN = −SN/(ω2CNdN ),
χN = −1/(ω2LNdNSN ) where dN is periodicity and SN is the cross
section area of connecting channels. Both parameters are negative.
The refractive index nN = c0/c(ω) = −c0/(ω2dN

√
LNCN ) is neg-

ative. Therefore, this material acts as a medium exhibiting NI of
refraction. The two half parts are designed with effective indices of
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Fig. 2.9. Pseudocolor map of the normalized pressure field distribution at
60.5 kHz. Measured (a) and simulated (b) field map of the acoustic NI metamate-
rial and line plot of pressure field across the focal plane parallel to interface (c).13

equal and opposite value and matched impedance
√
ρ/χ at the design

frequency 60.5 kHz.
In the experiments, the pressure field through this PI-NI interface

has been measured to confirm the focusing in this material. Compari-
son of Figs. 2.9(a) and 2.9(b) shows that the field plots found through
simulation, by circuit simulator SPICE, are in remarkable agreement
with the experimental results.

In Fig. 2.9(c), the measured data shown by the blue line is shifted
to the left by 3.175 mm for comparison purposes. The comparison
demonstrates a very good match in the focus width between the
measurement and the numerical simulation. This analysis predicts
that the negative refractive index approaches -1 relative to the PI
part at 60.5 kHz. In order to achieve high-quality focus imaging,
the ratio of the refractive index should be -1 at the PI-NI interface.
Only when the index is matched, based on ray acoustics, the angle
of refraction equals the angle of incidence for each ray such that all
rays can be brought to the same focal spot in the NI part. However,
the refractive index is not exactly matched in the experiment. This
discrepancy is related to the loss as well as variation in the inductors
and capacitors from their designed values due to machining tolerance.
It has been noted that single PI-NI interface does not allow enough
growth of evanescent fields to achieve subdiffraction focusing61 while
sandwich structure (two PI-NI interfaces) offers a better chance to
overcome the diffraction limit.57
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The emission of a point source at kilohertz frequency which was
brought to a focus through the PI-NI interface because of the neg-
ative refraction in this ultrasonic metamaterial, has been expected
to be a step toward a novel acoustic imaging lens. The resolution of
0.5 wavelength was recorded by focusing the acoustic field of a point
source. This is not subdiffraction imaging, but among the best achiev-
able passive acoustic imaging elements. The unit cell of the acoustic
network is only one-eighth of the operating wavelength, making the
lens a compact size. Compared with conventional lenses, the flat thin
slab lens has advantages in that there is no need to manufacture the
shapes of spherical curvatures and the focus position is insensitive
to the offset of source along the axis. Also, this negative-index lens
offers tunable focal length at different frequencies.13

2.2.5. Extraordinary focusing of sound above

Helmholtz resonator array

Recently, Lemoult et al.63 used time reversal to focus sound above
an array of soda cans into a spot much smaller than the acoustic
wave length in air. However, the time reversal may not be necessary
to achieve the extraordinary focusing in such system. In this section,
we will experimentally demonstrate the extraordinary focusing above
an soda can array using monochromatic sound excitation. We will
also explain the experimental observations based on an analytical
effective-medium model as well as finite-element calculations.25

2.2.5.1. Experimental configuration and results

As shown in Fig 2.10(a), we arranged 37 empty soda cans in a hexag-
onal array. Six commercial speakers, which were continuously driven
at a given frequency, were placed symmetrically around the array. In
the experiment, the Coca-Cola cans have a volume of 350 cm3 and
an opening area of 4 cm2 similar to those used by Lemoult et al.,63

with the fundamental Helmholtz resonance at 420 Hz. A micro-
phone mounted on a translation stage was suspended at a height
of 12±2 mm above the top of the cans to collect acoustic intensity
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Fig. 2.10. (a) Experimental arrangement inside the anechoic room; (b) top view of the array with the scan line shown;
(c) Acoustic intensity profiles along the diameter of the array at different frequencies. The bottom right panel shows an
intensity profile measured without soda cans. Symbols are experimental points, connecting lines are guides to the eye.
Dashed lines are Bessel function envelopes.25
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distribution. The experimental results of the acoustic intensity pro-
files at different frequencies as well as a reference profile measured
without cans are plotted in Fig. 2.10(b). Without the soda can array,
a focal spot with a FWHM (full width at half maximum) of 31 cm at
410 Hz is observed, which is around 0.37 of the wavelength. With the
soda can array, the focal spot at the center of the array gets progres-
sively smaller as the resonant frequency is approached from below,
becoming as narrow as 2 cm, or about λ/40, at 415 Hz. Above the
Helmholtz resonance frequency, the intensity profile changes dramat-
ically with maxima at the edges of the array and attenuation towards
the center.

2.2.5.2. Theoretical modeling

In the effective medium approach, the acoustic wavelength is assumed
to be much greater than the average distance between the resonators.
The resonators can be modeled as mass-on-a-spring harmonic oscilla-
tors with pistons of mass M attached to springs with spring constant
K as shown in Fig. 2.11(a). The resonators are regularly distributed
in two dimensional plane with the average fractional piston area F .

For a Helmholtz resonator with a zero neck length, the effective
mass is estimated as (16/3)π−3/2ρ0A

3/2, where A is the opening area
and ρ0 is the density of air, whereas the spring constant K is given
by ρ0c

2A2/V , where c is the speed of sound and V is the volume
of the resonator.64 For our soda cans, this model yields an effective
mass of 9.23 mg and a spring constant of 64.8 N/m, resulting in a
resonance frequency ω0/2π = 422 Hz.

The vertical position of a piston Z is obeying the equation of
motion:

Z̈ = −ω2
0Z −

pA

M
, (2.37)

where p is a deviation of the pressure above the piston from the
equilibrium value and A is the area of the piston. In the case of long
wavelength assumption, the average displacement of the boundary
can be written as uz = FZ. This leads to an effective boundary condi-
tion relating the average displacement and pressure at the boundary
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Fig. 2.11. (a) The model system. (b) Dispersion of acoustic waves propagating
above the hexagonal array of soda cans calculated by FE (symbols) along the
ΓK direction of the reciprocal lattice vs. the effective medium calculation (solid
line). Shaded area represents the continuum of bulk modes in the semi-infinite
space whereas FE calculations yield discrete modes due to the finite height of the
simulation domain. The inserts are distributions of the sound pressure amplitude
in the guided mode above a soda can for points A and B of the dispersion curve.25

z = 0,

üz + ω2
0uz = −pFA

M
, (2.38)

which replaces the boundary condition of zero displacement at the
rigid boundary in the absence of resonators. By assuming a harmonic
wave propagating along the x direction, φ = φ̃(z) exp (iωt− ikx), we
can achieve the following equation of motion:

∂2φ̃

∂z2
=
(
k2 − ω2

c2

)
φ̃, (2.39)

and finally get a dispersion relation for ω and k,(
k2 − ω2

c2

)1/2

(ω2
0 − ω2) =

ω2FA

M
. (2.40)

The dispersion relation is plotted in Fig. 2.11(b) (solid line) for
ρ0 = 1.23 kg/m3, c = 343 m/s, F = 0.106 (calculated for dense
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hexagonal packing of the cans). In the limit of small k the dispersion
approaches that of the bulk wave in air, ω = ck, whereas in the
opposite limit of large k the frequency asymptotically approaches
the resonance frequency ω0. For a more accurate description of the
wave propagation above a hexagonal lattice of soda cans, we use
finite element (FE) calculations.

The acoustic module in COMSOL Multiphysics was applied to
calculate the dispersion relation of soda cans arranged in a hexago-
nal lattice. Soda cans were modeled as cylinders with rigid walls of
11.5 cm in height and 6.6 cm in diameter. The opening in the model
was circular and centered at the axis of the cylinder, with the same
area of 4 cm2 as the opening of a real can. Due to the computational
resource limitation, the height of the simulation domain was set as
1 m, with rigid wall boundary conditions at the “ceiling”. Floquet
periodic boundary conditions were applied in order to find acoustic
eigenmodes of an infinite 2D hexagonal lattice. The calculated dis-
persion relation along the ΓK direction of the reciprocal lattice is
plotted in Fig. 2.11 (symbols). Discrete modes in the shaded area
above the sound line ω = ck are due to a finite height of the simu-
lation domain. For a semi-infinite half space, the shaded area should
be filled by a continuum of bulk waves propagating at oblique angles
to the floor. The mode below the sound line is guided by the can
array, and its dispersion is close to what the simple effective medium
theory has predicted.

In conclusion, we have demonstrated that focusing of sound in a
metamaterial formed by a 2D array of soda cans results in an increas-
ingly narrow intensity peak as the acoustic frequency approaches the
Helmholtz resonance from below. The observed phenomenon results
from the small acoustic wavelength in the metamaterial in combi-
nation with a near-field effect, i.e., the localization of the acoustic
intensity at the opening of a can at frequencies close to the resonance.
Furthermore, we found that the acoustic wave propagating along the
Helmholtz resonator array is a guided mode becoming increasingly
confined to the array as its frequency approaches the Helmholtz res-
onance from below.
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2.3. Acoustic Transformation and Its Application

As we could see earlier, acoustics and electromagnetism have been
brought together through different analogies derived from high simi-
larities in their formalisms, despite deep differences in their physical
nature. How coordinate transformation was used in both fields, does
not make an exception to that rule. In 2006, Pendry et al.16 showed
that one could manipulate at willa the wave propagation in the
framework of a relatively easy formalism -transformation optics, the
coordinate transformation in optics- in comparison with the offered
possibilities. Soon, the concept was transposed to acoustics.

Among the foreseen applications, the invisibility cloak has been
the subject of first experimental studies in late 2006.20 It was followed
later by the acoustic (“inaudible”) cloak, first realized in 2011 for
acoustic waves50 and in 2012 for elastic waves.66 In this section, we
start by a brief summary of the recent rebirth of coordinate transfor-
mation in optics and acoustics, with an emphasis on the “inaudible”
acoustic cloak.50 Then, we show how coordinate transformation can
be broadly applied to different physics and lead for example to sur-
face wave cloaking. Finally, we show that the concept of coordinate
transformation can be applied more generally, allowing for example
the design of a complementary material meant to remove the aber-
rations resulting from the transmission of an acoustic wave through
any arbitrary heterogeneous medium.

2.3.1. Transformation acoustics

2.3.1.1. Coordinate transformations and invisibilty

The work by Pendry et al. that was published in 2006, is in fact based
on the conclusions of an article published 10 years earlier. In 1996,
Ward and Pendry showed that Maxwell’s equations are invariant
under any arbitrary transformation of coordinates.65 In other words,
after the coordinate transformation, their form is the same as the one

aThe control of wave propagation relies by spatially controlling the material
parameters ε and µ.
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they have in the Cartesian mesh. The only difference is that if we
start with an isotropic material for which ε and µ are scalar, after the
coordinate transformation, we generally end up with anisotropic and
heterogeneous material for which ε and µ are represented by tensors.

This form invariance can be used in a smart way. Indeed, chosen
in a suitable manner, the coordinate transformation makes it possible
to exclude the field from any arbitrary surface (2D) or volume (3D).
Furthermore, it can be chosen so that the field lines are reformed on
each side of the prohibited area, thus making this space invisible to
any observer or listener.

In view of the invisibility cloak, the first coordinate transforma-
tion scheme that was historically provided, was to exclude waves from
a sphere.16 As we discuss later the two dimensional case, we present
here one coordinate transformation which allows us to exclude the
field from a disk surface:

r′ = R1 + r(R2 −R1)/R2

θ′ = θ

z′ = z

(2.41)

This coordinate transformation makes the region of space that
is comprised in the circle of radius R1 inaccessible, as it moves the
points of that region to the region defined by R1 < r < 2R1−R1

2/R2.
Meantime, the space that was originally defined by R1 < r < R2, is
squished in the region defined by 2R1 − R1

2/R2 < r < R2. Space
beyond R2 remains unchanged. For the rays, whether they are of light
or sound, the trajectories that initially borrow straight lines within
the region r < R2 become more or less severely curved in order to
avoid the forbidden region (see Fig. 2.12).

This apparent simplicity has a cost, which is reflected in the
way the parameters of the medium are changed by the coordinate
transformation. Their calculation involves the Jacobian matrix of
the latter, and the parameters of the non-deformed/homogeneous
medium. As we have mentioned earlier, the new material parameters
generally depend on the position but also on the direction.

Finally, we note that in the invisibility cloak, the trajectories are
curved, and therefore they are longer than the straight trajectories
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(a) (b)

Fig. 2.12. Starting with a homogeneous configuration (a), the medium is
deformed to exclude rays — of light or sound — (thick arrow lines) from the
desired area (b). The coordinate transformation is recorded by comparing the ray
arrows on both side, and applied to the equations to find the value of the new
material parameters (or metamaterial).

in the medium surrounding the cape. For the wavefront to emerge
non-deformed after it went through the cape, it is necessary that
the speed of the wave is higher in the cloaking device than in the
surrounding material.

This raises some issues in optics, where it is hard to fabricate a
medium in which light propagates faster than in a medium of refer-
ence such as air.b On the contrary, in acoustics, there exists many
media in which sound travels faster than in reference media such as
water or air.

2.3.1.2. From transformation optics to transformation
acoustics

In acoustics, the first study on coordinate transformation coincides
with an article from Milton et al. which shows that the equation of

bIn the cloaking device, it is the phase speed cφ that is higher than the speed of
wave outside the cloaking device. The group velocity cg is given by the relation
cg = c0

2/cφ which ensures that it is always lower than c0.
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elasto-dynamic does not generally remain unchanged by coordinate
transformation.67 From this observation, attempts to apply coordi-
nate transformation to the equation of acoustic, mainly focused on
finding forms of the equation of acoustic that are similar to the form
of Maxwell’s equations.

Steven Cummer and David Schurig68 consider the propagation
of acoustic wave in a z-invariant 2D inviscid homogeneous fluid with
anisotropic density ρ = [ρr, ρφ] and bulk modulus K0.c Assuming
time harmonic wave (exp (+jωt) convention), they write the equa-
tions for the conservation of momentum and mass in cylindrical coor-
dinates as follows:

jωρφvφ = −1
r

∂p

∂φ
, (2.42)

jωρrvr = −∂p
∂r

, (2.43)

jωK−1p = −1
r

∂(rvr)
∂r

− 1
r

∂vφ

∂φ
. (2.44)

where p is the pressure and v = (vr, vφ) is the particle velocity. At
the same time, Cummer and Schurig notice that the z-invariant 2D
Maxwell equations for transverse electric (TE) polarization, can be
written in the following form:

jωµr(−Hr) = −1
r

∂(−Ez)
∂φ

, (2.45)

jωµφHφ = −∂(−Ez)
∂r

, (2.46)

jωεz(−Ez) = −1
r

∂(rHφ)
∂r

− 1
r

∂(−Hr)
∂φ

. (2.47)

Comparing these three equations to the equations of acoustics (2.42–
2.44), they find that these two sets of equations are similar under the

cThis medium is a transversely isotropic fluid.
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following substitution:

[p, vr, vφ, ρr, ρφ,K
−1]↔ [−Ez,Hφ,−Hr, µφ, µr, εz] (2.48)

This analogy between the time harmonic acoustic equations and
Maxwell equations also preserves boundary conditions. Indeed, the
pressure and the normal velocity component are continuous at a fluid-
fluid interface, as the vertical component of the electric field and the
tangential component of the magnetic field are at an electromagnetic
material interface.

Following analogy (2.48) and applying the coordinate transfor-
mation corresponding to the equations (2.41) imposes the value of
the material parameters K and ρ, inside the cloaking shell (R1 <

r < R2), as follow:

ρr

ρ0
=

r

r −R1
(2.49)

ρφ

ρ0
=
r −R1

r
(2.50)

K−1

K0
−1 =

(
R2

R2 −R1

)2 r −R1

r
. (2.51)

Within the cloaking device (R1 < r < R2), the effective material
parameters continuously change. In the limit r → R1, ρr → +∞,
ρφ → 0 and K → +∞. Note here that there is no restriction on the
values of K and ρ in the cloaked area, i.e., in the region r < R1.

Other studies have shown such analogy between electromag-
netism and acoustic equations. In particular Chen and Chan have
shown that, in 3D, the acoustic equation in a heterogeneous fluid and
the electrical conductivity equation have equivalent forms, therefore
allowing to use coordinate transformation in order to guide acoustic
wave in 3D-fluid.69

2.3.2. Broadband acoustic cloak for ultrasound

First numerical simulations are reported by Cummer and Schurig
in Ref. 68 where a cylindrical cloaking shell is simulated based on
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Fig. 2.13. Numerical simulation of an acoustic cloak from Ref. 68. (a) An acous-
tic beam is propagating in a homogeneous medium. (b) The acoustic beam is
scattered by a cylindrical scatterer (� = 0.7λ). (c) The scatterer is surrounded
by the acoustic cloaking shell.

analogy (2.48). Three configurations are compared: (a) an acoustic
beam is sent in a homogeneous medium, (b) the beam encounters
an incompressible cylindrical scatterer and (c) the beam encounters
the cylindrical cloaking shell (0.75 wavelength thick) surrounding
the scatterers. As expected, in configuration (b), the incompressible
cylinder is responsible for large scattering and a shadow behind the
cylinder. The latter disappears in configuration (c). Indeed, in the
forward direction, the wavefront is reformed and retrieves with fairly
good agreement the shape of the wavefront in configuration (a), as
if there was no scatterer. As in Ref. 67, the difficulties going from
the numerical study to the experimental proof are raised. Indeed, in
nature, no material has the features of the cloak, namely, a contin-
uous variation of the parameters of the medium along the radius of
the cloaking shell, and an anisotropic density.

This challenge was met by Zhang et al. to whom we owe the
first experimental realization of the acoustic inaudible cloak50 for 2D
acoustic wave in water. As shown in Fig. 2.14, the cloaking shell is
divided in several concentric rings, each one being characterized by a
particular set of acoustic material parameters.d The rings themselves

dAs a reminder, ρr, ρθ and K all vary along r.

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch02 page 107

Acoustic Metamaterial 107

Fig. 2.14. Schematic of cloaking shell for 2D acoustic wave in water, from.50

The aluminum cloak is devided into 16 concentric rings, with inner and the outer
radii of the cloak equal to 13.5 mm and 54.1 mm.

are divided in small cells arranged in a circular array. Each cell is
made of a large cavity surrounded by four narrow channels, commu-
nicating with the four neighboring cells (two on the same ring and
two on the two surrounding rings). The cavity behaves as acoustic
capacitor whereas the channels act as serial inductors as seen in Sec-
tion 2.2.1. Around the central working frequency (60 kHz), each cell
is only of the order of one tenth of the wavelength.

Figures 2.15(a–c) shows experimental pressure field mappings
resulting from the scattering of an acoustic wave by a bare steel
cylinder in water at three different frequencies (60 kHz, 52 kHz and
60 kHz). It is compared to the pressure field mappings when the
steel cylinder is surrounded by the acoustic cloak (Figs. 2.15(d–f)).
Although the acoustic cloak central frequency is 60 kHz (Figs. 2.15(a)
and (d)), the acoustic cloak shows also great results at 52 kHz
(Figs. 2.15(b) and (e)) and 64 kHz (Figs. 2.15(c) and (f)). Indeed,
the steel cylinder shade is almost completely removed once it is sur-
rounded by the acoustic cloak.

2.3.3. Molding water, acoustic and electromagnetic

waves with a single cloak

In the most of invisibility cloaking demonstrations, the carefully
designed artificial structure can be valid only for one physical
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Fig. 2.15. Measured pressure field mappings of the bare cylinder and the cloaked
steel cylinder illuminated with a point ultrasound source. The cloak lies in the
center of a water tank and surrounds the steel cylinder. The scattering field
patterns of the bare cylinder at (a) 60 kHz (b) 52 kHz, and (c) 64 kHz. The
pseudo-color map in the immediate environment of the cloaked steel cylinder at
(d) 60 kHz (e) 52 kHz, and (f) 64 kHz.50

variable, e.g., electromagnetic wave,20,70–73 acoustic wave,50,68,69,74,75

elastic wave,66,76,77 and heat flux,78–80 etc. In this section, we will
introduce a cylindrical cloak which can work equally for linear surface
liquid wave, acoustic wave, and electromagnetic wave.74,81 This struc-
tured cloak behaves like a surface liquid wave cloak with an effec-
tive anisotropic shear viscosity, an acoustic cloak with an effective
anisotropic density, and an electromagnetic cloak with an effective
anisotropic permittivity, respectively. The effective anisotropic effect
parameters are proceeded with mathematical approach of homoge-
nization,82,83 which amounts to replacing a structured material by
an effective medium that captures the essential wave phenomena for
wave with wavelength large compared to the typical heterogeneity
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Fig. 2.16. Photo of the structured cloak. 100 rigid sectors are evenly machined
in a metallic ring of inner radius R1 = 41 mm and outer radius R2 = 100 mm.74

size. We also numerically and experimentally demonstrate the per-
formance of the cylindrical cloak in these three kinds of waves.

2.3.3.1. Sample configuration

The invisibility cloak as shown in Fig. 2.16 is manufactured in alu-
minum using classical numerically controlled machine tools. The
outer and inner radii are R2 = 100 mm and R1 = 41 mm, respec-
tively. The cloak is first divided into 14 layers with the layer thickness
as the function of r as (R2(r−R1)

r(R2−R1)
)2. One layer in two is further divided

into 100 identical angular sectors along the azimuthal direction as
shown in the figure, and there are seven rows of rods along the radius.

2.3.3.2. Theoretical and numerical approaches

For the the surface of a linear fluid medium, the conservation of
momentum leads to the Navier-Stokes equations:

ρ0

(
∂

∂t
+ v · ∇

)
v− η∇2v = −∇p+ ρg (2.52)
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where v is the velocity field, η∇2v accounts for the fluid’s viscosity,
p the fluid pressure, ρ0 is density and g the vector of gravity force.
Note that g = −ge3, where g denotes the acceleration caused by
gravity and e3 a vertical unit vector. It is noted that η∇2v can be
neglected outside the cloak region due to the fairly low viscosity of the
surrounding fluid. In addition, the fluid should be also incompressible
(divergence free), irrotational (curl free), and undergo only small
fluctuations around a mean vertical position. Therefore, the deduced
vertical displacement of the fluid for the harmonic oscillation can
satisfy with Helmholtz’s equation.84 By solving the Eq. (2.52) for
the cloak region, we can achieve an anisotropic matrix of viscosity
whose nontrivial part (transverse shear) is:

[ηhom] =
1

A(Y �)

(
A(Y �)− ψrr ψrθ

ψθr A(Y �)− ψθθ

)
(2.53)

Here, A(Y �) denotes the area of the region Y � surrounding a
rigid inclusion (subject to Neumann boundary conditions) in an ele-
mentary cell Y of the periodic array, and ψij represent corrective
terms, which is related to periodic hydrostatic fields, as shown in
Fig. 2.17(a). For simplification, in our sample, we can introduce some
variation in the radial length of sectors for which it seems reasonable
to assume that the improved cloak is characterized by an effective
anisotropic fluid whose shear viscosity (a diagonal matrix in polar
basis) is

η′rr =
(
R2(r −R1)
r(R2 −R1)

)2

, η′θθ =
(

R2

R2 −R1

)2

(2.54)

where R1 and R2 are the inner and outer radii of the ring, respec-
tively. Importantly, the effective fluid’s density is the same as the fluid
density, which does not play any prominent role. These parameters
were actually first proposed in Ref. 85 for the case of electromag-
netic waves. The snapshot of the surface waves for the homogenized
coating is shown in Fig. 2.17(b), which is calculated by COMSOL
Multiphysics. The stream lines indicating the direction of the fluid
flow, clearly demonstrate the bending effect in the cloaking area.

 W
or

ld
 S

ci
en

tif
ic

 H
an

db
oo

k 
of

 M
et

am
at

er
ia

ls
 a

nd
 P

la
sm

on
ic

s 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

SI
N

G
A

PO
R

E
 o

n 
11

/0
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



September 8, 2017 8:26 Handbook of Metamaterials and Plasmonics — Volume 2 9in x 6in b2857-v2-ch02 page 111

Acoustic Metamaterial 111

Fig. 2.17. (a) Calculated periodic hydrostatic field. (b) Pattern of the concentric
surface wave and associated stream lines (indicating the direction of fluid flow)
generated by a forced term with frequency 15.84 Hz. A rigid cylinder of radius
38 mm is placed in the center of a homogenized cloak.74

Similar approaches are applied for acoustic wave and electro-
magnetic wave as well. The homogenized wave equations (in polar
coordinates) for acoustic waves can be written as:

−∇ ·
([
ρ−1

rr 0
0 ρ−1

θθ

]
(r)∇p(r, θ)

)
=

ω2

Keff
p(r, θ) (2.55)

where the tensor of effective density is given by

[
ρ−1

rr 0
0 ρ−1

θθ

]
=

1
area(Y )

∫ 2π

0

∫ 1

0
ρ(r, r′, θ′)

×
[
area(Y )− ψrr ψrθ

ψθr area(Y )− ψθθ

]
r′dr′dθ′ (2.56)

Here, ψij are periodic potentials.
And for electromagnetic wave:

−∇ ·
([
ε−1
rr 0
0 ε−1

θθ

]
(r)∇Hz(r, θ)

)
= ω2µeffHz(r, θ) (2.57)
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where ε−1
rr and ε−1

θθ are the coefficients of the tensor of effective per-
mittivity which are also given by Eq. (2.56) (replacing ρ by µ in
the equation) and µeff is the effective permeability which can be
written as:

µeff =
1

area(Y )

∫ 2π

0

∫ 1

0
µ(r, r′, θ′)r′dr′dθ′ (2.58)

It is noted that this equation is simply derived from the vector
Maxwell equation by considering a magnetic field H = (0, 0,Hz).

It can be shown that the reduced effective parameters are good
approximations for well-known transformed density and permittivity
in their reduced forms:

ρ′rr =
(
R2(r −R1)
r(R2 −R1)

)2

, ρ′θθ =
(

R2

R2 −R1

)2

(2.59)

ε′rr =
(
R2(r −R1)
r(R2 −R1)

)2

, ε′θθ =
(

R2

R2 −R1

)2

(2.60)

The numerical simulation for all these three cases are conducted
by using the commercial finite elements package COMSOL Multi-
physics. The geometric configuration in the simulation is same as the
real structured cloaking device. Here, we select electromagnetic wave
as an example to demonstrate the invisible cloak behavior as shown
in 2.18. In order to quantitatively assess the cloaking efficiency of
the metamaterial, we numerically compute its total radar cross sec-
tion (RCS),86,87 and plot them in Fig. 2.18(d). We can observe that
a small infinite conducting (resp. rigid for pressure waves) obstacle
surrounded by the cloak is slightly above RCS of the cloak on its
own, but lower than RCS of small infinite conducting (resp. rigid)
obstacle, which is itself smaller than RCS of the large infinite con-
ducting (resp. rigid) obstacle of same diameter as the cloak up to
7 GHz (resp. 8 KHz for pressure waves). The theoretical and numer-
ical results confirm that these two-dimensional finite element simu-
lations are valid for all water wave, acoustic wave, and transverse
electromagnetic wave.
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Fig. 2.18. The simulated real part of the transverse magnetic (resp. pressure)
field for a plane wave incident at 4.5 GHz (resp. 5 kHz) from the left on the small
obstacle surrounded by the cloak on the small obstacle on its own (a), on the
large obstacle (b), and on the cloaked obstacle (c). (d) Numerical simulation of
radar cross section (RCS) for cloak and cylindrical rigid obstacles.81

2.3.3.3. Experimental characterization

The performance of the invisible cloak has been characterized for
water, acoustic, and electromagnetic waves, respectively. In Fig. 2.19
(a), we present the schematic experimental setup for observing back
scattering water wave from the cloak. In the system, a halogen lamp
modulated by a perforated rotating disc illuminates a transparent
vessel containing the liquid. We choose a small tube to excite a local-
ized pressure with the same frequency as the modulation of the light.
The surface waves create local curvatures of the liquid and the light
is refracted when crossing the surface. Therefore, on the screen the
dark and light zones allow visualizing the liquid surface waves. We
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Fig. 2.19. Schematic view of the experimental setup for linear surface water
waves. (b–c) Experimental results of reduced backscattering adapted from74 for a
concentric liquid surface wave of frequency 10 Hz interacting with a rigid cylinder
(7.6 cm in diameter) on its own (b) and the structured waterwave cloak (20 cm
in diameter) (c).81

take snapshots of the liquid surface waves when a metallic cylinder
is placed in the vessel alone and with the invisibility cloak, which are
shown in Fig. 2.19(b) and (c). The dramatic reduced back scattering
field can be observed if the metallic cylinder is placed in the cloak.

The schematic view of acoustic wave experimental setup is shown
in Fig. 2.20(c). A commercial loudspeaker is placed at 20 cm from
the structure cloak. The loudspeaker is driven by a programmable
functional generator and a power amplifier. A high sensitive micro-
phone mounted on an x-y translation stage is used to record the two-
dimensional acoustic pressure field distribution. The loudspeaker,
acoustic cloak, and microphone are placed at the same level for char-
acterizing how the pressure field is affected by the cloak. In the exper-
iment, a five-period sinusoidal wave is launched by the loudspeaker.
The time-dependent pre-amplified signal collected by the microphone
is recorded by an oscilloscope and downloaded to a computer for fur-
ther analysis. The signal generation and acquisition are synchronized
by the computer program. Therefore, we can map the 2D pressure
field distribution with both amplitude and phase information. The
scanning area is 25 × 25 cm2. The measured forward scattering fields
for a cylindrical scatterer with or without the cloak are plotted in
Fig. 2.20(a). We can observe that the acoustic wavefront is neatly
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Fig. 2.20. (a, b) Experimental results in forward scattering for pressure waves
(a) and transverse electric microwaves (b) for the same cloak containing a large
glass bottle obstacle (a) and a small square metallic obstacle (b). (c, d) Schematic
view of the experimental setup for acoustic wave (c) and microwave (d). (e) Top
view of 2D configuration for forward scattering wave mapping. The measured
area are indicated by the dashed box.

reconstructed behind the cloak, with a good agreement with the
numerical simulation results.

The schematic view of microwaves experimental setup which is
positioned in an anechoic chamber is shown in Fig. 2.20(d). A ridged
horn antenna is positioned at 24 cm from the structure cloak. A rect-
angular metallic obstacle is inside the cloak structure. The magnetic
probe is positioned 5 mm above the structure cloak. The probe is a
homemade magnetic loop with diameter 5 mm and the loop is posi-
tioned perpendicular to the magnetic field of the emitter antenna.
In this configuration, the magnetic probe measures a single compo-
nent (vertical component) of the three Cartesian components of the
magnetic field. The magnetic loop scanned a 33 × 71 cm2 surface
thanks to a 3D axis positioning system.86 The antenna and the probe
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are connected to a vector network analyzer that generates and mea-
sures the electromagnetic field. The electromagnetic field is emitted
by the antenna and the probe only receives the field. The vector
network analyzer measures the transmission coefficient between the
emitter antenna and the magnetic probe. The complex transmission
coefficient between the antenna and the probe is displayed in terms
of magnitude in dB to visualize the intensity of the field. The real
part of the magnetic field is also displayed since this is related to
the phase of the field. The measured forward scattering longitudinal
magnetic field for a square metallic obstacle placed in the cloak is
plotted in Fig. 2.20(b). Similar to the results of the acoustic wave,
the electromagnetic wavefront is reconstructed.

In conclusion, we present three experiments demonstrating that
a cylindrical cloak works equally well for linear surface liquid wave,
acoustic wave, and electromagnetic wave. Measured forward scat-
tering for pressure and magnetic fields are in good agreement and
confirm broadband cloaking with a central frequency of 5 kHz for
sound and 4.3 GHz for microwaves. Microwave experiments further
confirm the much reduced forward and backscattering when a rectan-
gular metallic obstacle is surrounded by the structured cloak range of
cloaking frequencies between 2.6 and 6.0 GHz. This suggests, as sup-
ported by numerical simulations, sound waves are cloaked between 3
and 7 kHz and linear surface liquid waves are cloaked between 8 to
14 Hz. Moreover, microwave experiments confirm the field is reduced
by 10 to 30 dB inside the invisibility region, which suggests the multi-
physics cloak could be used as a protection against water, sonic or
microwaves.

2.3.4. Anisotropic complementary acoustic

complementary metamaterials

In the previous sections, we have introduced conventional cloak-
ing strategies50,74,88 by compressing the space and hide the object
inside an enclosure in which there is no interaction with the outside
world. However, this solution is not suited to the problems for
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the application of medical ultrasound or non-destructive evaluation
(NDE). In these problems, ultrasound needs to be transmitted
through an aberrating layer,89–95 where either the transmission
is desired to be maximized or the reflection needs to be min-
imized. One of the most representative examples is transcranial
ultrasound beam focusing, which could find usage in both brain
imaging and treatment.91,92 However, transcranial beam focusing
is extremely challenging due to the presence of the skull. A com-
mon approach to achieve transcranial beam focusing is based on
the time-reversal/phase conjugate technique and ultrasound phased
arrays.96,97 Although the focal position can be corrected, one sig-
nificant shortcoming of this strategy is that it does not compensate
for the large acoustic energy loss due to the impedance mismatch
between the skull and the background medium (water). Recently,
Lai et al. demonstrated that cloaking/illusion based on electromag-
netic wave (EM) complementary metamaterials (CMM)98 can open
up a virtual hole in a wall without distortion.99,100 In addition, this
type of approach does not require the cloaked object to be inside
an enclosure/cloaking shell and is valid in free space.101 Due to the
similarity between acoustic and EM wave equations in 2D, CMMs
have been also proposed for acoustic cloaking.102,103

In this section, we will introduce a type of anisotropic, acous-
tic complementary metamaterials (CMM) and their application in
restoring acoustic fields distorted by aberrating layers.104 The pro-
posed quasi 2D, non-resonant CMM consists of unit cells formed
by membranes and side branches with open ends. Simultaneously
anisotropic and negative density is achieved by assigning membranes
facing each direction (x- and y-direction) with different thicknesses
while the compressibility is tuned by the side branches. Numerical
examples demonstrate that, the CMM, when placed adjacent to a
strongly aberrating layer, could acoustically cancel out that aberrat-
ing layer. This leads to dramatically reduced acoustic field distortion
and enhanced sound transmission, therefore virtually removing the
layer in a noninvasive manner.
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Fig. 2.21. (a) Schematic of the CMM, the aberrating layer, and the background
medium. (b) Schematic of acoustic cloaking using CMM, the dashed lines indicate
the boundaries of layer 4.

2.3.4.1. Theoretical approach for CMM

The CMM is placed on top of the aberrating layer, as illustrated
in Fig. 2.21(a). The aberrating layer is assumed to be sufficiently
long so that the edges do not significantly affect the acoustic
field. The CMM compresses and cancels the information of the
selected aberrating layer. Let ρ(c)(x(c), y(c), z(c)), χ(c)(x(c), y(c), z(c))
and ρ(a)(x(a), y(a), z(a)), χ(a)(x(a), y(a), z(a)) be the effective den-
sity and compressibility tensors of the CMM and the aberrating
layer, respectively. x(c), y(c), z(c) and x(a), y(a), z(a) are generalized
curved coordinates. Based on the acoustic coordinate transformation,
we have69: [

ρ(c)
]−1

= A
[
ρ(a)
]−1

AT /detA, (2.61)

χ(c) = χ(a)/detA, (2.62)

where A is the Jacobian transformation tensor of compressing trans-
formation given by:

A =




∂x(c)

∂x(a)
∂x(c)

∂y(a)
∂x(c)

∂z(a)

∂y(c)

∂x(a)
∂y(c)

∂y(a)
∂y(c)

∂z(a)

∂z(c)

∂x(a)
∂z(c)

∂y(a)
∂z(c)

∂z(a)


 (2.63)

In this study, we focus on 2D problems and only wave propaga-
tion in the x-y plane is of interest. The z component in the Jacobian
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matrix is therefore dropped. Without loss of generality, the thick-
ness of the CMM is assumed to be half of the aberrating layer, which
leads to ∂x(c)

∂x(a) = 1 and ∂y(c)

∂y(a) = −0.5, whose ratio is negative since
the acoustic information is folded in the CMM and would cancel out
that of the aberrating layer. Other components ∂x(c)

∂y(a) and ∂y(c)

∂x(a) in the
tensor are equal to zero, as the transformation in each direction (i.e.,
x- and y-directions) are independent. For more complicated geome-
tries, off-diagonal components may appear. They could, however, be
eliminated by coordinate rotations.105

Finally, the tensor A = ( 1 0
0 −0.5 ), and consequently, the density

and compressibility tensors of the CMM are: ρ(c) = (−0.5 0
0 −2 ) × ρ(a)

and χ(c) = −2 × χ(a). It is noted that a generalized CMM requires
strongly anisotropic density as well as negativity for both density
and compressibility. In addition, the density can be isotropic if the
thickness of the CMM is chosen to be the same as the aberrating
layer. However, in this case, the refractive index is −1 and the k

vector along the interface goes to infinity.106 In other words, such a
CMM will be very sensitive to the unit cell size and can be difficult to
demonstrate. Furthermore, a generalized CMM is preferred in prac-
tice as its thickness can be arbitrarily chosen, i.e., it does not depend
on the thickness of the aberrating layer, providing a great flexibility.

2.3.4.2. Unit cell design for CMM

Periodic cubic blocks with clamped elastic membranes and side
branches as shown in Fig. 2.22 are chosen to achieve the double neg-
ative and anisotropic properties for CMM. The membrane is intro-
duced here to tune the effective density. The side branches are open
ended and are introduced to tune the effective compressibility. In the
demonstration, we choose the operating frequency of the CMM to be
50 kHz, at which the wavelength in water (background medium) is
15 times larger than the size of a unit cell. By adjusting the thick-
nesses of the membranes facing each direction (x- and y-), the effec-
tive density can be tuned therein in order to achieve anisotropy.
Assuming the interaction and coupling between membranes in the
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Fig. 2.22. (a) Schematic of a portion of the quasi 2D CMM. (b) Schematic of a
1D side brand and membrane-based metamaterial. (c) Equivalent acoustic circuit
of the 1D membrane-based metamaterial.

x- and y- directions is negligible, the effective density and compress-
ibility in either x- or y- direction can be estimated separately by one
dimensional (1D) studies.107 To this end, 1D models are first studied
in order to determine the appropriate thicknesses of the membranes
and the dimensions of the side branches by both theoretical analysis
and numerical simulations (Fig. 2.22(b)).

Theoretically, the effective compressibility with open ended side
branches in theory can be written as108: χe = χ0(1 − S

Adρ0β0l′ω2 ),
where β0 is compressibility of the background medium, S, A, d, l′

are, respectively, cross section area of the branch, cross section area
of the waveguide (cubic block), length of unit cell, the effective length
of the branch, and is the angular frequency. On the other hand, the
effective density of the unit cell depends on the properties of the
membranes.108–111 The side branches are assumed to have negligible
effect on the effective density.108 The effective density with clamped
membranes can be derived by using the lumped model, with the
equivalent acoustic circuit of the 1D membrane-based metamaterial
shown in Fig. 2.22(c). Here, ma = ρ0

A(d−h) is the effective acoustic
mass of the tube, Ca = Aχ0(d−h) is the acoustic capacitance of the
waveguide, where h is the membrane thickness. Zam is the acoustic
impedance of the membrane and can be approximated by an inductor
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Fig. 2.23. Effective densities and compressibility extracted from full wave sim-
ulations and predicted by the lumped model.104 (a) Effective densities in x- and
y-directions. (b) Effective compressibility. At 50 kHz, the desired density and
compressibility are achieved.

and capacitor in series in the low-frequency region,109 and defined as:

Zam =
Zm

A2
=

�
∆pdA
jωξA2

, (2.64)

where ∆p = p1 − p2 is the pressure difference across the membrane,
Zm is the mechanical impedance of the membrane and ξ represents
the average displacement of the membrane. Therefore, the expression
for the total acoustic impedance of the tube is: Zas = jωma + Zam,
with the effective density of a unit cell written as: ρe = Zas

jω
1

dA .
The effective acoustic parameters calculated by theoretical pre-

diction are compared with the numerical simulation by COMSOL
Multiphysics, which are shown in Fig. 2.23. We can observe a good
agreement. We need to address that negative properties of these
structures are not relying on the resonance, since the negative proper-
ties appear in a broad-band frequency range. The material properties
and geometric parameters in the simulation are listed: the membrane
made by aluminum film is 2 mm × 2 mm; the Young’s modulus is
70 GPa; the Poisson’s ratio is 0.33; the density is 2700 kg/m3; the
thicknesses of the membranes are 0.083 mm and 0.11 mm in x and
y directions; the radius and length of the side branches are 0.25 mm
and 1.25 mm. The density and sound speed of background medium
(water) are 1000 kg/m3 and 1500 m/s.
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2.3.4.3. Numerical simulation

We conduct two sets of full wave simulation to validate the designed
CMM by using COMSOL Multiphysics. The acoustic-solid interac-
tion module is chosen for numerical simulations. The entire CMM
consists of 120 × 10 unit cells: there are 120 units along x-direction
and 10 units along y-direction. Perfectly matched layers (PML) are
used to minimize reflections from the boundary. The thickness of
the aberrating layer is 40 mm, with the material density 2000 kg/m3

and sound speed 2500 m/s, for mimicking human skulls. The acoustic
impedance of aberrating layer is therefore over 3.3 times larger than
the background medium, providing a sufficient amount of mismatch.
According to the effective material property calculation, the effec-
tive density of the unit cells are −1000 kg/m3 (along x-axis) and
−4000 kg/m3 (along y-axis), as well as the effective compressibility
is −1.6×10−10 m2/N, which meet the requirement of the coordinate
transformation.

In the two simulations, we configure a curved/focused array and a
linear array to generate different acoustic fields. In the first case, the
curved acoustic source array which can generate a focal point in the
free space (shown in Fig. 2.24(b) as a control case) is placed in front
of the aberrating layer. It is straightforward that the aberrating layer
can block most of the transmission acoustic energy due to the large
impedance mismatch, as shown in Fig. 2.24(a). By placing the CMM
layer on the same side with the array, the CMM can effectively cancel
out the aberrating layer, so a strong focal point which is 60 mm (total
thickness of the CMM and the aberrating layer) behind the original
one can be observed. The curved source array is moved 60 mm away
from the aberrating layer when the CMM is inserted, so that the
focal point remains at the desired location, as shown in Fig. 2.24(c).
Quantitative analysis shows that in the curved array case, the inten-
sity amplitude at the focal point is 88% of that of the control case,
while it is 28% without the CMM. A significant improvement in
terms of the sound transmission (> 300%) is achieved. As indicated
in the white dash line in Fig. 2.24(c), the focal point of the CMM
case results in an accurate position, which is only 3 mm (1/10 of
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Fig. 2.24. (a–c) Acoustic intensity field for a curved array (focused beam). The
CMM is placed in front of the aberrating layer. White dotted lines indicate the
position of the focal plane. Three cases are presented: (a) Skull only. (b) Homo-
geneous medium. (c) With CMM and skull. (d–f) Acoustic intensity field for a
linear array (unfocused beam). The CMM is placed behind the aberrating layer.
Three cases are presented: (d) Skull only. (e) Homogeneous medium. (f) With
CMM and skull.104

the wavelength) off the desired location as in the control case, while
it is 14 mm (about 1/2 of the wavelength) off without the CMM.
This example demonstrates one potential application of CMMs to
focus ultrasound behind aberrating layers, which could be extremely
useful for improving ultrasound imaging or therapy. In the linear
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array case (unfocused acoustic field), which we place the CMM layer
behind the aberrating layer, the total acoustic intensity is 97% of that
of the control case, whereas the transmission is only 31% without the
CMM. The numerical simulation results are plotted in Fig. 2.24(d–f).
This example demonstrates another potential application of CMMs
to detect passive acoustic source emissions or reflections from an
object to be imaged/detected behind aberrating layers. Also, inter-
estingly, this example indicates that the CMM can be placed behind a
reflective layer and yet achieve anti-reflection, thus has the advantage
of being virtually concealed.

In both cases, the effective density and compressibility are
extracted from the simulation results and are very close to the ones
predicted by the earlier 1D model. It is noted that in ideal case, the
CMM should exactly restore the sound field without considering the
energy loss inside the metamaterial. However, it would require an
infinitely small unit cell so that the homogenization is perfect. In the
current simulation, the material losses are not taken into account in
the simulations, since aluminum (membrane material) is known to
have a small loss factor and the attenuation in water is also negligi-
ble. In addition, the side branch and membrane-based metamaterials
used here are non-resonant metamaterials,108 therefore the material
loss is not expected to be a significant factor.

A single CMM layer can significantly enhance the acoustic energy
transmission through the aberrating layer. However, the phase of
the acoustic field cannot be recovered, which induces the focal point
shift in the curved source array case. Similar to the electromagnetic
CMMs, an additional restoring layer added on top of the CMM layer
can recover both amplitude and phase information of the acoustic
field to achieve an acoustic cloaking. The same mathematics of coor-
dinate transformation is applied to retrieve the effective parameters
for layer 1 and 2. The effective density and compressibility tensors
for layer 2 are the same as the previous result, since layer 2 plays
the same function to cancel out the aberrating layer. Layer 1 will
restore the information of layer 4 (combine with layer 1, 2, and
3), which has the acoustic properties of the background medium.
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Fig. 2.25. (a–c) Acoustic pressure filed for a point source which is blocked by
a slab. An acoustic cloaking device is placed on top of the slab so that it can
effectively cloak the slab.104 (a) Slab only. (b) Homogeneous medium. (c) With
cloaking device adjacent to the slab. The wave fields in (b) and (c) are almost
identical.

Therefore, the effective density and compressibility tensors for layer
1 are ρ(1) = ( 0.25 0

0 4 )× ρ0 and χ(1) = 4× χ0. We conduct the numeri-
cal simulation by using the homogenized effective media with desired
properties, and plot them in Fig. 2.25. The simulation results show
that a slab is effectively cloaked by the cloaking device with a CMM
layer and a restoring layer.

In conclusion, we design acoustic CMMs based on the coordinate
transformation of acoustic waves to cancel out an object in free space.
Numerical examples demonstrate that the CMMs are able to restore
the acoustic fields distorted by aberrating layers, which is capable
of virtually removing an aberrating layer in a non-invasive manner.
Therefore, it could greatly facilitate NDE, transcranial ultrasound
imaging and treatment. In addition, the method for designing acous-
tic CMMs can be readily used to cancel out multiple layers if needed.
CMMs are also expected to be useful for the design of acoustic cloak-
ing and all angle anti-reflection materials.112,113
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