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Abstract

Due to the explosive growth of data traffic in the Internet of Things systems (IoT), machine
learning and data-driven approaches are expected to become a key factor in fueling the devel-
opment of wireless networks beyond 5G (B5G). Standard machine learning approaches require
centralizing training data on a single data center such as a cloud. However, due to privacy
constraints and limited communication resources for data transmission, it is impractical for all
wireless devices to transmit all their collected data to a data center that can use the collected
data to implement centralized machine learning algorithms for data analysis and inference.
This has led to the emergence of a fast-growing research area, called Edge Learning, which can
deeply integrate two major areas : wireless communication and machine learning. Our work
revolves around implementing online machine learning algorithms at the edge, specifically the
k-means clustering algorithm as a use case on ESP32-WROOM microcontroller.
ESP32 can work with sensors for things like measuring temperature, but it can also han-

dle more complicated jobs like executing "complex" machine learning (ML) algorithms. We’re
particularly interested in its industry-leading performance in electronic integration, power con-
sumption, and connectivity. Using its built-in WIFI that uses very little power, the ESP32 re-
ceives data from a dataset, corresponding to a building located at Grenoble, and processes the k-
means algorithms under study. The data we process on the board, comprising CO2 volume and
temperature readings, is obtained from an MQTT server, which implements the publication-
subscription paradigm. This paradigm allows for asynchronous and non-blocking message
communication, enhancing efficiency.
We aim to study models capable of continual learning from new data, without revisiting past

data. One of the K-Means algorithms we study iteratively groups unlabeled data into K clusters
based on cluster centers (centroids). The data assigned to each cluster is determined such that
their average distance from their respective centroid is minimized. In this case, we develop
with the Arduino toolchain. In another case, to efficiently put in place our software code, we
utilize theMicropython-ulab environment on ESP32, providing a robust platform for codingML
algorithms. We are also studying River, a dedicated Python online machine learning tool, but
not capable of running on ESP32-like boards. Finally, we provide lessons learned and insights
into our use case. The presentation aims to discuss the difficulties in these tasks, both from a
technical point of view and from an algorithmic one.

Keywords: Online machine learning algorithms, ESP32 and microcontrollers architectures,
Micropython and Arduino ecosystems, Edge computing.



1. Introduction

Our internship aims to develop a model capable of continuous learning from sequential data
streams on embedded systems, ensuring adaptation to new information without revisiting past
data. We focus on a model that can adapt to concept drift and suit real-world production con-
texts, especially event-based ones, while seamlessly integrating into the embedded systems
programming ecosystem. Online machine learning presents challenges such as catastrophic
forgetting, where previous knowledge is abruptly lost upon learning new information. To
address these challenges, we explore ecosystems such as micropython-ulab, Scikit-learn, and
River, offering out-of-core implementations and user-friendly libraries for machine learning on
streaming data. River, a combination of Creme and scikit-multiflow, provides a wide range of
algorithms for continual learning and streaming data processing, encompassing linear models,
decision trees, anomaly detection, clustering, and more.
In smart buildings, prioritizing residents’ data privacy and security may prevent data trans-

mission to external cloud servers (such as Amazon or Alibaba Cloud). This shift requires re-
designing building data management systems, processes, and controllers. As a result, it raises
further research into optimizing the use of computing, networking, and storage resources
owned by building occupants and visitors, along with evaluating the performance of embedded
devices within the building. These aspects are vital for efficiently utilizing on-site data for learn-
ing purposes. Inside a building, a CO2 sensor and temperature sensor generate data, motivating
our interest in clustering the data to identify anomalies and applying regression techniques for
analysis. By tackling these challenges, our internship aims to enhance the learning capabilities
of embedded systems for practical implementation in real-world scenarios, while optimizing
power consumption utilizing low-power devices such as the ESP32.

1.1. Methodology

An MQTT server gathers real-time data including Co2 volume and temperate measurement
from the sensor and sends it to the ESP32-embedded device for further processing. We have set
up MicroPython, uLab, and other required libraries on the ESP32 to implement online machine-
learning algorithms. We are collecting power consumption data into our matrices for further
optimization, and then clustering the data using online K-means algorithms. Online machine
learning sequentially updates the best predictor using incoming data. To validate the result, we
compare the performance of River, a user-friendly ML library for streaming data, with our de-
veloped clustering algorithm, evaluating quality-oriented metrics like Jaccard and Jini indexes,
and metrics for concept drift estimation.

2. Related work

The literature on data stream clustering algorithms emphasizes their importance in parti-
tioning observations into clusters to reduce data complexity. These algorithms are designed for
situations where data flows continuously, presenting difficulties related to memory and time
limitations, particularly in IoT and edge computing environments. We study one existing al-
gorithm (2). It outlines two-phase schemes for data stream clustering, with online components
processing data points and offline components generating clusters. Methodological consider-
ations include models for data streams and sliding windows to handle potentially infinite and
non-stationary data.
Ghesmoune, M. and Lebbah (3) provide valuable insights into modern data stream cluster-

ing methods, categorizing them by their clustering strategies. While they explore hierarchical
streammethods like neural gas, we focus on partitioning-based clustering, notably the k-means
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algorithm, which relies on distance metrics to form clusters. Our approach emphasizes simplic-
ity, sidestepping the requirement for intricate data structures and optimizations. Moreover, we
capitalize on the efficiency of the MQTT server and its data publication rate to enhance batch
processing in our work.

3. Problem statement and algorithmic solution

3.1. Problem statement
Sensors continuously transmit data to a server using the MQTT protocol as shown in Figure

1. The “Processor for clustering” subscribes to these messages from the server and conducts
the clustering process. The publisher (MQTT server) and the clustering processor are low-cost
machines. It’s feasible for a single machine e.g. ESP32 to handle both tasks, allowing data
collection and clustering services to run on the same device. This co-location reduces com-
munication overhead by maintaining data production and processing nearby. We’ve chosen to
illustrate only one processing machine for clarity, but multiple sources can supply data to this
machine. Therefore, we haven’t addressed scalability and architecture dimensioning. Our pro-
posed architecture is additionally suitable for using phones or tablets as processing machines,
given that the MQTT protocol is already supported on these devices.

Figure 1: Sensors Data Collection and Processing

3.2. Proposed Solution
The Streamwindow clustering algorithm (1) efficiently processes streaming data by partition-

ing it into fixed-size windows and adapting to its dynamic nature. Initially, it employs k-means
or k-means++ clustering to identify patterns within eachwindow. Subsequently, data points are
sorted based on coordinates for streamlined processing. Regularly removing points maintains
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data diversity, with new ones from the stream replacing them. Continuous centroid updates
mirror the changing data distribution. Utilizing proven algorithms and possibly implement-
ing multithreading guarantees scalability and efficiency, rendering it well-suited for real-time
processing of large-scale data streams.
Many existing streaming clustering algorithms cannot serve as baseline algorithms because

they are not designed to meet the requirements of low-cost machines or memory-constrained
devices. Therefore, comparing them would not be fair. In summary, the key properties of our
generic framework are as follows:

• The algorithm is based on offline clustering, allowing for traditional methods like k-means
to be utilized.

• When repeating the clustering process, only a small fraction of data (p «W) needs to be
inserted, enabling control of memory space.

• Each sorting step can potentially be performed in parallel, if hardware permits, aiding in
preserving diversity in the data.

• The concept of eliminating a fraction of data regularly corresponds to maintaining diver-
sity in the input.

4. Experiments

This section overviews the testing devices employed and outlines the experimental design.
Our experimentation involves applying online k-means clustering to evolving CO2 and temper-
ature data collected from various zones within the IMAG building, with a focus on detecting
concept drift for subsequent analysis.

4.1. Test Equipment and Tools

We utilized the low-cost machine to achieve our objective, our experimental setup includes
the following hardware and software components:

4.1.1. ESP-WROOM-32D
We programmed the Micropython-ulab collaboratory on ESP32 to achieve our results. It’s a

powerful and versatile Wi-Fi and Bluetooth module developed by Espressif Systems. It features
a dual-core Tensilica LX6 microprocessor with a clock speed of up to 240 MHz, offered robust
processing capabilities for a wide range of applications while minimizing energy consumption.

4.1.2. MQTT Server
AnMQTT (MessageQueuing Telemetry Transport) server, also known as anMQTT broker, is

a crucial component in the MQTT communication protocol, which is designed for lightweight,
efficient message exchange in IoT and embedded systems. It’s widely used in IoT applications,
such as smart buildings, for efficient real-time data transmission between sensors and process-
ing units. Popular implementations include Mosquitto, HiveMQ, and EMQX.
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4.1.3. Setting of MQTT Client
To configure the MQTT client to connect to an MQTT broker, Broker Address (Hostname

or IP), Port Number, Username, and Password (If authentication is enabled) are required to
establish a connection between the devices. After configuring the client, you can publish or
subscribe the messages to MQTT topics using the mosquitto_pub or mosquitto_sub commands
given below.

• mosquitto_pub -h <10.188.186.20> -p <1883> -u <root> -t <test/topic> -m <message>

• mosquitto_sub -h <10.188.186.20> -p <1883> -u <root> -t <test/topic>

Figure 2: Setting MQTT client to subscribe data

4.1.4. Setup Thonny IDE
This is the IDE we use to perform multiple experiments for our project. Thonny is an In-

tegrated Development Environment (IDE) specifically designed to make Python programming
more accessible and user-friendly. It supports virtual environment management, allowing users
to isolate projects and dependencies for better organization and reproducibility. So, it’s easy for
us to install a library on ESP32 as it provides built-in internal support to install libraries and
plugins. Furthermore, establishing a connection of micropython-ulab over the ESP32 board is
very convenient compared to a manual shell tool. You can upload your code on ESP32 in simple
clicks and execute your code over there without flashing ESP32. These all features caught our
attention to choose Thonny IDE for our research project.

Figure 3: Micropython-ulab on ESP32
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4.2. Experiment on ESP32 to apply an Online K-Means using Micropython

Online K-means clustering is a variation of the traditional K-means algorithm, designed for
dynamic and incremental data. In this method, we define a target number k, which refers to the
number of centroids needed in the dataset. A centroid represents the central point of a cluster.
Each data point is incrementally assigned to a cluster, minimizing the sum of squares within
the cluster. Unlike the traditional approach, where the algorithm first identifies k centroids
and then allocates each data point to the nearest cluster, online K-means updates the centroids
iteratively as new data points are processed. This allows the centroids to adjust dynamically to
new data. The “means” in K-means refers to the average of the data points within each cluster,
effectively finding the center of gravity for each cluster.
In our approach to applying online K-means clustering, we process data received from an

online stream in discrete windows. Each window is handled sequentially, allowing for continu-
ous and incremental clustering. As new data arrives in each window, we perform the clustering
process on that window, updating the centroids iteratively to reflect the latest data points. This
dynamic updating ensures that the clustering model remains responsive to changes in the data
distribution over time.
In addition to clustering, we implement a mechanism to detect drift in the data stream. De-

tecting drift is crucial for further analysis, as it helps identify significant changes in the under-
lying data patterns. By monitoring for drift, we can adjust our clustering model to maintain
accuracy and relevance in changing data environments.

4.2.1. Data Exploration
We utilized the Seaborn and Matplotlib modules to visualize data distributions from multiple

sources, such as CO2 levels, temperature, and clusters. Seaborn offers a handy feature called
Distplot, which combines a histogram with a line plot to show how the data is spread out. This
type of plot, also called a distribution diagram, helps to see the range and variability in the
data. Seaborn’s Distplot is especially handy for getting an overall view of how continuous data
variables are distributed.

Figure 4: Distribution of Data
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4.2.2. Applying K-Means Clustering with Micropython-ulab and K=5
K is the number of clusters to form as well as the number of centroids to generate. The

initialization method with k-means allows to selection of the initial cluster centroids using
sampling based on an empirical probability distribution of the point’s contribution to the overall
inertia.

Figure 5: Applying KMeans Clustering with Micropython-ulab and K=5

The scatter plots in the form of a cloud of points thus show how the Temperature variable
is affected by the CO2 concentration variable. We cannot deduce either a linear or non-linear
correlation. While we observe a linear evolution of the 5 centroids
From the result of online k means with distance method we can analyze that the data stream

is coming continuously and we don’t exactly know the exact number of clusters at initial stage.
The purpose of this testing is to estimate the processing and power capacity of ESP32 using
micropython-ulab. Our subsequent experiment will explore DBSTREAM Clustering, which op-
erates on density rather than distance, eliminating the need to specify the value of k initially.

4.2.3. Measure the Capacity of ESP32
We experimented to evaluate the ESP32’s performance in processing varying data sizes across

different windows using MicroPython. The results are presented in Figure 6.
Based on the table in fig 6, we can conclude that the ESP32 microcontroller can efficiently

handle a stream of 5120 messages with optimized batch processing of 128 messages. In contrast,
the Arduino can handle a stream of 1024 messages with the same optimized batch processing
of 128 messages.

5. Conclusion

In this research project, we explored the application of online machine-learning algorithms
on the ESP32-WROOM microcontroller for real-time data processing. We propose a generic
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Figure 6: Message Flow, Processing Slice, and Number of Possible Iterations

framework for data stream clustering on low-cost machines, focusing on the Internet of Things
(IoT) and Edge computing contexts. Our primary focus was on implementing and evaluating
the k-means clustering algorithm using CO2 and temperature data collected from various zones
within a building. We successfully demonstrated that the ESP32, a low-cost and low-power
device, can handle real-time data streams and perform online clustering effectively.
Our experiments revealed several key insights. The ESP32 demonstrated an ability to effi-

ciently manage the online k-means clustering algorithm, underscoring its potential for real-
world applications in resource-constrained environments. We observed that the accuracy of
clustering results improved with larger window sizes; however, reinitializing clusters at each
iteration often led to misclassification. Optimal results were consistently achieved with a well-
initialized centroid, which reduced the necessity for multiple iterations. While the k-means
algorithm performed adequately under certain conditions, it encountered difficulties with dy-
namic data streams and required predetermined cluster numbers. In contrast, density-based
algorithms like DBSCAN and DBSTREAM emerged as more promising alternatives, offering
greater accuracy and flexibility without predefined clusters.
Through our study, we highlighted the importance of addressing concept drift and anoma-

lies in streaming data to maintain model accuracy and reliability. Our findings underscore the
potential for implementing sophisticated machine learning algorithms on embedded devices,
opening doors to more advanced and autonomous IoT systems.
Future work aims to adapt all River algorithms to the microcontroller context. The ultimate

goal is to develop a comprehensive online machine-learning library specifically designed for
microcontrollers. Additionally, we plan to create our online machine-learning algorithms de-
pending on the specific scenarios encountered and studied in the LIGLAB.
Applying our developed system in various real-world scenarios, conducting detailed case

studies, and exploring its integration with diverse machine learning frameworks and tools will
help us assess its practicality and effectiveness across different applications. This comprehen-
sive approach to future research will significantly contribute to edge computing and online
machine learning, enabling more intelligent and autonomous IoT systems to operate efficiently
even in resource-constrained environments.
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Micropython+ulab, one for Arduino ;

➢ Because the communities love both ;

➢ The Arduino branch includes an exhaustive study on 

the processing of data from the Grenoble IOT Campus 

dataset with the Arduino IDE  and on the ESP32 

MicroController.

https://github.com/christophe-cerin/OnlineML_ESP32/tree/main
The main resource for our project can be found on our GitHub repository
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➢ It highlights the combined use of the MQTT protocol 

thanks to the WIFI card integrated into ESP32 and the 

K-Means algorithm (the JPDC one) ;
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hardware, energy consumption measurements and 
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also available online.

https://github.com/christophe-cerin/OnlineML_ESP32/tree/main
The main resource for our project can be found on our GitHub repository
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➢ "Times are changing" 

○ Emphasizes the need for tools like ulab to evolve 

like NumPy 2.0.0 & 2.1.0 ;

○ Highlights adapting to new innovations and 

advancements ;

○ Stresses the importance of continuous updates to 

keep tools effective and relevant.

➢ Adaptation of River Algorithms.

➢ Online ML algorithms specific scenarios encountered 

in LIGLAB.
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➢ Highlight importance of addressing concept drift.
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