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Abstract

Due to the explosive growth of data traffic in the Internet of Things systems (IoT), machine lear-
ning and data-driven approaches are expected to become a key factor in fueling the develop-
ment of wireless networks beyond 5G (B5G). Standard machine learning approaches require
centralizing training data on a single data center such as a cloud. However, due to privacy
constraints and limited communication resources for data transmission, it is impractical for all
wireless devices to transmit all their collected data to a data center that can use the collected
data to implement centralized machine learning algorithms for data analysis and inference.
This has led to the emergence of a fast-growing research area, called Edge Learning, which can
deeply integrate two major areas : wireless communication and machine learning. Our work
revolves around implementing online machine learning algorithms at the edge, specifically the
k-means clustering algorithm as a use case on ESP32-WROOM microcontroller.

ESP32 can work with sensors for things like measuring temperature, but it can also handle more
complicated jobs like executing "complex" machine learning (ML) algorithms. We're particu-
larly interested in its industry-leading performance in electronic integration, power consump-
tion, and connectivity. Using its built-in WIFI that uses very little power, the ESP32 receives
data from a dataset, corresponding to a building located at Grenoble, and processes the k-
means algorithms under study. The data we process on the board, comprising CO2 volume and
temperature readings, is obtained from an MQTT server, which implements the publication-
subscription paradigm. This paradigm allows for asynchronous and non-blocking message
communication, enhancing efficiency.

We aim to study models capable of continual learning from new data, without revisiting past
data. One of the K-Means algorithms we study iteratively groups unlabeled data into K clus-
ters based on cluster centers (centroids). The data assigned to each cluster is determined such
that their average distance from their respective centroid is minimized. In this case, we develop
with the Arduino toolchain. In another case, to efficiently put in place our software code, we
utilize the Micropython-ulab environment on ESP32, providing a robust platform for coding
ML algorithms. We are also studying River, a dedicated Python online machine learning tool,
but not capable of running on ESP32-like boards. Finally, we provide lessons learned and in-
sights into our use case. The presentation aims to discuss the difficulties in these tasks, both
from a technical point of view and from an algorithmic one.

Mots-clés : Online machine learning algorithms, ESP32 and microcontrollers architectures,
Micropython and Arduino ecosystems, Edge computing.
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1. Introduction

Our internship aims to develop a model capable of continuous learning from sequential data
streams on embedded systems, ensuring adaptation to new information without revisiting
past data. We focus on a model that can adapt to concept drift and suit real-world production
contexts, especially event-based ones, while seamlessly integrating into the embedded systems
programming ecosystem. Online machine learning presents challenges such as catastrophic
forgetting, where previous knowledge is abruptly lost upon learning new information. To ad-
dress these challenges, we explore ecosystems such as micropython-ulab, Scikit-learn, and Ri-
ver, offering out-of-core implementations and user-friendly libraries for machine learning on
streaming data. River, a combination of Creme and scikit-multiflow, provides a wide range of
algorithms for continual learning and streaming data processing, encompassing linear models,
decision trees, anomaly detection, clustering, and more.

In smart buildings, prioritizing residents” data privacy and security may prevent data trans-
mission to external cloud servers (such as Amazon or Alibaba Cloud). This shift requires rede-
signing building data management systems, processes, and controllers. As a result, it raises fur-
ther research into optimizing the use of computing, networking, and storage resources owned
by building occupants and visitors, along with evaluating the performance of embedded de-
vices within the building. These aspects are vital for efficiently utilizing on-site data for learning
purposes. Inside a building, a CO2 sensor and temperature sensor generate data, motivating
our interest in clustering the data to identify anomalies and applying regression techniques for
analysis. By tackling these challenges, our internship aims to enhance the learning capabilities
of embedded systems for practical implementation in real-world scenarios, while optimizing
power consumption utilizing low-power devices such as the ESP32.

1.1. Methodology

An MQTT server gathers real-time data including Co2 volume and temperate measurement
from the sensor and sends it to the ESP32-embedded device for further processing. We have set
up MicroPython, uLab, and other required libraries on the ESP32 to implement online machine-
learning algorithms. We are collecting power consumption data into our matrices for further
optimization, and then clustering the data using online K-means algorithms. Online machine
learning sequentially updates the best predictor using incoming data. To validate the result, we
compare the performance of River, a user-friendly ML library for streaming data, with our de-
veloped clustering algorithm, evaluating quality-oriented metrics like Jaccard and Jini indexes,
and metrics for concept drift estimation.

2. Related work

The literature on data stream clustering algorithms emphasizes their importance in partitio-
ning observations into clusters to reduce data complexity. These algorithms are designed for
situations where data flows continuously, presenting difficulties related to memory and time
limitations, particularly in IoT and edge computing environments. We study one existing al-
gorithm [2]. It outlines two-phase schemes for data stream clustering, with online components
processing data points and offline components generating clusters. Methodological considera-
tions include models for data streams and sliding windows to handle potentially infinite and
non-stationary data.
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Ghesmoune, M. and Lebbah [3] provide valuable insights into modern data stream cluste-
ring methods, categorizing them by their clustering strategies. While they explore hierarchical
stream methods like neural gas, we focus on partitioning-based clustering, notably the k-means
algorithm, which relies on distance metrics to form clusters. Our approach emphasizes simpli-
city, sidestepping the requirement for intricate data structures and optimizations. Moreover, we
capitalize on the efficiency of the MQTT server and its data publication rate to enhance batch
processing in our work.

3. Problem statement and algorithmic solution

3.1. Problem statement

Sensors continuously transmit data to a server using the MQTT protocol as shown in Figure
1. The “Processor for clustering” subscribes to these messages from the server and conducts
the clustering process. The publisher (MQTT server) and the clustering processor are low-cost
machines. It’s feasible for a single machine e.g. ESP32 to handle both tasks, allowing data collec-
tion and clustering services to run on the same device. This co-location reduces communication
overhead by maintaining data production and processing nearby. We’ve chosen to illustrate
only one processing machine for clarity, but multiple sources can supply data to this machine.
Therefore, we haven’t addressed scalability and architecture dimensioning. Our proposed ar-
chitecture is additionally suitable for using phones or tablets as processing machines, given
that the MQTT protocol is already supported on these devices.
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FIGURE 1 - Sensors Data Collection and Processing
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3.2. Proposed Solution
The Stream window clustering algorithm [1] efficiently processes streaming data by partitio-
ning it into fixed-size windows and adapting to its dynamic nature. Initially, it employs k-
means or k-means++ clustering to identify patterns within each window. Subsequently, data
points are sorted based on coordinates for streamlined processing. Regularly removing points
maintains data diversity, with new ones from the stream replacing them. Continuous centroid
updates mirror the changing data distribution. Utilizing proven algorithms and possibly im-
plementing multithreading guarantees scalability and efficiency, rendering it well-suited for
real-time processing of large-scale data streams.
Many existing streaming clustering algorithms cannot serve as baseline algorithms because
they are not designed to meet the requirements of low-cost machines or memory-constrained
devices. Therefore, comparing them would not be fair. In summary, the key properties of our
generic framework are as follows :
— The algorithm is based on offline clustering, allowing for traditional methods like k-
means to be utilized.
— When repeating the clustering process, only a small fraction of data (p « W) needs to be
inserted, enabling control of memory space.
— Each sorting step can potentially be performed in parallel, if hardware permits, aiding
in preserving diversity in the data.
— The concept of eliminating a fraction of data regularly corresponds to maintaining di-
versity in the input.

4. Experiments

This section overviews the testing devices employed and outlines the experimental design. Our
experimentation involves applying online k-means clustering to evolving CO2 and tempera-
ture data collected from various zones within the IMAG building, with a focus on detecting
concept drift for subsequent analysis.

4.1. Test Equipment and Tools
We utilized the low-cost machine to achieve our objective, our experimental setup includes the
following hardware and software components :

4.1.1. ESP-WROOM-32D

We programmed the Micropython-ulab collaboratory on ESP32 to achieve our results. It’s a
powerful and versatile Wi-Fi and Bluetooth module developed by Espressif Systems. It features
a dual-core Tensilica LX6 microprocessor with a clock speed of up to 240 MHz, offered robust
processing capabilities for a wide range of applications while minimizing energy consumption.

4.1.2. MQTT Server

An MQTT (Message Queuing Telemetry Transport) server, also known as an MQTT broker, is
a crucial component in the MQTT communication protocol, which is designed for lightweight,
efficient message exchange in IoT and embedded systems. It's widely used in IoT applications,
such as smart buildings, for efficient real-time data transmission between sensors and proces-
sing units. Popular implementations include Mosquitto, HiveMQ, and EMQX.

4.1.3. Setting of MQTT Client
To configure the MQTT client to connect to an MQTT broker, Broker Address (Hostname or IP),
Port Number, Username, and Password (If authentication is enabled) are required to establish
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a connection between the devices. After configuring the client, you can publish or subscribe the
messages to MQTT topics using the mosquitto_pub or mosquitto_sub commands given below.

— mosquitto_pub -h <10.188.186.20> -p <1883> -u <root> -t <test/topic> -m <message>
— mosquitto_sub -h <10.188.186.20> -p <1883> -u <root> -t <test/topic>

$ fusr/bin/mosquitto sub -h localhost -u root -P Sunny789 -t test/topic
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FIGURE 2 - Setting MQTT client to subscribe data

4.1.4. Setup Thonny IDE

This is the IDE we use to perform multiple experiments for our project. Thonny is an Integrated
Development Environment (IDE) specifically designed to make Python programming more
accessible and user-friendly. It supports virtual environment management, allowing users to
isolate projects and dependencies for better organization and reproducibility. So, it’s easy for
us to install a library on ESP32 as it provides built-in internal support to install libraries and
plugins. Furthermore, establishing a connection of micropython-ulab over the ESP32 board is
very convenient compared to a manual shell tool. You can upload your code on ESP32 in simple
clicks and execute your code over there without flashing ESP32. These all features caught our
attention to choose Thonny IDE for our research project.

Shell

Online

There is more information available on
Thonnv wiki: hd

Assistant - | Object inspector
=>> import micropython -
>>> import ulab
23

MicroPython (ESP32) « CP2102N USB to UART Bridge Controller @ /dev/ttyUSBO

LRI

FIGURE 3 — Micropython-ulab on ESP32
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4.2. Experiment on ESP32 to apply an Online K-Means using Micropython

Online K-means clustering is a variation of the traditional K-means algorithm, designed for
dynamic and incremental data. In this method, we define a target number k, which refers to the
number of centroids needed in the dataset. A centroid represents the central point of a cluster.
Each data point is incrementally assigned to a cluster, minimizing the sum of squares within
the cluster. Unlike the traditional approach, where the algorithm first identifies k centroids
and then allocates each data point to the nearest cluster, online K-means updates the centroids
iteratively as new data points are processed. This allows the centroids to adjust dynamically to
new data. The “means” in K-means refers to the average of the data points within each cluster,
effectively finding the center of gravity for each cluster.

In our approach to applying online K-means clustering, we process data received from an on-
line stream in discrete windows. Each window is handled sequentially, allowing for continuous
and incremental clustering. As new data arrives in each window, we perform the clustering
process on that window, updating the centroids iteratively to reflect the latest data points. This
dynamic updating ensures that the clustering model remains responsive to changes in the data
distribution over time.

In addition to clustering, we implement a mechanism to detect drift in the data stream. Detec-
ting drift is crucial for further analysis, as it helps identify significant changes in the underlying
data patterns. By monitoring for drift, we can adjust our clustering model to maintain accuracy
and relevance in changing data environments.

4.2.1. Data Exploration

We utilized the Seaborn and Matplotlib modules to visualize data distributions from multiple
sources, such as CO2 levels, temperature, and clusters. Seaborn offers a handy feature called
Distplot, which combines a histogram with a line plot to show how the data is spread out. This
type of plot, also called a distribution diagram, helps to see the range and variability in the
data. Seaborn’s Distplot is especially handy for getting an overall view of how continuous data
variables are distributed.
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FIGURE 4 - Distribution of Data
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4.2.2. Applying K-Means Clustering with Micropython-ulab and K=5

Kis the number of clusters to form as well as the number of centroids to generate. The initiali-
zation method with k-means allows to selection of the initial cluster centroids using sampling
based on an empirical probability distribution of the point’s contribution to the overall inertia.

Online k-means with Clusters=5
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FIGURE 5 — Applying KMeans Clustering with Micropython-ulab and K=5

The scatter plots in the form of a cloud of points thus show how the Temperature variable
is affected by the CO2 concentration variable. We cannot deduce either a linear or non-linear
correlation. While we observe a linear evolution of the 5 centroids

From the result of online k means with distance method we can analyze that the data stream is
coming continuously and we don’t exactly know the exact number of clusters at initial stage.
The purpose of this testing is to estimate the processing and power capacity of ESP32 using
micropython-ulab. Our subsequent experiment will explore DBSTREAM Clustering, which
operates on density rather than distance, eliminating the need to specify the value of k initially.

4.2.3. Measure the Capacity of ESP32

We experimented to evaluate the ESP32’s performance in processing varying data sizes across
different windows using MicroPython. The results are presented in Figure 6.

Based on the table in fig 6, we can conclude that the ESP32 microcontroller can efficiently handle
a stream of 5120 messages with optimized batch processing of 128 messages. In contrast, the
Arduino can handle a stream of 1024 messages with the same optimized batch processing of
128 messages.
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256 messages |512 messages (1024 messages 5120 messages
W Slice| It. Max | It. Got [It. Max | It. Got [It. Max| It. Got | It. Max | It Got
512 X X 1 1 2 1 10 2
256 1 1 2 2 4 3 20 4
128 2 2 4 4 8 8 40 40
64 4 4 8 8 16 16 80 80
32 8 8 16 16 32 32 160 160

FIGURE 6 — Message Flow, Processing Slice, and Number of Possible Iterations

5. Conclusion

In this research project, we explored the application of online machine-learning algorithms on
the ESP32-WROOM microcontroller for real-time data processing. We propose a generic frame-
work for data stream clustering on low-cost machines, focusing on the Internet of Things (IoT)
and Edge computing contexts. Our primary focus was on implementing and evaluating the
k-means clustering algorithm using CO2 and temperature data collected from various zones
within a building. We successfully demonstrated that the ESP32, a low-cost and low-power
device, can handle real-time data streams and perform online clustering effectively.

Our experiments revealed several key insights. The ESP32 demonstrated an ability to efficiently
manage the online k-means clustering algorithm, underscoring its potential for real-world ap-
plications in resource-constrained environments. We observed that the accuracy of clustering
results improved with larger window sizes ; however, reinitializing clusters at each iteration of-
ten led to misclassification. Optimal results were consistently achieved with a well-initialized
centroid, which reduced the necessity for multiple iterations. While the k-means algorithm
performed adequately under certain conditions, it encountered difficulties with dynamic data
streams and required predetermined cluster numbers. In contrast, density-based algorithms
like DBSCAN and DBSTREAM emerged as more promising alternatives, offering greater accu-
racy and flexibility without predefined clusters.

Through our study, we highlighted the importance of addressing concept drift and anoma-
lies in streaming data to maintain model accuracy and reliability. Our findings underscore the
potential for implementing sophisticated machine learning algorithms on embedded devices,
opening doors to more advanced and autonomous IoT systems.

Future work aims to adapt all River algorithms to the microcontroller context. The ultimate
goal is to develop a comprehensive online machine-learning library specifically designed for
microcontrollers. Additionally, we plan to create our online machine-learning algorithms de-
pending on the specific scenarios encountered and studied in the LIGLAB.

Applying our developed system in various real-world scenarios, conducting detailed case stu-
dies, and exploring its integration with diverse machine learning frameworks and tools will
help us assess its practicality and effectiveness across different applications. This comprehen-
sive approach to future research will significantly contribute to edge computing and online
machine learning, enabling more intelligent and autonomous IoT systems to operate efficiently
even in resource-constrained environments.
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