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Combining Model-based and Data-based approaches for online predictions
of human trajectories

Aymeric Orhan ®, Dorian Verdel

Abstract— Accurately predicting human movement trajecto-
ries is of critical interest in multiple fields, including human-
exoskeleton interaction. In general, such predictions can be
obtained from model-based approaches (e.g., optimal control
theory) or from data-driven approaches (e.g., learning from
human demonstrations). Data-driven methods generally require
numerous demonstrations but avoid the computational burden
of model-based methods. In this paper, we introduce a hybrid
method mixing the strengths of these two approaches to
enable the prediction of human trajectories in a receding-
horizon fashion when the number of actual demonstrations is
very limited. First, we propose to use the stochastic optimal
feedforward-feedback control framework to generate a large
set of humanlike trajectories, including their variability. Second,
we used the probabilistic movement primitives (ProMPs) frame-
work to learn the distribution of these synthetic trajectories and
make online predictions about the upcoming human trajectories
from the observation of past movement data. Here, we evaluated
our hybrid method on an existing data set composed of
arm reaching movements in a parasagittal plane. Overall,
our method proves to be advantageous when generalization is
needed and demonstrations are lacking, such as in novel targets
scenarios. The introduced method shows promise to efficiently
predict realistic human trajectories on a given time horizon,
even when limited or no human demonstration is available for
the task at hand.

I. INTRODUCTION

Exoskeletons show great promise as devices for physically
assisting humans in various tasks, in particular for health-
related applications such as neurorehabilitation [1] and pre-
venting musculoskeletal disorders in workers [2]. In order
to achieve this goal, it is typically necessary to predict the
intended human movements to design assistive controllers
complying with both human motor control principles and
the task at hand [3], [4].

On the one hand, the detection of human motion intent at
a high level is often achieved using classifiers based on phys-
iological recordings, such as electroencephalography (EEG)
[5], electromyography (EMG) [6], or gaze [7]. However,
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such classification methods only provide abstract intents,
such as future direction or target, which does not allow to
optimize the assistance level provided by the exoskeleton
during the whole movement. On the other hand, when the
upcoming trajectory is not predefined (in contrast with [8],
[9]), its prediction is usually achieved either by regressing
from physiological recordings such as EMG in continuous
time [10], [11] or from kinematic recordings as commonly
done in learning-by-demonstration approaches [12].

Overall, kinematic-based learning methods have under-
gone more extensive field testing and are more likely to be
successfully integrated into exoskeletons in the coming years.
Indeed, multiple approaches ranging from pioneer dynamic
movement primitives [13] to unsupervised learning of hu-
man trajectories [14], have already proven to be powerful
tools to predict human trajectories. In the present paper,
we focus on probabilistic movement primitives (ProMPs)
because they allow to represent the distribution of human
trajectories in a compact form and provide efficient online
prediction tools [15]. Furthermore, they have proven to be
particularly adapted to predict trajectories in the context of
human-exoskeleton interaction [16]. However, as all learning
by demonstration techniques, collecting a comprehensive
dataset to train ProMPs can be a tedious task. Here, we
propose to address this training issue by leveraging recent
advances in human motor control, which enable to generate
large amounts of humanlike trajectories from a model-based
approach.

Specifically, the average human motor behavior has been
shown to be well described by optimal control models
minimizing criteria such as effort [17], smoothness [18],
variance [19], time [20], or a compromise of these criteria
[21]. Consequently, for a given set of human trajectories,
one can identify a cost function to minimize that will
accurately represent the average of the provided data using
inverse optimal control [21]. However, human movement
have an inherent variability resulting mostly from the noise
in the sensorimotor system [22] so that stochastic optimal
control (OC) has become the main framework to model
human motor control [23]. Unfortunately, such methods are
often computationally demanding, which makes their online
implementation difficult. Here, we focus on an approximate
stochastic optimal control framework that represents move-
ment planning and feedback control under uncertainties as
a stochastic optimal feedforward-feedback control (SFFC)
problem [24]. Interestingly, this approach has been shown to
be able to replicate the characteristics of human trajectories
(including their variability) while remaining easily applicable
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Fig. 1.  Experimental setup. Subjects performed movements from the
starting position (shaded) towards one of the targets positioned in the para-
sagittal plane. The targets were displayed on a screen (in green in the figure)
in front of the subject. The subjects were given visual feedback with regard
to their current index finger pointing position with a red cursor.

to nonlinear musculoskeletal dynamics. Hence, they could
be used to generate large artificial sets of humanlike trajec-
tories based on state-of-the-art knowledge in human motor
control, without needing to record human movements. In
machine learning, this approach belongs to the generation
of synthetic data. We hypothesize that this hybrid approach
can be viable and outperform a pure data-driven approach
when generalization is needed (e.g., new tasks for which
no demonstration is available). To test this premise we first
generate a set of humanlike trajectories using SFFC to train
ProMPs. Then, the quality of the predictions of the trained
ProMPs is assessed against a pre-existing set of 2-degrees
of freedom arm reaching movements in a parasagittal plane
[25].

II. MATERIALS AND METHODS

In this section, we first describe the dataset used to
train the ProMPs and test the proposed hybrid model. The
metric used for this evaluation is also presented. Then, we
successively introduce the human arm’s model, review the
method of ProMPs and present the OC method to generate
humanlike trajectories.

A. Dataset

As stated in the introduction, the dataset used throughout
this study is the one described in [25]. We briefly summarize
the main characteristics below.

Participants. A total of 14 participants (3 females), took
part in the experiment. The participants, with a mean age
of 26.33+2.93 years, mean height of 1.76+0.05m, and mean
weight of 72.87+6.43kg, were healthy, right-handed adults
without any known neurological disorders or injuries that
could have affected the experiment. Written informed con-
sent was obtained from all participants in accordance with
the Helsinki declaration, and the protocol was approved by
the local ethical committee for research (CER-Paris-Saclay-
2021-048).

Task. The task involved executing arm reaching move-
ments in a parasagittal plane (y,z) towards five targets
displayed on a screen in front of the subjects as shown in

Fig. 1. A display on the screen indicated to the participant
the validity of the reference position, characterized by the
arm being vertical, forming a 90° angle with the elbow, and
extending the index finger. Subsequently, a target, depicted
as a blue disk was displayed in front of the participant. A
trial was deemed valid if the participant pointed at the target
with the arm extended. In particular, it was ensured that the
distance from the shoulder to wrist was at least 80% of the
combined length of the arm and forearm (LSW). The target
turned green when the trial was validated. 24 movements per
target per subject were performed in a random order.

Data Collection. The reaching task was performed while
wearing a backdrivable robotic exoskeleton for the upper
limb (ABLE, [26], [27]). This exoskeleton features four
active joints, three replicating the human gleno-humeral
joint and one emulating human elbow flexion/extension.
To maximize transparency and mitigate unwanted interac-
tion efforts, two passive rotations and a passive translation
were incorporated at the forearm level, aligning with prior
works from [28], [29]. Movements were measured using the
internal encoders of the exoskeleton worn by participants
at a frequency of 1 kHz, then down-sampled to 100 Hz.
We recorded the joint positions along each movements and
filtered possible initial and final waiting period where both
joints were immobile.

Comparison metric. Our goal is to predict the upcom-
ing arm trajectory of a user on some receding horizon of
length h € N*, in a discrete time setting. To evaluate our
predictions, we measured the average deviation between the
recorded experimental trajectory and the predicted one over
the chosen horizon. Let us denote by ¢t € {0,1,...,T} the
current time within an experimental trajectory of length T'+1.
The corresponding experimental position of the endpoint is
denoted by p;® = [y,,z;]". At any time ¢, we build a
prediction about the upcoming trajectory, denoted by p? r‘id,
which is defined for times s € {¢,...,t + A} where
A = min(h,T — t). Then, the prediction error at time
t, denoted by e;, was computed as follows:

t+A
om ke |
t — A ps pslt H ( )
s=t

The error is defined on a receding horizon because updating
predictions during the movement has been shown to translate
into a more effective assistance compared to using a mono-
lithic prediction [16]. As such, the error on the receding
horizon of length A + 1 reflects the prediction error with
the most recent knowledge of the endpoint position. In this
paper, we evaluated our predictions on horizons of lengths
h =5,h=10and h = 20 (i.e., from 50 ms to 200 ms), so as
to match the frequency of prediction update in the literature
[16] and assess the criticity of the prediction rate. Longer
horizons were not considered because the movements under
consideration lasted less than 1.5 s on average.

B. Arm’s model

The human arm is modelled as a two-joints rigid body with
the shoulder and elbow flexion/extension angles respectively



denoted as g, and g,. Lengths, masses and centers of gravity
of the upper-arm and forearm are respectively denoted as
l1,m1, I; and I3, mo, I3 with I = [; +15 the arm length. The
arm dynamics were formulated using Lagrangian mechanics
as follows:

T =MI(q)d +C(q.9)q + G(q) + Fq, (2)

where 7 = [7,72]" and ¢ = [q1,¢2]" denote the torque
and joint angle vectors, and where a dot above a variable
corresponds to its time derivative. M,C,G and F are re-
spectively the inertia matrix, the Coriolis/centripetal matrix,
the gravitational vector and the friction (damping) matrix.
Furthermore, the smooth production of torque through
muscle contractions was accounted for by considering that
torque is a twice-differentiable function of time as in [21]:

T =u. 3)

In this model, it is assumed that the brain directly regulates
the joint torque second time derivative, thus simplifying
the system. It would be straightforward to consider other
types of muscle dynamics (see [11] for examples) but this is
not critical to the present study. Equations (2)-(3) can be
rewritten in state-space form by defining the state vector
z=[q",q" 7", 7"]".

C. Probabilistic Movement Primitives

In the present paper, we used Probabilistic Movement
Primitives to perform predictions about upcoming human
movements. ProMPs is a data-driven method that can learn
a distribution over discrete-time trajectories [15]. It is data-
driven in the sense that demonstrations are needed in order to
learn such a distribution. Then, predictions about the upcom-
ing trajectory can be obtained at low computational cost by
conditioning the distribution with an observation. Below, we
briefly describe the ProMPs method in our context, the reader
is deferred to [15] and references therein for full details.

1) Encoding demonstrations: ProMPs encode trajecto-
ries using basis functions. Here, we used Gaussian ba-
sis functions as is common practice for discrete point-to-
point movements formulated in the joint space [15]. Let
Ty = [qut,d14,q24,d24)" be the arm’s joints posi-
tion and velocity at time ¢t € {0,1,...,7}. The full
trajectory can be represented by vertical concatenation as
the vector To.p = [[g,---,[7]T € RYTHD. Let
P, [gbi’t,q.ﬁi,t] € R™*2 denote the basis matrix for a
single joint position and velocity ¢;¢ and ¢; ;with ¢ = 1
and 2 for the shoulder and elbow respectively, and n a
parameter defining the number of Gaussian basis functions.
These matrices of basis functions at time ¢ are concatenated
in a block diagonal matrix ¥, = blkdiag(@I“(I);t) €
R**27_ This matrix is then extended to include all time
steps by vertical concatenation Wo.r = [¥, --- ;|7 €
RAT+Dx2n Einally, the joint space trajectory of the arm is
represented via a 2n-dimensional weight vector w € R?",
as follows:

' =%,w+er 4

with er ~ N(0,Xr) iid. Gaussian noise. We can then
express the probability of observing a trajectory I'g. using
the weight vector w:

T
p(Tor|w) = [[ N (T4 ®w, Br). (5)
t=0
The weight vector associated with each demonstrated
trajectory is estimated using a regression method. In this
work we used the ordinary least square (OLS) method as
in [16], here written for the trajectory I'g.p:

w = (.o + )10 T (6)

with A = 1072 a regularization parameter taken from [16].

As is common practice with motion primitives we intro-
duced a phase parameter T so as to enable temporal scaling
and modulation. We simply defined the phase as normalized
in this work (i.e. T = t/(T + 1)). Basis functions are thus
defined as depending on the phase of movement instead of
time: ®;; = P, .

2) Representation of variability: Before being able to
predict the upcoming trajectory from observations up to time
t, one must capture the variability of human trajectories. To
this aim, the weight vector is itself modelled as following a
Gaussian distribution with p(w; p,,, ¥,,). Then, the mean
and covariance parameters can be estimated from several
demonstrations as follows:

1 M
Moy = M th
=1

1
M-1

)

Yuw= (Wi — ) (Wi — )"

B

i=1
where M is the number of demonstrations and w; is the
weight computed for the i trajectory from (6).

3) Trajectory prediction from observation: An infer-
ence can then be obtained from an observation A‘T’bs =
{ro* 2"} by adding it to our model and applying Bayes
theorem, ie. p(w|A%") o N (T2 W w, =9 )p(w). The
distribution of w conditioned by the observation A% is
Gaussian and given by the following mean and covariance:

ﬂw = My + EWWIST(F?L’IDS - ‘I]Tiu’w)7

A 8
$,=3,-%,0/5.9.%, ®

where S, = (% + ¥ 3, ¥1) 1.

The prediction T%¢ can then be computed by weighting
the basis functions with the mean of this conditioned distri-
bution:

IO = Wo.rfl,. ©)

This conditioning allows the ProMPs to predict trajectories
that are not present in the training dataset. As such the
predictions can be adapted to the center of a new target as
shown in Fig. 5. We used this last point conditioning (LPC)
feature when comparing the pure data-driven approach with
our approach so as to compare the methods in scenarios
with identical initial information. Finally, even though we



expressed the ProMPs in joint space, it should be noted that
we can transfer predictions to the task space using forward
kinematics.

D. Optimal Control Framework

OC is a classical framework to synthetize humanlike opti-
mal trajectories by minimizing a well-chosen cost function.
If deterministic OC is able to capture the average trajectory,
stochastic OC 1is the method of choice to capture the vari-
ability of human behavior. Here we used an approximate
stochastic OC framework to generate humanlike trajectories.
It is based on the following approach: (i) generate the
mean behavior by solving a deterministic OC minimizing a
composite cost function, as suggested by the motor control
literature [21]; and (ii) generate the variability around this
mean behavior by solving a locally-optimal stochastic OC
of the linear-quadratic-Gaussian (LQG) type. This approach
is classical in control theory and similar to the stochastic
optimal feedforward-feedback (SFFC) framework introduced
in [24].

1) Optimal feedforward control: To account for the aver-
age trajectory of human subjects, we first have to choose a
suitable cost function, denoted by Cj. Similar movements
were studied in [21] using inverse optimal control, and it
has been shown that a combination of smoothness (squared
acceleration), effort (absolute work), and time allows to
reproduce both their average path and duration, which is
critical for efficient assistance [4]. The cost function for the
feedforward OC problem was thus written as follows:

T
Cr=Y i’ —% (10
it t:oalq q+a2(|Q1,t7—1,t‘+|Q2,t72,t|)+1+<t (10)

where the weights «;, ¢ € {1,2,3} define the trade-off
between effort, smoothness and time. Let us define a =
[a, ag,ag]T. And where ( is a parameter taken from [20]
(¢=4.3).

In general, o could be identified for each participant
to account for individual preferences (i.e., individual path
and speed). However, consistently with our approach, we
adjusted the weights to reproduce the behavior of the average
participant for all the simulations, which would allow to
avoid the use of further demonstrations in practical imple-
mentation. We set a = [0.1,1,5.6] .

The feedforward OC problem of Eq.10 is then trans-
formed into a nonlinear programming (NLP) problem with
constraints before being solved using the open-source python
software CasADi [30] with the IPOPT solver [31]. In order
to reduce the computational cost and ensure the convergence
of the NLP solver we initialized the problem with a minimal
jerk initial guess [32]. A regularization term, quadratic in the
control u, was also added for numerical stability. To estimate
the cost of time parameters, differently from [20], a direct
optimization with Bobyqa [33] was used for optimizing as
until we recover the average experimental duration.

In discrete time, the feedforward OC problem consists of
finding an optimal control sequence . corresponding to

an optimal trajectory Z.r connecting an initial equilibrium
state @iy to a final equilibrium state x.,q, while minimizing
the cost function Cl.

To formulate the problem, one needs to express the state-
space representation of the arm’s dynamics in discrete time,
which can be written as

(1)

where the specific form of f depends on (2)-(3) and the
choice of the discretization (e.g., Euler).

2) Locally optimal feedback control: Once a nominal
motor plan (@g.7, To.7) is obtained, one can consider the
variability around it to generate an artificial dataset of
humanlike trajectories on which we can train the ProMPs.
This is achieved by considering the sensorimotor noise acting
in the central nervous system. Below, we consider a local
approximation using the nominal plan and formulate a linear-
quadratic-Gaussian (LQG) problem.

Let us assume that sensorimotor system can be written
as the following stochastic difference equation (e.g., after
Euler—-Maruyama’s discretization):

iy = flxe, ur) + G(ur)§,
Yy, = g(x) + 1,

where x; denotes the stochastic state vector, f is the de-
terministic dynamics, G describes how motor noise affects
the state, y, is the sensory feedback and g is the output
function. The terms &, and m), are i.i.d. zero-mean Gaussian
random variables of appropriate dimensions, corresponding
respectively to motor and observation noise.

Precisely, the matrix G was defined to capture the effects
of both additive and multiplicative noise on the motor
command, as follows:

xiy1 = fxe, uy)

12)

O6x4
G(u) = |01 /\1U1 0 0 (13)
0 0 g9 /\Q’UQ

where o = [ol,ag}T and A = [/\1,/\2]T represent respec-
tively the additive and multiplicative noise magnitudes.
Assuming that the system will remain in the vicinity of the
planned control-trajectory pair thanks to the feedback con-
trol, we next linearized the above system around (g.1, Zo.T)
to formulate a tractable LQG problem.
To this aim, let us define

5%,5:.’1375—@,5 5 (5ut:ut—ﬁt
_of _of

——h
ox |z,.a,

t

If we denote Gy = G(u¢), then after linearization around
To.T, Uo.r we get the following linear system:

5mt+1 = At5:1:t + Btéut + Gt€t

(15)
0y, = Cyoxzy +my

Together with a quadratic cost Clh, this forms a LQG
problem that can allow us to compute a feedback control to
correct for task-relevant errors in a locally optimal fashion.
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Fig. 2.

Scheme for our OC method to generate synthetic humanlike trajectories.The feedforward command is determined with the deterministic OC

method introduced in section I.D.1). The feedback command with a LQG corrector is then considered to simulate how humans handle corrections when

sensorimotor noise affects their movement as detailed in section I1.D.2).

A suitable quadratic cost function can be defined as:

T
Cr(0ugr) =E |527Q 6Tr + Y du, duy (16)

t=0

We set Q = pdiag(1,1,0,0,0,0) as in [24], meaning that
we only penalize the final arm posture in (16). Here, p is a
parameter used to penalize more or less final accuracy, which
can affect the optimal feedback gain K; [34]. Because Cp,
also minimizes control-level effort, it ensures that correc-
tions will adhere to the minimum intervention principle, an
important hallmark of human motor control [23].

Regarding the output equation, we assume that the com-
plete state, encompassing position, velocity, torque and
torque change, can be measured through the integration of
multisensory information as in [24], meaning that we simply
set g(x) = x so that C = Is. Optimal state estimation &;
is achieved using a Kalman filter with optimal gain denoted
by L;. The solution used for this LQG problem can be
found in [34] for instance (note that the full solution with
true multiplicative noise is considered there, which could be
integrated into our framework).

A summary of our approximate stochastic OC method
used to generate humanlike trajectories (i.e. mean trajectory
and its variability across repetitions of the same task) is given
in Fig. 2. Timing variability was generated post simulation;
trajectories were temporarily remaped to follow a Gaussian
distribution of movement duration with the mean as the
optimally found timing in the direct OC optimization and
a standard deviation set as a 10th of this mean value. This
leads to higher variability than observed in humans but leads
to better result in average prediction error across subjects as
it encompasses more timing preferences.

In practice, the variability of the trajectories can be
changed by adjusting on o, A, and p. Here these parameters
were adjusted manually to match the variability of another
dataset of reaching movements, different from the one used
to evaluate the method. In general, these parameters could
be user-specific and our method could benefit from a more
precise tuning by using few demonstrations. We chose not
to do so as it would hinder one of the goals of our approach
which is to build a method that is readily usable with no
demonstrations and to test it.

III. RESULTS

In this section we first present the actual and artificial
dataset of arm trajectories, and give examples of trajectory
inferences. Then we present the prediction accuracy of the
data-driven method and our hybrid method for different
horizon lengths. The predictive capacity of the data-driven
method (ProMPs) was tested with conditioning of the last
point (for a new target scenario). We chose to compare
our method with the data-driven method with last point
conditioning because our method is also informed of the
target’s center.

A. Experimental and Artificial Datasets

In Fig. 3, we present a typical example of the movements
in the para-sagittal plane gathered during the experimental
phase (in this case 10 movements for target 2 by subject #1
of mean duration 1.94sec). Fig. 4 presents the corresponding
artificial dataset generated with our method. We generated
1000 movements for every target with an average duration
of 1.86sec for target 2.
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Fig. 3. Experimental movements recorded for target 2 and subject 1. Each
color is a single trial.
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Fig. 4. Artificial movements generated by our optimal control method for
target 2. The number of movements generated can be arbitrarily chosen, we
chose to simulate 1,000 movements for each target.

B. Inference error results

Fig. 5 shows typical examples of inferences of a trajec-
tory when predicting movements toward an undemonstrated
target. To evaluate each method’s accuracy we computed the
error for all targets and subjects. Fig. 6 show error graphs for
target 2 with mean and standard deviation. A non-null error
at the end of the trajectory is observed in Fig. 6 panel B)
because in this case predictions are conditioned to reach the
new target’s center and not the final point of the current test
trajectory. As expected, the accuracy of predictions decreases
when the distance between the target of the learned dataset
and the new target increases.

Fig. 7 shows that the proposed hybrid method outperforms
the pure data-driven method on every target except for the
one that was used to train the ProMPs. The hybrid method
could be further improved by tuning the parameters o and .
In this paper, however, their value was fixed as their tuning
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0.7 i
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’E\ 1 i
1
| T2
- 1 1 /
05 P &
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! === inference at T =0.25
= inference at T =0.4
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: average traj for T2
'
B) ProMPs +LPC T3
T
1
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I
- : ®
1
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1
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! inference at T =0.1
d == inference at T =0.25
! = inference at T =0.4
0. 3 ; ! test trajectory
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C) Hybrid Method T3
(model-based ProMPs)
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— i i
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i i w_inference at T =0.4
03 i H test trajectory
! ! average traj generated for T3

0.0 0.2 0.4 0.6 0.8 1.0
T

Fig. 5. Examples of successive prediction for the prediction methods.
The test trajectory is in green. A) Inferences (in blue) with ProMPs when
predicting a trajectory with a different target to the one demonstrated in
the training data set (mean trajectory of the learned ProMPs distribution in
thick green) At normalized time T (Successively set to 0.1, 0.25 and 0.4) the
ProMPs distribution trained with a dataset of reaching movement for target 2
is conditioned with the observation of the beginning of a movement aiming
in reality at target 3. The mean of this conditioned distribution is then
used to infer the rest of the trajectory. Note that target 3 is not accurately
attained at the end. B) Similar figure where the ProMPs distribution is
also conditioned with the center of target 3 as final point. Note that target
3 is now attained but the smoothness of trajectories is much degraded.
C) Inferences (in red) with our hybrid method. At normalized time T the
artificial ProMPs distribution trained with the dataset generated with our
model-based approach is conditioned with the observation of the beginning
of an experimentally measured movement. The mean of this conditioned
distribution is then used as inference. Note that the target is accurately
attained and the trajectory remains smooth and close to the test trajectory.

was achieved from an independent dataset. The accuracy of
predictions of our method matches that found in the literature
where effective assistance control laws have been developed
using predictions with the accuracy equal to 2.22 +1.62 cm
[16].

IV. CONCLUSION

We have shown that the proposed hybrid method success-
fully combines advantages of state-of-the-art model-based
and data-driven methods for predicting human movements.
On the one hand, it is computationally efficient and can be
implemented for the real time control of robotics systems
since it readily exploits the ProMPs framework [15]. On the
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other hand, it avoids the need for numerous real demonstra-
tions since it can generate a bunch of artificial demonstrations
with the stochastic optimal control framework, to train the
ProMPs.

By using a model of human behavior that is taken from
the motor control literature [24], we were able to generate
a large dataset of humanlike trajectories, including their
variability, to a variety of targets. Importantly, these com-
putations can be performed offline. Then, we used these
synthetic data to train the ProMPs and predict trajectories
in real time on a finite-time receding horizon [16]. This
original combination allowed us to accurately predict human
movements even in scenarios where no real demonstration
is available. Hence, the proposed method requires virtually
no training data. Despite the absence of demonstrations, the
hybrid method provides predictions with lower spatial errors
than the ProMPs when generalization comes into play. Of
course, when extensive human data are available for the tasks
under consideration, directly using the ProMPs would lead
to better results. Our method specifically aims at providing
an alternative to avoid the need for such a time-consuming
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Fig. 7. Boxplots of mean error between prediction and truth when
predicting with a ProMPs distribution trained for Target 1 in blue boxplots
and conditioned to reach the correct target (Data Based DB with last point
conditioning LPC) compared to predictions with a ProMPs distribution
trained with artificial data in red boxplots (Model Based MB). Cartesian
distance to target 1 for targets 2 to 5 are respectively 0.15m, 0.32m, 0.54m
and 0.73m.

data acquisition stage before assistance can be provided to
the user. Extension of our method to higher dimensions and
more complex upper limb movements would be possible as
the tools are generic but this remains to be tested in future
works. Additionally, recent improvements of ProMPs such
as [35] could also be implemented into our method as the
online usage consists in classical ProMPs use.

With respect to the design of assistive control laws,
we plan to combine our prediction method with an active
assistance so as to evaluate its impact on the users’ comfort
and their overall motor behavior. Furthermore, we plan to
include the representation of human movement variability
provided by the ProMPs as an adaptation factor for the
controller. This could allow to maximize the benefits of the
assistance, for instance by increasing the exoskeleton’s work
when the movement’s variability is low because predictions
are more “trustworthy”. Conversely, one could reduce the
assistance in high-variability regions resulting in augmenting
the robot compliance and avoid non-cooperative scenarios in
these regions. Initially, the flow controller of [16] should be
tested to compare performance to the literature.

Finally, we plan to analyze if individualising the free
parameters of our method (cost functions weights and noise
magnitudes) can improve the quality of the predictions. A
numerical inverse optimal control approach would be used
for this purpose, and a few demonstrations would be required
to do so. Indeed, it is known that individuals have usually
distinct motor preferences which can be taken into account
in cost functions [21], [36]. Hence, personalizing them could
result in more symbiotic interaction. This work could also
allow us to determine the minimal number of demonstrations
per user that are needed to extract their preferred motor



strategy.
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