
HAL Id: hal-04679924
https://hal.science/hal-04679924v1

Submitted on 28 Aug 2024 (v1), last revised 3 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load Balancing in Large WiFi Networks Using
DQL-MultiMDP with Constrained Clustering

Mohamed Bellouch, Lynda Zitoune, Iyad Lahsen-Cherif, Véronique Vèque

To cite this version:
Mohamed Bellouch, Lynda Zitoune, Iyad Lahsen-Cherif, Véronique Vèque. Load Balancing in Large
WiFi Networks Using DQL-MultiMDP with Constrained Clustering. MASCOTS 2024, Oct 2024,
Krakow (Cracovie), Poland. �hal-04679924v1�

https://hal.science/hal-04679924v1
https://hal.archives-ouvertes.fr

Load Balancing in Large WiFi Networks Using
DQL-MultiMDP with Constrained Clustering

Mohamed Bellouch∗, Lynda Zitoune∗, Iyad Lahsen-Cherif†, Véronique Vèque∗
∗Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes

3, rue Joliot Curie, 91190 Gif-sur-Yvette, France.
Email: {mohamed.bellouch, lynda.zitoune, veronique.veque}@l2s.centralesupelec.fr

†INPT, CS department, Rabat, Morocco.
Email: lahsencherif@inpt.ac.ma

Abstract—Developing efficient load-balancing techniques re-
mains a persistent research challenge as modern WiFi networks
evolve into increasingly complex environments, incorporating
new enhancements in their standards. For instance, DQL-
MultiMDP is a load-balancing algorithm that learns an optimal
STA-to-AP association policy to ensure user fairness and optimize
network performance in dense and dynamic WiFi networks. The
algorithm leverages a Multi-Markov Decision Process (Multi-
MDP) strategy to accommodate the fluctuating number of devices
caused by their switching on/off. However, scalability challenges
arise due to the exponential expansion of the action space.
In this paper, we propose a divide-and-conquer approach that
extends the algorithm to operate in extremely large deployments:
a dynamic partitioning mechanism divides the network into
clusters and assigns a sub-controller to manage the STA-to-AP
association in each cluster independently, and a coordination
mechanism enables them to exchange their training updates.
Experimental investigations validate the effectiveness of the
approach and motivate future work.

Index Terms—WiFi, Load balancing, Deep Q-Learning, Net-
work partitioning

I. INTRODUCTION

Modern WiFi networks are expanding to accommodate
the Internet of Things (IoT) and offer new human-oriented
services. Stations (STAs) range from connected sensors to
devices running intensive applications like Augmented/Virtual
Reality (AR/VR), gaming, or 8K videos. Some devices are
attached to users and exhibit complex mobility. Additionally,
Access Points (APs) can be managed by energy efficiency
mechanisms that turn them on or off depending on traffic and
demand dynamics [1], [2], mirroring the unpredictable connec-
tion and disconnection behavior of the STAs. Consequently,
the deployment of modern WiFi networks is characterized
by its dense and dynamic nature, making the management
and optimization of Quality of Service (QoS) for diverse
applications very challenging. In dense networks, APs are
very close to each other, leading to overlapping cells and
heightened interference levels. The upcoming IEEE 802.11
standards aim to improve existing WiFi networks to address
these circumstances and ensure seamless communication. The
IEEE 802.11be (WiFi 7) promises to deliver Extremely High
Throughput (EHT) and reduced latency [3]. It introduces sev-
eral novel enhancements, such as wider bandwidths and multi-
link operation [4], to ensure that STAs can seamlessly switch

between different APs, thereby providing robust support for
load-balancing techniques. However, a primary concern lies
in the default association decision policy, where each STA
automatically connects to the AP with the highest received
signal strength indicator (RSSI). This approach can lead to
AP overloading, unfair distribution of resources among users,
and a degradation in overall network performance. Although
efficient load-balancing has attracted significant attention in
this area of research, it remains outside the scope of the IEEE
802.11ax/be standards, with STA-to-AP association decisions
being made by vendor-specific algorithms [3], [5].

DQL-MultiMDP [6], [7] is an algorithm for load balanc-
ing in dense and dynamic WiFi networks. Leveraging Deep
Q-Learning (DQL), it learns through autonomous decision-
making an optimal STA-to-AP association policy that ensures
long-term fairness among users, balances the load on the APs,
and optimizes the overall network performance. Notably, the
algorithm leverages a Multi-MDP strategy to overcome the
problem of the ever-changing number of devices due to their
switching on/off and to provide a fine-grained knowledge
of the environment’s dynamics. However, the algorithm is
typically designed to operate in a fully dense setting where
each STA falls in the range of all the available APs. This
provokes an exponential growth of the action space and
leads to poor learning performance as the number of devices
increases, making the algorithm suitable only under a limited
controller’s capacity, i.e., the maximum number of APs and
maximum number of STAs that the controller that hosts the
algorithm can handle while operating under good conditions.

This paper presents a practical divide-and-conquer approach
to extend the algorithm to operate in extremely large WiFi
networks. The idea is based on dynamically partitioning the
network and assigning a DQL-MultiMDP sub-controller to
manage the user association in each partition independently.
First, we propose a primary version of a network partitioning
mechanism that assumes knowledge of the spatial coordinates
of the APs. Then, we design a coordination scheme that
allows the sub-controllers to benefit from each other’s training
updates; we design a strategy that keeps the “best” updates in
a central database so that the sub-controllers use them instead
of starting training with random parameters.

In the remaining, we review related work on load balancing

and network partitioning in Sec. II. Next, we present our
system model in Sec. III, along with a brief background on
DQL-MultiMDP and the reason behind its limited controller’s
capacity. We introduce the proposed dynamic partitioning
mechanism in Sec. IV. Sec. V presents an abstract architec-
ture of the proposed system alongside the proposed strategy
to allow the sub-controllers to exploit each other’s training
updates. Sec. VI provides simulation results and investigations
to validate the effectiveness of our approach. Finally, we
conclude the paper in Sec. VII with insights for future work.

II. RELATED WORK

The authors of [8] provided a comprehensive taxonomy of
the “old-fashioned” load-balancing techniques for WLANs.
These techniques are considered to be “old-fashioned” because
they were developed for the early WiFi standards, and their
association decisions are primarily based on simplistic metrics
like the RSSI values, users’ priorities, and load on the APs,
under some strong assumptions on the system.

New solutions were proposed with the emergence of re-
inforcement learning (RL) and deep RL (DRL) techniques,
promising abilities in terms of adaptability and flexibility. For
example, [9] proposed an online Q-Learning AP assignment
algorithm that aims to ensure user satisfaction and optimize
throughput in an SDN-controlled network. Ahmed et al. [10]
worked particularly on hybrid WiFi/LiFi networks. However,
the models upon which these solutions are built do not often
consider the dynamic nature of these networks, such as user
mobility and the fluctuating number of devices, and they are
validated on simulation settings with fixed devices with few
numbers. DQL-MultiMDP [6] addresses these challenges by
leveraging the Multi-MDP approach. However, in all these
techniques, the scalability limitation remains an ongoing chal-
lenge due to the expansion of the action space [7].

On the other hand, the network partitioning literature is
primarily motivated by the Controller Placement Problem
[11]. [12] survey of network partitioning techniques used to
address this problem in Software Defined Networks (SDNs).
The proposed works often preserve the same graph modeling
of the network and use algorithms like k-center, capaci-
tated k-center (that, similar to our work, has the ability to
guarantee a size-balanced partitioning, but on graphs), and
graph clustering techniques like Affinity Propagation. To the
best of our knowledge, this is the first work that addresses
the scalability limitation of a DRL-based technique through
network partitioning and probably the first one that uses the
Constrained k-means Clustering algorithm for this purpose.

III. SYSTEM MODEL, ASSUMPTIONS, AND BACKGROUND

The controlled WiFi network at time t ∈ R consists of
a finite set of N

(t)
STA active STAs, and a finite set of N

(t)
AP

active APs, denoted by ST A(t) = {µi}i∈
[
N

(t)
STA

] andAP(t) =

{αj}i∈
[
N

(t)
AP

]. The sets are time-dependent as the number of

devices changes due to their switching on/off, and we assume
that they both remain non-empty at any t. For a non-null

integer n, the notation [n] = {1, ..., n} is used throughout the
paper. The current STA-to-AP associations at t are modeled
by a binary matrix C(t) =

(
c
(t)
µ,α

)
(µ,α)∈ST A(t)×AP(t)

, such

that if the STA µ ∈ ST A(t) is associated with the AP
α ∈ AP(t) at t, we have c

(t)
µ,α = 1, otherwise c

(t)
µ,α = 0.

We denote by RSSI
(t)
µ,α and ρ

(t)
µ,α the RSSI value and the

achievable data rate of µ from α at t, respectively. We denote
the required data rate by µ at t as σ

(t)
µ . We assume that

the APs’ locations are known or can be approximated at a
certain degree of precision; we denote the position of an AP
α as pα = (xα, yα, zα) ∈ R3. To model the on/off behavior
of each device β (AP or STA), we assign to it an indepen-
dent Markov chain process Sβ = S

(t0)
β , S

(t0+η)
β , S

(t0+2η)
β , . . .,

where the state set is {“ON”, “OFF”}, and the index set is
{t0 + kη′ : k ∈ N}, with t0 being the initial time and η′ > 0
a time step.

A. Basic DQL-MultiMDP at a glance

The primary version of DQL-MultiMDP operates in
a central controller with a global view of the en-
tire network [7]. A pair (NSTA, NAP) is initially de-
fined and called the controller’s capacity. If 2 ≤
N

(t)
STA ≤ NSTA and 2 ≤ N

(t)
AP ≤ NAP , the asso-

ciation problem is seen as a MDP MDP
N

(t)
STA,N

(t)
AP

=

(S
N

(t)
STA,N

(t)
AP

,A
N

(t)
STA,N

(t)
AP

,P
N

(t)
STA,N

(t)
AP

, rt, γ), where the ele-
ments are the state space, the action space, the state transition
function, the reward function, and a discount factor γ ∈ (0, 1),
respectively; otherwise, the algorithm employs a traditional
max-RSSI association strategy.

At t, the observed state st is a vector of size N
(t)
STAN

(t)
AP +

N
(t)
AP + N

(t)
STA that contains the SINR value at each STA

from each AP, the load on the APs, i.e, the number of
STAs currently connected to each AP, and the STAs’ required
data rates. The applied action is a binary matrix at =(
a
(t)
µ,α

)
(µ,α)∈ST A(t)×AP(t)

that represents the controller’s as-

sociation decision; if the controller associates µ to α, then
a
(t)
µ,α = 1, otherwise a

(t)
µ,α = 0. As associating a single

STA to multiple APs requires further analysis of WiFi’s new
amendments [3], basic DQL-MultiMDP associates each STA
to one and only one AP. Hence, the elements in each row of
the matrix at are all zeros except one that is 1. Therefore, if
the realization of each action is seen as a map form AP(t)

to ST A(t), the action space cardinal is the number of such
possible maps. Thus∣∣∣AN

(t)
STA,N

(t)
AP

∣∣∣ = ∣∣∣AP(t)
∣∣∣|ST A(t)|

=
(
N

(t)
AP

)N
(t)
STA

. (1)

By letting l
(t)
α =

∑
µ∈ST A(t) c

(t)
µ,α, the load on the AP α,

the received reward at t is expressed as

rt =
∑

µ∈ST A(t)

∑
α∈AP(t)

c
(t)
µ,αρ

(t)
µ,α

d
(t)
µ l

(t)
α

, (2)

so that maximizing the sum of γ-discounted future rewards
implies finding the optimal association strategy that maximizes

the ratio between the Shannon capacities and the required data
rates while minimizing the load on the APs. The controller
stores a Q-Network for all the possible (NSTA−1)(NAP −1)
MDPs. For any 2 ≤ n ≤ NSTA and 2 ≤ m ≤ NAP , the
Q-Network that corresponds to MDPn,m is represented by
its parameters vector θn,m. It outputs (Q(st, a; θn,m))a∈An,m

the approximated Q-values of all the available actions in
An,m given the current state st taken as input. Then, the Q-
Network’s output layer size is |An,m|.

B. Restricted controller’s capacity

The reason behind imposing the controller’s capacity
(NSTA, NAP) is attributed to the exponential growth of the
action space [7]. When N

(t)
STA and N

(t)
AP increase, the number

of available actions for the agent increases exponentially; thus,
the agent needs more interactions to explore the large action
space. Additionally, as the corresponding Q-Network’s output
layer has the same size as the action space, the number of
parameters grows with it, increasing the number of required
experience samples (interactions) to train it. We refer to this
as an interaction cost. On the other hand, the search for
the greedy action argmaxa∈An,m Q(s, a; θn,m) is performed
in each learning step in the DQL algorithm to compute the
Q-Learning target value. This maximization necessitates a
sweep over the action space and thus has a complexity of
O(|An,m|) = O(nm). Moreover, as the number of parameters
grows, the time spent in the Q-Network’s forward and back-
ward passes also increases. Hence, the action space size also
impacts the duration of the learning episodes; we call this a
temporal cost.

IV. NETWORK PARTITIONING FOR SCALING UP
DQL-MULTIMDP

Our divide-and-conquer approach to extending DQL-
MultiMDP to extremely large WiFi networks consists of
partitioning the network into clusters and managing the STA-
to-AP association within each cluster using a DQL-MultiMDP
agent that operates within a corresponding sub-controller. We
first present our dynamic network partitioning mechanism, and
then we describe a coordination mechanism that permits the
agents “to benefit from the knowledge of others” in Sec. V.

A. Partitioning the set AP(t)

A partitioning mechanism divides the set of APs into k(t) >

0 disjoint parts ς
(t)
1 , . . . , ς

(t)

k(t) , each of which contains at least
τ (t) ≥ 2 elements, as formulated in Eqs. 3 & 4.

AP(t) =

k(t)⋃
i=1

ς
(t)
i s.t. ς(t)i ∩ ς

(t)
j = ∅ ∀i, j ∈

[
k(t)

]
, i ̸= j. (3)

τ (t) ≤
∣∣∣ς(t)i

∣∣∣ ≤ NAP . (4)

Nevertheless, this necessitates the condition

2 ≤ k(t)τ (t) ≤ N
(t)
AP , (5)

that we will consider as an assumption in what follows.

The number of parts k(t) and the minimal size constraint
τ (t) are time-dependent since the partitioned set AP(t) also
varies due to the APs switching on/off. Eq. 4 ensures two
things: all the parts contain at least 2 APs, and no part exceeds
the controller’s capacity. Hence, the partitioning mechanism
ensures a first condition of performing load balancing by
DQL-MultiMDP in terms of the number of APs in each part.
Moreover, as a lower bound in Eq. 4, τ (t) can be used to
ensure a certain balance in the parts’ sizes.

As a first step in the design of the partitioning mechanism,
for a given k(t) and τ (t), we first define Ω

(t)

k(t),τ(t) , the set
of such possible partitions with omitting the parts’ maximum
size constraint, since we will next show how it can be ensured
through an adequate choice of k(t) and τ (t). Hence

Ω
(t)

k(t),τ(t) =

{(
ς
(t)
i

)
i∈[k(t)]

:
⋃k(t)

i=1
ϑ
(t)
i = AP(t),

∀i, j ∈
[
k(t)

]
, τ (t) ≤

∣∣∣ς(t)i

∣∣∣ , ς(t)i ∩ ς
(t)
j = ∅ if i ̸= j

}
.

(6)
To ensure seamless roaming, the APs in each part should be
optimally close to each other geographically. This yields the
following optimization problem:

argmin(
ς
(t)
i

)
i∈[k(t)]

∈Ω
(t)

k(t),τ(t)

k(t)∑
i=1

∑
α,α′∈ς

(t)
i

∥pα − pα′∥22 (7)

that aims to minimize the pairwise squared deviations of
APs’ positions in each part. By letting ν

(t)
i = 1∣∣∣ς(t)i

∣∣∣
∑

α∈ς
(t)
i

pα,

i.e. the i-th part’s centroid, and based on the identity∣∣∣ς(t)i

∣∣∣ ∑
α∈ς

(t)
i

∥∥∥pα − ν
(t)
i

∥∥∥2
2
= 1

2

∑
α,α′∈ς

(t)
i

∥pα − pα′∥22, the prob-

lem is equivalent to

argmin(
ς
(t)
i

)
i∈[k(t)]

∈Ω
(t)

k(t),τ(t)

k(t)∑
i=1

∑
α∈ς

(t)
i

∥∥∥pα − ν
(t)
i

∥∥∥2
2
. (8)

This is typically equivalent to the traditional k-means clus-
tering problem if τ (t) = 0. However, k-means clustering is
sensitive to outliers [13], i.e., if an AP is far from others, it
will form a cluster that contains only that AP. In addition, there
are no guarantees that the size of some clusters lies under the
controller’s capacity.

A partitioning solution from Ω
(t)

k(t),τ(t) can be represented
by a binary matrix G = (gi,j)(i,j)∈

[
N

(t)
AP

]
×[k(t)]

, such that for

all (i, j) ∈
[
N

(t)
AP

]
×

[
k(t)

]
, if the i-th AP αi belongs to the

j-th part ς
(t)
j , we have gi,j = 1; otherwise gi,j = 0. Thus,

to respect the part’s minimum size constraint, the sum of the
elements at the i-th column of the matrix is less than τ (t),
and the i-th raw contains only one element that is equal to
1, which implies that the sum of the elements at the i-th raw
is equal to 1. We consider the set where the matrices are not
necessarily binary

Γ
(t)

k(t),τ(t) =

{
G ∈ Rk(t)N

(t)
AP :

∑k(t)

h=1
gi,h = 1 and∑N

(t)
AP

h=1
gh,j ≥ τ (t), ∀(i, j) ∈

[
N

(t)
STA

]
×
[
k(t)

]}
.

(9)

For Cj (G) =
∑N

(t)
AP

i=1 gi,jpαi
/
∑N

(t)
AP

i=1 gi,j , the authors of
[14] proposed an iterative algorithm, called Constrained k-
means Clustering, that solves the following problem

argmin
G∈Γ

(t)

k(t),τ(t)

N
(t)
AP∑

i=1

k(t)∑
j=1

gi,j ∥pαi
− Cj (G)∥22 . (10)

They proved that the algorithm terminates in a finite time
and that there exists an optimal solution G∗ that satisfies
g∗i,j ∈ {0, 1}. By looking at g∗i,j as an indicator of the
membership of the i-th AP to the j-th part, i.e., g∗i,j =

1
αi∈ς

(t)
j

, we can observe that Cj (G
∗) = ν

(t)
j and that an

optimal solution of the problem in Eq. 8 (so as Eq. 7)
can be constructed by forming the parts as follows ς

(t)
i ={

αj ∈ AP(t) : j ∈
[
N

(t)
AP

]
s. t. g∗j,i = 1

}
for all i ∈

[
k(t)

]
.

By now, the formed partition respect only the lower-bound
constraint in Eq. 4, i.e., τ (t) ≤

∣∣∣ς(t)i

∣∣∣ for all i ∈
[
k(t)

]
.

The upper-bound constraint
∣∣∣ς(t)i

∣∣∣ ≤ N
(t)
AP will be ensured

through an adequate choice of k(t) and τ (t) as we show in the
following.

B. Bounding the choice of k(t) and τ (t)

For a given network, k(t) and τ (t) are interdependent, and as
we will show experimentally, their choice plays a crucial role
in the learning performance. Thus, a strategy for their selection
is required. We first begin by extracting their dependency and
bounding their choice. From Eqs. 3, 4, and 5, we have

N
(t)
AP =

k(t)∑
i=1

∣∣∣ς(t)i

∣∣∣ ≤ k(t)NAP and k(t) ≤
N

(t)
AP

τ (t)
. (11)

Thus, as k(t) is an integer, we can show that

1 +
⌊
N

(t)
AP /NAP

⌋
≤ k(t) ≤

⌊
N

(t)
AP /τ

(t)
⌋
. (12)

Moreover, since τ (t) ≥ 2, and based on Eq. 5, we get

2 ≤ τ (t) ≤
⌊
N

(t)
AP /k

(t)
⌋
. (13)

C. Sub-controllers assignment

The clustering algorithm operates within a global controller,
which is assumed to have knowledge of the estimated positions
and activity of the APs at any t. When an AP is turned
on or off at t, the mechanism will be triggered to select
a pair (k(t), τ (t)) and perform a new partitioning using the
Constrained k-means Clustering algorithm. Then, the APs in
each part ς(.)i will be grouped to provide seamless roaming as
they are geographically close to each other. A sub-controller
will be assigned to ς

(.)
i to host a DQL-MultiMDP agent. The

sub-controller can be “physical” by selecting an AP in ς
(t)
i

to act as a master, while the others act as slaves (under the

condition that they are within the master’s range). Otherwise,
the sub-controller can be “virtual” if the network is managed
by a central controller (via SDN), to launch a dedicated thread
or process that executes the DQL-MultiMDP algorithm. The
technical details, however, are omitted in this paper as our
focus is on the validation of the partitioning approach. In
both cases, we will abstractly look at ς(t)i ’s sub-controller as
a process referred to as Processi.

D. Partitioning the set ST A(t)

The set of STAs will similarly be partitioned into k(t) clus-
ters ϑ(t)

1 , . . . , ϑ
(t)

k(t) . The ST A(t) partitioning is not constrained
and is done by the STAs themselves instead of the controller.
When an STA powers on, it scans the available SSIDs, and
it connects to the one that contains the closest AP to it.
Therefore, ST A(t) =

⋃k(t)

i=1 ϑ
(t)
i such that, for all i ∈

[
k(t)

]
,

we have

ϑ
(t)
i =

⋃
α∈ς

(t)
i

{
µ ∈ ST A(t) : RSSI(t)µ,α > RSSI

(t)
µ,α′ ,

∀α′ ∈ AP(t) \ {α}
}
. (14)

The network at t is said to be partitioned into clusters
C(t)1 , . . . , C(t)

k(t) , where C(t)i =
(
ϑ
(t)
i , ς

(t)
i

)
for all i ∈

[
k(t)

]
.

Assuming that the RSSI is a strictly decreasing function of
the distance (if any STA µ is geographically closer to an AP
α more than another α′, then RSSIµ,α > RSSIµ,α′), we can
formally determine the spatial range occupied by C(t)i :⋃

α∈ς
(t)
i

{
x ∈ R3 : ∥x− pα∥2 < ∥x− pα′∥2 ,

∀α′ ∈ AP(t) \ {α}
}
.

(15)

If a STA falls into this region of the space, it will belong to
C(t)i . This is, by definition, the union of the Voronoi cells that
correspond to the positions of the APs in ς

(t)
i , in the Voronoi

partitioning generated by the positions of the APs in AP(t).
The interest of this result will be considered in Sec. VI.

E. STA-to-AP association

The STA-to-AP associations in the cluster C(t)i will be
locally managed by the DQL-MultiMDP agent running in
Processi. The condition that the number of APs of ς(t)i is under
the controller’s capacity is already ensured by the partitioning
mechanism. The fluctuating number of STAs in ϑ

(t)
i is caused

either by the mobility or by the switching on/off, and this
can be effectively addressed by DQL-MultiMDP thanks to the
Multi-MDP approach. Hence, if

∣∣∣ϑ(t)
i

∣∣∣ = 0, the sub-controller

Processi will wait for STAs to join the cluster; if
∣∣∣ϑ(t)

i

∣∣∣ = 1, it
will associate the single STA to the AP with the highest RSSI;
it may happen that

∣∣∣ϑ(t)
i

∣∣∣ > NSTA, in this case, Processi
will employ the traditional max-RSSI association strategy;
otherwise, when 2 ≤

∣∣∣ϑ(t)
i

∣∣∣ ≤ NSTA, Processi will handle
MDP∣∣∣ϑ(t)

i

∣∣∣,∣∣∣ς(t)i

∣∣∣, and will train the corresponding local Q-

Network, whose paramter vector is denoted as θ
(i)∣∣∣ϑ(t)

i

∣∣∣,∣∣∣ς(t)i

∣∣∣.

RL interactions

. . .

. . .

Voronoi borders
between APs

Spatial borders
between clusters

. .

. .
 .

. .
 .

Sub-controllers
(modeled by processes)

Q-Networks database
(QDB)

. . .
Q-Network
parameters

Associated
values

Semaphore

Fig. 1: Proposed abstract architecture

Assume that a STA joins or leaves the cluster at a certain
time t′ > t, so that 2 ≤

∣∣∣ϑ(t′)
i

∣∣∣ ≤ NSTA, then Processi
will transit to a different MDP; it will interrupt the training
of θ

(i)∣∣∣ϑ(t)
i

∣∣∣,∣∣∣ς(t)i

∣∣∣ to begin the training of θ
(i)∣∣∣ϑ(t′)

i

∣∣∣,∣∣∣ς(t′)i

∣∣∣. It may

happen that there was a process that has already visited this
MDP and trained the corresponding Q-Network. Hence, it is
more efficient to exploit it instead of beginning training with
random parameters. Based on this idea, we propose to store the
previously trained Q-Networks in a shared database referred
to as the Q-Networks database (QDB). This mechanism is
developed in Sec. V.

V. SHARING LOCAL UPDATES

The partitioning mechanism forms clusters and assigns a
process to independently manage the STA-to-AP association in
each one through DQL-MultiMDP. Each process has access to
the shared Q-Networks database (QDB). For any pair (n,m) of
STAs and APs resp. under the controller’s capacity, each field
in the QBD stores “the best” Q-Network parameters for the
corresponding MDP. The Q-Network parameters are the vector
θn,m associated with two values En,m and Rn,m. Initially, the
Q-Network parameters θn,m are initialized randomly, and the
associated values are initialized with zeros, as illustrated in
Fig. 1 with 3 clusters. Hence, the sub-controllers will submit
their local updated Q-Networks after each MDP transition,
and the “best” one will be stored in the QDB. The criterion
for deciding whether the local update θ

(i)
n,m is “better” than

the global (stored previously) one θn,m is provided by the
associated values En,m and Rn,m. This policy is explained in
what follows. Note that since k(t) processes have simultaneous
access to the read/write operations in the QDB, each field
(θn,m, En,m,Rn,m) is accompanied with a semaphore Sn,m.

A. Local training of a sub-controller Processi

When Processi encounters a transition to MDPn,m, it ac-
quires Sn,m, reads the corresponding field, and releases Sn,m.
We denote the version that it read as

(
θold
n,m, Eold

n,m,Rold
n,m

)
.

It initializes its local Q-Network parameters and associated

values as follows: θ
(i)
n,m ← θold

n,m, E(i)n,m ← Eold
n,m, and

R(i)
n,m ← Rold

n,m; and begins interacting with MDPn,m. After
completing a certain number of RL episodes, denoted as E(i)

n,m,
and over which the sequence of the sum of received rewards
is denoted as

(
R

(i)
n,m,h

)
h∈

[
E

(i)
n,m

], Processi makes a transition

to another MDP MDPn′,m′ . Hence, it interrupts its local
training of θ(i)n,m, and computes its local values as follows:

E(i)n,m ← Eold
n,m + E(i)

n,m (16)

R(i)
n,m ←

1

E(i)n,m

Eold
n,mRold

n,m +

E(i)
n,m∑

h=1

(1− ωh+Eold
n,m)R

(i)
n,m,h

 ,

for a certain ω ∈ [0, 1). Afterward, Processi acquires Sn,m
again to read the new value Rn,m from the QDB in the corre-
sponding field, that we denote asRnew

n,m. Note that this field can
be updated by some process Processj during Processi’s inter-
actions, so the extracted value may be different from Rold

n,m.
Processi tests if R(i)

n,m > Rnew
n,m; if the condition is met, that

means that the local Q-Network with parameters θ(i)n,m is better
than the QDB’s version θn,m, then it updates the filed with
its local values (θn,m, En,m,Rn,m) ←

(
θ
(i)
n,m, E(i)n,m,R(i)

n,m

)
.

Then, it releases Sn,m and frees its memory from these values,
and proceeds to its interactions with MDPn′,m′ following a
similar procedure.

To explain the idea behind the design of the updating
rules in Eq. 16, consider the following scenario: after the
initialization, Processi is the first sub-controller that observed
MDPn,m, after completing E

(i)
n,m episodes and encounter-

ing a local MDP transition, it commits its local updates(
θ
(i)
n,m, E(i)n,m,R(i)

n,m

)
to the QDB because R(i)

n,m > 0. After
that, another process Processj transited to the same MDP and
retrieved Processi’s update to use it for initialization. After
completing E

(i)
n,m episodes and encountering a transition, we

assume that R(i)
n,m > R(j)

n,m, then Processj committed its local
update

(
θ
(j)
n,m, E(j)n,m,R(j)

n,m

)
that will be the current version of

that field in the QDB.

Fig. 2: Network setting Fig. 3: Learning performance Fig. 4: Association results

We first observe that the current global Q-Network θn,m is
trained by interacting with two environments: it is first trained
in C(.)i , and completed another training phase in C(.)j ; this will
intuitively provide a certain generalization ability to the Q-
Networks to operate in unseen environments since they will
be trained in different environments following this strategy.
Secondly, following Eq. 16, we notice that E(i)n,m = E

(i)
n,m and

E(j)n,m = E
(i)
n,m +E

(j)
n,m, which means that the associated value

En,m represents the total number of episodes over which θn,m
is trained. In addition, we have

R(i)
n,m =

1

E
(i)
n,m

E(i)
n,m∑

h=1

(1− ωh)R
(i)
n,m,h

 , (17)

that can be seen as a weighted average of the sums of
received rewards during the episodes of θ(i)n,m’s training. Recall
that R(i)

n,m is the criterion that represents the “quality” of
the local Q-Network. The assigned weight (1 − ωh) is small
for the early episodes, and it exponentially approaches 1 for
the later ones. This is because the Q-Network’s parameters
are initialized randomly, so the early received rewards should
not be “considered too important” to represent the quality
of the derived policy from the Q-Network. Thus, the sum
“penalizes” them and assigns more importance to the sums
of received rewards in the later episodes. On the other hand,
by letting

(
R̃n,m,h

)
h∈

[
E

(i)
n,m+E

(j)
n,m

] denote the concatenation

of the sums of received rewards during the training of θ
(i)
n,m

and θ
(j)
n,m, and by replacing Eold

n,m (resp. Rold
n,m) by E(i)n,m (resp.

R(i)
n,m) in Eq. 16, we can show that

R(j)
n,m =

1

E
(i)
n,m + E

(j)
n,m

E(i)
n,m+E(j)

n,m∑
h=1

(1− ωh)R̃n,m,h

 . (18)

Hence, R(j)
n,m is a weighted average of the sums of received

rewards during the whole training of θ(j)n,m.
This analysis yields the following generalization: in each

field (θn,m, En,m,Rn,m) of the QDB, θn,m is by far the “best”
Q-Network parameters vector forMDPn,m, En,m is the total
number of episodes over which it is trained, and Rn,m is a
weighted average of the sums of the received rewards during
these episodes. This can be proved by considering another sub-
controller Processk that retrieved the update of Processj and
committed its local update after following Eq. 16, ad Infinitum.

VI. EXPERIMENTAL RESULTS

In the following experiments, we use the ns3-gym toolkit
to interface the simulated IEEE 802.11ax network configura-

tions under the ns3 simulator with the Constrained Clustering
algorithm that forms the APs partitions and their correspond-
ing DQL-MultiMDP agents running as Python threads.
A. Effectivness of the partitioning approach

This experiment aims to validate the effectiveness of the
partitioning approach. We consider the simplistic network
setting depicted in Fig. 2. If the basic DQL-MultiMDP is
applied, the network will be managed by a single agent that
interacts withMDP4,9 when all the devices are active. Hence,
the number of available actions in this MDP is 49. Thus,
despite the simplicity of the state representations and the
dynamics of the environment, the corresponding agent still
needs hundreds of episodes to explore all the actions and
reach stability at the optimal policy. By maintaining all the
APs active and by specifying a number of clusters k = 2
and a size constraint τ = 2, firstly, the Constrained k-means
Clustering algorithm partitions the network into two clusters.
The first one is composed of the APs α1 and α2, and as all
the APs are of identical transmission parameters, the STAs in
the cluster’s spatial range are µ1, µ3, µ6 and µ7. The second
cluster contains the APs α3 and α4, and the remaining STAs,
including µ4 since it is slightly closer to α4 than α3 to ensure
that it falls within the spatial range of the second cluster.
Afterward, a thread is assigned to each cluster to manage the
STA-to-AP association through DQL-MultiMDP in parallel.
The threads stimulate the clusters’ sub-controllers following
the abstraction in Sec. V, so we similarly refer to them as
Process1 and Process2. The first thing that we can notice is
that the agent running in Process1 will handleMDP4,2 if all
the devices are active, and the one running in Process2 will
handle MDP5,2. The action space sizes of these MDPs are
respectively 24 and 25 and are extremely small compared to
the previousMDP4,9’s action space size. In addition, the sub-
controllers do not store the Q-Network parameters; instead,
they commit their updates to the QDB, eliminating duplicate
parameter storage.

Recall that the two main factors causing the MDP transitions
are the switching on/off and the mobility, i.e., when a STA
migrates from one cluster to another. Hence, to understand the
dynamics of the learning process, we simulate the following
scenario. The devices remain active during the simulation
except µ7: 4s after launching the simulation, µ7 will be turned
off, and 8 s later, it will be turned on again and remain active
till the end. The STAs are moving according to a Markov chain
lattice random walk, but they remain in their cluster’s spatial
range, except µ4 will migrate to the first cluster at a certain

Fig. 5: Many clusters, faster convergence Fig. 6: Few clusters, more quality Fig. 7: Moderate number of clusters

moment. After repeating this scenario 30 times and keeping
track of the evolution of the sum of received rewards by each
agent, we scaled these rewards to [0, 1] to focus solely on the
evolution of learned policies’ quality.

When µ7 turns off, during the 6th episode on average,
as illustrated in Fig. 3, Process1 transits from MDP4,2 to
MDP3,2, it extracts the parameters of the corresponding Q-
Network θ3,2 from the QDB, which are by far initialized
randomly, and it commits its locally trained parameters from
the previous MDP, i.e. θ

(1)
4,2, alongside its associated values.

Hence, the plot drops since Process1 starts a new training
phase “from scratch,” i.e., using a Q-Network with random
parameters. Afterward, the migration of µ4 from the second to
the first cluster happens during the 16th episode on average.
Here, both Process1 and Process2 encounter a transition to
MDP4,2. Then, they extract the current version of θ4,2 from
the QDB (which is the previous update of Process1), and they
commit their local updates θ

(1)
3,2 and θ

(2)
5,2 with their associated

values. Consequently, the evolution of the sum of received
rewards by both processes encounters a slight drop in the 17th
episode, and because θ4,2 is already trained “a bit,” the drop
is not as strong as the previous one. When µ7 is turned on
after 8 s, Process1 transits toMDP5,2 and gets θ5,2 from the
QDB; which is the previous update committed by Process2
after the migration event.

Overall, this basic experimental scenario showed the two
main strengths of the proposed approach: 1) as a divide-
and-conquer approach that overcomes the “curse” of the
exponential expansion of the action space when assigning a
single controller to manage the whole network, and 2) as an
efficient framework for collaborative training of Q-Networks
because the sub-controllers exploit each other updates to avoid
starting training from scratch. Therefore, in only about 35
episodes, the system explored and reached the optimal policy
within all the MDPs of the scenario (i.e.,MDP3,2,MDP4,2,
and MDP5,2), which would require hundreds of episodes
for basic DQL-MultiMDP to do so. The association result
at a “snapshot” of the network while the STAs are moving

is depicted in Fig. 4; the size of the dots representing the
STAs is proportional to their required data rates to facilitate
visual analysis. We can notice that the traditional Max-RSSI
association strategy causes a high load on α3 and α4 while
two other APs are free. The learned policy, in contrast, gives
priority to the STAs with high requirements to assign them to
close APs while balancing the load on the APs.

B. Choice of (k(t), τ (t))

We investigate in this part the influence of the choice of(
k(t), τ (t)

)
on the learning performance, aiming to design a

strategy for their selection. We simulated a network consisting
of 20 APs and 50 mobile STAs. Initially, the devices are
uniformly distributed in a 60m × 30m plan. The APs remain
active during the simulation, and the clustering algorithm is
run only once at the beginning to evaluate the performance
regarding a specific choice of k(.) and τ (.). Meanwhile, the
STAs adhere to the switching on/off model described in Sec.
III and follow the Markov chain lattice random walk mobility
model. Here, we evaluate the network’s mean throughput
instead of the sum of received rewards across episodes.

1) Many clusters, faster convergence: We consider

k(t) = max
{
1,
⌊
N

(t)
AP /2

⌋}
; τ (t) = min

{
2, N

(t)
AP

}
. (19)

The size constraint is set to avoid resulting in empty or single-
element AP clusters. Notice that if the network contains fewer
than two APs, the strategy will form only one cluster, and τ (t)

will be equal to the number of APs (Eq. 5 is always satisfied).
As illustrated in Fig. 5, the partitioning result formed 10
clusters, each composed of 2 APs. Firstly, each of the 10 sub-
controllers observes MDP

N
(t)
STA,2

whose convergence to the
optimal policy is fast. Secondly, each STA has two candidate
APs for association. The performance comparison with the
traditional max-RSSI association strategy is given in Fig. 5.
Inadequacy with the previous simulation, the drops in the mean
throughput plot are caused by sub-controllers transiting to non-
visited MDPs. The mean throughput stabilizes after the early
few seconds because the observed MDPs are of small action

(a) 80 STAs and 30 APs (b) 51 STAs and 27 APs

Fig. 8: Association results (clustering follows Eq. 21)

spaces, and also thanks to the DQB mechanism, which avoids
beginning the training with random parameters.

2) Few clusters, more quality: Considering the strategy

k(t) = max
{
1,
⌊
N

(t)
AP /4

⌋}
; τ (t) = min

{
3, N

(t)
AP

}
, (20)

the partitioning mechanism formed a smaller number of clus-
ters (5 clusters) with a size constraint set to 3. The clusters are
consequently larger compared to the previous strategy both in
terms of the number of APs and the number of STAs because
their spatial range is increased. Consequently, the observed
MDPs by the sub-controllers are of large action spaces. As
illustrated in Fig. 6, the stability of the mean throughput
after reaching the optimal policy in all the visited MDPs is
achieved after about 600s (i.e., 6 times longer than the previous
partitioning strategy). However, the difference by which the
mean throughput surpasses the previous strategy is larger; this
is because each STA has more candidate APs to be associated
with compared to the previous strategy.

The learned lesson from the previous two experiments is that
choosing a large k(.) and small τ (.) partitions the network into
small clusters, the required time to reach stability is shorter,
but the association policy is not much efficient compared
to the max-RSSI association strategy. Conversely, choosing
a small k(t) and large τ (t) forms a small number of large
clusters; the required time to reach stability is longer, but the
association policy is better. Hence, an optimal strategy for such
a choice should balance the quality of the learned association
policies and the required time to achieve stability. Therefore,
we propose the following strategy.

3) Moderate number of clusters: After choosing

k(t) = max
{
1,
⌊
N

(t)
AP /3

⌋}
; τ (t) = min

{
3, N

(t)
AP

}
, (21)

the corresponding result is illustrated in Fig. 7; the stability
is reached after about 300s (two times faster than the second
strategy), and the mean throughput is much more improved
compared to the first one.

After achieving throughput stability, we extracted the trained
parameters of the Q-Networks from the QDB in this scenario
to visualize the association decisions in a network of 90
mobile STAs and 30 APs. Initially, all devices are active and
arranged in a grid-like pattern in a 11 × 10 m2 surface. The
used strategy for selecting the pair (k(.), τ (.)) follows Eq.
21. Initially, when all the devices are active, the association
decisions are shown in Fig. 8a. The different colors represent

the devices in each cluster, and the grey lines represent the
Voronoi borders between the APs given their position. When
the number of STAs in a certain cluster exceeds NSTA = 8,
e.g., the teal cluster, the corresponding sub-controller performs
the max-RSSI association strategy. However, load balancing
is performed in most clusters using DQL-MultiMDP; we
observe that the learned policy follows the same philosophy:
the priority to the close AP is given to STAs with high data
rates, and the load is balanced on the APs. A few seconds
later, 3 APs and 29 STAs are turned off; a new partitioning
is performed following the same strategy, and a ’snapshot’ of
the updated association decisions is illustrated in Fig. 8b.

VII. CONCLUSION, CURRENT AND FUTURE WORK
In this paper, we propose an approach to address the

scalability of DQL-MultiMDP and extend its operation to large
WiFi networks. This is achieved through a constrained network
partitioning mechanism that dynamically divides the network
into clusters and assigns a sub-controller to manage the STA-
to-AP association independently in each cluster. Additionally,
the sub-controllers can exchange their training updates for
faster convergence and avoid starting training with random
parameters. Our current work focuses on implementation
issues, designing more sophisticated partitioning mechanisms
that also balance the number of STAs in the clusters, along
with efficient Q-Network aggregation strategies, instead of
only keeping the best Q-Network in the QDB.

REFERENCES

[1] (2022) Cisco: Access Point Power Control. [Online]. Avail-
able: https://www.cisco.com/c/en/us/td/docs/wireless/controller/9800/
17-9/config-guide/b wl 17 9 cg/m access point power control.pdf

[2] M. Heni et al., “Energy consumption model in ad hoc mobile network,”
arXiv preprint arXiv:1206.1426, 2012.

[3] E. Khorov et al., “Current status and directions of IEEE 802.11 be, the
future Wi-Fi 7,” IEEE access, vol. 8, pp. 88 664–88 688, 2020.

[4] S. Verma et al., “A survey on Multi-AP coordination approaches
over emerging WLANs: Future directions and open challenges,” IEEE
Communications Surveys & Tutorials, 2023.

[5] E. Khorov et al., “A tutorial on IEEE 802.11 ax high efficiency WLANs,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 197–216,
2018.

[6] M. Bellouch et al., “DQL-MultiMDP: A deep Q-Learning-based algo-
rithm for load balancing in dynamic and dense WiFi networks,” in 2024
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2024, pp. 1–6.

[7] M. Bellouch et al., “Fair WiFi STA-to-AP association with DQL-
MultiMDP: Investigation and opportunities,” in 2024 Global Information
Infrastructure and Networking Symposium (GIIS). IEEE, 2024, pp. 1–5.

[8] W. K. Soo et al., “Survey on load-balancing methods in 802.11 infras-
tructure mode wireless networks for improving quality of service,” ACM
Computing Surveys (CSUR), vol. 51, no. 2, pp. 1–21, 2018.

[9] M. A. Kafi et al., “On-line client association scheme based on reinforce-
ment learning for WLAN networks,” in IEEE Wireless Communications
and Networking Conference (WCNC). IEEE, 2019, pp. 1–7.

[10] R. Ahmad et al., “Reinforcement learning-based near-optimal load
balancing for heterogeneous LiFi WiFi network,” IEEE Systems Journal,
vol. 16, no. 2, pp. 3084–3095, 2021.

[11] B. Heller et al., “The controller placement problem,” ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, pp. 473–478, 2012.

[12] G. Wang et al., “The controller placement problem in software defined
networking: A survey,” IEEE network, vol. 31, no. 5, pp. 21–27, 2017.

[13] A. M. Ikotun et al., “K-means clustering algorithms: A comprehensive
review, variants analysis, and advances in the era of big data,” Informa-
tion Sciences, vol. 622, pp. 178–210, 2023.

[14] P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means
clustering,” Microsoft Research, Redmond, vol. 20, no. 0, p. 0, 2000.

