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Abstract

Excessive sleepiness is a major public and personal health bur-
den that would benefit from being measured in ecological and
passive setups. Speech recording is implemented in all smart-
phones and is thus a relevant tool to do so. To evaluate the
feasibility of detecting sleepiness from speech by the human
perception, two previous perceptual studies on 90 samples from
the SLEEP corpus have been conducted (Huckvale et al. 2020,
Martin et al. 2023), which yielded contrasting results. A way to
investigate the origin of this disagreement would have been to
study on which speech characteristics the listeners have based
their estimation. However, none of these studies have collected
such information. In this study, we identify these characteristics
by extracting speech features from the recordings, and training
simple and explainable machine learning models to reproduce
the annotation of each listener. Then, we measure the contribu-
tion of each feature to the decision of each model, and identify
the most important ones. We then perform hierarchical cluster-
ing to draw listeners’ profiles, depending on the features they
rely on to identify sleepiness.

Index Terms: perceptual study, sleepiness, computational par-
alinguistics

1. Introduction
1.1. Context

Excessive sleepiness is both a major public health burden [1, 2]
and a serious personal health indicator linked with metabolic,
cardiovascular, neurological, and psychiatric disorders, increas-
ing the risk of disability and mortality [3, 4]. Because of its
high prevalence in the general population (up to one person over
three [5]), clinicians need tools to measure the sleepiness level
of their patients as regularly as possible, in ecological condi-
tions (e.g. at home), in a passive way (i.e. without a dedicated
task). In this regard, voice and speech recordings are a can-
didate of choice: their collection is implemented in all smart-
phones, they can be recorded in passive setups, and they have
already been linked to multiple disorders [6], including sleepi-
ness.

Indeed, sleepiness detection using voice recordings has al-
ready been the focus of two Interspeech challenges in 2011
and 2019, respectively relying on the Sleep Language Corpus
(SLC) [7] and the SLEEP corpus [8]. Both corpus are la-
beled with a subjective measurement (self-evaluating question-
naire) [9], the Karolinska Sleepiness Scale (KSS) [10]. The
best system on the Interspeech 2011 challenge reached an Un-
weighted Average Recall (UAR) of 71.7% [11] on the binary
classification of sleepiness. On the SLEEP corpus, the task
of the Interspeech 2019 challenge was estimating the degree
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of sleepiness. The winner of the challenge reached a Spear-
man correlation of p = 0.387 between estimation and ground
truth [12]. This simple approach has never been outperformed
despite the use of cutting-edge deep learning techniques (e.g.
p = 0.3251in [13], p = 0.367 in [14], p = 0.365 in [15]
or p = 0.383 in [16]). More recently, the Voiceome dataset, a
new large corpus recorded in ecological conditions using smart-
phones has been introduced [17]. The team working on it re-
ported an Fl-score of 81.3% on the binary classification of
sleepiness, as measured by the Stanford Sleepiness Scale [18].
In parallel with this work focusing on short-term sleepiness, it is
noteworthy to mention the work from a team of the sleep clinic
of Bordeaux (France), who has recorded the Multiple Sleep La-
tency Test corpus (MSLTc), containing voice recordings of hy-
persomniac patients labeled with both short- and long-term sub-
jective (questionnaires) and physiological (sleep latency mea-
sured by electroencephalography) sleepiness. Using this cor-
pus, they reached a UAR of 73.2% in differentiating patients
affected by excessive sleep propensity [19].

Yet, most of the research using these corpora over the past
decade has focused on the development of machine learning
algorithms to estimate sleepiness from the speech recordings
contained in these corpora. By contrast, very limited attention
has been paid to elucidating the link between sleepiness and
speech behavior. Since the seminal work of Krajewski et al. in
2009 [20], very few studies have sought to clarify the mech-
anisms underlying the expression of sleepiness in speech. In
parallel with this machine learning work, two recent percep-
tual studies were carried out on the SLEEP corpus to determine
whether the human ear can estimate sleepiness from voice sam-
ples. These two studies, based on 99 samples of the SLEEP
corpus, produced contradictory results: the study by Huckvale
et al., involving 26 annotators, concluded that it was feasible to
recognize somnolence in the corpus recordings [21]. By con-
trast, the study of Martin et al., based on the annotations by 30
naive listeners, concluded that the task was not feasible [22].
Since the listeners of Huckvale were English native speakers
and those of Martin et al. spoke French, this divergence be-
tween the studies could have been explained by differences
in the speech characteristics used by the listeners to estimate
sleepiness, but none of these studies collected such feedback.

1.2. Objectives

The goal of this paper is to investigate how sleepiness is ex-
pressed through voice by re-analyzing the data of the two pre-
vious perceptual studies on the SLEEP corpus [21, 22] to deter-
mine, a posteriori, the speech characteristics used by the listen-
ers to estimate sleepiness. To do so, based on a minimal fea-
ture set extracted from the audio recordings, we trained several
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machine learning pipelines to reproduce the annotations of the
listeners (one “cloning” machine learning system per listener).
Both the features and the machine learning pipeline have been
chosen simple and perfectly explainable, allowing the extrac-
tion and the interpretation of the relative importance of each
feature in the imitation of the listeners’ annotations. Finally,
based on these features, we draw listeners’ profiles, based on
the way they identify sleepiness in voice recordings.

2. Method

An overview of our Method is represented in Figure 1.
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Figure 1: Overview of our method to estimate the features used
by the listeners of the perceptual studies to estimate sleepiness
from speech samples
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2.1. Corpus and audio samples

We focus in this paper on the two perceptual studies involv-
ing the SLEEP corpus [21, 22]. The entire corpus contains
more than 16,464 samples from 915 German-speaking subjects,
recorded on different but unknown tasks [9]. All the samples are
shorter than five seconds, with an average duration of 3.87 sec-
onds. These samples have been annotated using the Karolinska
Sleepiness Scale (KSS)[10], a questionnaire measuring subjec-
tive instantaneous sleepiness [23] using a 9-points Lickert-like
scale. The two perceptual studies have used the same subset of
99 samples of the SLEEP corpus, 9 to train the listeners (one for
each sleepiness level), and 90 (ten for each sleepiness level) for
the experiment itself. Our analysis focuses on the 90 samples
used for the experiment.

2.2. Perceptual study and listeners

During the two perceptual studies, the listeners were asked to
estimate the sleepiness of the speaker from the audio record-
ings using a 9-point KSS. The samples were in the same order
for the two studies, and listeners could not browse back. The
two studies had different conclusions: while the annotations
of the Huckvale et al. study [21], after applying a Wisdom
of the Crowd algorithm, gave very convincing performances
(p = 0.72 between estimation and the ground truth labels), the
listeners of the replication study of Martin et al. [22] did not
have the same success (p = 0.41).

Moreover, the study of Martin et al. was the only one to col-
lect information about the characteristics of each listener. These
included their genre (13F/17M), musical sensitivity (n=14 had
music-related hobbies or profession; n=16 did not have), and
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their understanding of the German language (“at least a little”,
n= 11; “not at all”, n=19). The other characteristics of each
study are described in detail in another paper [22].

2.3. Voice features

Since the selected subcorpus from the SLEEP corpus has few
samples per listener (90), and to allow the interpretation of
the identified listeners’ profiles, we limited ourselves to 46
features. They include the average and standard deviation of
low-level features (n=40) and the temporal features (n=6) from
the GEMAPS feature set, extracted using the Opensmile tool-
box [24].

2.4. Machine learning pipeline

To obtain insights from the coefficient of the different parts of
the pipeline, we chose simple algorithms that have previously
shown efficient for regression estimation from small corpora:

(a) Lasso (o = 0.1).
(b) PCA (80% of variance) + linear regression

(c) PCA (80% of variance) + Support Vector Regressor
=1

A different classifier was trained for each annotator (n=26
for Huckvale et al. 2020, n=30 for Martin et al. 2023). More-
over, to compare the classifiers’ performances with the state of
the art in automatic sleepiness detection from voice, we also
trained a classifier to reproduce the labels of the IS2019 chal-
lenge. Thus, a total of 171 classifiers (57 annotations set x 3
classifiers) have been trained.

2.5. Cross-validation and performance metric

In order to avoid overlearning, the performances were computed
within a 5-fold cross-validation procedure, repeated 10 times.
Since the sample size was small, we aggregated the estimation
and corresponding ground truth and computed the performances
on the aggregated labels. Since we did not finetune hyperpa-
rameters, we only performed simple cross-validation to evalu-
ate the performances of the models. In the same way as in the
IS2019 Challenge, the chosen performance metric was Spear-
man’s p between estimated and ground-truth labels. The higher
the value of p, the better the estimator. Both the labels and the
input features were normalized (z-score).

2.6. Contribution of each feature

For each annotator, we measured the contribution of each fea-
ture in the pipeline trained to imitate him/her. For the pipeline
using only Lasso for classification (a), we considered the L1-
normalized weights of the classifiers. For the other pipelines
[PCA and linear regression (b) or PCA and SVR (c)], we com-
puted the L1-normalized cross-product of the PCA coefficient
and classifier coefficients. In doing so, we measure the contri-
bution of each feature to a given dimension of the PCA, which
is weighted by the contribution of this PCA dimension to the
classification. For each of these coefficients, we interpreted
separately the absolute value — which is linked to the relative
contribution of the feature to the classification — and the sign —
which indicates the direction of the link between sleepiness and
the voice feature.



Table 1: Performance of the machine-learning pipeline trained to imitate listeners of the perceptual studies depending on the chosen
model. Values are computed on the aggregation from a 5-fold cross-validation repeated ten times, and represented as Mean + standard-

deviation [min-max]

Ref Model IS19 challenge Huckvale et al. (n=26) Martin et al. 2023 (n=30)

(a) Lasso(a=0.1) p = 0.437 p=0.049 £ 0.166 [—0.412,0.273] p = 0.356 £ 0.116 [0.107,0.537]
(b) PCA (0.8) + Lin. regression  p = 0.459 p = 0.066 + 0.164 [—282,0.283] p =0.323+0.100 [0.115, 0.5]
(¢) PCA(0.8)+SVR(C =1) p = 0.447 p =0.05140.143 [—0.268,0.267] p = 0.289 £ 0.095 [0.027,0.424]

2.7. Link between performances and annotators character-
istics

Since the characteristics of the annotators were collected in the
Martin et al. 2023 study, we computed Mann-Whitney tests in
order to shed light on a possible link between the genre, the
understanding of the language or the musical sensitivity of the
listeners, and the performances of the pipeline trained to repro-
duce their annotations.

2.8. Profiles of annotators using hierarchical clustering

In order to draw profiles of listeners, we selected the most
important features, i.e. those having a median value of ab-
solute normalized contribution across the 57 annotation sets
higher than 0.05. We then computed listeners profiles using
hierarchical clustering using the 1inkage function from the
cluster.hierarchy library of scipy [25]. The cluster-
ing has been performed using the ward method and an Eu-
clidean metric. In order to get a more thoughtful insight into
these profiles, we identified the profiles of annotators, i.e. the
groups as returned by the 1inkage function. For each pro-
file, we took into account the performances of the correspond-
ing pipelines to be sure that no profile was dedicated to low-
performance pipelines and that, on the contrary, every profile
was represented by a diversity of performances.

3. Results

3.1. Pipeline performances

The mean, standard deviation, minimum, and maximum perfor-
mances of the pipelines are reported in Table 1.

On replicating the IS19 challenge labels of the SLEEP sub-
corpus, our three pipelines obtain performances higher than the
state-of-the-art systems on the whole corpus (cf. Introduction),
confirming they are indeed suited for this task. On the anno-
tations of the Huckvale et al. perceptual study, no classifier
gives satisfying estimations of the labels: all the pipeline per-
formances are below p=0.283 and most of them are negative,
indicating that the pipeline did not generalize anything. As
a consequence, we did not use them in the following. Con-
trastively, pipeline (a) achieves an average correlation coeffi-
cient of p = 0.356 when replicating the labels of the Martin
et al. perceptual study, which is in the range of the usually ob-
tained performances on the whole corpus (see Introduction).

3.2. Influence of speakers characteristics

We do not find any difference in the pipelines’ performances
depending on the sex MW, U = 147,p = 0.132), musical
sensitivity MW, U = 85,p = 0.271), or the German under-
standing level MW, U = 145,p = 0.085) of the listeners of
the Martin et al. study. We thus infer that these variables do
not bias our interpretation of the speech features implied in the
estimation of sleepiness by the listeners.
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3.3. Most prominent features

Over the 46 extracted features, six are identified as the most
prominent, i.e. having a median absolute L1-normalized value
across listeners higher than 0.05. They are reported in Table 2.

3.4. Hierarchical clustering

Hierarchical clustering was performed on these six features to
draw profiles of listeners in the Martin et al. study. The clus-
tering tree is represented in Figure 2. We identify three main
profiles, which are represented along with the most prominent
features and the performance of each pipeline in Figure 3.
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Figure 2: Hierarchical clustering of the pipelines trained to re-
produce listener’s annotation depending on the six most promi-
nent features

The first group of listeners (Profile n°1, n=12) associate
sleepiness with a voice having longer unvoiced segments, and
a softer (loudnessPeksPerSec) and less expressive (slopelVO-
500 and shimer) voice, with a stronger focus on loudness. By
contrast, listeners of Profile n°2 (n=10) estimate sleepiness us-
ing prosodic information (unvoiced segment length but also the
number of voiced segments per second), voice expressiveness
(slopelV0-500, shimmer), but also voice purity (HNR varia-
tions). Finally, listeners of Profile n°3 (n=8) do not rely on the
length of the unvoiced segment to identify sleepiness, but they
focus on the number of voiced segments per second and pitch
variability (slopeIV0-500).

4. Comparison with automatic approaches

To our knowledge, no previous system working on the SLEEP
corpus has studied the contribution of descriptors to the estima-
tion of sleepiness. However, a previous approach on the read-
ing tasks of the SLC (same sleepiness label as the SLEEP cor-
pus) reported the correlation between acoustic descriptors and



Table 2: Most prominent features in the pipeline trained to imitate listeners of the perceptual study of Martin et al. 2023 [22]. Negative
values mean that the value of the feature decreases when sleepiness increases.

Name Description median value
HNRABACF_sma3nz_stddevNorm Standard deviation of the HNR -0.102
shimmerLocaldB_sma3nz_amean Average of the shimmer -0.099
slopeIV0-500_sma3nz_amean Frequency slope in the [0,500Hz] bandwidth -0.095
loudnessPeaksPerSec Average loudness peaks per second -0.09
VoicedSegmentsPerSec Number of voiced segments per second -0.065
MeanUnvoicedSegmentLength Average length of unvoiced segments 0.075
o ot o
Profile n°1 Profile n°2 Profile n°3
HNRABACF_sma3nz_stddevNorm . l
0.2
shimmerLocaldB_sma3nz_amean .
— -0.1
slopeUV0-500_sma3nz_amean .
-0.0
loudnessPeaksPerSec -
--0.1
\obicedSegmentsPerSec .
-0.2
MeanUnvoicedSegmentLength
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Figure 3: Profiles of annotators as identified by the hierarchical clustering of the pipelines trained to imitate them.

sleepiness [26]. In this work, the features correlating the most
with sleepiness were mainly linked to FO (mean, max, min),
the frequency of the first formant (F1), and the energy range.
On the reverse, the HNR and the duration of voiced or unvoiced
segments were not among the features the most related to sleepi-
ness. Moreover, applying the same methodology to our data, the
features correlating the most with the ground truth given along-
side the corpus are partly those identified as prominent in the
imitation of listeners. Indeed, while the FO slope (p = —0.40),
the shimmer (p = —0.34) and the HNR (p = —0.27) are highly
correlated with the sleepiness label, loudness peaks (p = 0.10),
the duration of unvoiced segments (p = 0.13) and the num-
ber of voiced segments (p = —0.10) are not among the most
prominent features in this view.

These results question the link between the ground truth
given with the corpus and what listeners have detected. The
high overall inter-annotator agreement reported by Martin et al.
(ICC =0.975) indicates that the listeners seem to have identified
the same phenomena through voice, which is not completely
what is represented by the measurement tool used to opera-
tionalize sleepiness in the SLEEP corpus. However, this label
is criticized in the literature [9], since it is not a validated, used,
and recognized measure of sleepiness in sleep medicine [23],
and has never been used elsewhere to our knowledge than in
the two IS2011 and IS2019 corpora. Furthermore, another per-
ceptual study led by Martin et al. on the MSLTc [27], which
contains validated measurements of sleepiness [9], has con-
cluded the feasibility of human hearing to detect sleepiness us-
ing speech samples. We therefore interpret this difference be-
tween the features used by the annotators and the features cor-
related with the label supplied with the corpus as coming from
the sleepiness measurement tool used in the SLEEP corpus.
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5. Conclusion and perspectives

By training machine learning algorithms to reproduce the as-
sessments of annotators in a perceptual study, we were able to
identify the features they relied on to produce this assessment;
and thus indirectly the cues they used to estimate sleepiness.
We identified six features, related to energy stability (shimmer
and energy peaks), the HNR, the variability of FO (FO slope),
and the respective ratio and duration of the voiced and unvoiced
segments.

Our next works will concentrate on including other dimen-
sions such as reading pauses [28] or phonetic realization [29]
into this perception-related study to better characterize sleepy
speech.

This research is supported by the CNRS through the MITI
PRIME 80 DSM-HEALTH and the French Research Agency
ANR through the axis “Autonom-Health” of the PEPR “Santé
Numérique”, Grant agreement n’ANR-22-PESN-000X and by
the European Union’s Horizon Europe research and innovation
program through the Marie Sklodowska-Curie grant agreement
No. 101106577.
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