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PHASE SINKS AND SOURCES

AROUND TWO-DIMENSIONAL PERIODIC-WAVE SOLUTIONS

OF REACTION-DIFFUSION-ADVECTION SYSTEMS

BENJAMIN MELINAND AND L. MIGUEL RODRIGUES

Abstract. We develop a complete stability theory for two-dimensional periodic traveling waves
of reaction-diffusion systems. More precisely, we identify a diffusive spectral stability assumption,
prove that it implies nonlinear stability and provide a sharp asymptotic description of the dynamics
resulting from both localized and critically nonlocalized perturbations. In particular, we show that
the long-time behavior is governed at leading order by a second-order Whitham modulation system
and elucidate how the intertwining of diffusive and dispersive effects may enhance decay rates. The
latter requires a non trivial extension of the large-time estimates for constant-coefficient hyperbolic-
parabolic operators to some classes of systems with no particular structure, including on one hand
systems with a scalar-like — but not scalar — hyperbolic part and a cross-diffusion, and on the
other hand anisotropic systems with dispersion.

Keywords: periodic traveling-wave solutions; reaction-diffusion systems; asymptotic sta-
bility; modulation systems; dispersive estimates; hyperbolic-parabolic systems.
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1. Introduction

We initiate here a general programme aiming at a complete stability theory for genuinely multi-
dimensional periodic traveling waves of parabolic systems. By a stability theory, we mean general
results — or at least a systematic approach — that on one hand convert suitably defined spectral
stability into nonlinear asymptotic stability in a suitable sense and on the other hand provide large-
time asymptotics for the dynamics about such stable waves. Our goal is to extend the comprehensive
theory now available for plane periodic waves to the multidimensional context. Concerning the
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latter we refer the reader to [JNRZ14] and references therein for a general picture and to [JNRZ13a,
JNRZ13b] for the pieces of work that are the most closely related to the present analysis.

In the present contribution, we focus on the case when spatial variables vary in R2 and the
equations form a reaction-diffusion-advection system. Namely we consider

(1.1) W t “ ∆W `∇T GpWq ` fpWq ,

for the Rn-valued unknown W , Wpt,xq P Rn (with n P N‹), where t denotes time variable and
x P R2 denotes spatial variable. In (1.1), we identify vectors of Rn with column vectors — that
is, with elements of Mn,1pRq—; flux and source nonlinearities G and f are smooth functions on

Rn valued respectively in M2,n and Rn –Mn,1pRq; the spatial divergence operator ∇T acts row-
wise and the spatial Laplacian ∆ is scalar1. For more details and further conventions concerning
vectorial and differential notation we refer the reader to the devoted section, Section 1.4.

We study the general form in System (1.1) as a compromise between generality and readibility.
We claim however that, beyond some form of parabolicity, only two features of (1.1) matter: the
fact that coefficients depend neither on time nor on space variables; the fact, implicit here but
encoded in (D2), that the source term is non degenerate so that no hidden conservation law stems
from (1.1). Both assumptions are deeply reflected in the structure of periodic traveling waves
expounded below. To support the claim that the detailed structure of the original system is almost
immaterial, let us anticipate on our analysis and list possible generalizations, by increasing order of
difficulty. By a change of spatial variables, one may reduce any scalar symmetric elliptic operator
to the scalar Laplacian. Changes required to analyze the general second-order semilinear parabolic
case, including cross diffusions, are mostly notational. This simple observation turns out to be
crucial to cover many of the examples in the literature that we give below. Studying the general
second-order quasilinear parabolic case may be done along the same lines by increasing by one
the level of regularity of involved solutions. Similarly the analysis of quasilinear parabolic cases
of other orders differs mostly by the level of regularity of solutions. For some detailed examples
of adaptations of the plane-wave analysis, the reader is referred to [BJN`13] on a fourth-order
semilinear parabolic equation and to [RZ16] on a quasilinear system that is parabolic only in the
sense of some averaged version of the Kawashima condition.

A (uniformly) traveling-wave solution to (1.1) is a solution W in the form Wpt,xq “ Upx´ t cq,
where U is the wave profile and c P R2 is the wave speed. We say that the wave is periodic if
its profile U is periodic. We are specifically interested in the case when U is genuinely multi-
dimensional so that its group of periods is discrete, thus may be written as X1 Z`X2 Z for some
basis of R2, pX1,X2q. In the latter situation, we say that U is pX1,X2q-periodic. Alternatively
one may scale the group of periods to be Z2 by introducing wave vectors pK1,K2q, given as the
dual basis of pX1,X2q. As a result, a two-dimensional periodic wave is equivalently defined as a
solution W of the form

(1.2) Wpt,xq “ U
´

KT px´ t cq
¯

“ U
´

KT x` tΩ
¯

,

with K “
`

K1 K2

˘

PM2,2pRq a2 matrix of wave vectors, Ω “ ´KTc P R2 a temporal frequency
vector, c the wave speed and U an associated (scaled) wave profile normalized to satisfy

Up ¨ ` ej q “ U , j “ 1, 2 ,

where pe1, e2q is the canonical basis of R2. When W is given by (1.2), it solves (1.1) if and only if

(1.3) 0 “ pK∇qTpK∇qU` pK∇qTGpUq ` pKTc ¨∇qU` fpUq .

1In the sense that it acts component-wise, with the same action on each component.
2The choice of pX1,X2q, or equivalently of pK1,K2q, is not canonical, but it is locally unique.

2



In our analysis, we shall take as an assumption the existence of one specific wave, spectrally stable
in a suitable sense. Yet the reader may wonder what is the relevance of this kind of objects and
whether there is a robust universal mechanism supporting the existence of such objects. We claim
that this is indeed the case and that such objects are somehow ubiquitous. To support the claim,
we briefly recall, in words of [Rod13], one of the prominent paradigms of the general field including
studies in pattern formation, coherent structure, nonlinear waves and hydrodynamic instabilities.

Quite often transition to instability of a certain form of solutions often gives rise to a new
family of patterns whose stability may in turn also be investigated. Hence the classical strategy
— for equations involving some set of parameters — consisting in carrying a parametric study
of stability/instability. Starting from a simple family of solutions, explicit or even trivial, known
to be stable for a certain range of parameters, one varies these parameters up to a transition to
instability. At this threshold emerges a new family of special solutions, whose stability is also
tracked when varying parameters and that can also yield yet another family of solutions, and so on
and so forth. The patterns emerging from the first transition are usually called primary instabilities,
those coming next secondary instabilities. Although one may artificially build systems exhibiting
an infinite number of such transitions, it seems that in most of classical physical problems the
instability of secondary patterns leads rather to chaos then turbulence. An argument supporting
this phenomenological rule of thumb is that the emergence of new patterns often goes with a
symmetry breaking increasing the dimensional complexity: trivial solutions are zero dimensional,
primary instabilities one-dimensional, secondary ones two-dimensional, then comes chaos. Two-
dimensional periodic waves studied here typically arise as secondary instabilities, the role of primary
instabilities being played by plane periodic traveling waves, but may also emerge directly as primary
instabilities from constant states. From this point of view the forthcoming [RR], that studies the
bifurcation of two-dimensional periodic waves from plane waves, appears as a companion paper.
We refer the reader interested in supporting examples and further developments of the foregoing
notions to [CH93, Man04, CG09, Cha11] and to [UW14] the reader interested in an example of a
numerical parametric study in a context close to our nonlinear analysis.

From the point of view of mathematical analysis the near-constant study is in many ways more
tractable than the near plane-wave one. Correspondingly, the mathematical literature devoted to
proofs of existence of two-dimensional periodic waves is overwhelmingly focused on their arising from
constant states, in particular through Turing bifurcations. As illustrated by [Kno90], a large part
of this literature outgrows from the trailblazing of equivariant bifurcation in [Sat79, GSS88]. We
refer to [DSSS03, Section 2] for a short review of this kind of analysis. To help the reader navigate
through this primary-instability literature we add a few general comments on the bifurcation of
small-amplitude two-dimensional periodic patterns.

(1) Many of the studied systems are invariant under the symmetry x ÞÑ ´x. As a result all
small traveling waves built in this case are standing waves, that is, Ω is identically zero
along the family of waves. Such a symmetry happens for (1.1) when G is assumed to be
identically zero.

(2) A significant part of the literature focuses on an even smaller class, the one of isotropic
systems, that is, the one of systems invariant under the action of any linear rotation.
Again this happens for (1.1) when G is zero. As a consequence, in this case, built small-

amplitude periodic waves arise with limiting wavevectors pK
p0q
1 ,K

p0q
2 q sharing the same

norm. Generically, then, the only vectors of K
p0q
1 Z`K

p0q
2 Z with this norm are K

p0q
1 , K

p0q
2 ,

´K
p0q
1 , ´K

p0q
2 , those forming a rectangle so that corresponding standing waves are often

referred to as (generalized) squares. Elementary geometry shows that the exceptions to the

latter happen exactly when the angle between K
p0q
1 and K

p0q
2 is π{N (or ´π{N , π ` π{N ,

π´ π{N) for some integer N ě 3, so that the vectors of the lattice on the prescribed circle
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form a regular polygon with 2N -vertices. Standing waves arising from the case N “ 3
are often referred to as hexagon patterns. The exceptionally regular case is associated
with a higher-dimensional limiting kernel but this dimension is reduced by enforcing extra
symmetries on the sought pattern. We emphasize that all cases are equally captured by our
nonlinear analysis (when suitable spectral stability is met).

(3) The small-amplitude existence studies are often completed by a stability diagram. We warn
the reader that the stability analyzed in the literature is restricted to perturbations with
the symmetries of the pattern, in particular with the same periodicity. This is by far a much
simpler task that the one we tackle here, and may be deduced from the computation of a
normal form on a suitable center manifold. In contrast the secondary-instability analysis of
[RR] provides exactly the notion of spectral stability needed here.

Let us stress again that despite the absence, until now, of a complete mathematical treatment
of dynamics on extended domains, multidimensional periodic patterns are currently observed in
numerous real life contexts where spatial domains are far from resembling fundamental domains of
the patterns. Jointly with [RR] the goal of the present contribution is to help bridging this gap.

One reason to restrict our analysis to dimension two is that we believe that technical gaps
concerning tools available to study stability issues lie on one hand between constant solutions and
non-constant solutions — zero-dimensional objects to one-dimensional objects — and on the other
hand between plane waves and genuinely multi-dimensional waves — one-dimensional objects to
two-dimensional objects —. Therefore the present analysis is expected to be representative of other
multi-dimensional analyses. As a first sign of this gap, we stress that a large part of the technical
tools classically used in the analysis of plane waves hinges on spatial dynamics building from ODE
interpretations of both profile equations ((1.3) here) and spectral problems, none of them being
available in the present context (at least in an obvious way). A priori this rules out techniques as
common in the field as phase portrait analysis, Evans functions, accompanying pointwise bounds
on Green functions, etc.

1.1. Stability. From now on we pick a specific periodic wave solution and use underlining to denote
wave quantities related to this specific wave, including U, K, c, etc. To analyze the dynamics near
this specific wave it is convenient to work in an adapted co-moving frame. Introducing W through

Wpt,xq “ W
´

t,KT px´ t cq
¯

(1.4)

turns (1.1) into

(1.5) Wt “ pK∇qTpK∇qW ` pK∇qTGpWq ` pKTc ¨∇qW ` fpWq.

By design, pt,xq ÞÑ Upxq is a stationary pe1, e2q-periodic solution to (1.5). Linearizing (1.5) about
U yields the periodic-coefficient equation pBt ´ LqV “ 0 with L given by

(1.6) LV :“ pK∇qTpK∇qV ` pK∇qT d GpUqpVq ` pKTc ¨∇qV ` d fpUqpVq .

From a functional-analytic point of view, we shall consider L as an operator on L2pR2; Rnq with
domain H2pR2; Rnq.

By (variations on) classical arguments — detailed in Appendix A —, based on a suitable in-
tegrable transform — the Bloch transform —, the analysis of the action of L on functions over
R2 is reduced to the study of a Bloch symbol ξ ÞÑ Lξ, that with each ξ P r´π, πs2 associates
an operator on pe1, e2q-periodic functions. More explicitly, for each ξ P r´π, πs2, Lξ acts on
L2pr0, 1s2; Cnq – L2pR2{Z2; Cnq with domain H2

perpR
2; Cnq – H2pR2{Z2; Cnq through

(1.7)

LξV “ pKp∇` i ξqqTKp∇` i ξqV` pKp∇` i ξqqT d GpUqpVq ` pKTc ¨ p∇` i ξqqV` d fpUqpVq ,
4



and, as such, has compact resolvents hence discrete spectrum, reduced to eigenvalues of finite
multiplicity. As a consequence of the Bloch-wave representation and the continuity of σpLξq with
respect to variations in ξ, in particular, the following spectral decomposition holds

(1.8) σpLq “
ď

ξPr´π,πs2

σpLξq .

See Appendix A.2 for a proof.
To motivate the definition of the relevant notion of spectral stability, we point out that it follows

from translational invariance of (1.1) that for any ϕ0 P R2, Up¨ ` ϕ0q is also a periodic traveling-
wave profile associated with pK, cq. As a consequence, differentiating the corresponding profile
equations with respect to ϕ0 shows that B1U and B2U lie in the kernel of L0. Note moreover that
the independence of B1U and B2U is precisely the condition that the wave under consideration is a
genuinely multi-dimensional wave (and not a plane-wave in disguise). Besides, the real symmetry
of spectra (stemming from the fact that (1.1) has real coefficients) implies that the real part of the
eigenvalues of Lξ arising from the zero eigenvalue of L0 when ξ is small cannot be of order }ξ}
unless the background is unstable. Therefore the best one may expect is diffusive spectral stability
in the sense of the following conditions

(D1) There exist θ ą 0 and C ą 0 such that for any ξ P r´π, πs2 and any t ě 0

||| et Lξ ||| ď Ce´θt}ξ}
2
,

where pet Lξqtě0 denotes the semigroup on L2pr0, 1s2; Rnq generated by Lξ and ||| ¨ ||| stands
for operator norms.

(D2) The spectrum of L0 intersects i R only at λ “ 0 and λ “ 0 is an eigenvalue of L0 of algebraic
multiplicity 2, its generalized eigenspace Σ0 being spanned by B1U and B2U.

Assumption (D2) encodes that the criticality of the co-periodic spectrum is minimal. In turn,
we think assumption (D1) as at least two-fold. The fact that the bound holds when }ξ} ě ξ0

for some fixed ξ0 ą 0 (and pθ, Cq depending on ξ0) is equivalent to the fact that for any ξ such
that }ξ} ě ξ0, σpLξq Ă t λ ; <pλq ă 0 u. Once this is known to hold for any ξ0 ą 0 and (D2) is
also enforced, (D1) is equivalent to the modulation system, introduced below, being hyperbolic-
parabolic in a suitable Kawashima sense. We detail the latter in Appendix A. We have chosen to
summarize all these aspects in the form (D1) mostly because it is particularly convenient for our
linear and nonlinear stability analysis but, in Appendix A, we provide more concrete equivalent
characterizations and even simpler sufficient conditions. It is important to note that, unlike what
happens for one-dimensional waves [JNRZ13a, JNRZ13b], condition (D1) is in general stronger
than

(D0) There exists θ ą 0 such that for any ξ P r´π, πs2 we have

σpLξq Ă
 

λ ; <pλq ď ´θ}ξ}2
(

.

The difference between (D0) and (D1) lies in uniform control on diagonalization/symmetrization
near pλ, ξq “ p0,0q. To stress that something is at stake, we point out that in general one cannot
hope for a consistent diagonalization, smooth in ξ, near ξ “ 0 for the eigenvalues arising from the
double eigenvalue λ “ 0 at ξ “ 0, but instead, at best in general, one expects the diagonalization to
be smooth in p}ξ}, ξ

}ξ}q. Incidentally we observe that this lack of smoothness on the symbolic side

is intrinsically tied to dispersive effects, potential enhancing decay in poorly-localized topologies
but deteriorating it in localized topologies. For more details, we refer the reader to the distinction
between Cases (Ca) and (Cb) below and the discussion and results surrounding it.

Our first result converts spectral stability in the diffusive sense of (D1)-(D2) into nonlinear
asymptotic stability in a suitable sense. Though our statement contains a more detailed description,
it should be thought as providing stability in the space-modulated sense of [JNRZ14] (see also
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[Rod13, Rod15]). This consists in measuring in the classical definition of stability the proximity to
U of both initial data and solutions at later times by

inf
Φ invertible

}U ˝Φ´U}X ` }∇pΦ´ Idq}Y

where pX,Yq are some functional spaces (possibly different for initial data and the solution). For
comparison, note that naive stability requires control on }U´U}X whereas orbital stability requires
control on

inf
Φ uniform translation

}U ˝Φ´U}X .

Note that it is possible to choose Y as a space of curl-free vector-fields, on which it is natural to

choose } ¨ }Y as }V}Y :“ }∇TpVq}
rY

for some functional space rY.

Theorem 1.1 (Stability). Let U be a stationary pe1, e2q-periodic solution to (1.5) associated to
the matrix of wave vectors K and speed c. Assume (D1)-(D2). There exists ε0 ą 0 and C ą 0
such that if for some sublinear3 φ0

E0 :“ }W0p¨ ´ φ0q ´U}pH2XW 2,4qpR2;Rnq ` }∆φ0}pL1XW 1,4qpR2;R2q ď ε0

then, there exist a unique global solution to (1.5) with initial datum W0 and a phase shift φ with
φp0, ¨q “ φ0 such that, for any t ě 0,

}Wpt, ¨ ´ φpt, ¨qq ´U}W 2,4pR2;Rnq ` }∇φpt, ¨q}W 2,4pR2;M2pRqq ` }Btφpt, ¨q}W 2,4pR2;R2q ď
C E0

p1` tq
1
4

.

Furthermore, with constants independent of pW0,φ0q and no further restriction on E0,

(1) for any t ě 0,

}Wpt, ¨ ´ φpt, ¨qq ´U}L8pR2;Rnq ` }∇φpt, ¨q}L8pR2;M2pRqq ` }Btφpt, ¨q}L8pR2;R2q ď C E0
lnp2` tq

p1` tq
1
2

;

(2) for any 2 ă p0 ă q0 ă 8, there exists a constant Cp0,q0 ą 0, such that for any p P rp0, q0s,
and any t ě 0

}Wpt, ¨ ´ φpt, ¨qq ´U}LppR2;Rnq ` }∇φpt, ¨q}LppR2;M2pRqq ` }Btφpt, ¨q}LppR2;R2q ď
Cp0,q0 E0

p1` tq
1
2
´ 1
p

;

(3) for any ` P N, ` ě 2, there exists C` such that if moreover

E0,` :“ }W0p¨ ´ φ0q ´U}pH2XW `,4qpR2;Rnq ` }∆φ0}pL1XW `´1,4qpR2;R2q ă `8

then for any t ě 0,

}Wpt, ¨ ´ φpt, ¨qq ´U}W `,4pR2;Rnq ` }∇φpt, ¨q}W `,4pR2;M2pRqq ` }Btφpt, ¨q}W `,4pR2;R2q ď
C`E0,`

p1` tq
1
4

.

Note that adding an affine function to φ0 would alter the background matrix of wave vectors so
that the arising solution should be compared with another periodic solution of (1.5). That is the
main reason why we only deal with sublinear initial phases.

What drives decay rates is the initial localization. From this point of view, the key part of the
assumption is W0p¨ ´φ0q ´U P L2 and ∆φ0 P L

1 (with small norms). The assumption ∆φ0 P L
1

should be thought as a relaxation of ∇φ0 P L
2. Indeed, ∆φ0 P L

1 implies that ∇φ0 belongs to
L2,8, the weak-L2 space. Moreover, if p1 ` } ¨ }q∆φ0 P L

1 and ∆φ0 P L
p for some p ą 1, then

∇φ0 belongs to L2 if and only if
ş

R2 ∆φ0 “ 0. In particular, the relaxed assumption allows to

3By this, we mean that φ0 may differ from ∆´1
p∆φ0q by a constant function but not by a non-constant affine

function. This is for instance the case if one enforces ∇φ0 P Span
´

Ť

1ďpă8 L
p
pR2;M2pRqq

¯

.
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prescribe for ∆φ0 any small regularized version of a multiple of a Dirac mass, hence the term phase
source/sink (depending on the sign of the Dirac mass) in the title. See Figure 1.
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Figure 1. Illustration of the various levels of localizations. We plot the image of a
square reference grid through the function IdR2 ´ φ.

Likewise, ∆φ0 P L
1 ensures that φ0 belongs to BMO, the space of functions with bounded

mean oscillation, which may be thought as a relaxed version of φ0 P L
8, whereas, when, say,

p1` } ¨ }2q∆φ0 P L
2, one shows that φ0 belongs to L8 if and only if

ş

R2 ∆φ0 “ 0. For proofs and
further comments on the recovering of φ0 and ∇φ0 from ∆φ0, we refer to Appendix C.
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The regime of localization chosen here is critical from the point of view of large-time asymptotic
decay, in the sense that nonlinear terms are not asymptotically irrelevant. Moreover, our further
study of asymptotic behavior identifies a leading-order nonlinear asymptotic description, allowing
us to analyze the sharpness4 of decay estimates stated above.

In contrast, we make no claim on optimality of our regularity assumptions, encoded by the
choice of the space W 2,4. We regard the regularity question as largely irrelevant for the problem at
hand and, correspondingly, in parts of the proof where this plays a role, we have decided to apply
simpler and/or more robust arguments instead of sharper ones. At a technical level, the choice of
an L4-based space is designed to ensure that quadratic terms lie in L2 so that their contribution to
large-time decay may be analyzed through Hausdorff-Young inequalities. Then, among L4-based
spaces, the choice of W 2,4 enforces embedding in W 1,8. Though we expect our regularity framework
to be suboptimal, we warn the reader that one should not lower the regularity on ∇φ below the
threshold ensuring that Id´φ is invertible.

For comparison and comprehensiveness we also provide a stability result under more localized
perturbations.

Theorem 1.2 (Subcritical perturbations). Let U be a stationary pe1, e2q-periodic solution to (1.5)
associated to the matrix of wave vectors K and speed c. Assume (D1)-(D2). There exists ε0 ą 0
and C ą 0 such that if for some φ0

E0 :“ }W0p¨ ´ φ0q ´U}pL1XH2XW 2,4qpR2;Rnq ` }∇φ0}pL1XH2XW 2,4qpR2;M2pRqq ď ε0

then, there exist a unique global solution to (1.5) with initial datum W0 and a phase shift φ with
φp0, ¨q “ φ0 such that, for any t ě 0, for any 2 ď p ď 4

}Wpt, ¨ ´ φpt, ¨qq ´U}W 2,ppR2;Rnq ` }∇φpt, ¨q}W 2,ppR2;M2pRqq ` }Btφpt, ¨q}W 2,ppR2;R2q ď
C E0

p1` tq
1´ 1

p

.

Furthermore, with constants independent of pW0,φ0q and no further restriction on E0,

(1) there exists a constant C ą 0, such that for any 2 ď p ď 8 and any t ě 0

}Wpt, ¨ ´ φpt, ¨qq ´U}LppR2;Rnq ` }∇φpt, ¨q}LppR2;M2pRqq ` }Btφpt, ¨q}LppR2;R2q ď
C E0

p1` tq
1´ 1

p

,

(2) for any ` P N, ` ě 2, there exists C` such that if moreover

E0,` :“ }W0p¨ ´ φ0q ´U}pL1XH2XW `,4qpR2;Rnq ` }∇φ0}pL1XH2XW `,4qpR2;M2pRqq ă `8 ,

then for any t ě 0, and 2 ď p ď 4

}Wpt, ¨ ´ φpt, ¨qq ´U}W `,ppR2;Rnq ` }∇φpt, ¨q}W `,ppR2;M2pRqq ` }Btφpt, ¨q}W `,ppR2;R2q ď
C` E0,`

p1` tq
1´ 1

p

.

Finally, there exists a constant φ8 depending only on φ0 such that for any t ě 0

}Wpt, ¨q ´U}LppR2;Rnq ` }φpt, ¨q ´ φ8}LppR2;R2q ď
CE0

p1` tq
1
2
´ 1
p

, 2 ď p ď `8,

and if φ0 P L
1pR2q and E0 is small enough, for any t ě 0

}Wpt, ¨q ´U}LppR2;Rnq ď CpE0 ` }φ0}L1pR2qq
lnp2` tq

p1` tq
1´ 1

p

, 2 ď p ď `8.

4In this direction, let us anticipate that in the end we remove essentially all logp2` tq factors at the cost of making
stronger regularity assumptions. See for instance Remark 1.7.
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We stress that assuming more localization on initial data, including enforcing φ0 ” 0, would not
bring extra decay. Moreover, though the extra localization assumed here does bring some minor
simplifications, the scheme of proof of Theorem 1.2 is not significantly different from the one for
Theorem 1.1. The reason for that is that the corresponding regime of decay is barely subcritical
and, thus, some care is needed to carry out the argument. With this respect, it is instructive to
compare the two-dimensional analysis in [JZ11] with the three-dimensional analysis in [OZ10].

1.2. Modulational behavior. Theorem 1.1 contains that, up to a remainder of size t
´

´

1
2´

1
p

¯

in
Lp, 2 ă p ă 8, the solution Wpt, ¨q to the original (1.1) is well-described by U ˝Ψpt, ¨q for some
Ψ such that ∇Ψ´K and BtΨ´Ω are also decaying at the same remainder rate in Lp.

To go further, one would like to capture the leading-order part of the near-constant dynamics
of p∇Ψ, BtΨq. It turns out that this is closely related to the obtention of a refined description of
Wpt, ¨q, that is, of a description up to a faster-decaying remainder. The latter requires not only
a space-time modulation of the position of the wave profile U but also of its shape, hence, as a
preliminary, an understanding of nearby waves.

As we prove in Proposition B.1, Assumption (D2) is sufficient to elucidate the structure of
nearby two-dimensional periodic waves. The upshot is that corresponding profiles, wavenumbers
and speeds may be smoothly parametrized as pK,ϕq ÞÑ pUKp¨ ` ϕq,K, cKq. The following result
shows that by modulating also in wavenumber, besides the modulation in position, one does improve
the asymptiotic description of solutions.

Theorem 1.3 (Modulational behavior). Assume (D1)-(D2) and consider a wave parametrization
as in Proposition B.1.
With notational conventions of Theorem 1.1, one may also ensure that the solution W to (1.1)
obtained from W through (1.4) satisfies,

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}LppR2;Rnq ď Cp0,q0 E0
lnp2` tq

p1` tq
1
2
´ 1
p
` 1

2

´

1
2
` 1
p

¯ , 2 ă p0 ď p ď q0 ă 8 ,

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}L8pR2;Rnq ď C E0
plnp2` tqq2

p1` tq
1
2
` 1

4

,

with K :“ ∇Ψ and Ψ defined from φ as

Ψpt,xq :“ pId´φpt, ¨qq´1
´

KT px´ t cq
¯

,

thus satisfying

}Kpt, ¨q ´K}LppR2;M2pRqq ` }BtΨpt, ¨q ´Ω}LppR2;R2q ď
Cp0,q0 E0

p1` tq
1
2
´ 1
p

, 2 ă p0 ď p ď q0 ă 8 ,

}Kpt, ¨q ´K}L8pR2;M2pRqq ` }BtΨpt, ¨q ´Ω}L8pR2;R2q ď C E0
lnp2` tq

p1` tq
1
2

.

Note that Theorem 1.3 encodes through K “ ∇Ψ that modulation in wavenumbers result from
spatial variations of modulation in positions.

We believe that the proof of Theorem 1.3 is both robust and representative of what could be
expected in much more general situations. Yet, as we show below, in the present two-dimensional
case, the estimates of Theorem 1.3 are deceptively pessimistic. Indeed, Theorem 1.3 is the result of
the combination of various worst-case bounds, whereas, in the present two-dimensional case under
study, it turns out that not all the difficulties may be present simultaneously.
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To elucidate this, let us anticipate on the description of the near-constant dynamics of Kpt, ¨q. As
we prove below, at leading order, this dynamics obeys an hyperbolic-parabolic system. In full gen-
erality, the hyperbolic part of such systems (linearized about the reference constant state) contains
both scalar-type components and dispersive-type components. For the full linearized hyperbolic-
parabolic system, one expects the former to decay exactly as solutions of the heat equation, that is,

in dimension 2, as t
´

´

1
q´

1
p

¯

, in Lp for initial data in Lq, 1 ď q ď p ď `8. In contrast, for the latter,
one expects wave-diffusion type decay; for instance, in Lp, starting from L1 data, the dispersion
enhances the decay when p ą 2 but slows it down when p ă 2. For general systems, the decay of the
full solution is thus prescribed by the worst rates between heat-like and wave-diffusion-like decay
rates. We refer the reader to the detailed analysis of the isentropic compressible Navier-Stokes sys-
tem in [HZ97, HZ95, KS02, Rod09b] (and further comments in [Rod07]) for a worked-out example
supporting such intuition.

However, as we prove in5 Lemma A.5, in dimension two, constant-coefficient hyperbolic systems
of two equations are either composed of two uncoupled scalar equations or they are strictly hyper-
bolic and fully of dispersive type. When the hyperbolic part of the effective dynamics for Kpt, ¨q
is of dispersive type (Case (Ca) below), it turns out that the decay are faster than proved in
Theorems 1.1 and 1.3, and the dynamics is actually asymptotically linear. When it is of scalar-like
type (Case (Cb) below), the estimates of Theorem 1.1 are sharp6 but those of Theorem 1.3 are
not because they rely on some linear estimates that may be improved in the scalar-type case but
seemingly7 not in the dispersive-type case.

To make this discussion more concrete, let us point out that the relevant linearized first-order
dynamics is

(1.9) Btψ ´ dK ΩpKq p∇ψq “ 0 ,

where ∇ψ plays the role of a linear approximation of K ´K. Note that K is M2pRq-valued but
curl-free, hence satisfying two constraints, so that, as encoded in (1.9), its dynamics is effectively
two-dimensional. As we prove in Lemma A.4, under conditions (D1)-(D2), System 1.9 is hyperbolic
and therefore one, and only one, of the following two conditions hold.

(Ca) For any unitary ξ0 P R2,
ř2
j“1 dKj ΩpKq pξ0q ej

T has real distinct eigenvalues.

(Cb) Matrices
ř2
j“1 dKj ΩpKq pe1q ej

T and
ř2
j“1 dKj ΩpKq pe2q ej

T are simultaneously diagonal-
izable over R.

Let us point out that in the special case where cK does not depend on K (or more generally when
dK cpKq is zero), System (1.9) reduces to Btψ ` pc ¨∇qψ “ 0, a genuinely scalar system, yielding
Case (Cb) in a trivial way. We identify this subcase as

(Cb0) Matrices
ř2
j“1 dKj ΩpKq pe1q ej

T and
ř2
j“1 dKj ΩpKq pe2q ej

T are scalar.

and we shall prove for it slightly sharper estimates with significantly simpler proofs.
Case (Ca) is arguably the hardest case to analyze but we expect that it is also the generic one

in the absence of extra symmetry. In particular this is the one proved to arise at the secondary
bifurcation studied in [RR]. We recall however that in the isotropic case small-amplitude waves fit
in Subcase (Cb0).

The following theorems prove the above claims about decay rates specialized to either Case (Ca)
or Case (Cb).

5We expect this fact to be well-known by experts of hyperbolic systems as it is related to the Strang analysis
[Str67] of systems of two equations in arbitrary dimension. Yet we have not found it in the literature.

6Up to logarithmic factors.
7Actually, finer comparisons with [HZ97, KS02] suggest that there is some room for improvement here also but at

a high technical price and in a way essentially useless at the nonlinear level.

10



Theorem 1.4 (Dispersive case). Assume (D1)-(D2) and Case (Ca) of the alternative.
Assume that E0 is small enough. One may improve the estimates of Theorem 1.1 into

}Wpt, ¨ ´ φpt, ¨qq ´U}W 2,4 ` }∇φpt, ¨q}W 2,4 ` }Btφpt, ¨q}W 2,4 ď
C E0

p1` tq
3
8

,

}Wpt, ¨ ´ φpt, ¨qq ´U}Lp ` }∇φpt, ¨q}Lp ` }Btφpt, ¨q}Lp ď
Cp0,q0 E0

p1` tq
3
4
´ 3

2
1
p

, 2 ă p0 ď p ď q0 ă 8 ,

}Wpt, ¨ ´ φpt, ¨qq ´U}L8 ` }∇φpt, ¨q}L8 ` }Btφpt, ¨q}L8 ď C E0
lnp2` tq

p1` tq
3
4

,

}Wpt, ¨ ´ φpt, ¨qq ´U}W `,4 ` }∇φpt, ¨q}W `,4 ` }Btφpt, ¨q}W `,4 ď
C`E0,`

p1` tq
3
8

, ` P N, ` ě 2,

and those of Theorem 1.3 into 8

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}Lp ď
Cp0,p1 E0

p1` tq
3
4
´ 3

2
1
p
` 1

2

, 2 ă p0 ď p ď p1 ă 4 ,

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}L4 ď
C E0 lnp2` tq

p1` tq
7
8

,

with K :“ ∇Ψ and Ψ defined from φ as

Ψpt,xq :“ pId´φpt, ¨qq´1
´

KT px´ t cq
¯

,

thus satisfying

}Kpt, ¨q ´K}Lp ` }BtΨpt, ¨q ´Ω}Lp ď
Cp0,q0 E0

p1` tq
3
4
´ 3

2
1
p

, 2 ă p0 ď p ď q0 ă 8 ,

}Kpt, ¨q ´K}L8 ` }BtΨpt, ¨q ´Ω}L8 ď C E0
lnp2` tq

p1` tq
3
4

.

Theorem 1.5 (Dispersive case, subcritical perturbations). Assume (D1)-(D2) and Case (Ca) of
the alternative. Assume that E0 is small enough. One may improve the estimates of Theorem 1.2
into

}Wpt, ¨ ´ φpt, ¨qq ´U}W 2,p ` }∇φpt, ¨q}W 2,p ` }Btφpt, ¨q}W 2,p ď
C E0

p1` tq
5
4
´ 3

2
1
p

, 2 ď p ď 4 ,

}Wpt, ¨ ´ φpt, ¨qq ´U}Lp ` }∇φpt, ¨q}Lp ` }Btφpt, ¨q}Lp ď
C E0

p1` tq
5
4
´ 3

2
1
p

, 2 ď p ď 8 ,

}Wpt, ¨ ´ φpt, ¨qq ´U}W `,p ` }∇φpt, ¨q}W `,p ` }Btφpt, ¨q}W `,p ď
C` E0,`

p1` tq
5
4
´ 3

2
1
p

, ` P N, ` ě 2, 2 ď p ď 4 .

Theorem 1.6 (Scalar-type case). Assume (D1)-(D2) and Case (Cb) of the alternative. One
may remove the log-factor in the estimates of Theorem 1.1

}Wpt, ¨ ´ φpt, ¨qq ´U}Lp ` }∇φpt, ¨q}Lp ` }Btφpt, ¨q}Lp ď
Cp0 E0

p1` tq
1
2
´ 1
p

, 2 ă p0 ď p ď 8 .

8We refrain from stating estimates for }Wpt, ¨q ´UKpt,¨q
pΨpt, ¨qq}Lp when p ą 4 because the corresponding decay

rates would be artificially limited by a lack of regularity assumption on the data; see the related Remark 1.7.
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Moreover, if

E
ppq
0 :“ }W0p¨ ´ φ0q ´U}pH2XW 2,pqpR2;Rnq ` }∆φ0}pL1XW 1,pqpR2;R2q ă `8 ,

one can improve the estimates of Theorem 1.3 into

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}Lp ď

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

lnp2` tq

p1` tq
1´ 1

p

Cp0 E0 , 2 ă p0 ď p ď 4 ,

lnp2` tq

p1` tq
1´ 1

p

Cp1 E
pp1q

0 , 4 ď p ď p1 ă 8 ,

1

p1` tq
1´ 1

p1

Cp1,p2 E
pp1q

0 , p1 ă p2 ď p ď 8 ,

with K :“ ∇Ψ and Ψ defined from φ as

Ψpt,xq :“ pId´φpt, ¨qq´1
´

KT px´ t cq
¯

,

thus satisfying

}Kpt, ¨q ´K}Lp ` }BtΨpt, ¨q ´Ω}Lp ď
Cp0 E0

p1` tq
1
2
´ 1
p

, 2 ă p0 ď p ď 8 .

As already implicitly pointed out, the decay rates in Theorem 1.6 should be compared with those
of solutions to the heat equation whereas those of Theorems 1.4 and 1.5 should be compared with
those for the viscously damped wave equation. Roughly9 speaking, on R2

(1) when Btu´∆u “ 0, an initial control on ∆`up0, ¨q in Lq yields a t
´

´

1
q´

1
p`

1
2 p|α|´`q

¯

decay for
Bαu in Lp;

(2) when B2
t u ´ ∆u ´ ∆Btu “ 0, an initial control on ∆`Btup0, ¨q and ∆`up0, ¨q in L1 yield a

t
´

´

3
4´

3
2

1
p`

1
2 p|α|´`q

¯

decay for Bαu in Lp for p ě 2.

The latter bound is classical but non trivial and we refer the reader to [Shi00] for precise statements
and proofs. A significant part of the proofs of Theorems 1.4, 1.5 and 1.6 is actually, in disguise,
an extension of the large-time estimates for constant-coefficient hyperbolic-parabolic operators to
classes of systems with no particular structure, including on one hand systems with a scalar-like —
but not scalar — hyperbolic part and a cross-diffusion, and on the other hand anisotropic systems
with dispersion. Concerning the latter, we point out that for the most part of the literature the extra
decay due to dispersion is merely overlooked, whereas the remaining body of works is restricted to
isotropic systems, most often variations on the wave equation. We also stress that even in the case
where the hyperbolic part and the diffusive part commute, combining the well-developed dispersive
estimates for the former with dissipative estimates for the latter yields non sharp decay rates; see
the related detailed discussion in [HZ97].

Remark 1.7. The lnp2` tq factors in Theorem 1.4 and Theorem 1.6 and the lack of optimal decay
in Theorem 1.4 are due to the limited smoothness we assume and to the way we use it. Assuming
E0 small enough and that E0,3 ă 8, we also prove that, in Case (Ca) of Assumptions (D1)-(D2),

}Wpt, ¨ ´ φpt, ¨qq ´U}Lp ` }∇φpt, ¨q}Lp ` }Btφpt, ¨q}Lp

` }Kpt, ¨q ´K}Lp ` }BtΨpt, ¨q ´Ω}Lp ď
Cp0 E0,3

p1` tq
3
4
´ 3

2
1
p

, 2 ă p0 ď p ď 8 ,

9This means, in particular, that at this informal level we do not bother to state admissibility conditions for α, `,
p, q.
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}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}Lp ď

$

’

’

’

&

’

’

’

%

Cp0,p1 E0,3

p1` tq
3
4
´ 3

2
1
p
` 1

2

, 2 ă p0 ď p ď p1 ă 8 ,

C E0,3 p1` E0,3q

p1` tq
3
4
` 1

2

, p “ 8 ,

and, in Case (Cb) of Assumptions (D1)-(D2), for any p1 P r4,8q,

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}Lp ď

$

’

’

’

&

’

’

’

%

Cp0 E0,3

p1` tq
1´ 1

p

, 2 ă p0 ď p ď 4 ,

Cp1 E0,3

p1` tq
1´ 1

minptp,p1uq

, 4 ď p ď 8 .

We prove this remark in Subsection 4.2.

1.3. Averaged systems. In the foregoing subsection, to provide educated guesses on expected
decay rates, we have already largely anticipated that the dynamics of local wavevectors Kpt, ¨q
obeys at leading-order an hyperbolic-parabolic system, in the neighborhood of the constant K. We
make such a claim precise here. Combining this with results on modulation behavior will complete
the leading-order description of the dynamics near the periodic wave of profile U.

We shall compare Ψ and K with respectively ΨW and KW “ ∇ΨW solving an equation of the
form

(1.10) BtΨ
W “ Ωp∇ΨW q `Λ0r∇sp∇ΨW q

thus also

(1.11) BtKW “ ∇pΩpKW qq `∇pΛ0r∇spKW qq ,

with KW curl-free. In the foregoing systems, both Λ0r∇sp∇p¨qq and ∇pΛ0r∇sp¨qq are elliptic linear
operators whose action is encoded by homogeneous second-order Fourier multipliers. These elliptic
operators are actually differential operators in Case (Cb). Moreover our choice of Λ0 enforces
that, in any case, Λ0r∇sp∇p¨qq commutes with dK ΩpKqp∇p¨qq. We precisely define this operator
in Appendix D.2.

We provide a partly formal derivation of (1.10)/(1.11) in Appendix D.1. This derivation is dra-
matically more involved than the corresponding one for one-dimensional reaction-diffusion systems
— for which we refer for instance to [DSSS09, Section 4.3] —, and even trickier than the general
one-dimensional case analyzed in [JNRZ14]. As in [JNRZ14], there are two separate steps in our
derivation. The first one, carried out in Appendix D.1, is purely formal and is an adaptation of the
strategy tailored in [NR13] and subsequently used in [JNRZ14]. We insert a suitable geometrical
optics’ ansatz in (1.1), identify a few orders of the formal expansion and group together some of
the equations to obtain differential systems similar to (1.10)/(1.11); see (D.6)/(D.7). Alternatively,
this first step could be replaced with a spectrally motivated derivation; see Remark 4.1. At the
level of local wavevectors, both the geometrical optics’ derivation expounded here and the alter-
native spectral derivation hinge on low-frequency expansions so that the only piece of information
on their structure, inherited from (D2), is that their first-order part is hyperbolic and that they
are diffusive in the low-frequency regime. Unfortunately, except in the scalar Subcase (Cb0), this
is insufficient to deduce that a second-order system is well-posed; see in particular the concrete
example given in Appendix D.2 to illustrate that this may fail even in Case (Cb). Our second
step of the derivation finds a canonical way to replace the system obtained in the first step with
a well-posed parabolic system sharing, at leading-order, the same low-frequency properties. It is
in this step that, in Case (Ca), we need to leave the differential frame for the Fourier-multiplier
class. This second part of the derivation is analytical and parallel but significantly harder to the
analysis in [JNRZ14, Appendix B.2]. We stress that in this second step the question to solve has a
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much broader significance than the study of the averaged dynamics near periodic traveling waves ;
it is a general question about the dynamics of second-order systems near constant states, relevant
even when the original system is well-posed, and dissipative in some hypocoercive sense but not
genuinely parabolic. In particular, our analysis in Appendix D.2 extends in various ways, including
the class of systems considered and the sharpness of estimates proved, the analysis about artificial
viscosity systems in [HZ95, Rod09b] (discussed further in [Rod07] and [Rod13, Appendix A]).

Though, for the sake of brevity, we shall not dwell on this line of investigation, we mention
that, in the spirit of Theorem 1.3, and with the same kind of shortcomings, we could validate
(1.10)/(1.11) without specializing to either Case (Ca) or Case (Cb).

Theorem 1.8 (Whitham equation). Assume that we are under the assumptions of Theorem 1.1
with notational conventions of Theorem 1.3.
Let ΨW and KW satisfy respectively (1.10) and (1.11) with initial data

ΨW p0,xq “ pId´φ0q
´1

´

KTx
¯

, KW p0, ¨q “ ∇ΨW p0, ¨q .

Then for any t ě 0, if Case (Ca) and W0p¨ ´ φ0q ´U P L
3
2 pR2q hold

}Kpt, ¨q ´KW pt, ¨q}Lp ď
C
´

E0,3 p1` E0,3q ` }W0p¨ ´ φ0q ´U}
L

3
2

¯

p1` tq
3
4
´ 3

2
1
p
` 1

2

, 2 ď p ď 8, Case (Ca),

}ΨW pt, ¨q ´Ψpt, ¨q}Lp ď
C
´

E0,3 p1` E0,3q ` }W0p¨ ´ φ0q ´U}
L

3
2

¯

p1` tq
3
4
´ 3

2
1
p

, 2 ă p0 ď p ď 8, Case (Ca),

whereas if Case (Cb) holds

}Kpt, ¨q ´KW pt, ¨q}Lp ď

$

’

’

’

&

’

’

’

%

CE0,3

p1` tq
1
2
´ 1
p
` 1

2

, 2 ď p ď 8, Subcase (Cb0),

CηpE0,3 ` E
2
0,3q

p1` tq
1
2
´ 1
p
` 1

2
p1´ 1

p
q´η

, 2 ď p ď 8, η ą 0, Case (Cb) but (Cb0) fails ,

}ΨW pt, ¨q ´Ψpt, ¨q}Lp ď

$

’

’

’

&

’

’

’

%

Cp0E0,3

p1` tq
1
2
´ 1
p

, 2 ă p0 ď p ď 8, Subcase (Cb0),

Cη,p0pE0,3 ` E
2
0,3q

p1` tq
1
2
´ 1
p
´ 1

2
1
p
´η

, 2 ă p0 ď p ď 8, η ą 0, Case (Cb) but (Cb0) fails.

Remark 1.9. The extra localization of W0p¨´φ0q´U in Case (Ca) is crucially used to obtain the
optimal decay. Without this assumption, one only gets

}Kpt, ¨q ´KW pt, ¨q}Lp ď
CE0,3

p1` tq
1´ 1

p

, 2 ď p ď 8.

Actually in the dispersive case (Ca), the nonlinear terms are subcritical so that it is enough to
retain from (1.10) and (1.11) their linear approximants

(1.12) BtΨ
W
lin “ Ω` dK ΩpKqp∇ΨW

lin ´Kq `Λ0r∇sp∇ΨW
lin ´Kq ,

and

(1.13) BtKW
lin “ ∇pdK ΩpKqpKW

lin ´Kqq `∇pΛ0r∇spKW
lin ´Kqq .

Obviously the same hope holds for Case (Cb) when subcritical perturbations are considered. Indeed
we prove the following results.
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Theorem 1.10 (Dispersive case, linearized Whitham equation). Under the Case (Ca) assump-
tions of Theorem 1.1 and with notational conventions of Theorem 1.3, let ΨW

lin and KW
lin satisfy

respectively (1.12) and (1.13) with initial data

ΨW p0,xq “ pId´φ0q
´1

´

KTx
¯

, KW p0, ¨q “ ∇ΨW p0, ¨q .

Then, for any t ě 0,

}Kpt, ¨q ´KW
linpt, ¨q}Lp ď

C E0,3

p1` tq
3
4
´ 3

2
1
p
` 1

2
1
p

, 2 ď p ď 8 ,

}Ψpt, ¨q ´ΨW
linpt, ¨q}Lp ď

Cp0 E0,3

p1` tq
1
4
´ 3

2
1
p
` 1

2
1
p

, 2 ă p0 ď p ď 8 .

Theorem 1.11 (Subcritical perturbations, linearized Whitham equation). Under the assumptions
of Theorem 1.2 and in Case (Ca) of Theorem 1.5 and with notational conventions of Theorem 1.3,
let ΨW

lin and KW
lin satisfy respectively (1.12) and (1.13) with initial data

ΨW p0,xq “ pId´φ0q
´1

´

KTx
¯

, KW p0, ¨q “ ∇ΨW p0, ¨q .

Then, for any t ě 0,

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}Lp ď

$

’

’

’

&

’

’

’

%

CE0

p1` tq
5
4
´ 3

2
1
p
` 1

2

, 2 ď p ď 8, Case (Ca),

CE0

p1` tq
1´ 1

p
` 1

2

, 2 ď p ď 8, Case (Cb) ,

and

}Kpt, ¨q ´KW
linpt, ¨q}Lp ď

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

CE0 lnp2` tq

p1` tq
5
4
´ 3

2
1
p
` 1

2

, 2 ď p ď 8, Case (Ca),

CE0 lnp2` tq

p1` tq
1´ 1

p
` 1

2

, 2 ď p ď 8, Case (Cb0),

Cp1E0

p1` tq
1´ 1

p
` 1

2
p1´ 1

p
q
, 2 ď p ď p1 ă 8, Case (Cb) but (Cb0) fails,

CE0 lnp2` tq

p1` tq
1´ 1

p
` 1

2
p1´ 1

p
q
, p “ 8, Case (Cb) but (Cb0) fails,

}Ψpt, ¨q ´ΨW
linpt, ¨q}Lp ď

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

CE0 lnp2` tq

p1` tq
3
4
´ 3

2
1
p
` 1

2

, 2 ď p ď 8, Case (Ca),

CE0 lnp2` tq

p1` tq
1
2
´ 1
p
` 1

2

, 2 ď p ď 8, Case (Cb0),

Cp1E0

p1` tq
1
2
´ 1
p
` 1

2
p1´ 1

p
q
, 2 ď p ď p1 ă 8, Case (Cb) but Subcase (Cb0) fails,

CE0 lnp2` tq

p1` tq
1
2
´ 1
p
` 1

2
p1´ 1

p
q
, p “ 8, Case (Cb) but Subcase (Cb0) fails.

Again, as in Remark 1.7, one can remove almost all the lnp2 ` tq in the previous bounds by
assuming more regularity. There is one exception for p “ 8 in Case (Cb) (but (Cb0) fails) since
then the logarithm factor already occurs at the linear level, through Proposition D.2.
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1.4. Perspectives, outline and notation.

Perspectives. The present contribution offers an essentially complete analysis of the nonlinear
dynamics near spectrally stable periodic waves of parabolic systems without conservation laws.
Most natural follow-up questions are two-fold. On one hand in order to apply the present results it
is important to provide stability diagrams in all relevant bifurcation scenari, multiplying the type
of analysis carried out in [RR]. On the other hand it is equally important to enlarge the class of
systems encompassed by our nonlinear analysis so as to allow conservation laws, in the same way as
[JNRZ14] extends [JNRZ13a, JNRZ13b]. This is crucial to be able to deal with most hydrodynamic
applications.

Outline. The organization of the remainder of the paper, after the present introduction, reflects the
plan of the introduction. The second section proves stability theorems, Theorems 1.1 and 1.2. The
third section proves modulational-behavior theorems, Theorems 1.3, 1.4, 1.5 and 1.6. The fourth
section proves theorems on averaged modulation systems, Theorems 1.8, 1.10 and 1.11. The paper
is concluded with four appendices, devoted respectively to

‚ elements of Bloch-wave spectral analysis,
‚ the geometric structure of profile equations,
‚ phase estimates, mostly showing how to bound ∇φ with ∆φ,
‚ geometric optics as needed in the direct derivation of averaged systems.

Notation. We conclude this introduction by collecting some elements of our notational conventions.
When a P R, a` :“ maxpa, 0q. When x “ px1, x2q, xK :“ p´x2, x1q.
When a and b are two elements of the same set, δa,b is 1 if a “ b, 0 otherwise.
We often identify vectors of Rn with column vectors, elements of Mn,1pRq. When A and B are

linear operators, rA,Bs :“ AB ´ BA. Our complex inner scalar products are skew-linear in their
first argument, linear in their second argument. We denote the canonical basis of R2 as pe1, e2q.

For a map F : Rp Ñ Rn and x0 P Rp, we denote by d Fpx0qp¨q the differential of F at x0,
a linear map from Rp to Rn, by d2 Fpx0qp¨, ¨q the second differential of F at x0, a bilinear map
from Rp ˆ Rp to Rn, and by ∇Fpx0q the gradient of F at x0, the transpose of the Jacobian at
x0, an element of Mp,n defined by p∇Fpx0qqj,` “ BjF`px0q (with standard notation for partial
derivative and coordinate). We add a subscript when using partial differential operators, such as
dx Hpx0,y0qp¨q to denote the partial differential of H with respect to the x-variable at px0,y0q

when H : Rp ˆRp Ñ Rn, px,yq ÞÑ Hpx,yq.
We make two main exceptions to the previous differential notation by changing at some specific

places where we mark the evaluation point x0. Explicitly, in Section 3, we denote by dξ q0
j p¨q,

dξ rq
0
` p¨q and dξ D0p¨q the differential at 0 of respectively ξ ÞÑ qξj , ξ ÞÑ rqξ` and ξ ÞÑ Dξ and, in

Section 4, we denote by d2
ξ D0p¨, ¨q the second differential at 0 of ξ ÞÑ Dξ.

Divergence ∇T and Laplacian operators ∆ are always taken with respect to the spatial variable
only, and we do not mark this partial restriction. We extend this omission to gradients ∇ when
there is no risk of confusion. With respect to the spatial variable they are defined as follows: if G :
R2 ÑM2,npRq then ∇TGpx0q is the vector of Rn given by p∇TGpx0qq` “

ř2
j“1 BjGj,`px0q; if F :

R2 Ñ Rn then ∆Fpx0q :“ ∇Tp∇Fqpx0q is the vector of Rn given by p∆Fpx0qq` “
ř2
j“1 B

2
jF`px0q.

In Section 2.2, when carrying out more abstract algebraic computations with too many spatial
differential operators already involved and no particular functional topology in mind, we switch
from differential notation d to linearized notation L. We use L essentially as d with respect to
where we mark evaluation points, directions of application, restrictions, etc.

We identify spaces of pe1, e2q-periodic functions with closed subspaces of functions over r0, 1s2

satisfying suitable boundary conditions. We use the subscript per to distinguish those. At an
16



abstract level they may be defined as the closure for the topology at hand of the restrictions to
r0, 1s2 of smooth pe1, e2q-periodic functions.

Acknowledgment. The authors thank Kevin Zumbrun for his constant interest in the present work.
B.M. thanks the University of Rennes for its hospitality.

2. Stability

2.1. Linear estimates. We begin our stability analysis with linear estimates. In this part we
make extensive use of the background material provided in Appendix A.

We consider pSptqqtě0 the semi-group generated by L. The linear counterpart to Theorem 1.1
is that given some g0 “ pφ0 ¨ ∇qU `V0 with initial estimates on pV0,∆φ0q, one is able to split
Sptqrg0s as

Sptqrg0s “ pφpt, ¨q ¨∇qU`Vpt, ¨q

so as to ensure large-time decay estimates on pVpt, ¨q,∇φpt, ¨q, Btφpt, ¨qq. Note that since L is a
parabolic operator, the fact that it does generate an analytic semigroup and the accompanying
short-time estimates are part of the classical theory for linear PDEs, for which we refer to [Paz83].

Condition (D2) ensures that we may decompose Sptq according to

Sptqrgs “ psptqrgs ¨∇qU ` S1ptqrgs ` S2ptqrgs

with

psptqrgsqpxq :“

ż

r´π,πs2
χpξq ei x¨ξ etDξ

¨

˚

˝

A

rqξ1; ǧpξ, ¨q
E

L2
per

A

rqξ2; ǧpξ, ¨q
E

L2
per

˛

‹

‚

d ξ ,

and

pS1ptqrgsqpxq :“

ż

r´π,πs2
p1´ χpξqq ei x¨ξ et Lξpǧpξ, ¨qqpxq d ξ `

ż

r´π,πs2
χpξq ei x¨ξ et LξpI´Πξqpǧpξ, ¨qqpxqd ξ

pS2ptqrgsqpxq :“

ż

r´π,πs2
χpξq ei x¨ξ

´

qξ1pxq ´ q0
1pxq qξ2pxq ´ q0

2pxq
¯

etDξ

¨

˚

˝

A

rqξ1; ǧpξ, ¨q
E

L2
per

A

rqξ2; ǧpξ, ¨q
E

L2
per

˛

‹

‚

d ξ

where ǧ denotes the Bloch transform of g,

‚ χ is a smooth function valued in r0, 1s, compactly supported in a sufficiently small neigh-
borhood of 0 and equal to 1 in a (smaller) neighborhood of 0;

‚ Πξ is the spectral projector of Lξ associated with its spectrum near the origin;

‚ pqξ1,q
ξ
2q is a basis of the range of Πξ, smoothly dependent on ξ, such that pq0

1 ,q
0
2q “

pB1U, B2Uq;

‚ prqξ1, rq
ξ
2q is a basis of the range of Π˚ξ , smoothly dependent on ξ and in duality with pqξ1,q

ξ
2q;

‚ Dξ is the matrix of the restriction of Lξ to the range of Πξ in the basis pqξ1,q
ξ
2q.

See Appendix A.2 for more details about the construction of such objects. For concreteness, we
introduce ξ0 a sufficiently small positive number measuring the support of χ in the sense that on
the support of χ, }ξ} ď ξ0.

Remark 2.1. Note that pqξ1,q
ξ
2q is not uniquely determined by the above conditions so that there

is some flexibility in the definition of sptq. This flexibility is irrelevant in the stability analysis but
it will be used to impose further normalization in the asymptotic behavior part.
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Throughout this work, we will use a consequence of (D1)-(D2), related to (D1”) in Appen-
dix A.3, that asserts that there exists C1 ą 0 such that for any ξ P r´π, πs2 satisfying }ξ} ď ξ0 and
any t ě 0,

(2.1) ||| etDξ ||| ď C1e
´θt}ξ}2 .

We first provide bounds adapted to localized perturbations.

Proposition 2.2. Assume (D1)-(D2).

(1) There exists θ1 ą 0, such that, for any ps, s1q P pR`q
2 such that s1 ď s, there exists Cs1,s

such that for any t ą 0

}S1ptqrgs}Hs ď
Cs1,s

pminpt1, tuqq
ps´s1q

2

e´θ
1 t }g}Hs1 .

(2) For any s P R` and any β P N2, there exists Cs,β such that for any 1 ď q ď 2 ď p ď `8,
and any t ě 0

}S2ptqrB
β
xgs}W s,p ď

Cs,β

p1` tq
1
2
` 1
q
´ 1
p

}g}Lq .

(3) For any α P N2, any β P N2 and any ` P N, there exists Cα,`,β such that for any 1 ď q ď
2 ď p ď `8, and any t ě 0

} Bαx B
`
t sptqrB

β
xgs}Lp ď

Cα,`,β

p1` tq
|α|``

2
` 1
q
´ 1
p

}g}Lq .

Proof. To prove the first point, it is sufficient to combine an Hs1 Ñ Hs bound for 0 ă t ď 1 with an
Hs Ñ Hs bound for t ě 0. Moreover the former follows from the parabolicity of L (combined with
bounds on sptq and S2ptq proved below). In turn, the latter may be derived, through Parseval’s
identity, from

||| et Lξ |||Hs
perÑH

s
per
ď Ce´θ

1 t , }ξ} ě ξ0 ,

||| et Lξ pI´Πξq|||Hs
perÑH

s
per
ď Ce´θ

1 t , }ξ} ď ξ0 .

As pointed out in Appendix A.3, these bounds stem from condition (D1)-(D2).
To prove the second point, by using (2.1) and integration by parts in scalar products, from

Hausdorff-Young and Hölder inequalities one derives

}S2ptqrgs}W s,p À

›

›

›
ξ ÞÑ }ξ} e´θt}ξ}

2
}ǧpξ, ¨q}Lqper

›

›

›

Lp
1

ξ

À

›

›

›
ξ ÞÑ }ξ} e´θt}ξ}

2
›

›

›

Lrξ

ˆ }ǧ}
Lq
1

ξ L
q
per

À p1` tq´p
1
2
` 1
r q }g}Lq

with p1, q1 Lebesgue conjugate respectively to p and q, and 1{r “ 1{p1 ´ 1{q1 “ 1{q ´ 1{p. Hence
the second bound.

To prove the third point, note that

pBαx B
`
tsptqrB

β
xgsqpxq “

ż

r´π,πs2
χpξq ei x¨ξ pi ξqα pDξq

` etDξ

¨

˚

˝

A

rqξ1; pBx ` i ξqβǧpξ, ¨q
E

L2
per

A

rqξ2; pBx ` i ξqβǧpξ, ¨q
E

L2
per

˛

‹

‚

d ξ .
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From here the third bound is proved essentially as was the second one, the decay stemming from

›

›

›
ξ ÞÑ }ξ}|α|`` e´θt}ξ}

2
›

›

›

Lrξ

À p1` tq
´

´

|α|``
2
` 1
r

¯

.

�

We now focus on bounds adapted to initial data given as phase modulations. Throughout we
make regular use of bounds from Appendix C and we implicitly assume that φ has no affine
component at 8, in the sense that φ “ ∆´1∆φ. Consistently, the phases built with sptq also
satisfy the latter condition.

Proposition 2.3. Assume (D1)-(D2).

(1) There exists θ1 ą 0, such that, for any ps, s1q P R` such that s1`1 ď s and any pp0, p1q such
that 2 ă p0 ă p1 ă 8, there exists Cp0,p1,s,s1 such that for any t ą 0, and any p0 ď p ď p1,

}S1ptqrpφ ¨∇qUs}W s,p ď
Cp0,p1,s,s1

pminpt1, tuqq
ps´ps1`1qq

2

e´θ
1 t }∆φ}L1XHs1 .

(2) For any s P R` and any p0 ą 2, there exists Cp0,s such that for any p0 ď p ď `8, and any
t ě 0

}S2ptqrpφ ¨∇qUs}W s,p ď
Cp0,s

p1` tq
1
2
´ 1
p

}∆φ}L1 .

(3) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` ` ´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

} Bαx B
`
t sptqrpφ ¨∇qUs}Lp ď

Cp,α,`

p1` tq
|α|``

2
´ 1
p

}∆φ}L1 .

To ease comparisons with bounds of Proposition 2.2, we recall that }∆φ}L1XHs should be thought
as a relaxed version of }∇φ}Hs`1 . Note moreover that the condition |α|` `´ 2

p ą 0 may be written

more explicitly as |α| ` ` ě 2 or (|α| ` ` “ 1 and p ą 2).

Proof. To establish various bounds it is convenient to single out the low-frequency part of φ,
according to

φ “ φLF ` φHF ,
{pφLF q “ χpφ .

The contribution of φHF to the first bound may be deduced from the corresponding estimate in
Proposition 2.2. Indeed, since 2 ď p ă 8,

}S1ptqrpφHF ¨∇qUs}W s,p À }S1ptqrpφHF ¨∇qUs}Hs`1 ,

}pφHF ¨∇qU}Hs1`2 À }φHF }Hs1`2 À }∆φ}Hs1 .

The analysis of the contribution of φLF requires more care. To begin with, we recall that

­ppφLF ¨∇qUqpξ,xq “ p{pφLF qpξq ¨∇qUpxq(2.2)

and observe that this may be used to gain an extra }ξ}-factor in the second part of the definition
of S1 through

pI´Πξqp ­ppφLF ¨∇qUqpξ, ¨qq “ pI´ΠξqpΠ0 ´Πξqp ­ppφLF ¨∇qUqpξ, ¨qq
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since B1U and B2U lie in the range of Π0 and pI´Πξq is a projector. Moreover, an extra }ξ}-factor
in the first part of S1 is readily obtained from the trivial p1 ´ χpξqq À }ξ}. With this in hands,
from Hausdorff-Young inequalities and the embedding Hs`1

per ãÑW s,p
per, one derives

}S1ptqrpφLF ¨∇qUs}W s,p À e´θ
1 t }∆φLF }L1

›

›ξ ÞÑ }ξ}´1
›

›

Lp
1

ξ

À e´θ
1 t }∆φ}L1

since p ą 2, thus p1 ă 2. This achieves the proof of the first bound.
The contribution of φHF to the second bound may also be deduced from the corresponding

estimate in Proposition 2.2. Indeed

}pφHF ¨∇qU}L1 À }φHF }L1 À }∆φ}L1 .(2.3)

The analysis of the contribution of φLF to the second bound follows from (2.2), Hausdorff-Young
inequalities and, since p ą 2,

›

›

›
ξ ÞÑ }ξ}´1 e´θt}ξ}

2
›

›

›

Lp
1

ξ

À p1` tq
´

´

1
2
´ 1
p

¯

.

The third bound is proved similarly. �

The last set of linear estimates we need to close our nonlinear stability argument consists in
short-time bounds. It shall be used to ensure that the nonlinear phase φ does satisfy φp0, ¨q “ φ0.
At the linear level we just need to prove that sp0qrpφ ¨∇qUs is not too far from φ. Note that if one
relaxes Theorem 1.1 by removing the condition φp0, ¨q “ φ0 from its statement, these short-time
bounds become irrelevant.

Lemma 2.4. Assume (D1)-(D2). For any α P N2, any ` P N and any 2 ď p ď `8 such that
p ą 2 if |α| “ 0 and p ă 8 if |α| ě 2, there exists Cp,α such that for any t ě 0

} Bαx psptqrpφ ¨∇qUs ´ φq }Lp ď Cp,α }∆φ}L1XW p|α|´2q`,p

$

&

%

p1` tq
1
2

´

1´
´

|α|´ 2
p

¯¯

` if |α| ´ 2
p ‰ 1

lnp2` tq otherwise
.

Proof. Since |α| ` 1´ 2
p ą 0, from Proposition 2.3 stems

} Bαx psptq ´ sp0qqrpφ ¨∇qUs}Lp À }∆φ}L1

ż t

0

d τ

p1` τq
|α|`1

2
´ 1
p

,

which predicts the growth time rates. An examination of the proof of Proposition 2.3 also gives

} Bαx sptqrpφHF ¨∇qUs}Lp À
}∆φ}L1

p1` tq
|α|
2
`1´ 1

p

À }∆φ}L1 .

Since, moreover the conditions on p ensure

}φHF }W |α|,p À }∆φ}L1XW p|α|´2q`,p ,

there only remains to bound sp0qrpφLF ¨∇qUs ´ φLF .
Now we observe that

psp0qrpφLF ¨∇qUs ´ φLF q pxq “
ż

r´π,πs2
ei ξ¨x pχpξq ´ 1q {pφLF qpξq d ξ

`

ż

r´π,πs2
ei ξ¨x χpξq

¨

˚

˝

A

rqξ1 ´ rq0
1 ; p{pφLF qpξq ¨∇qU

E

L2
per

A

rqξ2 ´ rq0
2 ; p{pφLF qpξq ¨∇qU

E

L2
per

˛

‹

‚

d ξ .
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Thus

} Bαx psp0qrpφ ¨∇qUs ´ φq }Lp À }∆φ}L1 ˆ

›

›

›
ξ ÞÑ }ξ}|α|´1

›

›

›

Lp
1

ξ

.

Hence the result (since p1 ă 2 when |α| “ 0). �

2.2. Introducing phases. To carry out our analysis, it is convenient to write equation (1.5)
directly in terms of φ and V such that Wpt, ¨ ´ φpt, ¨qq “ U`Vpt, ¨q. When doing so, we have in
mind Lemma C.4 and its variants.

We would like to stress here that the argument is quite robust and to spare unnecessary detailed
computations we provide it in abstract form. To do so, we introduce

PrWs “ PpW,∇W,∇2Wq :“ ∇T
´

KTK∇W
¯

`∇T
´

KT pGpWq ` c WTq

¯

` fpWq

and consider its image under a change of variable Φ

PrĂW,Φs “ PpĂW,∇ĂW,∇2
ĂW,∇Φ,∇2Φq :“ pPrĂW ˝Φ´1sq ˝Φ(2.4)

“ |∇Φ|´1∇T
´

|∇Φ| pK r∇Φs´1q
T
pK r∇Φs´1q∇ĂW

¯

` |∇Φ|´1∇T
´

|∇Φ| pK r∇Φs´1q
T
pGpĂWq ` c ĂWTq

¯

` fpĂWq .

At the linear level, the key observation is that

´LΦPrU, Idspφq “ LWPrUsppφ ¨∇qUq ´ pφ ¨∇qpPrUsq

thus, since PrUs ” 0,

(2.5) L
pĂW,Φq

PrU, IdspV,´φq “ LWPrUspV ` pφ ¨∇qUq “ LpV ` pφ ¨∇qUq ,

where LΦ, LW and L
pĂW,Φq

stand for linearized operators. With this in hands, we may rephrase

(1.5).

Lemma 2.5. Let W and pφ,Vq be smooth10 functions such that

(2.6) Wpt,x´ φpt,xqq “ Upxq ` Vpt,xq ,

and for any t, }∇φpt, ¨q}L8pR2q ă 1. Then W satisfies (1.5) if and only if pφ,Vq satisfies

(2.7) pBt ´ Lq pV ` pφ ¨∇qUq “ N rV,φs ,

or equivalently

(2.8) BtV ´ LφV “ ´pφt ¨ rI2´∇φs´1∇qpU`Vq `PrU, Id´φs ´PrU, Ids `N0rV,φs ,

with

LφV :“ L
ĂW

PrU, Id´φspVq ,

N0rV,φs “ N0p∇φ,∇2φ,V,∇Vq :“ PrU`V, Id´φs ´PrU, Id´φs ´ L
ĂW

PrU, Id´φspVq ,

N rV,φs “ N pφt,∇φ,∇2φ,V,∇V,∇2Vq

:“
`

L
ĂW

PrU, Id´φs ´ L
ĂW

PrU, Ids
˘

pVq `N0rV,φs ´ pφt ¨∇φ rI2´∇φs´1∇qU

´ pφt ¨ rI2´∇φs´1∇qV `PrU, Id´φs ´PrU, Ids ´ LΦPrU, Idsp´φq .

10Since the content of the present lemma is essentially algebraic and in the end we only consider classical solutions,
we do not make precise assumptions about the level of regularity needed here.
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Proof. To begin with, note that if Ψ is defined by Ψpt, ¨q :“ Φpt, ¨q´1, then

∇Ψpt,xq “ r∇Φpt,Ψpt,xqqs´1 , BtΨpt,xq “ ´rp∇Φpt,Ψpt,xqqqTs´1 BtΦpt,Ψpt,xqq .

Define ĂW by Wpt,Φpt,xqq “ ĂWpt,xq or equivalently ĂWpt,xq “ Wpt,Ψpt,xqq. Then W solves

(1.5) if and only if pΦ,ĂWq satisfies

ĂWt ´ pΦt ¨ r∇Φs´1∇qĂW “ PrĂW,Φs .

Inserting ĂW “ U `V and Φ “ Id´φ, we readily deduce (2.8) and derive (2.7) by combining it
with (2.5). �

The form (2.7) is adapted to the large-time analysis whereas the form (2.8) is used in nonlinear
regularity estimates. Obviously, we do not need full details of the expression of N to carry out our
analysis. Yet, for concreteness’ sake, let us observe that ∇φpt,xq commutes with I2´∇φpt,xq and
(2.9)
rI2´∇φpt,xqs´1 “ I2`∇φpt,xq rI2´∇φpt,xqs´1 “ I2`∇φpt,xq` p∇φpt,xqq2 rI2´∇φpt,xqs´1 ,

so that we have the pointwise estimate

(2.10) }N rV,φs} À }∇V}
`

}φt} ` }∇φ} ` }∇2φ}
˘

`}∇2V}}∇φ}`}∇φ}
`

}∇2φ} ` }φt} ` }∇φ}
˘

.

The main upshot of Lemma 2.5 is that, as long as }∇φ}L8 ă 1, (1.5) is equivalently written as

Vpt, ¨q ` pφpt, ¨q ¨∇qU “ SptqrV0 ` pφ0 ¨∇qUs `
ż t

0
Spt´ τqN rVpτ, ¨q,φpτ, ¨qs d τ .

At this stage, we need to make a choice so as to split the foregoing equation. We would like to
simply use the semigroup splitting of the linear analysis but we need to enforce φp0, ¨q “ φ0. To
do so, we pick rχ a smooth function on R` valued in r0, 1s, compactly supported in r0, 1s and equal
to 1 on r0, 1

2 s. Then, we consider

φpt, ¨q “ sptqrV0 ` pφ0 ¨∇qUs `
ż t

0
spt´ τqN rVpτ, ¨q,φpτ, ¨qsd τ(2.11)

` rχptq pφ0 ´ sptqrV0 ` pφ0 ¨∇qUsq

Vpt, ¨q “ pS1 ` S2qptq rV0 ` pφ0 ¨∇qUs `
ż t

0
pS1 ` S2qpt´ τqN rVpτ, ¨q,φpτ, ¨qsd τ(2.12)

´ rχptq
´

pφ0 ´ sptqrV0 ` pφ0 ¨∇qUsq ¨∇
¯

U

and observe that, as long as }∇φ}L8 ă 1, (2.11)-(2.12) imply that W defined by

Wpt, ¨q :“ pU`Vpt, ¨qq ˝ pId´φpt, ¨qq´1

satisfies (1.5) with Wp0, ¨q :“ pU`V0q ˝ pId´φ0q
´1.

Remark 2.6. Though our strategy is inspired from [JNRZ13a, JNRZ14], we point out that we make
here a small departure in the way the short-time layer argument is incorporated. The choice in
[JNRZ13a, JNRZ14] enforces φpt, ¨q ” φ0 when 0 ď t ď 1

2 but results in a slightly more cumbersome
analogue of (2.11)-(2.12). For comparison, we also observe that in [BJN`13] and in other previous
pieces of work where the linear separation is presented in terms of Green functions rather than
semigroups, the time-layer is hidden in the definition of the object playing the role of psptqqtě0.

Remark 2.7. Let us stress that uniqueness in solving (2.11)-(2.12) is essentially useless since (2.11)-
(2.12) implies but is not equivalent to (1.5). However, under our assumptions Wp0, ¨q is a Lipschitz
bounded function and classical theory for semilinear heat equations provides a local well-posedness
result for (1.5) for data in BUC0pR2; Rnq, the space of bounded uniformly continuous functions,
with blow-up criterion expressed in terms of }Wpt, ¨q}L8 .
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To some extent, the introduction of the phase φ has turned the semilinear parabolic system (1.5)
into a quasilinear parabolic equation. In particular, since N contains terms involving ∇2V, using
directly the Duhamel formulas (2.11)-(2.12) to prove the existence of pV,φq satisfying suitable
bounds would be, if not impossible, at least extremely inconvenient11. Instead, we shall use a fixed-
point scheme, classical for quasilinear equations and involving, here L4, high-frequency slaving
energy estimates to close in regularity. The linear estimates used to derive the latter are provided
in the following lemma.

Lemma 2.8. (1) For any 0 ď η0 ă 1 and any ` P N, there exist θ ą 0 and C ě 0 such that for
any φ such that }∇φ}L8pR2;M2pRqq ď η0 and any V PW `,4pR2; Rnq such that D`pVq ă `8

and LφV PW `,4pR2; Rnq

ÿ

|α|“`

ż

R2

}BαV}2 BαV ¨ BαpLφVq ď ´θD`pVq
4 ` C }V}4L4

´

1` }∇2φ}
2 p2``1q
L8

¯

` C}∇φ}4W `,4 }V}
4
W 1,8

where

D`pVq :“

¨

˝

ÿ

|α|“`

ż

R2

}BαV}2 }∇BαV}2

˛

‚

1
4

.

(2) For any ` P N, there exists C such that for any V PW ``1,4pR2; Rnq and any j P N, j ď `,

}∇jV}L4 ď C }V}1´α
L4 D`pVq

α , with α :“
j

`` 1
2

.

Proof. We first prove the second point. Note that since for any pj, `q, j ď `,

}∇jV}L4 À }V}
`´j
`

L4 }∇`V}
j
`

L4

it is sufficient to prove the case j “ `. The subcase j “ ` “ 0 is trivial. Moreover, an integration
by parts shows that for any α with |α| ě 1,

}BαV}4L4 À }BαV}L4 }∇|α|´1V}L4 }}B
αV} }∇ BαV} }L2 .

Thus for any ` ě 1,

}∇`V}3L4 À }∇`´1V}
1
3

L4 D`pVq
2
3 À }V}

1
`

L4 }∇`V}
`´1
`

L4 D`pVq
2 ,

and the result follows.
As for the first part, to underline the core of the argument we begin by proving the case when

α “ 0. We first observe that
ż

R2

}V}2 V ¨∇T
´

pK rI2´∇φs´1q
T
pK rI2´∇φs´1q∇V

¯

“ ´

ż

R2

}V}2
›

›K rI2´∇φs´1∇V
›

›

2
´

1

2

ż

R2

›

›K rI2´∇φs´1∇p}V}2q
›

›

2
À ´D0pVq

4 .

From here one deduces readily
ż

R2

}V}2 V ¨ LφV À ´D0pVq
4 ` }V}2L4 }∇2φ}L8 D0pVq

2 ` }V}4L4 p1` }∇2φ}L8q

À ´D0pVq
4 ` }V}4L4 p1` }∇2φ}2L8q .

11As it would require large-time maximal regularity estimates
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We now go back to the general case. Combining commutator bounds recalled below with the
arguments of the case α “ 0 yields for any α

ż

R2

}BαV}2 BαV ¨ BαpLφVq

À ´D0pB
αVq4 ` }BαV}L4 D0pB

αVq2
`

}V}W |α|,4 p1` }∇2φ}L8q ` }∇φ}W |α|,4 }V}W 1,8

˘

.

Thus, for any `,

ÿ

|α|“`

ż

R2

}BαV}2 BαV ¨ BαpLφVq À ´D`pVq
4 ` }V}

1

`` 1
2

L4 D`pVq
2` 2`

`` 1
2 p1` }∇2φ}L8q

` }V}

1
2

`` 1
2

L4 D`pVq
2` `

`` 1
2

`

}V}L4 p1` }∇2φ}L8q ` }∇φ}W `,4 }V}W 1,8

˘

,

from which the result follows through Young inequalities. We point out that in the case ` “ 1, as
in the case ` “ 0, one may obtain the same estimate without the }∇φ}W `,4 }V}W 1,8 term. �

In the foregoing proof, to carry out integrations by parts, we have used the standard facts that

over Rd, d P N˚, if ∇T a is integrable and a P Span
´

Ť

1ďpă d
d´1

Lp
¯

then the integral of ∇T a is

zero and that if ∇a is integrable and a P Span
´

Ť

1ďpă8 L
p
¯

then the integral of ∇a is zero.

In the foregoing proof, to bound commutator terms, we have used the following standard non-
linear bounds — to be used intensively later on — :

}∇`pa bq}Lp À }a}W `,8 }b}W `,p ,

}∇`pa bq}Lp À }∇`a}Lp }b}L8 ` }a}L8 }∇`b}Lp ,

}rBα, asb}Lp À }∇|α|a}Lp }b}L8 ` }∇a}L8 }∇|α|´1b}Lp ,

}∇`pg ˝ aq}Lp À }∇g}W p`´1q`,8pBp0,}a}L8 qq

´

1` }a}
p`´1q`
L8

¯

}∇`a}Lp , when gp0q “ 0 .

We shall also use

}∇`pgpaq ´ gpbqq}Lp À }∇g}L8pBa,bq
}∇`pa´ bq}Lp

` }∇g}W `,8pBa,bq
p1` }a}

p`´2q`
L8 ` }b}

p`´2q`
L8 q p}∇`a}Lp ` }∇`b}Lpq }a´ b}L8

where Ba,b :“ Bp0,maxpt}a}L8 , }b}L8uqq.
We conclude this subsection devoted to the analysis of the effects of the introduction of φ by

making explicit the affine auxiliary problems used to set up a fixed-point problem at the nonlinear
level.

To begin with, note that the cases ` “ 0 and ` “ 1 of the first estimate of Lemma 2.8 (or rather
the precised versions of its proof) provide the bounds necessary to check by standard12 arguments
that when φin is such that ∇φin P C0pR`;W 1,8pR2;M2pRqqq with }∇φin}L8 ă 1, Bt ´ Lφin does

generate an evolution system pSφinpt, sqqtěsě0 on L4pR2; Rnq.

12That is, by approximating Lφin by piece-wise constant-in-time operators.
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Under suitable assumptions on φin, gin, we claim that we may likewise solve uniquely in pVout,φoutq

(in relevant spaces)

Voutpt, ¨q “ Sφinpt, 0qpV0q `

ż t

0
Sφinpt, τqrp´ pBt ´ Lq ppφ

out ¨∇qUq ` ginqpτ, ¨qsd τ ,(2.13)

φoutpt, ¨q “ sptqrV0 ` pφ0 ¨∇qUs `
ż t

0
spt´ τqrppLφin ´ LqVout ` ginqpτ, ¨qsd τ(2.14)

` rχptq pφ0 ´ sptqrV0 ` pφ0 ¨∇qUsq .

Note that the problem is designed to also ensure that for t ě 0

Voutpt, ¨q “ pS1 ` S2qptq rV0 ` pφ0 ¨∇qUs(2.15)

`

ż t

0
pS1 ` S2qpt´ τqrppLφin ´ LqVout ` ginqpτ, ¨qsd τ

´ rχptq
´

pφ0 ´ sptqrV0 ` pφ0 ¨∇qUsq ¨∇
¯

U ,

so that

(2.16) BtV
out ´ LφinVout “ gin ` rχptq pBt ´ Lφinq

´´

pφ0 ´ sptqrV0 ` pφ0 ¨∇qUsq ¨∇
¯

U
¯

.

Since, because of the short-time cut-off rχ, the problem is not invariant by time-translations, the
most convenient way to prove the claim is to observe that on any time interval r0, T s, there exists an
iterate of the natural fixed-point map that is strictly contracting. We omit to provide more details
on the statement and the proof of the claim, partly because some of these details are tedious and
classical, partly because the other ones are essentially redundant with those used below to prove
nonlinear stability.

2.3. Nonlinear stability: proof of Theorem 1.1. To prove Theorem 1.1, we set up a fixed
point argument on the map that associates with a given pVin,φinq the solution pVout,φoutq to
(2.13)-(2.14) with

gin :“ ´pφin
t ¨∇φin rI2´∇φins´1∇qU´ pφin

t ¨ rI2´∇φins´1∇qVin

`PrU, Id´φins ´PrU, Ids ´ LΦPrU, Idsp´φinq `N0rV
in,φins ,

where P and N0 are respectively defined through (2.4) and in Lemma 2.5.
For some C0 ą 0 to be taken sufficiently large, we consider X the space of functions pV,φq such

that pV,∇φ,φtq P C0pR`;L4q X L8pR`;W 2,4q and φ ´ φ0 P C0pR`;L4q with φp0, ¨q “ φ0 that
satisfy }pV,φq}X ď C0E0, where

}pV,φq}X :“ sup
tě0

p1` tq
1
4 }pV,∇φ,φtqpt, ¨q}W 2,4 .

Note that

sup
tě0

p1` tq´
3
4 }φpt, ¨q ´ φ0}L4 ď sup

tě0
p1` tq

1
4 }φtpt, ¨q}L4 ď }pV,φq}X .

We constraint E0 to be sufficiently small compared to 1{C0 so that pV,φq P X implies

}pV,∇φ,φtq}L8pR`;W 1,8q ď
1

2
.

The latter is sufficient to ensure that the constants introduced below do not depend on C0 and E0.
We first show that if C0 is sufficiently large and, accordingly, E0 is sufficiently small then the

map pVin,φinq ÞÑ pVout,φoutq introduced above is well-defined from X to itself.
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Let us pick pVin,φinq P X and consider the associated pVout,φoutq. From Lemma 2.8, product
estimates and the embedding W 1,4 ãÑ L8, we deduce that (2.16) implies for some C,C 1 ą 0 and
θ ą 0,

}Voutpt, ¨q}4W 2,4

ď }V0}
4
W 2,4 e´θ t `C

ż t

0
e´θ pt´τq

`

}Vout}4L4 ` }∇φout}4W 2,4 ` }φ
out
t }4W 1,4 ` }g

in}4W 1,4

˘

pτq d τ

ď }V0}
4
W 2,4 e´θ t`C 1

ż t

0
e´θ pt´τq

ˆ

`

}Vout}4L4 ` }∇φout}4W 2,4 ` }φ
out
t }4W 1,4

˘

pτq `
}pVin,φinq}8X
p1` τq

˙

d τ .

Besides, from Propositions 2.2 and 2.3 and Lemma 2.4, product estimates and the embedding
H1 ãÑ L4, we deduce that (2.14)-(2.15) imply for some C,C 1 ą 0 and θ ą 0

}Voutpt, ¨q}L4 ` }∇φoutpt, ¨q}W 2,4

ď
C E0

p1` tq
1
4

` C

ż t

0

˜

e´θ pt´τq

pminpt1, t´ τuqq
1
2

`
1

p1` t´ τq
3
4

¸

`

}∇φin}W 1,4}Vout}W 2,4 ` }gin}L2

˘

pτq d τ

ď
C E0

p1` tq
1
4

` C 1
ż t

0

1

pt´ τq
1
2 p1` t´ τq

1
4

˜

}pVin,φinq}X

p1` τq
1
4

}Voutpτ, ¨q}W 2,4 `
}pVin,φinq}2X

p1` τq
1
2

¸

d τ .

Likewise for some C,C 1 ą 0

}φout
t pt, ¨q}W 2,4

ď
C E0

p1` tq
1
4

` C

˜

}pVin,φinq}X

p1` tq
1
4

}Voutpt, ¨q}W 2,4 `
}pVin,φinq}2X

p1` tq
1
2

¸

` C 1
ż t

0

1

pt´ τq
1
2 p1` t´ τq

1
4

˜

}pVin,φinq}X

p1` τq
1
4

}Voutpτ, ¨q}W 2,4 `
}pVin,φinq}2X

p1` τq
1
2

¸

d τ .

As a result, for

ζptq :“ sup
0ďτďt

p1` τq
1
4 }pVout,∇φout,φout

t qpt, ¨q}W 2,4 ,

by combining the foregoing inequalities with Grönwall like arguments and direct integrations, one
obtains, for some constant K ą 0, for any t ě 0

ζptq ď K pE0 ` C0E0 ζptq ` pC0E0q
2q

that implies, when K C0E0 ď
1
2 ,

ζptq ď 2K pE0 ` pC0E0q
2q .

Therefore, if C0 ą 2K and E0 is sufficiently small (depending on the choice of C0), one concludes
that X is indeed left invariant by the map.

To conclude the proof, we first point out that X is a complete space for the distance

dX ppV1,φ1q, pV2,φ2qq :“ sup
tě0

p1` tq
1
4 }pV1 ´V2,∇pφ1 ´ φ2q, pφ1 ´ φ2qtqpt, ¨q}L4

and we leave to the reader to check that, when E0 is sufficiently small, estimates similar to the
ones expounded above prove that the map pVin,φinq ÞÑ pVout,φoutq is strictly contracting for
the distance dX . This achieves, by the Banach fixed-point theorem, the proof of the first part of
Theorem 1.1.
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There only remains to prove the further bounds. On one hand, using the embedding H
3
2 ãÑ Lp,

for any 2 ă p ď 8, for some Kp, for any t ě 0,

}pV,∇φ,φtqpt, ¨q}Lp

ď
KpE0

p1` tq
1
2
´ 1
p

`
Kp pC0E0q

2

p1` tq
1
2

`Kp pC0E0q
2

ż t

0

1

pt´ τq
3
4 p1` t´ τq

1
4
´ 1
p

1

p1` τq
1
2

d τ .

This yields the claimed Lp-bounds by integration. On the other hand, when ` P N, ` ě 2, by using
the smoothing effects of psptqqtě0, one derives for some K` and any t ě 0

}p∇φ,φtqpt, ¨q}W `,4 ď
K` pE0,` ` pC0E0q

2q

p1` tq
1
4

and, this may be used to show that for some K` and θ` ą 0 and any t ě 0

}Vpt, ¨q}4W `,4 ď }V0}
4
W `,4 e´θ` t `K`

ż t

0
e´θ` pt´τq

ˆ

pC0E0,`q
4

p1` τq
`
pC0E0q

4

p1` τq
}Vpτ, ¨q}4W `,4

˙

d τ ,

which provides the missing bound by a Grönwall-type argument. Note that in the last estimate,
we have crucially used the tame character of product estimates.

2.4. More localized perturbations: proof of Theorem 1.2. We now sketch the proof of
Theorem 1.2. The arguments being quite similar to the ones for Theorem 1.1, we only stress
departures from the foregoing detailed proof.

At the linear level, the main variation is that Proposition 2.3 and Lemma 2.4 should be replaced
with the following proposition and lemma whose proofs are nearly identical since }φHF }Lp À }∇φ}Lp
and

yφLF pξq “ ´ i
ÿ

j

χpξqξj
}ξ}2

yBjφpξq.

Proposition 2.9. Assume (D1)-(D2).

(1) There exists θ1 ą 0, such that, for any ps, s1q P R` such that s1 ď s and any q0 such that
2 ď q0 ă 8, there exists Cq0,s,s1 such that for any t ą 0, and any 2 ď p ď q0,

}S1ptqrpφ ¨∇qUs}W s,p ď
Cq0,s,s1

pminpt1, tuqq
ps´s1q

2

e´θ
1 t }∇φ}L1XHs1 .

(2) For any s P R`, there exists Cs such that for any 2 ď p ď `8, and any t ě 0

}S2ptqrpφ ¨∇qUs}W s,p ď
Cs

p1` tq
1´ 1

p

}∇φ}L1 .

(3) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` `` 1´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

} Bαx B
`
t sptqrpφ ¨∇qUs}Lp ď

Cp,α,`

p1` tq
|α|```1

2
´ 1
p

}∇φ}L1 .

Note that here the constraint |α| ` `` 1´ 2
p ą 0 is reduced to pα, `q ‰ p0, 0q or p ą 2.

Lemma 2.10. Assume (D1)-(D2). For any α P N2, any ` P N and any 2 ď p ď `8 such that
|α| ` 1´ 2

p ą 0, there exists Cp,α such that for any t ě 0

} Bαx psptqrpφ ¨∇qUs ´ φq }Lp ď Cp,α }∇φ}L1XW p|α|´1q`,p

$

&

%

p1` tq
1
2

´

|α|´ 2
p

¯

´ if |α| ´ 2
p ‰ 0

lnp2` tq otherwise
.
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There are only three more elements that require some change.

(1) To gain more localization on N rVpτ, ¨q,φpτ, ¨qs, we complement with more standard L2

energy estimates the less usual L4 estimates of Lemma 2.8. This brings some control on
the L1-norm of N rVpτ, ¨q,φpτ, ¨qs.

(2) In the Duhamel formula part of the argument, the contribution of nonlinear terms through

S2, or s, is analyzed by breaking the integral in two parts. The
şt{2
0 part is estimated with

L1 Ñ Lp bounds, whereas the
şt
t{2 part is bounded using L2 Ñ Lp estimates.

(3) The last estimate follows from Proposition 2.2-(3) together with Remark C.3. Note that φ8
is the only constant such that φ0´φ8 belongs to L2pR2q and that sptqrpφ8 ¨∇qUs “ φ8.

Incidentally, we point out that the arguments sketched above do prove that nonlinear terms are
indeed asymptotically irrelevant in large-time.

Remark 2.11. We stress that actually one may remove the logp2`tq factor of the L8 estimate. One
way to prove this is to use Lq Ñ L8 bounds, with q ą 2, to estimate nonlinear contributions in the
Duhamel formulation. This requires techniques beyond those of the present section, expounded in
the following one. Yet, since our focus is mostly on critical decay, we shall not provide details for
those extra arguments. We point out however that the Lq Ñ L8 bounds, q ą 2, mentioned here
scale badly in large-time and therefore are not sufficient to remove similar logp2` tq factors in the
critical case.

3. Modulational behavior

3.1. Linear estimates. In the stability part, the starting point of the phase separation was the
normalization q0

j “ BjU, j “ 1, 2. The following lemma provides a similar, higher-order, spectral
normalization to set the frame for a wavenumber identification.

Lemma 3.1. Assume (D2) and consider a wave parametrization as in Proposition B.1.

(1) For any η P R2,

dξ D0pηq “ ´ i KT
`

dK1 cpKqpKηq dK2 cpKqpKηq
˘

.

(2) For any particular choice of the wave profile parametrization, one may normalize ppqξ1,q
ξ
2qqξ,

pprqξ1, rq
ξ
2qqξ to ensure that, for any η P R2 and any j P t1, 2u,

dξ q0
j pηq “ i dKj UpKqpKηq .(3.1)

In the following we will sometimes use the notation Api ξq :“ dξ D0pξq in agreement with Ap-
pendix A.3. Note that

(3.2) dξ D0pξq “ i

˜

2
ÿ

j“1

dKj ΩpKq pKξq ej
T

¸

` i pKξqTcpKq I2

so that Assumption (Ca) or Assumption (Cb) give the behavior of dξ D0pξq with respect to ξ.

Proof. Along the proof, we use notation from Appendix B. To begin with, by differentiating the

definition Dξ “ pxrq
ξ
j ;Lξq

ξ
` yL2

per
qj,` and using (B.3), one derives for any η P R2

dξ D0pηq “ i
´

xrq0
j ; pLp1qrB`Usq

T
KηyL2

per

¯

j,`
“ ´ i

´

xrq0
j ; pKT dK`

cpKqpKηq ¨∇qUyL2
per

¯

j,`

which yields the first part of the lemma.
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Now, by differentiating pI´ΠξqLξrq
ξ
j s “ 0, j “ 1, 2, (encoding that Πξ commutes with Lξ), one

obtains, for any η and j,

pI´Π0q

´

L0rdξ q0
j pηqs ` i pLp1qrBjUsq

T
Kη

¯

“ 0(3.3)

which, combined with (B.3), implies

L0rdξ q0
j pηq ´ i dKj UpKqpKηqs “ pI´Π0qL0rdξ q0

j pηq ´ i dKj UpKqpKηqs

“ i pI´Π0q ppK
T dKj cpKqpKηq ¨∇qUq “ 0 .

Therefore, for any η and j, dξ q0
j pηq ´ i dKj UpKqpKηq belongs to the kernel of L0.

To conclude the proof, we only need to prove that by replacing ppqξ1,q
ξ
2qqξ, pprq

ξ
1, rq

ξ
2qqξ with

some pppξ1,p
ξ
2qqξ, pprp

ξ
1, rp

ξ
2qqξ satisfying the same spectral conditions one may also achieve the extra

normalization condition: for any η, j and `,

xrp0
` ; dξ p0

j pηqyL2
per
“ i xrp0

` ; dKj UpKqpKηqyL2
per
.

This may be achieved, for ξ sufficiently small, through
´

pξ1 pξ2

¯

:“
´

qξ1 qξ2

¯

ˆ

I2`

ˆ

ap1,1q ¨ ξ ap1,2q ¨ ξ

ap2,1q ¨ ξ ap2,2q ¨ ξ

˙˙

,

´

rpξ1 rpξ2

¯

:“
´

rqξ1 rqξ2

¯

˜

I2`

ˆ

ap1,1q ¨ ξ ap1,2q ¨ ξ

ap2,1q ¨ ξ ap2,2q ¨ ξ

˙˚
¸´1

,

with vectors of C2, ap`,jq, determined by: for any η,

ap`,jq ¨ η “ ´xrq0
` ; dξ q0

j pηqyL2
per
` i xrq0

` ; dKj UpKqpKηqyL2
per
.

�

Under normalization (3.1), we may refine the decomposition of Sptq into

Sptqrgs “ Smodptqrgs ` S1ptqrgs ` rS2ptqrgs

with

Smodptqrgs :“ psptqrgs ¨∇qU`
ÿ

jPt1,2u

dKj UpKqpK∇sjptqrgsq ,

prS2ptqrgsqpxq :“

ż

r´π,πs2
χpξq ei x¨ξ

´

rξ1pxq rξ2pxq
¯

etDξ

¨

˚

˝

A

rqξ1; ǧpξ, ¨q
E

L2
per

A

rqξ2; ǧpξ, ¨q
E

L2
per

˛

‹

‚

d ξ

where, for j “ 1, 2,

rξj :“ qξj ´ q0
j ´ dξ q0

j pξq .

At this stage, one could just mimick the analysis of Section 2.1 and derive for rS2ptq estimates

similar to those for S2ptq but with an extra p1` tq´
1
2 decay factor. Yet because of the estimation

of
ż t

0
S1pt´ τqN rVpτ, ¨q,φpτ, ¨qs d τ

this would limit the Lp-decay of Wpt, ¨q ´ UKpt,¨qpΨpt, ¨qq in Theorem 1.3 to the L2-decay of

N rVpt, ¨q,φpt, ¨qs, that is, p1 ` tq´
1
2 . To bypass this limitation, we extend the analysis of Sec-

tion 2.1 to incorporate Lq Ñ Lp decay with q ą 2. The price to pay is that the analysis is more
involved and does not follow readily from Hausdorff-Young estimates.
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To replace Hausdorff-Young estimates, in regimes where they are not available, we shall use
Green function representations of finite-rank Bloch multipliers,

ż

r´π,πs2
ei x¨ξ mpξ,xq

A

rpξp¨q ; ǧpξ, ¨q
E

L2
per

d ξ “
1

p2πq2

ż

R2

Γpx,yqgpyq d y ,

where Γpx,yq :“

ż

r´π,πs2
ei px´yq¨ξ mpξ,xq rpξpyq d ξ

that are obtained from the explicit expression of the Bloch transform. For our purposes, it it
sufficient to prove L8 Ñ L8 on this type of operators, thus to bound }Γ}L8x pL1

yq
. The following

lemma provides convenient ways to obtain this kind of bound (with z playing the role of x´ y).

Lemma 3.2. (1) There exists a constant C such that if m̃ is a smooth function on R2{p2πZq2ˆ
R2, then

›

›

›
z ÞÑ

ż

r´π,πs2
ei z¨ξ m̃pξ, zq d ξ

›

›

›

L1pR2q
ď C }m̃}

1
2

L8z pL
1
ξq
}m̃}

1
2

L8z pW
4,1
ξ q

.

(2) There exists a constant C such that if m̃ is a smooth function on R2{p2πZq2, then

›

›

›
z ÞÑ

ż

r´π,πs2
ei z¨ξ m̃pξq d ξ

›

›

›

L1pR2q
ď C }m̃}

1
2

L2 }m̃}
1
2

H2 .

The form of the periodicity in ξ used here is consistent with Remark A.2.

Proof. Both estimates hinge on the fact that for any 1 ď p0 ď 8, if r ą 2{p10 (with p10 Lebesgue-
conjugate to p0), for any function Γ

}Γ}L1 À }Γ}
1´ 2

r p10
Lp0 }} ¨ }r Γ}

2
r p10
Lp0 .(3.4)

To prove the latter it is sufficient to optizime in z0 ą 0 the bound obtained by splitting the L1-norm
between contributions from }z} ď z0 and those from }z} ě z0.

The second bound is then obtained by applying the foregoing with p0 “ 2, r “ 2 and concluding
with Parseval identities. The proof of the first bound starts from the foregoing with p0 “ 8, r “ 4,
and the observation that }z}4 ei z¨ξ “ ∆2

ξpe
i z¨p¨qqpξq, and is concluded by the integration by parts

of ∆2
ξ and triangle inequalities. �

With this tools in hands, we may now turn to linear estimates.

Proposition 3.3. Assume (D1)-(D2).

(1) There exists θ1 ą 0, such that, for any ps, s1q P pR`q
2 such that s1 ď s and any 2 ď q ă 8,

there exists Cs1,s,q such that for any t ą 0

}S1ptqrgs}W s,q ď
Cs1,s,q

pminpt1, tuqq
ps´s1q

2

e´θ
1 t }g}W s1,q .

(2) For any s P R` and any β P N2, there exists Cs,β such that for any 2 ď p ď `8, 1 ď q ď p,
and any t ě 0

}rS2ptqrB
β
xgs}W s,p ď

Cs,β

p1` tq
1
2
` 1
q
´ 1
p
`min

´!

1
2
, 1
q

)¯ }g}Lq .
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(3) For any α P N2, any β P N2 and any ` P N, there exists Cα,`,β such that for any 2 ď p ď
`8, 1 ď q ď p, and any t ě 0

} Bαx B
`
t sptqrB

β
xgs}Lp ď

Cα,`,β

p1` tq
|α|``

2
` 1
q
´ 1
p
`min

´!

1
2
, 1
q

)¯

´ 1
2

}g}Lq .

Proof. We begin by proving the second estimate. We skip the proof of the cases when q ď 2 as
nearly identical to the proof of the corresponding estimates in Proposition 2.2. By interpolation, it

is sufficient to consider the cases when s P N and p “ q “ 8. Now to bound }Bαx
rS2ptqrB

β
xgs}L8 , we

expand both Bα
1

x rξj p¨q, j “ 1, 2, α1 ď α, and Bβ
1

x rqξ` p¨q, ` “ 1, 2, β1 ď β, with respect to ξ respectively
up to third and first order. The part containing remainders is obtained through integration against
a Green function of the form

ż

r´π,πs2
ei px´yq¨ξ mpt, ξ,x,yq d ξ

with m smooth, compactly supported in ξ near 0 and such that

}∇`
ξmpt, ξ,x,yq} À

´

}ξ}p3´`q` ` }ξ}3 p1` tq`
¯

e´θ t }ξ}
2
, ` ě 0 .

Applying the first part of Lemma 3.2 provides the required p1 ` tq´
1
2 bound for this part. The

part containing only coefficients of the expansions takes the form of a sum of terms obtained by
integration against a Green function of the form

apxqbpyq

ż

r´π,πs2
ei px´yq¨ξ mpt, ξq d ξ

with a, b bounded and m smooth, compactly supported near 0 and such that

}∇`
ξmpt, ξq} À

´

}ξ}p2´`q` ` }ξ}2 p1` tq`
¯

e´θ t }ξ}
2
, ` ě 0 .

Applying the second part of Lemma 3.2 provides the required p1 ` tq´
1
2 bound for these terms.

This achieves the proof of the second bound.
The proof of the third bound is omitted since it follows readily from a combination of arguments

of the proof of the corresponding bound in Proposition 2.2 and of arguments expounded hereabove
to prove the second bound.

We now focus on the first bound. By using short-time parabolic estimates, one may reduce the
analysis to the case s “ s1. Then, we observe that for any ω0 ą 0, the contribution to S1ptqrgs of
the part of the spectrum with real part larger than ´2ω0 takes the form of a finite sum of terms
given as

ż

r´π,πs2
χ0pξq ei x¨ξ

`

p1pξ,xq ¨ ¨ ¨ pm0pξ,xq
˘

etEξ

¨

˚

˝

xrp1pξ, ¨q; ǧpξ, ¨qyL2
per

...
xrpm0pξ, ¨q; ǧpξ, ¨qyL2

per

˛

‹

‚

d ξ

with χ0 a cutt-off function and etEξ exponentially decaying in time at a rate independent of ω0.
Applying the first part of Lemma 3.2 to the corresponding Green functions we deduce that for some
θ1 ą 0 independent of ω0 and q, its contribution to an W s,q Ñ W s,q is bounded by a multiple13 of
e´θ

1 t. For clarity, let us temparily denote as S1,ω0ptqrgs the remaining part. On one hand, arguing
as in the proof of Proposition 2.2, one derives that the Hs Ñ Hs norm of S1,ω0ptq is bounded by
a multiple of e´ω0 t. On the other hand, let us pick some q ă q0 ă 8 and observe that for some
ω1 ą 0, one deduces from parabolic estimates that the W s,q0 ÑW s,q0 norm of Sptq is bounded by

13Possibly depending on ω0.
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a multiple of eω1 t, thus, as a consequence of bounds proved so far, so is the W s,q0 Ñ W s,q0 norm
of S1,ω0ptq. The last bound to prove then follows by chosing ω0 sufficiently large to ensure

´ω0

1
q ´

1
q0

1
2 ´

1
q0

` ω1

1
2 ´

1
q

1
2 ´

1
q0

ď ´θ1

and interpolating. �

The only linear bound left to establish before turning to the proof of Theorem 1.3 is a small
variation of Proposition 2.3.

Lemma 3.4. Assume (D1)-(D2).

(1) There exists θ1 ą 0, such that, for any ps, s1q P R` such that s1 ď s and any pp0, p1q such
that 2 ă p0 ă p1 ă 8, there exists Cp0,p1,s,s1 such that for any t ą 0, and any p0 ď p ď p1,

}S1ptqrpφ ¨∇qUs}W s,p ď
Cp0,p1,s,s1

pminpt1, tuqq
ps´s1q

2

e´θ
1 t }∆φ}

L1XW ps1´2q`,p
.

(2) For any s P R`, there exists Cs such that for any 2 ď p ď `8, and any t ě 0

}rS2ptqrpφ ¨∇qUs}W s,p ď
Cs

p1` tq
1´ 1

p

}∆φ}L1 .

3.2. Proof of Theorem 1.3. With pV,φq as in the proof of Theorem 1.1, let us consider

(3.5) Zpt, ¨q :“ Vpt, ¨q ´
ÿ

j

dKj UpKqpK∇φjpt, ¨qq .

Since we are now enforcing normalization (3.1), Z is equivalently written as

Zpt, ¨q “pS1 ` rS2qptq rV0 ` pφ0 ¨∇qUs `
ż t

0
pS1 ` rS2qpt´ τqN rVpτ, ¨q,φpτ, ¨qsd τ

` rχptq

˜

SmodptqrV0 ` pφ0 ¨∇qUs ´ pφ0 ¨∇qU´
ÿ

j

dKj UpKqpK∇pφ0qjq

¸

.

Let us point out that the estimates used to prove Theorem 1.1 also yield

}∇2φpt, ¨q}Lp À
E0

p1` tq
1
2
´ 1
p

, 2 ă p ă 8 , }∇2φpt, ¨q}L8 À E0
lnp2` tq

p1` tq
1
2

,

so that together with the estimates of Theorem 1.1 and standard product estimates on the pointwise
estimate (2.10) we obtain

}N rVpt, ¨q,φpt, ¨qs}Lq À
E2

0

p1` tq
1´ 1

q

,
4

3
ă q ă 4 , }N rVpt, ¨q,φpt, ¨qs}L4 À E2

0

lnp2` tq

p1` tq
3
4

.(3.6)

To bound the contribution of nonlinear terms to Z, we use an Lminptp,4uq Ñ W 1,minptp,4uq estimate

for S1 and a Lqp Ñ Lp estimate for rS2, with 1
qp

:“ 1
2

´

1
2 `

1
p

¯

. This results in the following bounds

}Zpt, ¨q}Lp À E0
lnp2` tq

p1` tq
1
2
´ 1
p
` 1

2

´

1
2
` 1
p

¯ , 2 ă p ă 8 , }Zpt, ¨q}L8 À E0
plnp2` tqq2

p1` tq
1
2
` 1

4

.
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Then by changes of variable, Lemma C.4 and a quadratic approximation in wavenumbers, we
note that

}Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}LppR2;Rnq À }Zpt, ¨q}Lp `
›

›

›
|||∇φpt, ¨q|||2

›

›

›

Lp
,

}Kpt, ¨q ´K}LppR2;M2pRqq ` }BtΨ´Ω}LppR2;R2q À }∇φpt, ¨q}Lp ` }Btφpt, ¨q}Lp .

Indeed, since K :“ ∇Ψ and Ψ is defined from φ as Ψpt,xq :“ pId´φpt, ¨qq´1
`

KT px´ t cq
˘

, we
notice that

Kpt,xq “
´

K`K∇φpt, ¨q `Kp∇φpt, ¨qq2 pI2´∇φpt, ¨qq´1
¯

pΨpt,xqq ,(3.7)

BtΨpt,xq “ ´Kpt,xqTc ` pK´1Kpt,xqqT Btφpt,Ψpt,xqq .(3.8)

The proof of Theorem 1.3 is then achieved since

›

›

›
|||∇φpt, ¨q|||2

›

›

›

Lp
À }∇φpt, ¨q}2L2p À

$

’

&

’

%

1

p1`tq
1
2´

1
p`

1
2
, 1 ă p ă 8 ,

plnp2`tqq2

p1`tq
1
2`

1
2
, p “ 8 .

We now specialize the discussion to either Case (Ca) or Case (Cb) and refine the estimates
correspondingly.

3.3. Scalar case. We begin our refined analysis with Subcase (Cb0) since it requires less changes
and is significantly simpler. Since ΩpKq “ ´KTcpKq, using (3.2), we note that for some `0 P R2,
dξ D0pξq “ Api ξq “ i `0 ¨ ξ I2.

The main task is to improve Proposition 3.3.

Proposition 3.5. Assume (D1)-(D2) and Subcase (Cb0).

(1) For any s P R` and any β P N2, there exists Cs,β such that for any 2 ď p ď `8, 1 ď q ď p,
and any t ě 0

}rS2ptqrB
β
xgs}W s,p ď

Cs,β

p1` tq
1` 1

q
´ 1
p

}g}Lq .

(2) For any α P N2, any β P N2 and any ` P N, there exists Cα,`,β such that for any 2 ď p ď
`8, 1 ď q ď p, and any t ě 0

} Bαx B
`
t sptqrB

β
xgs}Lp ď

Cα,`,β

p1` tq
|α|``

2
` 1
q
´ 1
p

}g}Lq .

Proof. We only indicate departures from the proof of Proposition 3.3. We carry out the expansions

of Bα
1

x rξj p¨q, j “ 1, 2, α1 ď α, and Bβ
1

x rqξ` p¨q, ` “ 1, 2, β1 ď β, with respect to ξ respectively up to

fourth and second order so that the remainder part does provide the required p1` tq´1 extra decay.
Then, when we write the part containing only coefficients of the expansions, it involves integrals of
the form

(3.9)

ż

r´π,πs2
ei px´y``0 tq¨ξ mpt, ξq d ξ

with `0 the common speed introduced above and m such that

}∇`
ξmpt, ξq} À

´

}ξ}p2´`q` ` }ξ}2`` p1` tq`
¯

e´θ t }ξ}
2
, ` ě 0 .

Applying the second part of Lemma 3.2 provides the required p1` tq´1 bound for these terms. This
achieves the proof. �
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We now prove Theorem 1.6 restricted to Subcase (Cb0).
To remove the log-factor in the estimates of Theorem 1.1, we notice that Proposition 3.5 implies

}S2ptqrB
β
xgs}W s,p ď

Cs,β

p1` tq
1
2
` 1
q
´ 1
p

}g}Lq , 2 ď p ď 8 , 1 ď q ď p .

One may use this in L8-bounds to replace L2 Ñ L8 bounds with an Lq Ñ L8 bound for some

2 ă q ă 8 together with (3.6) when estimating the
şt
t{2 part of the nonlinear contribution of S2.

Similar estimates also give

}N rVpt, ¨q,φpt, ¨qs}Lq À
E2

0

p1` tq
1´ 1

q

,
4

3
ă q ď 4 , }Zpt, ¨q}Lp À

E0 lnp2` tq

p1` tq
1´ 1

p

, 2 ă p ď 4.

To optimize improvements in Lp estimates of Theorem 1.3 when p ą 4, we first need to derive
sharp estimates for }N rVpt, ¨q,φpt, ¨qs}Lp . This follows readily from the following Lp-version of
Lemma 2.8, whose proof is essentially identical to the one of the original lemma, hence omitted.

Lemma 3.6. (1) For any 0 ď η0 ă 1, any 2 ď p ă 8 and any ` P N, there exist θ ą 0 and
C ě 0 such that for any φ such that }∇φ}L8pR2;M2pRqq ď η0 and any V P W `,ppR2; Rnq

such that D`,ppVq ă `8 and LφV PW `,ppR2; Rnq

ÿ

|α|“`

ż

R2

}BαV}p´2 BαV ¨ BαpLφVq

ď ´θD`,ppVq
p ` C

´

}V}pLp
´

1` }∇2φ}
2 p2``1q
L8

¯

` }∇φ}p
W `,p }V}

p
W 1,8

¯

where

D`,ppVq :“

¨

˝

ÿ

|α|“`

ż

R2

}BαV}p´2 }∇BαV}2

˛

‚

1
p

.

(2) For any ` P N and any 2 ď p ă 8, there exists C such that for any V P W ``1,ppR2; Rnq

and any j P N, j ď `,

}∇jV}Lp ď C }V}1´αLp D`,ppVq
α , with α :“

j

`` 2
p

.

With this in hands one can show that, if 4 ď p1 ă `8 and E
pp1q

0 ă 8, the W 2,p1-norm of
pV,∇φ,φtq globally exists in time with

}pV,∇φ,φtqpt, ¨q}W 2,p ď
Kp1 E

pp1q

0

p1` tq
1
2
´ 1
p

, 4 ď p ď p1 .

Combining them with, for any 2 ă p0 ď 4,

}pV,∇φ,∇2φ,φtqpt, ¨q}Lp ď
Kp0 E0

p1` tq
1
2
´ 1
p

, p0 ď p ď 8 .

this yields, for any 4
3 ă q0 ď 4 ď p1 ă `8,

}N rVpt, ¨q,φpt, ¨qs}Lq ď
Kq0,p1 E0E

pp1q

0

p1` tq
1´ 1

q

, q0 ď q ď p1 .

Then, to bound the contribution of nonlinear terms to Z, we use an Lminptp,p1uq ÑW 1,minptp,p1uq

estimate for S1 and a Lminptp,p1uq Ñ Lp estimate for rS2. This results in the claimed bounds for
}Z}Lp .
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3.4. Scalar-like case: proof of Theorem 1.6. We now study Case (Cb) in general. The main
difference with Subcase (Cb0) is that the required version of Proposition 3.5 is significantly harder
to prove.

To begin with, note that the assumption ensures that for some `0, ` P R2, and some invertible
P PM2pRq,

PApi ξqP´1 “ i `0 ¨ η I2`diagpi ` ¨ η,´ i ` ¨ ηq .

The already analyzed Subcase (Cb0) corresponds to ` “ 0 and, thus, we assume here ` ‰ 0. As
in the proof of Lemma A.9, we point out that with

P pDξ ´Api ξqqP´1 “:
`

qj,krξs
˘

1ďj,kď2
, }ξ} ď ξ0 ,

one has for some θ ą 0 and any ξ P R2 such that }ξ} ď ξ0,

<pqj,jrξsq ď ´θ }ξ}2 , j “ 1, 2 .

Introducing

Σξptq :“ e´ i `0¨ξ t diagpe´ i `¨ξ t, ei `¨ξ tqP etDξ P´1 , }ξ} ď ξ0 ,

one derives for pk, jq P tp1, 2q; p2, 1qu,

pΣξqk,kptq “ eqk,krξs t`

ż t

0
eqk,krξs pt´σq ep´1qk 2 i `¨ξ σ qk,jrξs pΣξqj,kpσq dσ ,

pΣξqj,kptq “

ż t

0
eqj,jrξs pt´σq ep´1qj 2 i `¨ξ σ qj,krξs pΣξqk,kpσq dσ .

Note that the fact that ` ‰ 0 introduces a significant anisotropy in the way the solution spreads.
To measure this, with `K :“ p´`2, `1q (where ` :“ p`1, `2q), let us introduce adapted coordinates
ξq :“ ` ¨ ξ, ξK :“ `K ¨ ξ, and denote as Bq, BK corresponding partial derivatives. Then, from an
integration by parts in the above time integrals one derives that for any a P N, b P N, there exists
C and θ ą 0 such that for any ξ P R2 such that }ξ} ď ξ0, for any t ě 0, and j ‰ k

|||BaK B
b
q pΣj,kqξptq||| ` |||B

a
K B

b
q pΣk,k ´ eqk,kr¨s tqξptq|||(3.10)

ď C e´θ t }ξ}
2
p1` tq

a`2b
2

ˆ

|ξq| `min

ˆ"

1,
|ξK|

2

|ξq|

*˙˙

.

Proposition 3.7. Assume (D1)-(D2) and Case (Cb). Then estimates of Proposition 3.5 still
hold.

Proof. We only show how to bound the contributions to the L8 Ñ L8 bounds of the new type of
terms arising from the integral terms discussed above. We have to estimate in L8z pR

2q integrals of
the form

ż

r´π,πs2
ei pz``0˘`q¨ξ eqk,krξs t χpξqξα d ξ,

and
(3.11)
ż

r´π,πs2
ei pz``0˘`q¨ξpΣj,kqξptqχpξqξ

α d ξ ,

ż

r´π,πs2
ei pz``0˘`q¨ξppΣk,kqξptq ´ eqk,krξs tqχpξqξα d ξ,

where j ‰ k and ξα “ ξα1
1 ξα2 is a monomial with α P N2. The first term can easily be estimated

from Lemma 3.2-(2) so we focus our attention on the last two terms. We proceed in two steps.
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To begin with, we replace estimate (3.4) in the proof of Lemma 3.2 with a suitable anisotropic
estimate. Namely, if a1, b1, a2, b2 are real numbers such that

b1 ă
1

2
ă a1 , a2 ă

1

2
ă b2 ,

ˆ

a1 ´
1

2

˙ ˆ

b2 ´
1

2

˙

ą

ˆ

1

2
´ b1

˙ ˆ

1

2
´ a2

˙

,(3.12)

there exists a constant C such that for any function Γ of z “ pzK, zqq P R2,

}Γ}L1 ďC }Γ}
2a1b2´2b1a2`a2´b2`b1´a1

2a1b2´b1a2

L2

ˆ }|zK|
a1 |zq|

b1 Γ}
b2´a2

2a1b2´2b1a2

L2

ˆ }|zK|
a2 |zq|

b2 Γ}
a1´b1

2a1b2´2b1a2

L2 ,

though it is sufficient for this work to consider the case a1 “ b2 “ 1 and a2 “ b1 “
1
4 . To prove the

foregoing claim, we set

β :“

d

p1´ 2 a2qp2 a1 ´ 1q

p1´ 2 b1qp2 b2 ´ 1q

so that

2 a1 ´ p1´ 2 b1qβ ą 1 , and 2 b2 ´
p1´ 2 a2q

β
ą 1 ,

and, for any r ą 0, R ą 0, we split R2 into three zones defined respectively by
ˆ

|zK|

R
ď 1 and

|zq|

r
ď 1

˙

,

ˆ

|zK|

R
ě 1 and

|zq|

r
ď
|zK|

β

Rβ

˙

,

ˆ

|zq|

r
ě 1 and

|zq|

r
ě
|zK|

β

Rβ

˙

,

to derive

}Γ}L1 À }Γ}L2

?
r R` }|zK|

a1 |zq|
b1 Γ}L2

r
1
2
p1´2 b1q

R
1
2
p2 a1´1q

` }|zK|
a2 |zq|

b2 Γ}L2

R
1
2
p1´2 a2q

r
1
2
p2 b2´1q

“ }Γ}L2

?
r R` }|zK|

a1 |zq|
b1 Γ}L2

p
?
r Rqp1´2 b1q

Rpa1´b1q
` }|zK|

a2 |zq|
b2 Γ}L2

Rpb2´a2q

p
?
r Rqp2 b2´1q

.

Optimizing the latter in pr,Rq (or equivalently in p
?
r R,Rq) achieves the proof of the claim.

The second step consists in proving that if

Γpαqpt, zq “

ż

r´π,πs2
ei z¨ξ mpαqpt, ξq d ξ

where α P N, mpαq smooth, compactly supported near 0 and if there exists N0 P N such that for
any a, b P J0, N0K, we have

|BaK B
b
q mpαqpt, ξq|

ď C e´θ t }ξ}
2
´

}ξ}pα´pa`bqq` ` }ξ}α p1` tq
a`2b

2

¯

ˆ

|ξq| `min

ˆ"

1,
|ξK|

2

|ξq|

*˙˙

,

then for any a, b P r0, N0s,

}|zK|
a |zq|

b Γpαqpt, ¨q}L2 À
1

p1` tq
3
4
`α

2
´a`2b

2

.(3.13)

By interpolation, it is sufficient to analyze the case when a and b are integers and then one may
use

}|zK|
a |zq|

b Γpαqpt, ¨q}L2 “ }pzKq
a pzqq

b Γpαqpt, ¨q}L2 À }B
a
K B

b
q mpαqpt, ¨q}L2 ,
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from which the result follows. Let us point out that in the foregoing, the contribution of the min
term to the required L2 bound is conveniently estimated by splitting the integral in two zones

corresponding to |ξq| ď |ξK|
2 and |ξK|

2 ď |ξq|, bounded the factor e´θt|ξq|
2

by 1 when it is necessary.

Combining the two first steps one obtains for any such Γpαq

}Γpαqpt, ¨q}L1 À
1

p1` tq
α
2

.

This provides the missing ingredient to complete the proof along the lines of Proposition 3.5. �

We omit the details of the end of the proof of Theorem 1.6 as identical to those for the Sub-
case (Cb0).

3.5. Dispersive case: proof of Theorems 1.4 and 1.5. We now turn to Case (Ca). Once

again the main task is to improve estimates on S2ptq, rS2ptq and sptq by relying on the special
structure of etDξ .

To describe this structure in the present case, let us introduce notation erpωq :“ pcospωq, sinpωqq
and use the terminology that a function ξ ÞÑ Apξq is smooth in polar coordinates if it is defined
on t ξ ; 0 ă }ξ} ď ξ0u, for some ξ0 ą 0, and the map pr, ωq ÞÑ Apr erpωqq extends smoothly from
p0, ξ0s ˆ R{p2πZq to r0, ξ0s ˆ R{p2πZq. In the following we shall not distinguish between maps

ξ ÞÑ Apξq and pr, ωq ÞÑ Apr erpωqq, thus we identify BωA with ξK ¨ ∇ξA and BrA with ξ
}ξ} ¨ ∇ξA.

Note that if A is smooth in polar coordinates, it follows that for any α, |BαξApξq| À }ξ}
´|α|.

After these preliminary definitions, we observe that in Case (Ca), there exist complex-valued
maps λ1, λ2 and complementary projector-valued maps π1, π2, all smooth in polar coordinates,
such that

etDξ “

2
ÿ

j“1

et λjpξq πjpξq

and, for j “ 1, 2, λj is continuous at ξ “ 0 with value 0 and for some θ ą 0,

<pλjpξqq ď ´θ }ξ}2 .

Dispersive effects arise from the fact that the dependence of Brλj on ω is non trivial in the following
sense.

Lemma 3.8. By lessening ξ0 if necessary, one may enforce that Brλj`B
2
ωBrλj is nowhere vanishing.

Note that, in contrast, if λj were linear in ξ, then the quantity under study would be identically
zero since B2

ω er “ ´ er.

Proof. We first observe that each λj satisfies

λjpξq
ξÑ0
“ i `0 ¨ ξ ` ε i

a

Qpξ, ξq `Op}ξ}2q ,

where ε P t1,´1u, `0 P R2 and Q is a positive definite quadratic form.

It is sufficient to prove that Λ : ω ÞÑ
a

Qpepωq, epωqq is such that B2
ωΛ`Λ is nowhere vanishing.

Direct computations provide

pB2
ωΛ`Λqpωq “

Qpepωq, epωqqQpepωqK, epωqKq ´Qpepωq, epωqKq2

pQpepωq, epωqqq
3
2

so that the result stems from the Cauchy-Schwarz inequality. �

Proposition 3.9. Assume (D1)-(D2) and Case (Ca).
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(1) For any s P R` and any β P N2, there exists Cs,β such that for any 2 ď p ď `8, 1 ď q ď 2,
and any t ě 0

}rS2ptqrB
β
xgs}W s,p ď

Cs,β

p1` tq
1` 1

q
´ 1
p
` 1

2
min

´!

1
2
´ 1
p
, 1
q
´ 1

2

)¯ }g}Lq .

(2) For any α P N2, any β P N2 and any ` P N, there exists Cα,`,β such that for any 2 ď p ď
`8, 1 ď q ď 2, and any t ě 0

} Bαx B
`
t sptqrB

β
xgs}Lp ď

Cα,`,β

p1` tq
|α|``

2
` 1
q
´ 1
p
` 1

2
min

´!

1
2
´ 1
p
, 1
q
´ 1

2

)¯ }g}Lq .

(3) For any s P R`, there exists Cs such that for any 2 ď p ď `8, and any t ě 0

}rS2ptqrpφ ¨∇qUs}W s,p ď
Cs

p1` tq
5
4
´ 3

2
1
p

}∆φ}L1 .

(4) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` ` ´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

} Bαx B
`
t sptqrpφ ¨∇qUs}Lp ď

Cp,α,`

p1` tq
|α|``

2
` 1

4
´ 3

2
1
p

}∆φ}L1 .

Proof. Let us first observe that it is sufficient to prove new L1 Ñ L8 bounds since then one may
interpolate with the already known bounds Lq Ñ L2 and L2 Ñ Lp. This single argument covers all
the cases except for Lp bounds on ∇x,tsptqrpφ ¨∇qUs when 2 ă p ă 8 since the needed L1 Ñ L2

bound does not hold. Here, instead, one observes that an L1 Ñ L2,8 bound does hold and that it is
sufficient so as to apply an interpolation argument. The former claim about the L1 Ñ L2,8 bound
is essentially shown by studying the most singular part of the associated Green kernel and stems
from the fact that ∇∆´1 sends L1 to L2,8. We have implicitly used here part of the classical theory
on Lorentz spaces and we refer the reader to [LR02, Chapter 2] for the necessary background.

The first elements of the strategy to prove L8 bounds on rS2ptqrB
β
xgs or Bαx B

`
t sptqrB

β
xgs from

an L1 bound on g are similar to those of previous subsections: kernel representation, expansions
with respect to ξ of left and right bases up to a stage where remainders are trivially bounded,
identification of terms of the expansions as products of a smooth periodic function of x times a
smooth periodic function of y times an integral of the type

ż

r´π,πs2
ei px´yq¨ξ`λjpξq t mpξq d ξ

with m smooth in polar coordinates, compactly supported near 0 and vanishing at least at second
order at ξ “ 0. The other bounds to prove may be obtained along the same lines, the only
significant difference lying in the degree of vanishing of m at 0 that may even have a first-order
singularity in the worst estimate under consideration.

By using polar coordinates, one deduces that it is thus sufficient to prove bounds uniform with
respect to pr0, ω0q P p0,`8q ˆR{p2πZq on integrals of the form

ż ξ0

0

ż

R{p2πZq
ei pr0 cospω´ω0q`Λpωqq r t e´r

2 t rΛpr,ωq m̃pr, ωq ra`1 dω d r

with a ě ´1, m̃ compactly supported and smooth in pr, ωq, Λ real-valued, smooth and such

that |Λ ` Λ2| is positively lower bounded and rΛ smooth and such that <prΛq is positively lower
bounded. The control on Λ ` Λ2 is provided by Lemma 3.8. It follows from this control (and an
examination of the regime r0 Ñ `8) that one may split the above integral into a finite number —
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controlled uniformly with respect to pr0, ω0q — of integrals over p0, ξ0q ˆ pαpr0, ω0q, βpr0, ω0qq with
|βpr0, ω0q´αpr0, ω0q| ď 2π and either |r0 cosp¨´ω0q`Λ| or |´ r0 cosp¨´ω0q`Λ2| positively lower
bounded on pαpr0, ω0q, βpr0, ω0qq.

As for pieces on which a control on |r0 cosp¨ ´ ω0q ` Λ| is available one may use

ei pr0 cospω´ω0q`Λpωqq r t “
1

i pr0 cospω ´ ω0q ` Λpωqq t
Br

´

ei pr0 cospω´ω0q`Λpωqq ¨ t
¯

prq

and integrate by parts in the r variable. This provides a bound by t´
3
2´

a
2 , which is t´

1
4 better than

required. Concerning pieces where | ´ r0 cosp¨ ´ ω0q ` Λ2| is under control, we apply the classical
van der Corput Lemma to the integral in ω. This yields a total bound by a multiple of

ż ξ0

0
e´θ r

2 t 1
?
r t

ra`1 d r ď
1

t
5
4
`a

2

ż `8

0
e´θ r

2
ra`

1
2 d r

for some θ ą 0 and achieves the proof. As for a statement and a proof of the van der Corput
Lemma used in the final argument, we refer the reader to either [Rod18, Lemma 3.3] or [LP15,
Corollary 1.1].

Finally, to prove the third and fourth points, we first proceed as in the proof of the second point
of Proposition 2.3 by decomposing into low and high frequencies. The high-frequency part can be
deduced from the previous point and (2.3) whereas the low-frequency part follows from (2.2) and
the strategy used in the previous point. �

With this in hands, the proof of Theorem 1.4 is achieved in a straightforward way and we omit
the involved details. Likewise, since no new idea nor significantly new estimates are needed to
derive Theorem 1.5, we skip its proof.

Let us observe that under the assumptions of Theorem 1.4 the arguments of the present section
also yield estimates for }Wpt, ¨q ´ UKpt,¨qpΨpt, ¨qq}Lp when p ą 4. Yet the decay we would get
in a straightforward way is expected to be suboptimal. As described in Remark 1.7 this spurious
limitation is due to a lack of initial regularity.

4. Averaged dynamics

The last point to be elucidated is the leading-order large-time dynamics of Ψ and ∇Ψ intro-
duced in Theorem 1.3 and its refinements. In this part we use extensively elements provided in
Appendix D.

4.1. Linear estimates. At the linear level, typically we would like to compare sptqrpφ0 ¨ ∇qUs
with Σp0qptqrφ0s where Σp0q denotes the evolution operator for

Btφ “ ´KT dK cpKqpK∇xφq `Λ0rK∇xspK∇xφq .

Since the former system has been designed, in Appendix D.2, to match the large-time low-frequency
behavior from the system derived in Appendix D.1

Btφ “ ´KT dK cpKqpK∇xφq `ΛKrK∇xspK∇xφq ,

at the spectral level it is sufficient to prove that the latter system matches the low-frequency
expansion of Dξ, or, with notation from Appendix A.3, that it is equivalently written as Btφ “

DW p∇xqφ. In combination with Lemma 3.1, this is the content of the following lemma.

Remark 4.1. Let us stress that if one is not interested in getting an independent formal derivation
of the latter system, one could have defined ΛK by the condition Btφ “ DW p∇xqφ and corre-
spondingly skipped the discussion in Appendix D.1. In disguise, this is the intermediate choice
made in [Rod18].
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Lemma 4.2. Assume (D2) and consider a wave parametrization as in Proposition B.1, jointly
with normalization (3.1). For any η P R2, and φ P R2

1

2
d2
ξ D0pη,ηqφ “ ΛKri Kηspi Kη φTq ,

with Λ as in (D.4)-(D.5).

Proof. The starting point is, through (3.1) and (B.1),

1

2
pd2
ξ D0pη,ηqq`,m “ ´δ`,m }Kη}

2 ` xrq0
` ; pLp1qrBKmUpKqpi Kηqsq

T
i KηyL2

per

` xdξprq`q
0pηq; pLp1qrBmUsq

T
pi Kηq ` L0rBKmUpKqpi KηqsyL2

per
.

Now, by using (B.3) and duality relations, one derives

xdξprq`q
0pηq;pLp1qrBmUsq

T
pi Kηq ` L0rBKmUpKqpi KηqsyL2

per

“ ´

2
ÿ

r“1

xdξprq`q
0pηq; BrUyL2

per
KT dKm crpKqpi Kηq

“

2
ÿ

r“1

xrq0
` ; dKr UpKqpi KηqyL2

per
KT dKm crpKqpi Kηq .

Hence the result. �

With this in hands, the general machinery developed in Appendix D.2 provides the relevant
comparisons for Σp0q ´ ΣLF where ΣLF is defined as

{pΣLFptqφqpξq “ χpξq etDξ pφpξq .

Therefore, at the linear level, the remaining task now is to be able to reduce, at leading order, each
sptqrWs to a ΣLFptqrφWs for a suitable φW. The latter reduction simply arises from the first-order

expansion of rqξ` , ` “ 1, 2, thus bounds on the approximation error share many similarities with

bounds on S2, that is arising from the approximation error of the first-order expansion of qξj . The
precise statements are as follows and one proves them similarly to Propositions 3.7 and 3.9.

Proposition 4.3. Assume (D1)-(D2) and Case (Ca).

(1) Let F be a smooth pe1, e2q-periodic function. For any α P N2, any k P N such that
k ď |α| ` 1, and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď 2, and
any t ě 0

›

›

›

›

›

Bαx B
`
t sptqrϕFs ´ Bαx B

`
t ΣLFptq

˜

ϕ xrq0
1 ; Fy

ϕ xrq0
2 ; Fy

¸›

›

›

›

›

Lp

ď
Cα,`

p1` tq
|α|´k``

2
` 1
q
´ 1
p
` 1

2
` 1

2
min

´!

1
2
´ 1
p
, 1
q
´ 1

2

)¯ }∇kϕ}Lq .

(2) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` `` 1´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

›

›

›
Bαx B

`
t sptqrpφ ¨∇qUs ´ Bαx B`t ΣLFptqrφs

›

›

›

Lp
ď

Cp,α,`

p1` tq
|α|``

2
` 3

4
´ 3

2
1
p

}∆φ}L1 .

Proposition 4.4. Assume (D1)-(D2) and Case (Cb).
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(1) Let F be a smooth pe1, e2q-periodic function. For any α P N2, any k P N such that
k ď |α| ` 1, and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď p, and
any t ě 0
›

›

›

›

›

Bαx B
`
t sptqrϕFs ´ Bαx B

`
t ΣLFptq

˜

ϕ xrq0
1 ; Fy

ϕ xrq0
2 ; Fy

¸›

›

›

›

›

Lp

ď
Cα,`

p1` tq
|α|´k``

2
` 1
q
´ 1
p
` 1

2

}∇kϕ}Lq .

(2) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` `` 1´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0
›

›

›
Bαx B

`
t sptqrpφ ¨∇qUs ´ Bαx B`t ΣLFptqrφs

›

›

›

Lp
ď

Cp,α,`

p1` tq
|α|``

2
´ 1
p
` 1

2

}∆φ}L1 .

We observe that the scalar products involved in the foregoing propositions shall be ultimately
computed by relying on the facts that xrq0

` ; BjUy “ δj,`, 1 ď j, ` ď 2, and that, when F belongs to
the range of L0, xrq0

` ; Fy “ 0, ` “ 1, 2.

Remark 4.5. We shall use the possibility to trade some time decay against spatial derivatives on
ϕ to distribute integrability constraints when estimating contributions of nonlinear terms through
Duhamel formula. We point out that to a lesser extent this is also possible when estimating S2ptq

and rS2ptq. This leads to bounds, for k ď 1,

}S2ptqrϕFs}W s,p ď

$

’

&

’

%

Cs}∇kϕ}Lq

p1`tq
1´k

2 ` 1
q´

1
p`

1
2 minpt 1

2´
1
p ,

1
q´

1
2uq

, 1 ď q ď 2 ď p ď 8 , in Case (Ca) ,

Cs}∇kϕ}Lq

p1`tq
1´k

2 ` 1
q´

1
p
, 1 ď q ď p ď 8 , in Case (Cb) ,

to similar bounds for p1` tq
1
2

›

›

›

rS2ptqrϕFs
›

›

›

W s,p
when k ď 2 and for p1` tq

|α|``´1
2

›

›BαxB
`
t sptqrϕFs

›

›

Lp

when |α| ` ` ě 1 and k ď |α| ` `` 1.

4.2. Additional preliminary estimates. To prepare the final comparison with averaged equa-
tions, we need to transfer a few more properties of the geometrical expansions, measured in powers
of ε in Appendix D.1, into large-time asymptotics, measured in powers of t´1. The key points to
reproduce are that

(1) the leading-order description is of modulation type;
(2) the evolution of local parameters is slow;
(3) at leading-order one may express time derivatives of φ as a combination of its space deriva-

tives.

The estimates of Section 3 already prove a version of the first point. However, to analyze
nonlinear terms we need a version with higher-order derivatives. Let us observe that the arguments
of Section 3 do yield that, with notation from Theorem 1.1,

}pV,∇φ,φtqpt, ¨q}W 1,r ď Cp0 E0

$

&

%

lnp2`tq

p1`tq
3
4´

3
2

1
r
, 2 ă p0 ď r ď 8 in Case (Ca) ,

1

p1`tq
1
2´

1
r
, 2 ă p0 ď r ď 8 in Case (Cb) ,

}Zpt, ¨q}W 2,4 ď C E0,3

$

&

%

lnp2`tq

p1`tq
7
8

in Case (Ca) ,

lnp2`tq

p1`tq
3
4

in Case (Cb) .

These bounds are sufficient to show that N rV,φs “ N rpV ´ Zq ` Z,φs is a sum of terms of the
form ϕF with F smooth and periodic and ϕ quadratic in pφt,∇φ,∇2φq, and of a faster decaying
remainder (given as a sum of terms that are at least cubic and of quadratic terms involving Z).
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Concerning the second point, we need to prove that placing extra derivatives on φ brings extra
decay. All the linear estimates on sptq contain a version of the latter. We only need to observe that
this may be transferred at the nonlinear level into the form

}∇2φ}W 2,4 ` }∇Btφ}W 2,4 ` }Zpt, ¨q}W 2,4 ď C E0,3

$

&

%

1

p1`tq
7
8

in Case (Ca) ,

1

p1`tq
3
4

in Case (Cb) .

Note that the initial control follows from the embedding L1 XW 3,4 ãÑ H2 XW 2,8, whereas the
propagation is proved by a continuity argument on }p∇2φ,∇φtqpt, ¨q}W 2,4 , the Z-bound then fol-
lowing. The main difference with our analysis so far is that we use the above observation about
the form of N rV,φs and, for the parts of the decomposition of the form ϕF, with F periodic and

ϕ quadratic in pφt,∇φq, we bound their
şt
t{2-contributions through Duhamel formula transferring

an extra derivative on ϕ thanks to Remark 4.5. The same kind of argument also allows to remove
almost all the lnp2` tq in previous bounds so that one can prove the bounds of Remark 1.7 except

for the bound on }Wpt, ¨q ´UKpt,¨qpΨpt, ¨qq}L8 in Case (Ca) (that we discuss separately below).
Then, to solve the third point about trading time derivatives for space derivatives, we only need to

obtain linear bounds. However
`

Bt `KT
`

dK1 cpKqpK∇q dK2 cpKqpK∇q
˘˘

sptq satisfies the same

bounds as the ones proved for ∇2
xsptq thanks to Lemma 3.1, so that Btφ`

ř

j KT dKj cpKqpK∇φjq
decays following the bounds proved for ∇2φ.

With this in hands, we may now achieve the analysis of nonlinear terms preliminary to compar-
isons with averaged equations.

Proposition 4.6. Assume (D1)-(D2) (and normalization (3.1)). Then the pair pV,φq given by
Theorem 1.1 may be chosen to ensure

N rV,φs :“

ˆˆ

1

2
d2

K ΩpKqpK∇φ,K∇φq ` pK∇φqT dK cpKqpK∇φq ´KT dK cpKqpKp∇φq2q
˙

¨∇
˙

U

´

ˆ

L0

ˆ

1

2
d2

K UpKqpKζ,Kζq ` dK UpKqpK ζ2q

˙˙

ζ“∇φ
` r ,

with

}r}Lp ď

$

’

’

’

&

’

’

’

%

Cp0 E0E0,3

p1` tq
3
4
´ 3

2
1
p
` 5

4

, 4
3 ă p0 ď p ď 4 , in Case (Ca) ,

Cp0 E0E0,3

p1` tq
1
2
´ 1
p
`1

, 4
3 ă p0 ď p ď 4 , in Case (Cb) .

The cumbersome form involving a ζ is chosen to emphasize that the leading-order part of N rV,φs
has the tensorized form ϕF with F periodic required to apply the linear estimates of the former
subsection. Note also that as announced the involved periodic factors either belong to the range of
L0 or are BjU for some j. One may also prove estimates of the remainder in Lp for any p P p1,8s
but we omit those as useless for the rest of our analysis.
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Proof. Combining (B.3) with the above bounds on ∇φ, Z and ∇2φ, one derives (with notation
from Lemma 2.5)

pL
ĂW

PrU, Id´φs ´ L
ĂW

PrU, IdsqpVq ´ pφt ¨ rI2´∇φs´1∇qV

“ pK∇φ∇qT pd GpUq pdK UpKqpK∇φqqq ´ pdK ΩpKqpK∇φq ¨∇q pdK UpKqpK∇φqq

`∇T
´´

KTpK∇φq `KTpK∇φq
¯

∇ pdK UpKqpK∇φqq
¯

` r0

PrU`V, Id´φs ´PrU, Id´φs ´ L
ĂW

PrU, Id´φspVq

“ d2fpUqpdK UpKqpK∇φq, dK UpKqpK∇φqq

` pK∇qT d2GpUqpdK UpKqpK∇φs,dK UpKqpK∇φqq ` r1

´pφt¨∇φ rI2´∇φs´1∇qU

“ ppK∇φqT dK cpKqpK∇φq ¨ ∇qU` r2

PrU, Id´φs ´PrU, Ids ´ LΦPrU, Idsp´φq

“ ´L0rdK UpKqpKp∇φq2qs ´ pKT dK cpKqpKp∇φq2q ¨∇qU

`∇T
´

pK∇φqTpK∇φq∇U
¯

` r3

with rj , j P t0, 1, 2, 3u, decaying as claimed for r in Proposition 4.6. The result then follows by
summing the foregoing identities and using (B.4). �

Thanks to the previous proposition one can also prove that, if E0 is small enough,

}∇3φ}W 1,4 ď C E0,3

$

&

%

1

p1`tq
11
8
, in Case (Ca) ,

1

p1`tq
5
4
, in Case (Cb) .

This last bound allows us to prove the bound on }Wpt, ¨q ´ UKpt,¨qpΨpt, ¨qq}L8 in Case (Ca) in
Remark 1.7. Note also that

}∇3φ}Lr ď
C E0,3

p1` tq
3
2
´ 1
r

, 2 ď r ď 8 in Case (Cb) .

4.3. Averaged systems: proofs of Theorems 1.8, 1.10 and 1.11. We have now all elements
in hands to prove our last round of main results, on averaged systems. We provide details for
Theorem 1.8, proofs of Theorems 1.10 and 1.11 following from similar computations.

We first observe that the existence of a global solution ΨW to (1.10) stems from Proposition D.6.
Motivated by the estimates of Proposition D.6 and following the lines of Subsection 3.2, we get

}Kpt, ¨q ´KW pt, ¨q}Lp À}∇φpt, ¨q ´∇φW pt, ¨q}Lp

` }∇φW pt, ¨q ´∇φW pt, ¨q}Lp ` }∇φpt, ¨q}2L2p ` }∇φW pt, ¨q}2L2p ,

where bounds on the second and fourth terms of the right-hand side are provided by Proposition D.6,
bounds on the third stem from either Theorem 1.4 or Theorem 1.6, and φW satisfies φW p0, ¨q “ φ0

and Equation (D.19), that we write as

BtφW “ ´KT dK cpKqpK∇φW q `Λ0rK∇spK∇φW q `Qp∇φW q
with

QpKq :“
1

2
d2

K ΩpKqpKK,KKq ` pKKqT dK cpKqpKKq ´KT dK cpKqpK pKq2q.

There only remains to bound ∇φ´∇φW .
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On one hand, using notation near (D.14) and Lemma 3.1, the Cauchy problem for φW is equiv-
alently written as

φW ptq “ Σp0qptqrφ0s `

ż t

0
Σp0qpt´ τqrQp∇φW pτqqsdτ.

On the other hand, the preliminary estimates of the present section and estimates of Appendix D
yield

φptq “ Σp0qptqrφ0s `

ż t

0
Σp0qpt´ τqrQp∇φpτqqsdτ `Rptq

where the residual R satisfies

}∇Rptq}Lp ď

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

C
`

E0,3 p1` E0,3q ` }V0}
L

3
2

˘

p1` tq
3
4
´ 3

2
1
p
` 1

2

, 2 ď p ď 8, Case (Ca),

CE0,3

p1` tq
1
2
´ 1
p
` 1

2

, 2 ď p ď 8, Case (Cb0),

CηE0,3 p1` E0,3q

p1` tq
1
2
´ 1
p
` 1

2
p1´ 1

p
q´η

, 2 ď p ď 8, η ą 0, Case (Cb) but (Cb0) fails.

Actually in the estimate of the remainder R, when Case (Cb) holds but Subcase (Cb0) fails, we
have completed Proposition D.2 with

}∇pΣLF ´ ΣLF
p0qqptqrgs}Lp ď

Cr0

p1` tq
1
q
´ 1
p
` 1

2

´

1
q
´ 1
p

¯

´ 1
2

}∇2g}Lq

for any 1 ď q ď 2 ď p ď 8 such that 1
q ´

1
p ě

1
r0
ą 1

2 , whose proof is omitted as similar to

other estimates of Proposition D.2. The proof is then concluded with a continuity argument on
∇φ ´∇φW . To provide some details on the latter, we point out for instance that in Case (Cb)

(when (Cb0) fails) when 2 ď p ď 3, the
şt{2
0 part of the integral is bounded using L

3
2 Ñ Lp

estimates whereas the
şt
t{2 part is bounded with Lminpp,3q Ñ Lp estimates.

Appendix A. Spectral background

A.1. The Bloch transform. In the present subsection, we provide main properties of the suitable
Bloch transform. We shall be rather bold concerning summation issues and meaning of equalities
since, the actual resolution of these questions follows from a combination of the classical arguments,
or even results, for the Fourier transform/series. In particular, everything is readily justified when
applied to Schwartz-class functions and extensions to more general spaces follow from classical
density arguments.

The Bloch transform is designed to ensure the following Bloch-wave decomposition of any func-
tion g over R2

gpxq “

ż

r´π,πs2
ei ξ¨x ǧpξ,xq d ξ

where, for each Floquet parameter ξ P r´π, πs2, ǧpξ, ¨q is pe1, e2q-periodic. It is explicitly given as

Bpgqpξ,xq “ ǧpξ,xq :“
ÿ

pPZ2

e2 iπp¨x ĝpξ ` 2πpq “
1

p2πq2

ÿ

qPZ2

e´ i ξ¨px`qq gpx` qq ,

where ˆ̈ denotes the Fourier transform normalized by

Fpgqpξq “ ĝpξq :“
1

p2πq2

ż

R2

e´ i ξ¨x gpxq d x

and the equivalence of both formula stems from the Poisson summation formula.
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Elementary computational rules are

­p∇xgqpξ,xq “ p∇x ` i ξqpǧqpξ,xq ,

~pg hqpξ,xq “ hpxq ǧpξ,xq , when h is pe1, e2q-periodic,

ǧpξ,xq “ ĝpξq , when supp ĝ Ă r´π, πs2 ,

where g is scalar, and the Bloch transform is applied coordinate-wise. We say that a function
is slow when it satisfies the foregoing support condition on its Fourier transform. Note that, as a

consequence of the above relations, when g is slow and h is pe1, e2q-periodic, ~pg hqpξ,xq “ ĝpξqhpxq,
a relation particularly useful when extracting averaged dynamics from slow modulation behavior.

For any s P N, 2π times the Bloch transform provides a total isometry from14 HspR2q to
L2pr´π, πs2;Hs

perpr0, 1s
2qq endowed with respective norms, equivalent to standard norms,

g ÞÑ

d

ÿ

|α|ďs

}∇α
xg}

2
L2pR2q

, g ÞÑ

d

ÿ

|α|ďs

}ξ ÞÑ }p∇x ` i ξqαgpξ, ¨q}L2pr0,1s2q}
2
L2pr´π,πs2q

,

withHs
perpr0, 1s

2q denoting the closure for theHspr0, 1s2q-topology of restrictions to r0, 1s2 of smooth
pe1, e2q-periodic functions. Throughout the text we call these isometry properties Parseval identi-
ties. Interpolating between those and simple triangle inequalities one derives inequalities that we
call Hausdorff-Young inequalities throughout the text,

}g}LppR2q ď p2πq
2
p }ǧ}Lp1 pr´π,πs2;Lppr0,1s2qq , 2 ď p ď 8 ,

1

p
`

1

p1
“ 1 ,

}ǧ}Lppr´π,πs2;Lp
1
pr0,1s2qq ď

1

p2πq
2
p1

}g}Lp1 pR2q
, 2 ď p ď 8 ,

1

p
`

1

p1
“ 1 .

By using explicit representations of derivatives when s P N and interpolation, those also yield

}g}W s,ppR2q À }ǧ}Lp1 pr´π,πs2;W s,ppr0,1s2qq , s P R , 2 ď p ď 8 ,
1

p
`

1

p1
“ 1 ,

also referred to as Hausdorff-Young inequalities.
Incidentally, let us point out that throughout the text we also use classical Parseval identities

and Hausdorff-Young inequalities, adapted to the Fourier transform.

A.2. Spectral perturbation. We gather here some standard facts, specialized to our present
analysis, about spectral perturbation analysis as contained in [Kat76]. In particular we sketch a
proof of (1.8). We warn the reader that in the present case one can use neither a spectral theorem
for self-adjoint operators nor Evans’ function arguments based on a spatial dynamics interpretation.
Our present account remotely echoes the arguments sketched in [Rod13, p.30-31] for plane waves.

As a relatively compact perturbation of pK∇qTpK∇q acting on L2pr0, 1s2; Rnq with domain
H2

perpR
2; Rnq, each Lξ has compact resolvents, hence discrete spectrum with finite multiplicity.

For each ξ0 and λ0 R σpLξ0
q,

pλ0 I´Lξq
´1 “ pλ0 I´Lξ0

q´1 pI´pLξ0
´ Lξqpλ0 I´Lξq

´1q

provides a smooth representation of the resolvent pλ0 I´Lξq
´1 when ξ is sufficiently close to ξ0.

This is transferred to spectral projectors through Riesz’ formula

ΠΓ
ξ “

1

2 iπ

ż

Γ
pλ I´Lξq

´1 dλ

14We omit to mark the space in which scalar maps are valued so as to omit the standard discussion between
complex-valued maps and real-valued maps, whose Bloch transforms are characterized by an extra symmetry in the
ξ variable.

45



where Γ is a simple positively-oriented curve. The spectral projector ΠΓ
ξ projects on the sum of

generalized eigenspaces associated with eigenvalues of Lξ inside Γ, its rank providing the sum of
algebraic multiplicities of these eigenvalues. Incidentally note that it follows from the formula that
ΠΓ
ξ is the sum of the residues of the resolvent map λ ÞÑ pλ I´Lξq

´1 at eigenvalues contained inside

Γ. Note moreover that the ranges of ΠΓ
ξ and pΠΓ

ξ q
˚ are both valued in H8perpR

2; Cnq. We refer the

reader to [Kat76, Section III.6] for details concerning the foregoing arguments.
At this stage, we may already sketch a proof of (1.8). If for any ξ P r´π, πs2, λ0 R σpLξq, it

follows by continuity over the compact r´π, πs2 that supξ }pλ0 I´Lξq
´1}L2ÑL2 ă `8 and, by the

Parseval identity, that λ0 R σpLq with

pλ0 I´Lq´1pgqpxq “

ż

r´π,πs2
ei ξ¨x pλ0 I´Lξq

´1pǧpξ, ¨qqpxqd ξ .

In the reverse direction assume that λ0 P σpLξ0
q for some ξ0 and denote q0 a corresponding

eigenvector. Then, using again Parseval identities, since q0 P H2
perpr0, 1s

2q, with δ ą 0 sufficiently
small,

q0
δpxq :“

ż

r´π,πs2XBpξ0,δq
ei ξ¨x q0pxqd ξ

defines a nonzero q0
δ P H

2pR2q such that

}pλ0 I´Lqq0
δ}L2pR2q

}q0
δ}L2pR2q

“
}1r´π,πs2XBpξ0,δq

pξqpLξ0
´ Lξqpq

0qp¨q}L2
ξpr´π,πs

2;L2pr0,1s2qq

}1r´π,πs2XBpξ0,δq
pξqq0}L2

ξpr´π,πs
2;L2pr0,1s2qq

δÑ0
ÝÑ 0 .

Hence λ0 P σpLq. This concludes the proof of (1.8). Note that the same arguments apply if, for
some s P N, one considers L as an operator on HspR2; Rnq with domain Hs`2pR2; Rnq and each
Lξ as an operator on Hs

perpr0, 1s
2; Cnq with domain Hs`2

per pr0, 1s
2; Cnq. Incidentally, we observe

moreover that it stems from elliptic regularity that the spectrum of each Lξ does not depend on
which Hs

perpr0, 1s
2; Cnq it is considered.

To go further and analyze the implicitly finite-dimensional spectral problems arising from pertur-
bations in ξ, it is convenient to introduce coordinates. Let λ0 be an eigenvalue of Lξ0

of multiplicity
m0 and Γ0 a simple positively-oriented curve such that the intersection of σpLξ0

q with its interior

is tλ0u. Pick pq
p0q
j q1ďjďm0 a basis of the range of ΠΓ0

ξ0
, and prq

p0q
j q1ďjďm0 a dual basis of the range

of pΠΓ0
ξ0
q˚. One may extend those to ξ near ξ0 by

qΓ0
j pξ, ¨q “ UΓ0

ξ q
p0q
j , rqΓ0

j pξ, ¨q “ ppUΓ0
ξ q

˚q´1
rq
p0q
j , j “ 1, ¨ ¨ ¨ ,m0 ,

provided that pUΓ0
ξ qξ is a smooth family of bounded invertible operators such that

UΓ0
ξ0
“ I , UΓ0

ξ ΠΓ0
ξ0
“ ΠΓ0

ξ UΓ0
ξ , for ξ near ξ0 .

Such a family is obtained by setting

UΓ0
ξ :“

´

ΠΓ0
ξ ΠΓ0

ξ0
` pI´ΠΓ0

ξ q pI´ΠΓ0
ξ0
q

¯´

I´pΠΓ0
ξ ´ΠΓ0

ξ0
q2
¯´ 1

2
, for ξ near ξ0 .

There are various ways to build such a family of operators, we follow here the construction in

[Kat76, Subsection I-4.6] to which we refer for details. Let us simply recall that p¨q´
1
2 is analytic

on the open unit ball centered on I so that the above definition makes sense when ξ is sufficiently
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close to ξ0. Note that in this way one obtains for ξ near ξ0

ΠΓ0
ξ “

`

qΓ0
1 pξ, ¨q ¨ ¨ ¨ qΓ0

m0
pξ, ¨q

˘

¨

˚

˝

xrqΓ0
1 pξ, ¨q; ¨yL2pr0,1s2;Cnq

...
xrqΓ0

m0
pξ, ¨q; ¨yL2pr0,1s2;Cnq

˛

‹

‚

,

Lξ ΠΓ0
ξ “

`

qΓ0
1 pξ, ¨q ¨ ¨ ¨ qΓ0

m0
pξ, ¨q

˘

DΓ0
ξ

¨

˚

˝

xrqΓ0
1 pξ, ¨q; ¨yL2pr0,1s2;Cnq

...
xrqΓ0

m0
pξ, ¨q; ¨yL2pr0,1s2;Cnq

˛

‹

‚

,

et Lξ ΠΓ0
ξ “

`

qΓ0
1 pξ, ¨q ¨ ¨ ¨ qΓ0

m0
pξ, ¨q

˘

etD
Γ0
ξ

¨

˚

˝

xrqΓ0
1 pξ, ¨q; ¨yL2pr0,1s2;Cnq

...
xrqΓ0

m0
pξ, ¨q; ¨yL2pr0,1s2;Cnq

˛

‹

‚

, t ě 0 ,

with

DΓ0
ξ :“

´

xrqΓ0
` pξ, ¨q; Lξ qΓ0

j pξ, ¨qyL2pr0,1s2;Cnq

¯

1ďj,`ďm0

.

In particular, under Assumption (D2), we may apply the latter construction with ξ0 “ 0, λ0 “ 0,

m0 “ 2, some convenient Γ0 symmetric with respect to 0, pq
p0q
1 ,q

p0q
2 q “ pB1U, B2Uq, and throughout

the text we denote

Πξ , qξj p¨q , j “ 1, 2 , rqξj p¨q , j “ 1, 2 , Dξ ,

the corresponding objects. Moreover we denote Σξ the range of Πξ and Σ˚ξ the range of Π˚ξ .
Note that the real symmetry is propagated through the construction, for any ξ sufficiently small,
Πξ “ Π´ξ, Dξ “ D´ξ.

Remark A.1. Note that there is some freedom in the construction of qξj p¨q, rq
ξ
j p¨q, j “ 1, 2, hence of

Dξ. Yet, except in a few places where this is explicitly specified, which particular choice is made is
essentially immaterial. A simple fact in this direction is that the first-order expansion of Dξ with
respect to ξ does not depend on this choice.

Remark A.2. We have expounded spectral perturbation arguments by varying ξ over the compact
r´π, πs2. Yet it is more intrinsic and, for some purposes, also more convenient when ξ0 lies on
the boundary of r´π, πs2 in R2 to consider ξ as varying over R2{p2πZq2. With this point of
view, translation by an element of the lattice η P p2πZq2 leaves the spectra invariant but affects
generalized eigenspaces according to

qΓ0
` pξ ` η,xq “ e´ i η¨x qΓ0

` pξ,xq , rqΓ0
` pξ ` η,xq “ e´ i η¨x

rqΓ0
` pξ,xq .

A.3. Diffusive stability. In the present subsection, we investigate equivalent formulations of
Assumption (D1). Our main result is the following proposition.

Proposition A.3. Assume (D2). Then (D1) is equivalent to the union of the following conditions:

(D1’) For any nonzero ξ,

σpLξq Ă t λ ; <pλq ă 0 u .

(D1W) The operator Bt ´Ap∇q is hyperbolic and there exists θ ą 0 and ξ0 ą 0 such that for any
ξ P r´π, πs2 satisfying }ξ} ď ξ0,

σpDW pi ξqq Ă
 

λ ; <pλq ď ´θ}ξ}2
(

where A and DW are defined below in (A.1).
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Let us first observe that it follows from standard elliptic estimates that there exist ω P R, C ą 0
and M P R` such that for any ξ P r´π, πs2,

σpLξq Ă tλ P C ; |=pλq| ă ´C p<pλq ´ ωq u

and that, when |=pλq| ě ´C p<pλq ´ ωq,

}pλ I´Lξq
´1} ď

M

|λ´ ω|
.

Combining this with standard analytic semigroup theory and a continuity argument in ξ shows
that pD1q is equivalent to the following assertions (1) and pD11q:

(1) for any ξ0 ą 0, there exist θ ą 0 and C ą 0 such that for any ξ P r´π, πs2 satisfying
}ξ} ď ξ0 and any t ě 0

||| et Lξ ||| ď Ce´θt}ξ}
2

;

(D1’) for any nonzero ξ,

σpLξq Ă t λ ; <pλq ă 0 u .

Similarly, the same arguments can be applied to the restriction of Lξ to the range of pI´Πξq when
ξ is sufficiently small. One can show that (D2) and (D1’) imply that there exist ξ0 ą 0, θ ą 0
and C ą 0 such that for any ξ P r´π, πs2 satisfying }ξ} ď ξ0 and any t ě 0

||| et Lξ pI´Πξq||| ď Ce´θt ξ
2
0 ď Ce´θt }ξ}

2
.

For background on standard analytic semigroup theory used in the foregoing discussion the reader
is referred to [Paz83].

Therefore, assuming (D2), condition (D1) is equivalent to (D1’) and

(D1”) There exist ξ0 ą 0, θ ą 0 and C ą 0 such that for any ξ P r´π, πs2 satisfying }ξ} ď ξ0 and
any t ě 0

||| etDξ ||| ď Ce´θt}ξ}
2
.

We now focus on elucidating (D1”). To do so we introduce the second-order expansion,

Dξ
ξÑ0
“ Api ξq ` Bpi ξq

loooooooomoooooooon

DW pi ξq

`Op}ξ}3q ,(A.1)

with

Apζq “ A1 ζ1 `A2 ζ2 ,

Bpζq “ B1,1 ζ
2
1 ` 2 B1,2 ζ1 ζ2 `B2,2 ζ

2
2 ,

where A1, A2, B1,1, B1,2, B2,2 belong to M2pRq. The next lemma contains a first reduction.

Lemma A.4. Assume (D2). Then (D1”) is equivalent to

(D1W”) There exist ξ0 ą 0, θ ą 0 and C ą 0 such that for any ξ P r´π, πs2 satisfying }ξ} ď ξ0 and
any t ě 0

||| etD
W pi ξq ||| ď Ce´θt}ξ}

2
.

Moreover (D1”) implies that Bt ´Ap∇q is an hyperbolic operator.

Proof. Assuming (D1”) with some pξ0, θ, Cq, one proves (D1W”) for pξ̃0, θ
1, C 1q where θ1 may be

chosen arbitrarily in p0, θq, ξ̃0 small enough and C 1 is tuned accordingly. This follows readily from
a Grönwall argument on

sup
0ďsďt

eθ
1 s }ξ}2 ||| esDW pi ξq |||
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based on

etD
W pi ξq “ etDξ ´

ż t

0
ept´sqDξpDξ ´DW pi ξqq esDW pi ξq d s .

The reverse implication is obtained by reversing the roles of DW pi ξq and Dξ.
At last, it follows from a similar comparison argument that from (D1”) with some pξ0, θ, Cq,

there exists C,ω ą 0 such that for any t ě 0 and any ξ P R2 with }ξ} ď ξ0,

||| etApi ξq ||| ď Ceω|ξ|
2t.

By applying the previous inequality to p tε , εξq for t ą 0 and ξ P R2 and letting ε goes to 0, we get
the hyperbolicity. �

This first reduction is extremely robust. Now we turn to arguments that use the dimension at
hand. In this direction, for comparison, note that in dimension 1, a first-order constant-coefficient
hyperbolic system of two equations is either scalar or strictly hyperbolic. Yet, in general, hy-
perbolicity is equivalent neither to direction-wise hyperbolicity nor to Friedrichs symmetrizability.
Nevertheless this is known to be true for constant-coefficient systems of two equations in arbitrary
dimension, see the appendix in [Str67]. For further related comments and basic background on
multidimensional hyperbolic equations we refer the reader to [BGS07].

Our analysis goes further by benefiting from the fact that we have essentially two equations in
two dimensions.

Lemma A.5. Let A0
1, A0

2 P M2pRq, and A0 be defined by A0pζq :“ A0
1 ζ1 ` A0

2 ζ2. Then the
hyperbolicity of Bt ´A0p∇q is equivalent to any of the following conditions

(1) For any unitary ξ0, Bt ´A0pξ0 Bxq is hyperbolic.
(2) There exists S PM2pRq such that S is symmetric positive definite and S A0

1 and S A0
2 are

symmetric.
(3) One of the two following conditions holds

(a) For any unitary ξ0, A0pi ξ0q has real distinct eigenvalues.
(b) There exists P PM2pRq invertible such that P A0

1 P´1 and P A0
2 P´1 are diagonal.

Remark A.6. Condition (3)(a) can occur. For instance, one can take for any δ ‰ 0,

A0
1 “

ˆ

0 δ
δ 1

˙

, A0
2 “

ˆ

1 δ
δ 0

˙

.

Proof. The facts that on one hand hyperbolicity implies direction-wise hyperbolicity, and that on
the other hand Friedrichs symmetrizable systems, strictly hyperbolic systems or systems of uncou-
pled scalar equations are indeed hyperbolic are standard elementary parts of the hyperbolic theory.
We only need to prove that direction-wise hyperbolicity implies both Friedrichs symmetrizability
and the third condition. Thus we assume the first condition.

To be more concrete, we introduce coordinates

A0
j “

ˆ

aj bj
cj dj

˙

, j “ 1, 2 , A0pξq “

ˆ

a ¨ ξ b ¨ ξ
c ¨ ξ d ¨ ξ

˙

.

By elementary considerations the first condition is seen to be equivalent to the fact that for any
ξ P R2 one of the two following conditions holds

(i) A0pξq has real distinct eigenvalues;
(ii) pa´ dq ¨ ξ “ 0, b ¨ ξ “ 0 and c ¨ ξ “ 0.

If Condition (ii) of the alternative holds for some nonzero ξ0, then pa ´ dq, b and c are colinear,
thus for some ` P R2 and A0

0 PM2pRq, for any ξ P R2,

A0pξq “ 1
2 ppa` dq ¨ ξq I2`p` ¨ ξqA

0
0 ,
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and, if ` ‰ 0, hyperbolicity in the direction ` implies that A0
0 is diagonalizable with real eigenvalues.

Therefore, in this case, independently of whether ` “ 0 or not, we meet the second part of the
third condition of the lemma. It is elementary to check that this implies Friedrichs symmetrizability.
Indeed, if P is the corresponding diagonalizing matrix, S :“ P˚P is a Friedrichs symmetrizer.

The only thing left is to check that in the present case strict hyperbolicity, Condition (i) for any
non zero ξ, implies Friedrichs symmetrizability. In this direction, note first that strict hyperbolicity
is equivalently written as, for any nonzero ξ P R2,

pb ¨ ξq pc ¨ ξq `
ppa´ dq ¨ ξq2

4
ą 0 .

This implies that b and a ´ d are not colinear. Thus there exist real α and β such that c “
αb` β pa´ dq. Then, for any ξ,

pb ¨ ξq pc ¨ ξq `
ppa´ dq ¨ ξq2

4
“ α pb ¨ ξq2 ` β pb ¨ ξq ppa´ dq ¨ ξq ` 1

4 ppa´ dq ¨ ξq2

so that the above sign condition is equivalent to α ą β2. This implies that

S :“

ˆ

α ´β
´β 1

˙

is a Friedrichs symmetrizer. �

From the latter lemmas, one deduces readily the following corollary. In the following, we denote
by <p¨q the self-adjoint part, <pMq “ pM`M˚q{2.

Corollary A.7. Assume (D2). Then (D1”) (thus also (D1)) implies that Bt´Ap∇q is Friedrichs
symmetrizable. In the reverse direction, if S is a Friedrichs symmetrizer of Bt ´Ap∇q such that
for any unitary ξ0 P R2, <pS Bpξ0qq is positive definite, then (D1”) holds.

Remark A.8. In order to apply Corollary A.7, note that in the strictly hyperbolic case, S is uniquely
determined (up to multiplication by a positive constant) whereas in the case where the system
consists in two uncoupled scalar equations, the set of allowed S forms a 1-dimensional family (up
to multiplication by a positive constant) if A is not identically scalar and a 3-dimensional family
otherwise. One may use the latter freedom to optimize positivity of <pS Bpξ0qq. The same level of
1-dimensional freedom may also be obtained in the strictly hyperbolic case, provided that one uses
symbolic symmetrizers instead of Friedrichs symmetrizer and notices that the corollary also holds
for symbolic symmetrizers.

By benefiting from the foregoing considerations, we derive the following lemma about low-
frequency diffusivity of second-order systems of two equations.

Lemma A.9. Assume (D2). Then (D1”) is equivalent to any of the following propositions.

(1) The operator Bt ´Ap∇q is hyperbolic and there exists θ ą 0 and ξ0 ą 0 such that for any
ξ P r´π, πs2 satisfying }ξ} ď ξ0,

σpDW pi ξqq Ă
 

λ ; <pλq ď ´θ}ξ}2
(

.

(2) There exists θ ą 0 such that, for any unitary ξ0 P R2,
(a) either Bt´Apξ0 Bxq is strictly hyperbolic, and, for any pair p`0,V0q such that x`0; V0yR2 “

1, with V0 an eigenvector of Apξ0q and `0 an eigenvector of Apξ0q
J for the same eigen-

value, we have

x`0; Bpξ0qV
0yR2 ě θ ;

(b) or Bt ´Apξ0 Bxq is scalar and the eigenvalues of Bpξ0q have real part larger than θ.
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(3) There exists θ ą 0 such that, for any unitary ξ0, there exist ξ0 ą 0 and C ą 0 such that for
any ξ P r0, ξ0s and any t ě 0

||| etD
W pi ξ ξ0q ||| ď Ce´θt |ξ|

2
.

(4) There exists θ ą 0 such that, for any unitary ξ0, there exist ξ0 ą 0 and C ą 0 such that for
any ξ P r0, ξ0s and any t ě 0

||| etDξ ξ0 ||| ď Ce´θt |ξ|
2
.

Remark A.10. With this lemma in hand, one can characterize all the operators DW p∇q satisfying
a low-frequency diffusive stability. Note that a bad interaction between the hyperbolic part and
the second order part can result in the absence of a low-frequency diffusivity. We illustrate this
point with the following matrix

Dpi ξq “ i

ˆ

ξ1 0
0 0

˙

` }ξ}2
ˆ

0 1
´1 ´1

˙

where the second order part is diffusive and yet, DW pi ξq does not satisfy the second condition
of the previous lemma. A spectral perturbation argument at low frequencies reveals that, for

ξ P R2 such that ξ1 “ }ξ}, σpD
W pi ξqq “ tλξ1, λ

ξ
2u with λξ1 “ i }ξ} ` i }ξ}3 ´ }ξ}4 ` Op}ξ}5q and

λξ2 “ ´}ξ}
2 `Op}ξ}3q so that it is clear that (D1W”) is not satisfied.

Proof. That (D1”) implies the first condition stems from Lemma A.4. Now we show that the first
condition implies the second. It is classical that hyperbolicity implies direction-wise hyperbolicity.

Assume first that Bt ´ Apξ0 Bxq is strictly hyperbolic. Then, when ξ is small, DW pi ξ ξ0q is
smoothly diagonalizable with simple eigenvalues, with eigenvectors perturbing from those of Api ξ0q

and eigenvalues expanding as

λ
ξÑ0
“ iλ0 ξ ´ ξ2 x`0; Bpξ0qV

0yR2 ` Op|ξ|3q ,

where λ0 is an eigenvalue of Apξ0q and p`0,V0q is an associated dual pair of left-right eigenvectors.
Therefore the first condition implies the second in the direction ξ0 with a uniform θ.

Assume now that Bt ´ Apξ0 Bxq is scalar, with characteristic speed c0. Then DW pi ξ ξ0q “

i ξ c0 ´ ξ2 Bpξ0q. It is clear that that in this case also the first condition implies the second in the
direction ξ0 with a uniform θ.

Now we aim at proving that the second condition imply (D1”). Thanks to a compactness
argument and Lemma A.4, it is sufficient to prove that (D1W”) holds in the neighborhood of
any direction ξ0. If the strictly-hyperbolic part of the second condition holds at ξ0, one can
introduce P P M2pRq invertible that diagonalizes Apξ0q and easily get eigenvalue expansions of

P etD
W pi ξqP´1 when ξ

}ξ} is sufficiently close to ξ0 and }ξ} is small enough. It is also quite immediate

if Bt ´ Ap∇q is scalar, since then one may use dissipative symbolic symmetrizers adapted to the
second-order part. Thanks to Lemma A.5, this means that we are only left with the analysis of
the case when Bt ´Ap∇q is scalar in the direction ξ0 but strictly hyperbolic in nearby directions.
After a global diagonalization and a change of coordinates, one may assume that ξ0 “ e1, A1 and
A2 are diagonal and that

B1,1 “

ˆ

α β
γ δ

˙

,

with α ą 0, δ ą 0 and α δ ą β γ. Note that we have used here that there is a uniform spectral
gap for nearby directions to determine the signs of α and δ, since otherwise the assumption in the
direction ξ0 would only yield α ` δ ą 0 and α δ ą β γ. As in Corollary A.7, it is sufficient to find
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θ1 ą 0 and a real symmetric positive definite S such that S Apξq is symmetric and <pS Bpξqq ě θ1

when ξ is unitary and sufficiently close to ξ0. If β γ ‰ 0,

S :“

¨

˝

b

|γ|
|β| 0

0
b

|β|
|γ|

˛

‚

fits the requirement. If β “ 0 (resp. γ “ 0), then α ą 0 and δ ą 0 and

S :“

ˆ

M 0
0 1

˙

,
´

resp. S :“

ˆ

1 0
0 M

˙

,
¯

with M ą 0 sufficiently large, does the job. Note that when checking the requirements we are using
that when α1 ą 0, α4 ą 0, α2 P R, α3 P R, the matrix

ˆ

α1 α2

α3 α4

˙

has positive real part provided that α1 α4 ą
`

α2`α3
2

˘2
. This achieves the proof that the second

condition implies (D1”).
The second condition, being direction-wise, is clearly equivalent to the third, whereas the equiv-

alence of the third and fourth conditions follow by a perturbation argument as in Lemma A.4.
This concludes the proof. �

Appendix B. Profile equations

B.1. Local structure. The present subsection is devoted to the proof of the following proposition
ensuring that Assumption (D2) encodes sufficient information to elucidate the structure of nearby
periodic waves.

Proposition B.1. Assume (D2). Then there exist ε0 ą 0 and a smooth map

BpK, ε0q Ñ H2
perpr0, 1s

2; Rnq ˆR2 , K ÞÑ pUKp¨q, cpKqq

such that, for any wavematrix K P BpK, ε0q, pK,UKp¨q, cpKqq solves (1.3) and for any pU, cq P
H2

perpr0, 1s
2; Rnq ˆR2 such that pK,U, cq solves (1.3) and

}c´ c} ď ε0 , inf
ϕ0PR

2
}U´Up¨ `ϕ0q}H2

perpr0,1s
2;Rnq ď ε0 ,

one has c “ cpKq and there exists ϕ P R2 such that U “ UKp¨ `ϕq. Moreover the map K ÞÑ UK

is valued in H8perpr0, 1s
2; Rnq and, for any s P N, there exists 0 ă ε10 ď ε0 such that it is smooth as

a map from BpK, ε10q to Hs
perpr0, 1s

2; Rnq.

The proof follows the Lyapunov-Schmidt reduction. We first show that we can factor out trans-
lational invariance. To do so, we may apply the Implicit Function Theorem to the map

H2pr0, 1s2; Rnq ˆR2 Ñ R2 , pU,ϕq ÝÑ pxrq
p0q
j ; Up¨ ´ϕqyL2pr0,1s2;Rnqqj“1,2

in a neighborhood of pU,0q, where prq
p0q
1 , rq

p0q
2 q is the basis of Σ˚0 in duality with pq

p0q
1 ,q

p0q
2 q “

pB1U, B2Uq. Indeed the map is C1 and, at pU,0q, its differential map with respect to ϕ is ´ I. By
using translational invariance, this implies that there exist ε ą 0 and C ą 0 such that if pU,ϕ0q is
such that

}U´Up¨ `ϕ0q}H2
perpr0,1s

2;Rnq ď ε

then there exists ϕ such that rU “ Up¨ ´ϕq satifies

}rU´U}H2
perpr0,1s

2;Rnq ď C }U´Up¨ `ϕ0q}H2
perpr0,1s

2;Rnq , pI´Π0q prU´Uq “ 0 .
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It is thus sufficient to prove a genuine uniqueness under the assumption that U ´U is small and
pI´Π0q pU´Uq “ 0.

Let us denote by L:0 the inverse of L0 restricted to the range of pI´Π0q. With the extra constraint
pI´Π0q pU´Uq “ 0, Equation (1.3) is equivalent to

U “ U´ L:0rpI´Π0qRs

c “ pK´1Kq
T
c´ pK´1q

T

˜

xrq
p0q
1 ; ¨yL2pr0,1s2;Rnq

xrq
p0q
2 ; ¨yL2pr0,1s2;Rnq

¸

R

with

R “

´

pK∇qTpK∇q ´ pK∇qTpK∇q
¯

U` ppKTc´KTcq ¨∇qpU´Uq

` pK∇qTGpUq ´ pK∇qT pGpUq ` dGpUqpU´Uqq

` fpUq ´ fpUq ´ dfpUqpU´Uqq .

The proof is then achieved by another application of the Implicit Function Theorem.

B.2. Profile variations. We collect here some algebraic relations between the expansions of Lξ
when ξ is small and the derivatives of wave profiles, obtained by differentiating profile equation
(1.3).

To prepare comparisons, we expand Bloch symbols Lξ as

(B.1) LξV “ L0V ` pLp1qVq
T

ipKξq ´ }Kξ}2 V

where

Lp1qV :“ 2K∇V ` dGpUqpVq ` cVT.

By design and invariance by translation, for any ϕ, pK,UKp¨ `ϕq, cpKqq solves (1.3). Differen-
tiating this with respect to ϕ gives

(B.2) L0 BjU “ 0 , j “ 1, 2,

while differentiating it with respect to Kj in the direction η leads to

(B.3) L0rdKj UpKqpηqs ` pLp1qBjUq
T
η ` pKT dKj cpKqpηq ¨∇qU “ 0 , for j “ 1, 2.

Finally, with ΩpKq :“ ´KTcpKq, differentiating the same relation first with respect to Kj in the
direction η then with respect to K` in the direction ζ leads to

(B.4)

L0rd
2
Kj ,K`

UpKqpη, ζqs ` d2fpUqpKqpdKj UpKqpηq, dK`
UpKqpζqq

` pK∇qT d2GpUqpdKj UpKqpηq, dK`
UpKqpζqq

` B`
`

dGpUqpdKj UpKqpηqq
˘T
ζ ` BjpdGpUqpdK`

UpKqpζqqqTη

` 2pKTζ ¨∇qB`pdKj UpKqpηqq ` 2pKTη ¨∇qBjpdK`
UpKqpηqq ` 2pηTζq B2

j`U

“
`

dKj ΩpKqpηq ¨∇
˘

dK`
UpKqpζq ` pdK`

ΩpKqpζq ¨∇q dKj UpKqpηq

`

´

d2
Kj ,K`

ΩpKqpη, ζq ¨∇
¯

U , j “ 1, 2 , ` “ 1, 2 .

Appendix C. Phase related estimates

We gather here some estimates associated with the presence of a spatially-dependent phase
modulation.
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C.1. Sobolev-like estimates. In the present subsection, we bound φ and ∇φ in terms of ∆φ.
Up to immaterial perpendicular rotations, the reconstruction of ∇φ from φ coincides with the

Biot-Savart law that recovers divergence-free vector fields from their curl. For this reason, the
estimates gathered here are essentially special cases of harmonic analysis estimates commonly used
in the analysis of incompressible fluid mechanics. However, for the sake of consistency with the rest
of our analysis, we have decided to provide simplified versions of the latter so as to prove them solely
from Young and Hausdorff-Young inequalities and elliptic regularity in Calderón-Zygmund form.
For sharper estimates, we refer the reader to either [Rod07, Annexe C] or [Rod09a, Section 1.1].
Yet we do make some comments and remarks involving more advanced functional spaces and we
refer the reader to [LR02, Part 1] for the necessary background.

Obviously, bounds are affordable only in regimes where we already know that ∆φ determines
∇φ or even φ. When φ is a tempered distribution, ∆φ determines φ up to a polynomial and
a further condition is needed to ensure uniqueness. In our case, the reconstruction implicitly
hinges on the uniqueness result that the only harmonic tempered distribution that belongs to

Span

ˆ

Ť

1ďpă8
1ďqď8

Lp,qpR2q

˙

is the zero function. In the foregoing, Lp,q denotes Lorentz spaces,

whose Lebesgue spaces Lp “ Lp,p are special cases, and the uniqueness follows from the fact
that no nonzero polynomial belongs to the latter span. As a consequence, when φ is a tempered
distribution,

‚ the knowledge of ∆φ and the condition ∇φ P Span

ˆ

Ť

1ďpă8
1ďqď8

Lp,qpR2;M2pRqq

˙

determines

∇φ completely thus it also determines φ up to a constant function;

‚ for any fixed φ0, the knowledge of ∆φ and the condition φ´φ0 P Span

ˆ

Ť

1ďpă8
1ďqď8

Lp,qpR2; R2q

˙

determines φ thus also ∇φ.

The first extra condition is consistent with the way we recover ∇φ since it ensures that ∆φ P L1

implies ∇φ P L2,8pR2;M2pRqq. Moreover, it follows from Propositions 2.2 and 2.3 and Lemma 2.4
that both extra conditions are propagated by the time evolution.

Since the reconstruction is done component-wise, we may reduce to the consideration of a scalar
φ. We begin by recovering ∇φ from ∆φ. Given some d P L1pR2q, we define v :“ ∇∆´1d such that
∇^v ” 0, ∇T v “ d, by

pvpξq “
i ξ

}ξ}2
pdpξq ,(C.1)

or equivalently through

v :“ G ‹ d , Gpyq “ 1

2π

y

}y}2
, y P R2 .(C.2)

Proposition C.1. (1) There exist pCpq2ăpă8 such that for any d P pL1 X L2qpR2q, v defined
by (C.1) lies in X2ăpă8L

ppR2; R2q and

}v}LppR2;R2q ď Cp }d}pL1XL2qpR2q , 2 ă p ă 8 .

(2) For any 1 ď p0 ă 2 ă p1 ď 8, there exists Cp0,p1 such that v defined by (C.1) from d
satisfies

}v}L8pR2;R2q ď Cp0,p1 }d}pLp0XLp1 qpR2q .

(3) For any 1 ă p ă 8, there exists Cp such that v defined by (C.1) from d satisfies

}∇v}LppR2;M2pRqq ď Cp }d}LppR2q .
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(4) Assume that } ¨ } d P L1pR2q and d P LppR2q for some p ą 1. Then v defined by (C.1)
from d belongs to L2pR2; R2q if and only if

ş

R2 d “ 0.

We prove the last point only to justify a remark of the introduction.

Proof. Since ∇v “ ∇∇∆´1d, the third estimate stems directly from Calderón-Zygmund theory

that ensures that ∇p´∆q´
1
2 acts boundedly on Lp, 1 ă p ă 8.

The first estimate follows from Hausdorff-Young and Hölder inequalities since ξ ÞÑ }ξ}´1 belongs

to pX2ăpď8L
pq` pX1ďpă2L

pq and } pd }L2XL8 À }d}L1XL2 . The second estimate follows from Young
inequality since G P pX2ăpď8L

pq ` pX1ďpă2L
pq.

To prove the last point, we first observe that for any 1 ď q ď p,

}d}LqpR2q À }d}LppR2q ` }| ¨ | d}L1pR2q ,

so that we may use any of these norms in the argument. Now, it follows from Hausdorff-Young and
Hölder inequalities that the L2 norm of the high-frequency part of v is controlled by }d}Lminptp,2uqpR2q.
Moreover, from the pointwise bound

›

›

›

›

pvpξq ´
i ξ

}ξ}2
pdp0q

›

›

›

›

À }∇ξ pd }L8pR2;R2q À }| ¨ | d}L1pR2q

one deduces that pv is locally square-integrable if and only if pdp0q “ 0. Hence the result. �

We now turn to the reconstruction of φ from ∆φ. Given some d P L1pR2q, we define φ :“ ∆´1d
such that ∆φ “ d by

pφpξq “ p.v.

ˆ

1

}ξ}2

˙

pdpξq ,(C.3)

or equivalently through

φ :“ G0 ‹ d , G0pyq “
1

4π
ln
`

}y}2
˘

, y P R2 .(C.4)

Note that conventions are consistent in the sense that ∇p∆´1dq “ p∇∆´1qd.

Proposition C.2. (1) Assume that χ is a smooth compactly supported functions equal to 1 in
a neighborhood of 0. Then there exist pCp,qq 1ďqďpď8

pq,pq‰p1,8q

such that if φ is defined by (C.3)

from d and φHF is defined by {pφHF q “ p1´ χqφ, there holds

}φHF }LppR2q ď Cp,q }d}LqpR2q , 1 ď q ď p ď 8 , pq, pq ‰ p1,8q .

(2) For any 1 ă p0 ď 8 and 1 ă p1 ď 8, there exists Cp0,p1 such that φ defined by (C.3) from
d satisfies

›

›φ ´

ˆ
ż

R2

d

˙

1

4π
ln`

`

} ¨ }2
˘

›

›

›

L8pR2q
ď Cp0,p1

˜

}d}Lp0 pR2q `

›

›

›

›

} ¨ }
2
´

1´
1
p1

¯

plnp2` } ¨ }qq3 d

›

›

›

›

Lp1 pR2q

¸

and, in particular, φ belongs to L8pR2q if and only if
ş

R2 d “ 0.

Here also, we prove the last point only to justify a remark of the introduction.

Proof. Since ξ ÞÑ }ξ}´2 p1 ´ χpξqq belongs to
Ş

1ăqď2W
2,q, its inverse Fourier transform belongs

to
Ş

2ďră8 L
rpp1 ` } ¨ }2qq thus to

Ş

1ďsă8 L
s. Therefore the first estimate follows from Young

inequalities.
We now turn to the second bound. We first observe that

}d}L1 À } lnp2` } ¨ }q d}L1 À }d}Lp0 `

›

›

›

›

} ¨ }
2
´

1´
1
p1

¯

pln` } ¨ }q
3 d

›

›

›

›

Lp1
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When }x} ď 1, splitting

φpxq “

ż

R2

G0pyq dpx´ yq d y

according to whether }y} ď 1 or }y} ě 1, one deduces that

|φpxq| À }d}Lp0 ` } lnp2` } ¨ }q d}L1

since G0 belongs locally to any Lq with 1 ď q ă 8. We now assume that }x} ě 1 and split the
integral in

φpxq ´

ˆ
ż

R2

d

˙

1

4π
ln
`

}x}2
˘

“
1

2π

ż

R2

ln

ˆ

}y}

}x}

˙

dpx´ yq d y

according to }y} ď 1
2}x},

1
2}x} ď }y} ď 2}x} or 2}y} ď }x}. The contribution from 1

2}x} ď }y} ď

2}x} is bounded by a multiple of }d}L1 . In the regime }y} ď 1
2}x}, we also have }x´ y} ě 1

2}x} so

that its contribution is bounded by a multiple of

›

›

›

›

} ¨ }
2
´

1´
1
p1

¯

d

›

›

›

›

Lp1

since

›

›

›
ln

ˆ

} ¨ }

}x}

˙

›

›

›

Lp
1
1 p}¨}ď

1
2 }x}q

ď }x}
2
´

1´
1
p1

¯

.

At last, in the regime }y} ě 2}x}, we also have }x´y} ě 1
2}y} so that this contribution is bounded

by a multiple of

›

›

›

›

} ¨ }
2
´

1´
1
p1

¯

pln` } ¨ }q
3 d

›

›

›

›

Lp1

since

›

›

›
} ¨ }

´2
´

1´
1
p1

¯

pln } ¨ }q´2
›

›

›

Lp
1
1 p}¨}ě1q

ă `8 .

�

Note that an argument similar to the one used to prove the first estimate yields for any φ, if we
denote φLF :“ φ´ φHF ,

}φLF }Lq À }φ}Lp 1 ď p ď q ď 8 ,(C.5)

that we use without mention throughout the text.
The condition d P L1 only ensures φ “ ∆´1d P BMO. Two classical ways to restore φ P L8 are

to assume that d belongs either to the real Hardy space H1 or to the homogeneous Besov space
9B0
1,1. We stress that this is consistent with Proposition C.2 since both H1 and 9B0

1,1 are included in
the space of integrable functions with zero integral.

Remark C.3. We also have:

(1) For any r P r1, 2r, there exists a constant Cr such that for any locally integrable function
φ, there exists a constant φ8 so that

}φ´ φ8}
L

2r
2´r pR2q

ď Cr}∇φ}LrpR2q.

(2) there exist pCpq2ďpă8 such that for any function φ that vanishes at infinity

}φ}LppR2q ď Cp }∇φ}pL1XL2qpR2;R2q , 2 ď p ă 8 ,

(3) for any 1 ď p0 ă 2 ă p1 ď 8, there exists Cp0,p1 such that for any function φ that vanishes
at infinity

}φ}L8pR2q ď Cp0,p1 }∇φ}pLp0XLp1 qpR2;R2q ,

(4) there exists C ą 0, such that for any function φ that vanishes at infinity

}φHF }LqpR2q ď C }∇φ}LqpR2q , 1 ď q ď 8 .
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The proofs of the last three point is similar to the previous ones. The main new ingredient is the
fact that

pφpξq “ ´ i
ÿ

j

ξj
}ξ}2

yBjφpξq :“ ´ i
ÿ

j

hjpξqyBjφpξq

where hj belongs to pX2ăpď8L
pq` pX1ďpă2L

pq and ∇ξ pp1´ χqhjq belongs to
Ş

1ăqď2W
1,q so that

the inverse Fourier transform of p1´ χqhj belongs to
Ş

2ďră8 L
rpp} ¨ } ` } ¨ }2qq thus to

Ş

1ďsă2 L
s.

The first point is a consequence of an homogeneous Poincaré-Wirtinger type inequality.

C.2. Change of variables. We store here a basic estimate, useful to invert Id´φpt, ¨q and quantify
its impact on bounds. It is almost identical to the first half [JNRZ14, Lemma 2.7].

Lemma C.4. Assume that φ : R2 Ñ R2 is a Lipschitz function such that }∇φ}L8pR2;R2q ă 1.
Then Id´φ is invertible and for any 1 ď p ď 8,

}A´B ˝ pId´φq´1}Lp ď p1` }∇φ}L8pR2;R2qq
2
p }A ˝ pId´φq ´B}Lp ,

}A ˝ pId´φq ´B}Lp ď
1

p1´ }∇φ}L8pR2;R2qq
2
p

}A´B ˝ pId´φq´1}Lp .

Finally, if φ1,φ2 : R2 Ñ R2 are Lipschitz functions such that we have }∇φ1}L8pR2;R2q ă 1 and
}∇φ2}L8pR2;R2q ă 1, then for any 1 ď p ď 8,

}pId´φ1q
´1 ´ pId´φ2q

´1}Lp ď
p1` }∇φ}L8pR2;R2qq

2
p

1´ }∇φ}L8pR2;R2q

}φ1 ´ φ2}Lp .

Proof. The invertibility is a direct consequence of the Banach fixed point argument. The first two
estimates follow from a change of variable. The last one is a consequence of the equality

pId´φ1q
´1 ´ pId´φ2q

´1 “ pφ1 ´ φ2q ˝ pId´φ1q
´1 ` φ2 ˝ pId´φ1q

´1 ´ φ2 ˝ pId´φ2q
´1.

�

The second — and less trivial — half of [JNRZ14, Lemma 2.7], estimating }A´B ˝ pId`φq}Lp
in terms of }A ˝ pId´φq´B}Lp and }∇φ}Lp , is of no use here because it requires φ to be bounded.

Note that, though we do not bother to state those, it is clear from the proof that variants
involving regularity in x or in passive variables — such as t — also hold.

Appendix D. Geometrical optics

In the present appendix, we show how to guess from formal geometrical optics considerations the
conclusions about modulation behavior and averaged dynamics that our analysis proves rigorously
following different paths.

D.1. Formal derivation of averaged equations. To begin our formal process, let us consider
the slow/fastly-oscillatory ansatz

(D.1) Wpεqpt,xq “ U pεq
˜

ε t, εx;
Ψpεqpε t, εxq

ε

¸

with, for any pT,Yq, ζ ÞÑ U pεqpT,Y; ζq pe1, e2q-periodic and, as εÑ 0,

U pεqpT,Y; ζq “ U p0qpT,Y; ζq ` εU p1qpT,Y; ζq `Opε2q ,

ΨpεqpT,Yq “ Ψp0qpT,Yq ` εΨp1qpT,Yq `Opε2q .
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Requiring (D.1) to solve (1.1) up to a remainder of size Opεq is equivalent to ζ ÞÑ U p0qpT,Y; ζq
being a scaled periodic traveling wave of profile. Explicitly,

0 “ pKp0q∇ζqT
`

pKp0q∇ζqU p0q
˘

` pKp0q∇ζqT
`

GpU p0qq
˘

´ pΩp0q ¨∇ζqU p0q ` fpU p0qq ,
with local parameters (depending on slow variables pT,Yq) related to phases by

BTΨp0q “ Ωp0q , ∇YΨp0q “ Kp0q .
Choosing a wave parametrization as in Proposition B.1, this is solved by imposing the slow-
modulation form

U p0qpT,Y; ζq “ UKp0qpT,Yqpζq , Kp0qpT,Yq “ ∇YΨp0qpT,Yq .

jointly with the slow evolution equation

(D.2) BTΨp0q “ Ωp∇YΨp0qq .

System (D.2) fails to capture dissipative effects, because they are high-order with respect to
slow expansions. As far as large-time analysis is concerned, one could just correct System (D.2)
with an artificial semilinear second-order term enforcing a good description of slow/low-Floquet
expansions up to second-order. For an example of the latter we refer the reader to [Rod18] (with
dispersion instead of diffusion). Yet, instead, we follow [NR13] and show how going on with the
formal identification provides a relevant higher-order correction.

Requiring (D.1) to solve (1.1) up to a remainder of size Opε2q provides, besides the foregoing
equalities, the extra constraint

0 “ pKp0q∇ζqT
`

pKp0q∇ζqU p1q
˘

` pKp0q∇ζqT
`

dGpU p0qqpU p1qq
˘

´ pΩp0q ¨∇ζqU p1q ` dfpU p0qqpU p1qq

` pKp1q∇ζqT
`

pKp0q∇ζqU p0q
˘

` pKp0q∇ζqT
`

pKp1q∇ζqU p0q
˘

` pKp1q∇ζqT
`

GpU p0qq
˘

´ pΩp1q ¨∇ζqU p0q
`∇Y

T
`

pKp0q∇ζqU p0q
˘

` pKp0q∇ζqT
`

∇YU p0q
˘

`∇Y
T
`

GpU p0qq
˘

´ BTU p0q ,

with Kp1q :“ ∇YΨp1q, Ωp1q :“ BtΨp1q. Denoting LK0
0 the linearized operator L in the variable ζ and

corresponding to the profile U p0q “ UK0 and using relations from Subsection B.2, the constraint is
equivalently written as

0 “ LK0
0 rU p1q ´ dK UpKp0qqpKp1qqs ´

``

Ωp1q ´ dK ΩpKp0qqpKp1qq
˘

¨∇ζ
˘

U p0q
`∇Y

T
`

pKp0q∇ζqU p0q
˘

` pKp0q∇ζqT
`

∇YU p0q
˘

`∇Y
T
`

GpU p0qq
˘

´ BTU p0q ,

Introducing15
rqK0

1 , rqK0
2 a basis of the kernel of the adjoint of LK0

0 , in duality with Bζ1U p0q “ B1U
K0 ,

Bζ2U p0q “ B2U
K0 , we deduce as a necessary constraint

Ωp1q ´ dK ΩpKp0qqpKp1qq

“

˜

xrqK0
1 ; ¨yL2

per

xrqK0
2 ; ¨yL2

per

¸

”

∇Y
T
`

pKp0q∇ζqU p0q
˘

` pKp0q∇ζqT
`

∇YU p0q
˘

`∇Y
T
`

GpU p0qq
˘

´ dK UpKp0qqp∇YΩpKp0qqq
ı

,

that we denote in abstract form

(D.3) BTΨp1q “ dK Ωp∇YΨp0qqp∇YΨp1qq `Λ∇YΨp0qr∇Ysp∇YΨp0qq ,

with

(D.4) ΛKr∇Ysp rKq “
2
ÿ

j“1

2
ÿ

`“1

2
ÿ

m“1

2
ÿ

p“1

Λj,`
p,mpKq Bjp

rKp,mq e`

15We warn the reader of the notational inconsistency rq
K
j “ rq0

j .
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where

Λj,`
p,mpKq “ δ`,m δj,p ` xrqK

` ; pL
p1q
K rBKp,mUpKqsq

T
ej `

2
ÿ

r“1

dKr UpKqpKTBKp,mcrpKqqyL2
per
,(D.5)

L
p1q
K being associated with LK through (B.1), as Lp1q with L.
Introducing Ψ “ Ψp0q ` εΨp1q and grouping together (D.2)-(D.3) yield, up to Opε2q terms that

we discard,

BTΨ “ Ωp∇YΨq `Λ∇YΨrε∇Ysp∇YΨq .

Going back to original pt,xq-variables, the upshot of the formal analysis is that we may expect

Wpt,xq « UKpt,xq pΨpt,xqq , Kpt,xq “ ∇Ψpt,xq ,

with Ψ satisfying

(D.6) BtΨ “ Ωp∇xΨq `Λ∇xΨr∇xsp∇xΨq .

Alternatively, one may observe that the slow evolution obeys

(D.7) BtK “ ∇x pΩpKqq `∇x

`

ΛKr∇xspKq
˘

,

with K curl-free.
Whereas the formal arguments expounded so far do contain some form of large-time considera-

tions since implicitly here the time variable t lives in an interval of length Op1{εq with εÑ 0, it is
not specialized to the situation at stake in the rest of the paper where tÑ8 and K is sufficiently
close to K. In the present paper, we consider cases where nonlinear terms are at worst critical
from the point of view of time decay so that it is only necessary to retain nonlinear terms with the
worst decay rates if one aims at a leading-order description. Moreover, at the level of wavevectors,
the decay is inherently the one of conservative hyperbolic-parabolic systems near constant states

so that every extra spatial derivative is expected to bring an extra t´
1
2 decay. With this in mind,

for our purposes we expect that it should be sufficient to retain from (D.6) either

BtΨ “ Ω` dK ΩpKqp∇xΨ´Kq `
1

2
d2

K ΩpKqp∇xΨ´K,∇xΨ´Kq `ΛKr∇xsp∇xΨq ,

or, alternatively, if one prefers to keep a compact form with the same level of approximation

(D.8) BtΨ “ Ωp∇xΨq `ΛKr∇xsp∇xΨq .

We stress that we regard the rigorous justification of System (D.8) from (D.6) as a routine task in
the sense that the proof of the above formal claims that quadratic second-order terms (or even cubic
first-order terms) could be discarded would follow from a direct inspection of a Duhamel formula if
we already knew that System (D.6) was well-posed in some dissipative sense, including some form
of high-frequency damping estimates similar to (but possibly weaker than) those of Lemmas 2.8
and 3.6.

In cases subcritical from the point of view of time decay, almost by definition, we expect to be
allowed to go even further and simply retain the linear version

(D.9) BtΨ “ Ω` dK ΩpKqp∇xΨ´Kq `ΛKr∇xsp∇xΨq .

D.2. Asymptotic equivalence of hyperbolic-parabolic systems. The issue we want to ad-
dress now is that the derivation of (D.6), in a slow expansion regime, brings relevant information
only of low-frequency type. In particular, it could well be that despite the fact that (D.6) contains
a correct large-time low-frequency description of (1.1), the system is ill-posed because of high-
frequency instabilities having nothing to do with the original system. The issue is ubiquitous in
the theory and we refer the reader to [NR13, Rod18] for closely related discussions.
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To be more precise, we observe that in the low-frequency regime the leading-order part is the
first-order hyperbolic part and the second-order part only brings corrections. As a consequence, in
a direction where strict hyperbolicity is met for the first-order part, Assumption (D1) is reduced
to a sign condition on two coefficients of the four-dimensional second-order operator whereas the
high-frequency properties involve the missing coefficients. To give a concrete example, note that

Btu1 ` Bx1u1 “ pB2
x1
` B2

x2
qu1 ` 2 B2

x1
u2

Btu2 ´ Bx1u2 “ pB2
x1
` B2

x2
qu2 ` 2 B2

x1
u1

exhibits both a diffusive low-frequency behavior, compatible with (D1), and a violent high-frequency
ill-posedness. Consistently, the only situation where we are able to deduce good high-frequency
properties is when the first-order part is strictly hyperbolic in no direction, that is, in Subcase (Cb0)
when the first-order part is scalar.

For this reason, we show here how to replace (D.8) with a well-posed system expected to share,
at leading-order, the same large-time dynamics. The discussion is parallel to the one in [JNRZ14,
Appendix B.2] and extends in various ways, including the class of systems considered and the
sharpness of estimates proved, the analysis about artificial viscosity systems in [HZ95, Rod09b]
(discussed further in [Rod07] and [Rod13, Appendix A]). Even if System (D.6) were known to be
well-posed in some dissipative sense, there would be a gain in simplicity — but a loss in explicitness
— in replacing (D.8) in the way expounded here since the systems introduced below are to be
semilinear, genuinely parabolic, with first-order and second-order parts commuting at the linear
level. This is precisely the commutation property that enables one to extend the good low-frequency
properties to the whole dynamics.

The issue is linear in essence so that our task is to identify a Λ0r∇s such that one could replace
(D.9) with

BtΨ “ Ω` dK ΩpKqp∇xΨ´Kq `Λ0r∇sp∇Ψq .

To begin with, we take a step back from the foregoing discussion and continue the study of Ap-
pendix A.3 — with notational conventions introduced there — so as to prove that the linearized
evolution contained in (D.9) does reproduce correctly the averaged low-Floquet evolution. To ease
comparisons we write Ψ in a co-moving frame and in a perturbative form

(D.10) Ψpt,xq “ KT px´ t cq `ψ
´

t,KT px´ t cq
¯

.

This turns (D.9) into

(D.11) Btψ “ ´KT dK cpKqpK∇xψq `ΛKrK∇xspK∇xψq

Note that Lemmas 3.1 and 4.2 contain that the latter system is equivalently written as Btψ “

DW p∇xqψ. Accordingly we introduce evolution operators pΣW ptqqtě0 and pΣLFptqqtě0 defined as

{pΣW ptqφqpξq “ χpξq etD
W pi ξq

pφpξq , {pΣLFptqφqpξq “ χpξq etDξ pφpξq .(D.12)

Note that the low-frequency cut-off is needed in the definition of ΣW because of the ill-posedness
issues already mentioned and in the definition of ΣLF since Dξ is not even defined when ξ is not
small.

We now come back to the question of identifying Λ0 such that one may replace (D.11) with

(D.13) Btψ “ ´KT dK cpKqpK∇xψq `Λ0rK∇xspK∇xψq

and derive parabolic behavior without altering large-time low-frequency dynamics. Let us anticipate
the choices of Λ0 detailed below and define for later comparisons

(D.14) Dp0qpηqφ :“ Apηqφ`Λ0rKηspKη φ
Tq
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and
{pΣp0qptqrφsqpξq “ etD

p0qpi ξq
pφpξq ,

{pΣLF
p0qptqrφsqpξq “ χpξq etD

p0qpi ξq
pφpξq ,

{pΣHF
p0q ptqrφsqpξq “ p1´ χpξqq etD

p0qpi ξq
pφpξq .

In Subcase (Cb0), we may simply set Λ0 “ ΛK so that ΣLF
p0q “ ΣW .

Proposition D.1. Assume (D1)-(D2) and Subcase (Cb0), and define Λ0 by Λ0 “ ΛK.

(1) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď p,
and any t ě 0

} Bαx B
`
t pΣLF ´ ΣLF

p0qqptqrgs}Lp ď
Cα,`

p1` tq
|α|``

2
` 1
q
´ 1
p
` 1

2

}g}Lq .

(2) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, and any
t ě 0

} Bαx B
`
t pΣLF ´ ΣLF

p0qqptqrφs}Lp ď
Cα,`

p1` tq
|α|``

2
` 1

2
´ 1
p

}∆φ}L1 .

(3) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď p,
and any t ě 0

} Bαx B
`
t ΣLF

p0qptqrgs}Lp ď
Cα,`

p1` tq
|α|``

2
` 1
q
´ 1
p

}g}Lq .

(4) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` ` ´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

} Bαx B
`
t ΣLF

p0qptqrφs}Lp ď
Cp,α,`

p1` tq
|α|``

2
´ 1
p

}∆φ}L1 .

(5) There exists θ ą 0 such that for any α P N2 and any ` P N, there exists Cα,` such that for
any 2 ď p ď `8, 1 ď q ď p, and any t ě 0

} Bαx B
`
t ΣHF

p0q ptqrgs}Lp ď
Cα,` e´θ t

pminpt1, tuqq
|α|`2 `

2
` 1
q
´ 1
p

}g}Lq .

(6) There exists θ ą 0 such that for any α P N2 and any ` P N, there exists Cα,` such that for
any 2 ď p ď `8, and any t ě 0

} Bαx B
`
t ΣHF

p0q ptqrφs}Lp ď
Cα,` e´θ t

pminpt1, tuqq

´

|α|`2 `
2

´ 1
p

¯

`

}∆φ}L1 .

Proof. Let us recall that

(D.15) etDξ ´ etD
W pi ξq “

ż t

0
ept´sqDξpDξ ´DW pi ξqq esDW pi ξq d s

where |||Dξ ´DW pi ξq||| À }ξ}3. This is sufficient to deduce from Hausdorff-Young inequalities the
Lq Ñ Lp bounds when 1 ď q ď 2 ď p ď `8. However formula (D.15) is also well-adapted to the
arguments of Subsection 3.3. When considering the case p “ q “ `8, we get an integral with a
form similar to (3.9) and one can use Lemma 3.2-(2). Altogether this yields the first two sets of
inequalities.
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The last estimates follow from Hausdorff-Young inequalities and arguments of Subsection 3.1
through Green functions representations. �

When Case (Cb) holds but Subcase (Cb0) fails, we define Λ0 through

(D.16) Λ0rKηspKη φ
Tq :“ P´1 diagppPBpηqP´1q1,1, pPBpηqP´1q2,2qPφ

where P diagonalizes A1 and A2. We stress that this definition does not depend on P (since two
convenient Ps only differ by a multiplication from the left by a diagonal matrix) and that it reduces
System (D.13) to two uncoupled scalar transport-diffusion equations (in a suitable basis).

Proposition D.2. Assume (D1)-(D2) and Case (Cb) but with Subcase (Cb0) failing. Define
Λ0 by (D.16).

(1) For any α P N2, any ` P N, and any 2 ď p ď `8, 1 ď q ď p, there exists Cα,`,p,q such that
for any t ě 0

} Bαx B
`
t pΣLF ´ ΣLF

p0qqptqrgs}Lp ď

$

’

&

’

%

Cα,`,p,q

p1`tq
|α|``

2 ` 1
q´

1
p`

1
2p

1
q´

1
pq
}g}Lq , pp, qq ‰ p8, 1q ,

Cα,`,p,q lnp2`tq

p1`tq
|α|``

2 ` 3
2

}g}Lq , pp, qq “ p8, 1q .

(2) For any α P N2, any ` P N, and any 2 ď p ď `8, there exists Cα,`,p such that for any
2 ď p ď `8, and any t ě 0

} Bαx B
`
t pΣLF ´ ΣLF

p0qqptqrφs}Lp ď

$

’

&

’

%

Cα,`,p

p1`tq
|α|``

2 ´ 1
p`

1
2p1´

1
pq
}∆φ}L1 , p ‰ 8 ,

Cα,`,p lnp2`tq

p1`tq
|α|``

2 ` 1
2

}∆φ}L1 , p “ 8 .

(3) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď p,
and any t ě 0

} Bαx B
`
t ΣLF

p0qptqrgs}Lp ď
Cα,`

p1` tq
|α|``

2
` 1
q
´ 1
p

}g}Lq .

(4) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` ` ´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

} Bαx B
`
t ΣLF

p0qptqrφs}Lp ď
Cp,α,`

p1` tq
|α|``

2
´ 1
p

}∆φ}L1 .

(5) There exists θ ą 0 such that for any α P N2 and any ` P N, there exists Cα,` such that for
any 2 ď p ď `8, 1 ď q ď p, and any t ě 0

} Bαx B
`
t ΣHF

p0q ptqrgs}Lp ď
Cα,` e´θ t

pminpt1, tuqq
|α|`2 `

2
` 1
q
´ 1
p

}g}Lq .

(6) There exists θ ą 0 such that for any α P N2 and any ` P N, there exists Cα,` such that for
any 2 ď p ď `8, and any t ě 0

} Bαx B
`
t ΣHF

p0q ptqrφs}Lp ď
Cα,` e´θ t

pminpt1, tuqq

´

|α|`2 `
2

´ 1
p

¯

`

}∆φ}L1 .
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Proof. A small variation on the proof of Proposition D.1 provides a version of the proposition where
in the first two estimates ΣLF

p0q is replaced with ΣW (and the time decay is actually stronger). Thus

we only need to explain how to bound ΣW ´ ΣLF
p0q. We denote

Γpt, zq “

ż

r´π,πs2
ei z¨ξ

´

etD
W
ξ ´ etD

p0qpi ξq
¯

χpξqd ξ :“

ż

r´π,πs2
ei z¨ξmpt, ξq d ξ

and we have to bound }Γpt, ¨q}LrpR2q for 1 ď r ď `8. As encoded in (3.10)-(3.13), the analysis

of Subsection 3.4 (applied with etD
W pi ξq replacing etDξ) is actually already written in terms of

comparisons with the evolution of (D.13) so that m satisfies estimates similar to (3.10). The
arguments expounded there complete the proof when 1 ď r ď 2 and also 2 ă r ă `8, since,
using Hausdorff-Young inequalities, we only have to bound }mpt, ¨q}

L
r
r´1

. There is one detail worth

mentioning, in (3.10) we have absorbed a factor }ξ}2 t in the exponential but it is useful to keep
it apparent when bounding with }∆φ}L1 . Furthermore when r “ `8, we can bound }mpt, ¨q}L1

by splitting the integration domain into three areas corresponding to |ξq| ď |ξK|
2, |ξK|

2 ď |ξq| ď

p1 ` tq|ξK|
2 and p1 ` tq|ξK|

2 ď |ξq|, the factor e´θ t |ξq|
2

being bounded by 1 in the first two areas
and, when t ě 1, by a multiple of pt |ξq|

2q´η for some η ą 0 in the last area. �

We now turn to Case (Ca). With polar coordinates conventions of Subsection 3.5, including
identification of ξ with pr, ωq, let us recall that there exist complex-valued maps λ1, λ2 and com-
plementary projector-valued maps π1, π2, all smooth in polar coordinates, such that

etDξ “

2
ÿ

j“1

et λjpξq πjpξq

with, for j “ 1, 2, λj continuous at ξ “ 0 with value 0, and for some θ ą 0,

<pλjpξqq ď ´θ }ξ}2 ,

and Brλj ` B
2
ωBrλj nowhere vanishing. We define

αjpξq :“
1

i
r pBrλjq|r“0pξq , βjpξq :“

1

2
r2 pB2

rλjq|r“0pξq ,

λ
p0q
j pξq :“ i αjpξq ` βjpξq , π

p0q
j pξq :“ pπjq|r“0pξq ,

where |r“0 means that instead of evaluating at pr, ωq we evaluate at p0, ωq. Note that αj , βj and

π
p0q
j are defined over R2, with respective homogeneity 1, 2 and 0, that αj is real valued with

Brαj ` B
2
ωBrαj bounded away from zero, that <pB2

rβjq is bounded from above away from zero and
that

λjpξq
ξÑ0
“ λ

p0q
j pξq `Op}ξ}3q , πjpξq

ξÑ0
“ π

p0q
j pξq `Op}ξ}q , Api ξq “

2
ÿ

j“1

i αjpξqπ
p0q
j pξq .

Now we define Λ0 through

(D.17) Λ0rKηspKη φ
Tq :“

2
ÿ

j“1

βjpηqπ
p0q
j pηqφ.

Replacing Dξ with DW pi ξq in the foregoing definition of Λ0 would not change the value of Λ0 since

it only involves Taylor expansions captured by DW pi ξq. In particular, Λ0 may equally be obtained
from (D.9).
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Remark D.3. We stress that definition (D.17) is conceptually similar to (D.16) in that both define
the new second-order operator as being, in a frame diagonalizing the first-order expansion, the di-
agonal part of the second-order expansion. A strong difference is that since here the diagonalization
is given by a Fourier multiplier instead of a constant matrix, the resulting operator is an homo-
geneous second-order multiplier instead of a differential operator. Incidentally we point out that
similar analyses in the literature are for the moment restricted to either one-dimensional situations
[LZ97] or isotropic situations [HZ95, Rod09b], thus to cases where extra cancellations do give back
a differential operator.

Proposition D.4. Assume (D1)-(D2) and Case (Ca). Define Λ0 by (D.17).

(1) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď 2,
and any t ě 0

} Bαx B
`
t pΣLF ´ ΣLF

p0qqptqrgs}Lp ď
Cα,`

p1` tq
|α|``

2
` 1
q
´ 1
p
` 1

2
` 1

2
min

´!

1
2
´ 1
p
, 1
q
´ 1

2

)¯ }g}Lq .

(2) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8 and any
t ě 0

} Bαx B
`
t pΣLF ´ ΣLF

p0qqptqrφs}Lp ď
Cα,`

p1` tq
|α|``

2
` 3

4
´ 3

2
1
p

}∆φ}L1 .

(3) For any α P N2 and any ` P N, there exists Cα,` such that for any 2 ď p ď `8, 1 ď q ď 2,
and any t ě 0

} Bαx B
`
t ΣLF

p0qptqrgs}Lp ď
Cα,`

p1` tq
|α|``

2
` 1
q
´ 1
p
` 1

2
min

´!

1
2
´ 1
p
, 1
q
´ 1

2

)¯ }g}Lq .

(4) For any α P N2, any ` P N and any 2 ď p ď `8 such that |α| ` ` ´ 2
p ą 0, there exists

Cp,α,` such that for any t ě 0

} Bαx B
`
t ΣLF

p0qptqrφs}Lp ď
Cp,α,`

p1` tq
|α|``

2
` 1

4
´ 3

2
1
p

}∆φ}L1 .

(5) There exists θ ą 0 such that for any α P N2 and any ` P N, there exists Cα,` such that for
any 2 ď p ď `8, 1 ď q ď p, and any t ě 0

} Bαx B
`
t ΣHF

p0q ptqrgs}Lp ď
Cα,` e´θ t

pminpt1, tuqq
|α|`2 `

2
` 1
q
´ 1
p

}g}Lq .

(6) There exists θ ą 0 such that for any α P N2 and any ` P N, there exists Cα,` such that for
any 2 ď p ď `8, and any t ě 0

} Bαx B
`
t ΣHF

p0q ptqrφs}Lp ď
Cα,` e´θ t

pminpt1, tuqq

´

|α|`2 `
2

´ 1
p

¯

`

}∆φ}L1 .

Proof. The two first sets of estimates are derived by applying the arguments of Subsection 3.5 to
operators arising from the decomposition

etDξ ´ etD
p0qpi ξq “

2
ÿ

j“1

et λjpξq
´

πjpξq ´ π
p0q
j pξq

¯

`

2
ÿ

j“1

ż t

0
ept´sqλjpξq`s λ

p0q
j pξq

pλjpξq ´ λ
p0q
j pξqqπ

p0q
j pξq d s .
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The third and fourth sets of estimates are obtained by applying directly to ΣLF
p0q the arguments of

Subsection 3.5, whereas the last ones follow from Hausdorff-Young inequalities and arguments of
Subsection 3.1 through Green functions representations. �

D.3. Implicit change of variables. The last transformation we would like to perform on formally
derived equations is to convert equations on a Ψ or a ψ into equations for a φ related to Ψ, ψ by

(D.18) Ψpt,xq “ pId`ψpt, ¨qq
´

KT px´ t cq
¯

“ pId´φpt, ¨qq´1
´

KT px´ t cq
¯

,

so as to get closer to the phase introduction in the stability analysis. Our purpose is similar
to the one in [JNRZ14, Appendix B.3] but we stress that for planar waves of reaction-diffusion-
advection systems as considered in [JNRZ13a, JNRZ13b] this discussion may easily be overlooked
since systems for φ and ψ are essentially the same.

In Case (Cb), System (1.10)

BtΨ
W “ Ωp∇ΨW q `Λ0r∇sp∇ΨW q

is differential and thus explicitly expressed in terms of BtΨ
W , ∇ΨW and ∇2ΨW . Therefore the

relevant algebraic manipulations stem directly from the fact when Ψ, ψ, and φ are related through
(D.18) one derives

dx Ψpt,xqpηq “ KTη ` dxψpt,K
T px´ t cqqpKTηq ,

∇xΨpt,xqpηq “ K`K∇xψpt,K
T px´ t cqq ,

d2
x Ψpt,xqpη, ζq “ d2

xψpt,K
T px´ t cqqpKTη,KTζq ,

BtΨpt,xq “
´

I`dxψpt,K
T px´ t cqq

¯

pΩq ` Btψpt,K
T px´ t cqq

and

dxφpt,x`ψpt,xqqpηq “ dxψpt,xqppI`dxψpt,xqq
´1ηq ,

∇xφpt,x`ψpt,xqq “ pI`∇xψpt,xqq
´1∇xψpt,xq ,

d2
xφpt,x`ψpt,xqqpη, ζq “ pI`dxψpt,xqq

´1 d2
xψpt,xqppI`dxψpt,xqq

´1η, pI`dxψpt,xqq
´1ζq ,

Btφpt,x`ψpt,xqq “ pI`dxψpt,xqq
´1Btψpt,xq .

In Case (Cb), the upshot of the computations is that when φW is defined from ΨW , solving (1.10)
with ∇xΨW ´K sufficiently small,

Btφ
W “ ´KT dK cpKqpK∇xφ

W q `Λ0rK∇xspK∇xφ
W q `

1

2
d2

K ΩpKqpK∇xφ
W ,K∇xφ

W q

` pK∇xφ
W q

T
dK cpKqpK∇xφ

W q ´KT dK cpKqpK p∇xφ
W q2q ` rW

with rW pointwise bounded by }∇xφ
W } }∇2

xφ
W }`}∇xφ

W }3, with consistent bounds for its deriva-
tives. This suggests that it it sufficient to consider a solution to

BtφW “ ´KT dK cpKqpK∇xφW q `Λ0rK∇xspK∇xφW q `
1

2
d2

K ΩpKqpK∇xφW ,K∇xφW q

(D.19)

` pK∇xφW q
T dK cpKqpK∇xφW q ´KT dK cpKqpK p∇xφW q

2q

with the same initial data, when working on the φ-side.
We now explain how to extend the above computations to Case (Ca), when System (1.10) is not

differential. The main issue is the lack of smoothness of involved Fourier multipliers. A convenient
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way to bypass this difficulty is to use as an intermediate step Ψaux solving

BtΨ
aux “ Ωp∇Ψauxq ` χppi Kq´1∇qΛKr∇sp∇Ψauxq ` p1´ χppi Kq´1∇qq∇TppKTKq´1∇Ψauxq

with the same initial data as ΨW . The equation for Ψaux is still non local, because of frequency
cut-off operators, but non locality is encoded by smooth multipliers. In order to identify the leading-
order part of the equation for φaux defined from Ψaux, the only missing argument is contained in
the following lemma.

Lemma D.5. Let κ P r0, 1q, s P N and rχ smooth and compactly supported. There exists Cκ,s,rχ
such that for any ψ such that }∇ψ}L8 ď κ, for any F, any |α| ď s, and any 1 ď p ď 8,

›

› Bα
“

prχpi´1 ∇q rF ˝ pId´ψq´1qs ˝ pId´ψq ´ rχpi´1 ∇qF
‰ ›

›

Lp

ď Cκ,s,rχ

|α|
ÿ

`“0

›

›

›
∇`F

›

›

›

Lp

›

›

›
∇1`|α|´`ψ

›

›

›

L8
.

Proof. Note that

prχpi´1 ∇q rF ˝ pId´ψq´1qspx´ψpxqq ´ rχpi´1 ∇q rFspxq “
ż

R2

Γpx,yqFpyq d y

with

Γpx,yq “

ż

R2

ei ξ¨px´yq

ˆ

detpI´∇ψpyqq
detpI´Mψpx,yqq

rχ ppI´Mψpx,yqqξq ´ rχpξq

˙

d ξ

where

Mψpx,yq “

ż 1

0
∇ψpy ` τ px´ yqq d τ .

From here, simplest techniques used throughout the text to provide pointwise bounds achieve the
proof of the lemma. �

By combining the lemma with algebraic computations expounded above one derives that as long
as ∇xΨaux ´K remains sufficiently small,

Btφ
aux “ ´KT dK cpKqpK∇xφ

auxq ` χpi´1 ∇qΛKrK∇xspK∇xφ
auxq ` p1´ χpi´1 ∇qq∆φaux

`
1

2
d2

K ΩpKqpK∇xφ
aux,K∇xφ

auxq

` pK∇xφ
auxq

T dK cpKqpK∇xφ
auxq ´KT dK cpKqpK p∇xφ

auxq2q ` raux

with raux bounded in Lp by }∇xφ
aux}L8 }∇2

xφ
aux}Lp ` }}∇xφ

aux}3}Lp , with consistent bounds for
its derivatives. As a final intermediate step, φaux may be compared to φaux solving the same
equation without the remainder raux, and starting from the same initial data. In turn, φaux is
readily compared to φW solution of (D.19).

The final result is as follows.

Proposition D.6. There exist ε0 ą 0, pCpp0qqp0ą2 and pC`q`PN, `ě1 such that if for some sublinear16

φ0

}∆φ0}pL1XL4qpR2;R2q ď ε0

then, there exist a unique global solution φW to (D.19) with initial datum φW p0, ¨q “ φ0 and a
unique global solution ΨW to (1.10) with initial datum ΨW p0, ¨q “ Ψ0 given by

Ψ0pxq “ pId´φ0q
´1

´

KTx
¯

,

16As in Theorem 1.1 we mean that φ0 may differ from ∆´1
p∆φ0q by a constant function but not by a non-constant

affine function.
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such that, with

rp,s :“

#

3
4 ´

3
2

1
p `

s
2 in Case (Ca)

1
2 ´

1
p `

s
2 in Case (Cb)

there holds for any t ě 0,

}BαφW }L4 ď
C|α| }∆φ0}L1XW |α|´2,4

p1` tqrp,|α|´1
, |α| ě 2 ,

}BαφW }Lp ď
C|α|`1 }∆φ0}L1XW |α|´1,4

p1` tqrp,|α|´1
, |α| ě 2 , 2 ď p ď 8 ,

}∇φW }Lp ď
Cpp0q }∆φ0}L1XL4

p1` tqrp,0
, 2 ă p0 ď p ď 8 ,

and, with φW defined from ΨW and ΨW from φW through (D.18), for any t ě 0,

}BαpφW ´ φW q}Lp ď
C|α|`2 }∆φ0}L1XW |α|,4

p1` tqrp,|α|`
1
2

, |α| ě 0 , 2 ď p ď 8 ,

}BαpΨW ´ΨW q}Lp ď
C|α|`2 }∆φ0}L1XW |α|,4

p1` tqrp,|α|`
1
2

, |α| ě 0 , 2 ď p ď 8 .

We skip the proof of Proposition D.6 because we have already discussed the main ingredients
of the proof, and the remaining parts are very similar to arguments detailed elsewhere along the
text. Let us simply point out that the existence part stems from a simple fixed-point argument,
since equations are essentially of semilinear parabolic type. Note that the last estimate follows from
Lemma C.4.
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