N
N

N

HAL

open science

PHASE SINKS AND SOURCES AROUND
TWO-DIMENSIONAL PERIODIC-WAVE
SOLUTIONS OF

REACTION-DIFFUSION-ADVECTION SYSTEMS
Benjamin Melinand, L. Miguel Rodrigues

» To cite this version:

Benjamin Melinand, L. Miguel Rodrigues.

SYSTEMS. 2024. hal-04679839

PHASE SINKS AND SOURCES AROUND TWO-
DIMENSIONAL PERIODIC-WAVE SOLUTIONS OF REACTION-DIFFUSION-ADVECTION

HAL Id: hal-04679839
https://hal.science/hal-04679839v1

Preprint submitted on 28 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04679839v1
https://hal.archives-ouvertes.fr

PHASE SINKS AND SOURCES
AROUND TWO-DIMENSIONAL PERIODIC-WAVE SOLUTIONS
OF REACTION-DIFFUSION-ADVECTION SYSTEMS

BENJAMIN MELINAND AND L. MIGUEL RODRIGUES

ABSTRACT. We develop a complete stability theory for two-dimensional periodic traveling waves
of reaction-diffusion systems. More precisely, we identify a diffusive spectral stability assumption,
prove that it implies nonlinear stability and provide a sharp asymptotic description of the dynamics
resulting from both localized and critically nonlocalized perturbations. In particular, we show that
the long-time behavior is governed at leading order by a second-order Whitham modulation system
and elucidate how the intertwining of diffusive and dispersive effects may enhance decay rates. The
latter requires a non trivial extension of the large-time estimates for constant-coefficient hyperbolic-
parabolic operators to some classes of systems with no particular structure, including on one hand
systems with a scalar-like — but not scalar — hyperbolic part and a cross-diffusion, and on the
other hand anisotropic systems with dispersion.

Keywords: periodic traveling-wave solutions; reaction-diffusion systems; asymptotic sta-
bility; modulation systems; dispersive estimates; hyperbolic-parabolic systems.

AMS Subject Classifications: 35B35, 35K57, 35C07, 35B40, 35B10, 37L15.
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We initiate here a general programme aiming at a complete stability theory for genuinely multi-
dimensional periodic traveling waves of parabolic systems. By a stability theory, we mean general
results — or at least a systematic approach — that on one hand convert suitably defined spectral
stability into nonlinear asymptotic stability in a suitable sense and on the other hand provide large-
time asymptotics for the dynamics about such stable waves. Our goal is to extend the comprehensive
theory now available for plane periodic waves to the multidimensional context. Concerning the
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latter we refer the reader to [JNRZ14] and references therein for a general picture and to [JNRZ13al,
JNRZ13b] for the pieces of work that are the most closely related to the present analysis.

In the present contribution, we focus on the case when spatial variables vary in R? and the
equations form a reaction-diffusion-advection system. Namely we consider

(1.1) W; = AW + VI GW) + (W),

for the R"-valued unknown W, W(t,x) € R" (with n € N*), where ¢ denotes time variable and
x € R? denotes spatial variable. In , we identify vectors of R™ with column vectors — that
is, with elements of M,, ;(R)—; flux and source nonlinearities G and f are smooth functions on
R" valued respectively in Ms,, and R"™ = M,, 1(R); the spatial divergence operator VT acts row-
wise and the spatial Laplacian A is scalaxﬂ For more details and further conventions concerning
vectorial and differential notation we refer the reader to the devoted section, Section

We study the general form in System as a compromise between generality and readibility.
We claim however that, beyond some form of parabolicity, only two features of matter: the
fact that coefficients depend neither on time nor on space variables; the fact, implicit here but
encoded in (D2), that the source term is non degenerate so that no hidden conservation law stems
from ((1.1)). Both assumptions are deeply reflected in the structure of periodic traveling waves
expounded below. To support the claim that the detailed structure of the original system is almost
immaterial, let us anticipate on our analysis and list possible generalizations, by increasing order of
difficulty. By a change of spatial variables, one may reduce any scalar symmetric elliptic operator
to the scalar Laplacian. Changes required to analyze the general second-order semilinear parabolic
case, including cross diffusions, are mostly notational. This simple observation turns out to be
crucial to cover many of the examples in the literature that we give below. Studying the general
second-order quasilinear parabolic case may be done along the same lines by increasing by one
the level of regularity of involved solutions. Similarly the analysis of quasilinear parabolic cases
of other orders differs mostly by the level of regularity of solutions. For some detailed examples
of adaptations of the plane-wave analysis, the reader is referred to [BJN™13| on a fourth-order
semilinear parabolic equation and to [RZ16] on a quasilinear system that is parabolic only in the
sense of some averaged version of the Kawashima condition.

A (uniformly) traveling-wave solution to is a solution W in the form W(t,x) = U(x—tc),
where U is the wave profile and ¢ € R? is the wave speed. We say that the wave is periodic if
its profile U is periodic. We are specifically interested in the case when U is genuinely multi-
dimensional so that its group of periods is discrete, thus may be written as X1 Z + X9 Z for some
basis of R?, (X1,X32). In the latter situation, we say that U is (Xi, X)-periodic. Alternatively
one may scale the group of periods to be Z? by introducing wave vectors (K1, Kjz), given as the
dual basis of (X1,X5). As a result, a two-dimensional periodic wave is equivalently defined as a
solution W of the form

(1.2) W(t,x) = U(KT (x—tc)) - U (KTx+tQ) :

with K = (K1 Kg) € M22(R) aﬂ matrix of wave vectors, @ = —K"c € R? a temporal frequency
vector, ¢ the wave speed and U an associated (scaled) wave profile normalized to satisfy

U(—I_e]):U? j:172>
where (ej, eg) is the canonical basis of R%. When W is given by (1.2), it solves (1.1]) if and only if
(1.3) 0= (KV)(KV)U + (KV)"G(U) + (K'c-V)U + f(U).
1n the sense that it acts component-wise, with the same action on each component.

2The choice of (X1, X3), or equivalently of (K, Kz), is not canonical, but it is locally unique.
2



In our analysis, we shall take as an assumption the existence of one specific wave, spectrally stable
in a suitable sense. Yet the reader may wonder what is the relevance of this kind of objects and
whether there is a robust universal mechanism supporting the existence of such objects. We claim
that this is indeed the case and that such objects are somehow ubiquitous. To support the claim,
we briefly recall, in words of [Rod13], one of the prominent paradigms of the general field including
studies in pattern formation, coherent structure, nonlinear waves and hydrodynamic instabilities.

Quite often transition to instability of a certain form of solutions often gives rise to a new
family of patterns whose stability may in turn also be investigated. Hence the classical strategy
— for equations involving some set of parameters — consisting in carrying a parametric study
of stability/instability. Starting from a simple family of solutions, explicit or even trivial, known
to be stable for a certain range of parameters, one varies these parameters up to a transition to
instability. At this threshold emerges a new family of special solutions, whose stability is also
tracked when varying parameters and that can also yield yet another family of solutions, and so on
and so forth. The patterns emerging from the first transition are usually called primary instabilities,
those coming next secondary instabilities. Although one may artificially build systems exhibiting
an infinite number of such transitions, it seems that in most of classical physical problems the
instability of secondary patterns leads rather to chaos then turbulence. An argument supporting
this phenomenological rule of thumb is that the emergence of new patterns often goes with a
symmetry breaking increasing the dimensional complexity: trivial solutions are zero dimensional,
primary instabilities one-dimensional, secondary ones two-dimensional, then comes chaos. Two-
dimensional periodic waves studied here typically arise as secondary instabilities, the role of primary
instabilities being played by plane periodic traveling waves, but may also emerge directly as primary
instabilities from constant states. From this point of view the forthcoming [RR], that studies the
bifurcation of two-dimensional periodic waves from plane waves, appears as a companion paper.
We refer the reader interested in supporting examples and further developments of the foregoing
notions to [CHI93, Man04, [CG09, [Chall] and to [UW14] the reader interested in an example of a
numerical parametric study in a context close to our nonlinear analysis.

From the point of view of mathematical analysis the near-constant study is in many ways more
tractable than the near plane-wave one. Correspondingly, the mathematical literature devoted to
proofs of existence of two-dimensional periodic waves is overwhelmingly focused on their arising from
constant states, in particular through Turing bifurcations. As illustrated by [Kno90], a large part
of this literature outgrows from the trailblazing of equivariant bifurcation in [Sat79, (GSS88]. We
refer to [DSSS03|, Section 2] for a short review of this kind of analysis. To help the reader navigate
through this primary-instability literature we add a few general comments on the bifurcation of
small-amplitude two-dimensional periodic patterns.

(1) Many of the studied systems are invariant under the symmetry x — —x. As a result all
small traveling waves built in this case are standing waves, that is, €2 is identically zero
along the family of waves. Such a symmetry happens for when G is assumed to be
identically zero.

(2) A significant part of the literature focuses on an even smaller class, the one of isotropic
systems, that is, the one of systems invariant under the action of any linear rotation.
Again this happens for when G is zero. As a consequence, in this case, built small-

amplitude periodic waves arise with limiting wavevectors (Kgo) ,Kgo)) sharing the same

norm. Generically, then, the only vectors of KgO)Z + KgO)Z with this norm are Kgo)7 Kéo),

—Kgo), —Kéo), those forming a rectangle so that corresponding standing waves are often
referred to as (generalized) squares. Elementary geometry shows that the exceptions to the
latter happen exactly when the angle between Kgo) and Kgo) is m/N (or —7/N, m+ /N,
7w —m/N) for some integer N > 3, so that the vectors of the lattice on the prescribed circle

3



form a regular polygon with 2/N-vertices. Standing waves arising from the case N = 3
are often referred to as hexagon patterns. The exceptionally regular case is associated
with a higher-dimensional limiting kernel but this dimension is reduced by enforcing extra
symmetries on the sought pattern. We emphasize that all cases are equally captured by our
nonlinear analysis (when suitable spectral stability is met).

(3) The small-amplitude existence studies are often completed by a stability diagram. We warn
the reader that the stability analyzed in the literature is restricted to perturbations with
the symmetries of the pattern, in particular with the same periodicity. This is by far a much
simpler task that the one we tackle here, and may be deduced from the computation of a
normal form on a suitable center manifold. In contrast the secondary-instability analysis of
[RR] provides exactly the notion of spectral stability needed here.

Let us stress again that despite the absence, until now, of a complete mathematical treatment
of dynamics on extended domains, multidimensional periodic patterns are currently observed in
numerous real life contexts where spatial domains are far from resembling fundamental domains of
the patterns. Jointly with [RR] the goal of the present contribution is to help bridging this gap.

One reason to restrict our analysis to dimension two is that we believe that technical gaps
concerning tools available to study stability issues lie on one hand between constant solutions and
non-constant solutions — zero-dimensional objects to one-dimensional objects — and on the other
hand between plane waves and genuinely multi-dimensional waves — one-dimensional objects to
two-dimensional objects —. Therefore the present analysis is expected to be representative of other
multi-dimensional analyses. As a first sign of this gap, we stress that a large part of the technical
tools classically used in the analysis of plane waves hinges on spatial dynamics building from ODE
interpretations of both profile equations ( here) and spectral problems, none of them being
available in the present context (at least in an obvious way). A priori this rules out techniques as
common in the field as phase portrait analysis, Evans functions, accompanying pointwise bounds
on Green functions, etc.

1.1. Stability. From now on we pick a specific periodic wave solution and use underlining to denote
wave quantities related to this specific wave, including U, K, ¢, etc. To analyze the dynamics near
this specific wave it is convenient to work in an adapted co-moving frame. Introducing W through

(1.4) W(t,x) = W (t,KT (x—tg))
turns into
(1.5) W, = (KV)"(KV)W + (KV)'G(W) + (K'c- V)W + f(W).

By design, (¢,x) — U(x) is a stationary (e, e2)-periodic solution to (|1.5)). Linearizing (1.5 about
U yields the periodic-coefficient equation (d; — L)V = 0 with L given by

(1.6) LV := (KV)(KV)V + (KV) dGU)(V) + (K'c- V)V + df(U)(V).

From a functional-analytic point of view, we shall consider L as an operator on L?*(R?;R") with
domain H?(R? R").

By (variations on) classical arguments — detailed in Appendix [A| —, based on a suitable in-
tegrable transform — the Bloch transform —, the analysis of the action of L on functions over
R? is reduced to the study of a Bloch symbol & — L¢, that with each £ € [—7, 7]? associates
an operator on (ei,eg)-periodic functions. More explicitly, for each & € [—m,7]?, Lg¢ acts on
L2([0,1]*;C") = L*(R?/Z?%; C") with domain H2  (R?* C") =~ H?(R?/Z*; C") through
(1.7)

LeV = (K(V +i€)K(V +i§V + (K(V +1€))" dGU)(V) + (KTe - (V +1€))V + d£(U)(V),
4



and, as such, has compact resolvents hence discrete spectrum, reduced to eigenvalues of finite
multiplicity. As a consequence of the Bloch-wave representation and the continuity of o(Lg¢) with
respect to variations in &, in particular, the following spectral decomposition holds

(1.8) o(L) = |J olLe).
ge[—m.7]?
See Appendix for a proof.

To motivate the definition of the relevant notion of spectral stability, we point out that it follows
from translational invariance of that for any ¢, € R?, U(- + ) is also a periodic traveling-
wave profile associated with (K, c). As a consequence, differentiating the corresponding profile
equations with respect to ¢, shows that 0;U and d,U lie in the kernel of Lg. Note moreover that
the independence of 01U and 02U is precisely the condition that the wave under consideration is a
genuinely multi-dimensional wave (and not a plane-wave in disguise). Besides, the real symmetry
of spectra (stemming from the fact that has real coefficients) implies that the real part of the
eigenvalues of L¢ arising from the zero eigenvalue of Lo when £ is small cannot be of order [£]
unless the background is unstable. Therefore the best one may expect is diffusive spectral stability
in the sense of the following conditions

(D1) There exist § > 0 and C' > 0 such that for any &€ € [, 7]? and any ¢ > 0
et te | < CceEr,

where (e?L¢),50 denotes the semigroup on L?([0,1]%; R") generated by L¢ and || - || stands
for operator norms.

(D2) The spectrum of Lg intersects i R only at A = 0 and A = 0 is an eigenvalue of Lg of algebraic
multiplicity 2, its generalized eigenspace g being spanned by 01U and 0, U.

Assumption (D2) encodes that the criticality of the co-periodic spectrum is minimal. In turn,
we think assumption (D1) as at least two-fold. The fact that the bound holds when [&|| = &
for some fixed &y > 0 (and (0, C) depending on &) is equivalent to the fact that for any & such
that |&]| = &o, 0(Le) < { A; B(A) <0 }. Once this is known to hold for any & > 0 and (D2) is
also enforced, (D1) is equivalent to the modulation system, introduced below, being hyperbolic-
parabolic in a suitable Kawashima sense. We detail the latter in Appendix [A] We have chosen to
summarize all these aspects in the form (D1) mostly because it is particularly convenient for our
linear and nonlinear stability analysis but, in Appendix [A] we provide more concrete equivalent
characterizations and even simpler sufficient conditions. It is important to note that, unlike what
happens for one-dimensional waves [JNRZ13al, [JNRZ13b], condition (DD1) is in general stronger
than

(DO0) There exists § > 0 such that for any & € [—, 7]? we have
a(Le) = { A; RN < —0J€)* } .

The difference between (DO0) and (D1) lies in uniform control on diagonalization/symmetrization
near (A, &) = (0,0). To stress that something is at stake, we point out that in general one cannot
hope for a consistent diagonalization, smooth in &, near £ = O for the eigenvalues arising from the
double eigenvalue A = 0 at £ = 0, but instead, at best in general, one expects the diagonalization to
be smooth in (||€], II%H) Incidentally we observe that this lack of smoothness on the symbolic side
is intrinsically tied to dispersive effects, potential enhancing decay in poorly-localized topologies
but deteriorating it in localized topologies. For more details, we refer the reader to the distinction
between Cases (Ca) and (Cb) below and the discussion and results surrounding it.

Our first result converts spectral stability in the diffusive sense of (D1)-(D2) into nonlinear
asymptotic stability in a suitable sense. Though our statement contains a more detailed description,

it should be thought as providing stability in the space-modulated sense of [JNRZI14] (see also
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[Rod13l [Rod15]). This consists in measuring in the classical definition of stability the proximity to
U of both initial data and solutions at later times by

inf  [Uo® - Ulx +[|V(® —1d)y

® invertible

where (X,Y) are some functional spaces (possibly different for initial data and the solution). For
comparison, note that naive stability requires control on |[U—U|x whereas orbital stability requires
control on

[Uo® -Ulx.

& uniform translation
Note that it is possible to choose Y as a space of curl-free vector-fields, on which it is natural to
choose | - |y as [V]y := | VT(V)|s for some functional space Y.

Theorem 1.1 (Stability). Let U be a stationary (e1,ez)-periodic solution to (1.5)) associated to
the matriz of wave vectors K and speed c. Assume (D1)-(D2). There exists g > 0 and C > 0
such that if for some sublmemﬂ o}

Eo = [Wo(- — ¢9) — Ul g2~z ®memr) + A0l (2t ~wteymer2) < €0

then, there exist a unique global solution to (1.5 with initial datum Wy and a phase shift ¢ with

¢(0,-) = ¢, such that, for any t =0,
C E
IW(t,-— &) — Ulwaamzrn) + VO, )w2amzmam)) + 1010, ) [weamer2) < (1+t(;i'

Furthermore, with constants independent of (Wy, @) and no further restriction on Ey,

(1) for anyt =0,
In(2+1t)
(1+ t)% ’

(2) for any 2 < py < qo < 00, there exists a constant Cp, 4, > 0, such that for any p € [po, qo],
and any t =0

IW(t,- — () = Ullpome;rny + VO, ) Lo ®enmomr)) + 1060 )| Lom2r2) < C Eo

Cpmqo Ey .

HW(t, T ¢(t7 )) - HHLP(R.Q;R,") + Hv¢<t7 ‘)HLP(RQ;MQ(R)) + "at(j)(t? ')HLP(RQ;R2) < (1 t)%_l )
+ »

(8) for any £ € N, £ = 2, there exists Cy such that if moreover

Eop = [Wo(- = &) — Ul (2 rwesymzrn) + 1A (p1awe-10ym2m2) < +0
then for any t = 0,
CyEoy
(1+8)1

Note that adding an affine function to ¢, would alter the background matrix of wave vectors so
that the arising solution should be compared with another periodic solution of ([1.5). That is the
main reason why we only deal with sublinear initial phases.

What drives decay rates is the initial localization. From this point of view, the key part of the
assumption is Wo(- — ¢py) — U € L? and A¢ € L' (with small norms). The assumption Ag, € L
should be thought as a relaxation of V¢, € L?. Indeed, Ag, € L' implies that V¢, belongs to
L** the weak-L? space. Moreover, if (1 + || - |) A¢, € L' and A¢, € LP for some p > 1, then
V¢, belongs to L? if and only if SRg A¢, = 0. In particular, the relaxed assumption allows to

IW(t,- — ¢(t,) = Ulweamerny + IVOE, )lweamemamy) + 1060, ) lweamere) <

3By this, we mean that ¢, may differ from A™'(Ag,) by a constant function but not by a non-constant affine
function. This is for instance the case if one enforces V¢, € Span <U1sp<oo L* (R Mz(R)))
6



prescribe for A¢, any small regularized version of a multiple of a Dirac mass, hence the term phase
source/sink (depending on the sign of the Dirac mass) in the title. See Figure

2 2 -
15 | 15t
1+ FHER AR AR AP PR P AR 1+ FHER AR AR PP PR
0.5 05 |
of ol
-05 | -0.5 |
-1k -1r
-1.5 -1.5
2 : : : 2 : ‘ ‘
2 1 0 1 2 2 1 0 1 2
.
15 15 ¢
1t 1r
05 05 |
0F 0r
05 -05
ERs a1t
15 | -15 ¢
e T e 2
2 -1 0 1 2
(c) ¢ of Gaussian type
S S d o
e \ 2
e N ST R
o s |
a5 | FHHH T i A
|Ea=s, ,’t;,’.l,’,’,nl[,’,’,’,’,’,’,’,’,’,’,’/ln",’:"’,hiiti:nl: ol R
3 2 1 0 1 1 0 1 2 3
(E) A¢ of Gaussian type (source) (F) —A¢ of Gaussian type (sink)

FiGure 1. Illustration of the various levels of localizations. We plot the image of a
square reference grid through the function Idg2 — ¢.

Likewise, A¢, € L' ensures that ¢, belongs to BMO, the space of functions with bounded
mean oscillation, which may be thought as a relaxed version of ¢, € L, whereas, when, say,
(14 - %) Ay € L?, one shows that ¢y belongs to L if and only if {5, Ay = 0. For proofs and

further comments on the recovering of ¢, and V¢, from A¢y, we refer to Appendix [C]
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The regime of localization chosen here is critical from the point of view of large-time asymptotic
decay, in the sense that nonlinear terms are not asymptotically irrelevant. Moreover, our further
study of asymptotic behavior identifies a leading-order nonlinear asymptotic description, allowing
us to analyze the sharpnesﬁ of decay estimates stated above.

In contrast, we make no claim on optimality of our regularity assumptions, encoded by the
choice of the space W24, We regard the regularity question as largely irrelevant for the problem at
hand and, correspondingly, in parts of the proof where this plays a role, we have decided to apply
simpler and/or more robust arguments instead of sharper ones. At a technical level, the choice of
an L*-based space is designed to ensure that quadratic terms lie in L? so that their contribution to
large-time decay may be analyzed through Hausdorff-Young inequalities. Then, among L*-based
spaces, the choice of 2% enforces embedding in WH*. Though we expect our regularity framework
to be suboptimal, we warn the reader that one should not lower the regularity on V¢ below the
threshold ensuring that Id —¢ is invertible.

For comparison and comprehensiveness we also provide a stability result under more localized
perturbations.

Theorem 1.2 (Subcritical perturbations). Let U be a stationary (e1, e2)-periodic solution to (|1.5))
associated to the matriz of wave vectors K and speed c. Assume (D1)-(D2). There exists g > 0
and C > 0 such that if for some @,

&0 = [[Wo(- — ¢9) — Ul (p1nm2aw2aym2rn) + V&0l (L1 nm2aw2aym2mam)) < €0

then, there exist a unique global solution to (1.5 with initial datum Wy and a phase shift ¢ with

¢(0,-) = ¢ such that, for any t =0, for any 2 < p <4

C&

IW(t,- — &(t,-) — Ulwermzrn) + VO, )llwzrmemom)) + 000, ) w2 mer2y < (115)21-
—+ P

Furthermore, with constants independent of (Wo, ¢g) and no further restriction on &y,

(1) there exists a constant C' > 0, such that for any 2 < p < o0 and any t =0
C&
Wt — &) — Ul pemzrry + VO, ) v ®2mom)) + [10:0(E, )l r(r2ir2) < 7(1 t)l_l ,
+ »

(2) for any £ € N, ¢ = 2, there exists Cy such that if moreover

Eo0 = [Wol- — @o) — Ul (p1inmzawenymzmn) + VOl (1 nm2awesymerom)) < +0,

then for anyt =0, and 2 < p <4

Ce&oy
IW(t,-—@(t,) — Ullwerme;rny T IVOE ) lwer @z m)) + 1010, ) wermzrey < W
+ »
Finally, there exists a constant ¢., depending only on ¢y such that for any t =0
C&
HW(t, ) _EHLP(RZ;R") + H(ﬁ(t’ ) - ¢OOHLP(R2;R2) < ) 2<p<+ow,
L+t)2r
and if ¢y € L*(R?) and & is small enough, for anyt =0
In(2+¢
Wt )~ Ulismen) < CCE + ol 0 ( t>1)1 . 2<pst
+ P

4In this direction, let us anticipate that in the end we remove essentially all log(2 +t) factors at the cost of making
stronger regularity assumptions. See for instance Remark
8



We stress that assuming more localization on initial data, including enforcing ¢, = 0, would not
bring extra decay. Moreover, though the extra localization assumed here does bring some minor
simplifications, the scheme of proof of Theorem is not significantly different from the one for
Theorem The reason for that is that the corresponding regime of decay is barely subcritical
and, thus, some care is needed to carry out the argument. With this respect, it is instructive to
compare the two-dimensional analysis in [JZ11] with the three-dimensional analysis in [OZ10].

11
1.2. Modulational behavior. Theorem contains that, up to a remainder of size t_(§_5> in
LP, 2 < p < oo, the solution W(t,-) to the original is well-described by U o ¥(t,-) for some
W such that V¥ — K and ;W — Q are also decaying at the same remainder rate in LP.

To go further, one would like to capture the leading-order part of the near-constant dynamics
of (V¥,0,%). It turns out that this is closely related to the obtention of a refined description of
W(t,-), that is, of a description up to a faster-decaying remainder. The latter requires not only
a space-time modulation of the position of the wave profile U but also of its shape, hence, as a
preliminary, an understanding of nearby waves.

As we prove in Proposition Assumption (D2) is sufficient to elucidate the structure of
nearby two-dimensional periodic waves. The upshot is that corresponding profiles, wavenumbers
and speeds may be smoothly parametrized as (K, @) — (UX(- + ¢), K, c¥). The following result
shows that by modulating also in wavenumber, besides the modulation in position, one does improve
the asymptiotic description of solutions.

Theorem 1.3 (Modulational behavior). Assume (D1)-(D2) and consider a wave parametrization
as in Proposition[B.1]

With notational conventions of Theorem one may also ensure that the solution W to (1.1
obtained from W through satisfies,

. In(2 +¢
IW(t,-) — Uk )(\Iz(t, NDlzrrzirr) < Cporgo Eo 1( : 1) 1 , 2<po<p<qy <0,
(1+ni st
. In(2 + t))?
IW(t.) = URE ()| ey < O By D
1+1t)274

with IC := VW and ¥ defined from ¢ as

w(t,x) = (1d—g(t, )~ (KT (x—tc)) |
thus satisfying
Cpoﬂo Eo
1 1
(L+t)2 >
In(2 + )
(1+ t)% '

Note that Theorem encodes through K = VW that modulation in wavenumbers result from
spatial variations of modulation in positions.

We believe that the proof of Theorem is both robust and representative of what could be
expected in much more general situations. Yet, as we show below, in the present two-dimensional
case, the estimates of Theorem [1.3|are deceptively pessimistic. Indeed, Theorem [I.3]is the result of
the combination of various worst-case bounds, whereas, in the present two-dimensional case under

study, it turns out that not all the difficulties may be present simultaneously.
9
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To elucidate this, let us anticipate on the description of the near-constant dynamics of IC(¢,-). As
we prove below, at leading order, this dynamics obeys an hyperbolic-parabolic system. In full gen-
erality, the hyperbolic part of such systems (linearized about the reference constant state) contains
both scalar-type components and dispersive-type components. For the full linearized hyperbolic-

parabolic system, one expects the former to decay exactly as solutions of the heat equation, that is,
11

in dimension 2, as t_<5_5>, in LP for initial data in L9, 1 < ¢ < p < +0. In contrast, for the latter,
one expects wave-diffusion type decay; for instance, in LP, starting from L' data, the dispersion
enhances the decay when p > 2 but slows it down when p < 2. For general systems, the decay of the
full solution is thus prescribed by the worst rates between heat-like and wave-diffusion-like decay
rates. We refer the reader to the detailed analysis of the isentropic compressible Navier-Stokes sys-
tem in [HZ97, [HZ95, [KS02, Rod09b] (and further comments in [Rod07]) for a worked-out example
supporting such intuition.

However, as we prove ilﬂ Lemma in dimension two, constant-coefficient hyperbolic systems
of two equations are either composed of two uncoupled scalar equations or they are strictly hyper-
bolic and fully of dispersive type. When the hyperbolic part of the effective dynamics for IC(t, )
is of dispersive type (Case (Ca) below), it turns out that the decay are faster than proved in
Theorems and and the dynamics is actually asymptotically linear. When it is of scalar-like
type (Case (Cb) below), the estimates of Theorem are sharpﬂ but those of Theorem are
not because they rely on some linear estimates that may be improved in the scalar-type case but
seeminglyﬂ not in the dispersive-type case.

To make this discussion more concrete, let us point out that the relevant linearized first-order
dynamics is

(1.9) onp — d (K) (V) = 0,

where V) plays the role of a linear approximation of K — K. Note that KC is Ma(R)-valued but
curl-free, hence satisfying two constraints, so that, as encoded in , its dynamics is effectively
two-dimensional. As we prove in Lemma[A.4] under conditions (D1)-(D2), System [1.9]is hyperbolic
and therefore one, and only one, of the following two conditions hold.

(Ca) For any unitary &, € R?, 232.:1 dk, Q(K) (&y) e;" has real distinct eigenvalues.
(Cb) Matrices 25:1 dk; Q(K) (e1) e; T and 25:1 dk; Q(K) (e2) e; T are simultaneously diagonal-
izable over R.

Let us point out that in the special case where c¥ does not depend on K (or more generally when
dk ¢(K) is zero), System ((1.9) reduces to ditp + (¢ - V)b = 0, a genuinely scalar system, yielding
Case (CDb) in a trivial way. We identify this subcase as

(Cb0) Matrices )7_, dk, Q(K) (e1) e, and 377_, dk, Q(K) (e2) e, are scalar.

and we shall prove for it slightly sharper estimates with significantly simpler proofs.

Case (Ca) is arguably the hardest case to analyze but we expect that it is also the generic one
in the absence of extra symmetry. In particular this is the one proved to arise at the secondary
bifurcation studied in [RR]. We recall however that in the isotropic case small-amplitude waves fit
in Subcase (Cb0).

The following theorems prove the above claims about decay rates specialized to either Case (Ca)
or Case (Cb).

SWe expect this fact to be well-known by experts of hyperbolic systems as it is related to the Strang analysis
[Str67] of systems of two equations in arbitrary dimension. Yet we have not found it in the literature.
6Up to logarithmic factors.
7Actually7 finer comparisons with [HZ97] [KS02] suggest that there is some room for improvement here also but at
a high technical price and in a way essentially useless at the nonlinear level.
10



Theorem 1.4 (Dispersive case). Assume (D1)-(D2) and Case (Ca) of the alternative.
Assume that Ey is small enough. One may improve the estimates of Theorem [1.1] into

CE
[W(t,- = (t,-) = Ulwza + [V(t,) lwas + |0db(t, ) lwas < —— 5,
(L+1t)s
Cho,q0 B
IW(t,- = é(t,-) = Ul + [VO(t, ) |r + [00(t, ) |10 < 1]’“5‘3_‘; 2<po<p<q <0,
_|_ 4 20p
In(2+¢
IW(t,- = ¢(t:-) = Ul + [Vo(E, )= + |0:¢(t; )| L < CEo(ig),
(1+1)s
Cy E
W, = ¢(t,-) = Ulwea + VO, ) lwea + [0(ts ) wea < (1: :)% ; leN, (>2,
and those of Theorem intolﬂ
. Cpop1 B
V) = Ui < iy 2 <p<p<p <4,
+ P
CEpln(2 +t
W, ) - UR(() < CRREED
(1+1)s

with IC := VW and ¥ defined from ¢ as

w(t,x) = (d-¢(t,) " (KT (x—te)) .
thus satisfying
Cho.a Fo
(1+t)i~
In(2 +t)
(1+4)1

Theorem 1.5 (Dispersive case, subcritical perturbations). Assume (D1)-(D2) and Case (Ca) of

the alternative. Assume that &y is small enough. One may improve the estimates of Theorem
mto

K@) — Kl + |0:2(, ) — 2fre < : 2<po<p<qo<o,

IK(t, ) —K|re + [0:¥(t, ) — 2|12 < C Ey

Cé&

IW(t,- = o(t,-) = Ullwzr + [VO(E, ) [w2r + [0:@(t, ) [w2r < =L 2<sps<d,
+ 4 20p
C &
IW (e = (1) = Dl + IV, + 10160, < <4 2<p <,
P
Cr &
IW(t,- = ¢(t,)) = Ulwes + VO, ) lwes + 10:0(2, ) lwer < (11)?231 leN, £>2,2<p<4.
+ 4 2p

Theorem 1.6 (Scalar-type case). Assume (D1)-(D2) and Case (Cb) of the alternative. One
may remove the log-factor in the estimates of Theorem [1.]]

Chpo Eo

IW(t,- = (¢, )~ Ulo + [(t, Voo + [06p(t, )] 1o < — 2270
(1417

;,  2<pp<p< 0.

8We refrain from stating estimates for [W(t, -) — U®) (W (¢, -))| Lr when p > 4 because the corresponding decay
rates would be artificially limited by a lack of regularity assumption on the data; see the related Remark
11



Moreover, if

EP = [Wo(- — ¢g) — Ulgz weymesme) + |80zt awirymemz) < +00,

one can improve the estimates of Theorem [1.5 into

In(2 +¢
(1()1—>10p0E0; 2<p0<p<4’
+t) p
In(2 +¢
Wit ) = U (@) < {(1(“5)1_)1 G B d<pep <,
P
1
W CP17P2 E(()pl)7 pL<py<p< 0,
+ P1

with IC := V¥ and ¥ defined from ¢ as
(t,x) = (1d-g(t,) " (KT (x~te)) .

thus satisfying

(1+)2 >

As already implicitly pointed out, the decay rates in Theorem [I.6]should be compared with those
of solutions to the heat equation whereas those of Theorems [1.4] and [1.5] should be compared with
those for the viscously damped wave equation. Roughlyﬂ speaking, on R?

I(t, ) — Kzr + |0:%(t,-) = Qv < : 2<py<p< .

+3(lal-0)

1_1
(1) when d;u — Au = 0, an initial control on Afu(0,-) in L? yields a t_<q P decay for
0%u in LP;
(2) when 0?u — Au — Adyu = 0, an initial control on A®Gu(0,-) and Afu(0,-) in L' yield a

1.1
t_<%_%5+§(|a‘_£)> decay for 0“u in LP for p > 2.

The latter bound is classical but non trivial and we refer the reader to [Shi00] for precise statements
and proofs. A significant part of the proofs of Theorems and is actually, in disguise,
an extension of the large-time estimates for constant-coefficient hyperbolic-parabolic operators to
classes of systems with no particular structure, including on one hand systems with a scalar-like —
but not scalar — hyperbolic part and a cross-diffusion, and on the other hand anisotropic systems
with dispersion. Concerning the latter, we point out that for the most part of the literature the extra
decay due to dispersion is merely overlooked, whereas the remaining body of works is restricted to
isotropic systems, most often variations on the wave equation. We also stress that even in the case
where the hyperbolic part and the diffusive part commute, combining the well-developed dispersive
estimates for the former with dissipative estimates for the latter yields non sharp decay rates; see
the related detailed discussion in [HZ97].

Remark 1.7. The In(2 + t) factors in Theorem and Theorem and the lack of optimal decay
in Theorem [1.4] are due to the limited smoothness we assume and to the way we use it. Assuming
Ey small enough and that Ey3 < 00, we also prove that, in Case (Ca) of Assumptions (D1)-(D2),

IW(t,- = &(t,-)) = Uller + [V, ) v + [0:(E, )| Lo

Cpo E
FKt, ) — Kl + 00T (L) — Qp < —22203

31 2<p0<p<00>
(1+t)i 2

3 1
4 4

9This means, in particular, that at this informal level we do not bother to state admissibility conditions for «, ¢,

b, q.
12



IW(t, ) — URE) (B (L, )| e <

and, in Case (Cb) of Assumptions (D1)-(D2), for any p; € [4, ),

_Cho Eos_
-1
) — K(t,-) . (1 +t) .
IWw(t,) = U (B(t, )| e < Cyy Eo3

(1+ t)lfmin(#pl})
We prove this remark in Subsection

1.3. Averaged systems. In the foregoing subsection, to provide educated guesses on expected
decay rates, we have already largely anticipated that the dynamics of local wavevectors IC(¢,-)
obeys at leading-order an hyperbolic-parabolic system, in the neighborhood of the constant K. We
make such a claim precise here. Combining this with results on modulation behavior will complete
the leading-order description of the dynamics near the periodic wave of profile U.

We shall compare ¥ and K with respectively " and K" = V®W solving an equation of the
form

(1.10) B = Q(VEWY) + A [V](VEY)
thus also
(1.11) oK = V(QIEY)) + V(A [VI(KEY)),

with KW curl-free. In the foregoing systems, both Ag[V](V(+)) and V(A,[V](-)) are elliptic linear
operators whose action is encoded by homogeneous second-order Fourier multipliers. These elliptic
operators are actually differential operators in Case (Cb). Moreover our choice of A, enforces
that, in any case, Ay[V](V(+)) commutes with dg Q2(K)(V(-)). We precisely define this operator
in Appendix

We provide a partly formal derivation of / in Appendix This derivation is dra-
matically more involved than the corresponding one for one-dimensional reaction-diffusion systems
— for which we refer for instance to [DSSS09, Section 4.3] —, and even trickier than the general
one-dimensional case analyzed in [JNRZI14]. As in [JNRZ14], there are two separate steps in our
derivation. The first one, carried out in Appendix [D-1] is purely formal and is an adaptation of the
strategy tailored in [NR13] and subsequently used in [JNRZ14]. We insert a suitable geometrical
optics’ ansatz in , identify a few orders of the formal expansion and group together some of
the equations to obtain differential systems similar to / ; see / . Alternatively,
this first step could be replaced with a spectrally motivated derivation; see Remark At the
level of local wavevectors, both the geometrical optics’ derivation expounded here and the alter-
native spectral derivation hinge on low-frequency expansions so that the only piece of information
on their structure, inherited from (D2), is that their first-order part is hyperbolic and that they
are diffusive in the low-frequency regime. Unfortunately, except in the scalar Subcase (Cb0), this
is insufficient to deduce that a second-order system is well-posed; see in particular the concrete
example given in Appendix to illustrate that this may fail even in Case (Cb). Our second
step of the derivation finds a canonical way to replace the system obtained in the first step with
a well-posed parabolic system sharing, at leading-order, the same low-frequency properties. It is
in this step that, in Case (Ca), we need to leave the differential frame for the Fourier-multiplier
class. This second part of the derivation is analytical and parallel but significantly harder to the
analysis in [JNRZI4, Appendix B.2]. We stress that in this second step the question to solve has a

13



much broader significance than the study of the averaged dynamics near periodic traveling waves ;
it is a general question about the dynamics of second-order systems near constant states, relevant
even when the original system is well-posed, and dissipative in some hypocoercive sense but not
genuinely parabolic. In particular, our analysis in Appendix extends in various ways, including
the class of systems considered and the sharpness of estimates proved, the analysis about artificial
viscosity systems in [HZ95, [Rod09b] (discussed further in [Rod07] and [Rod13, Appendix A]).
Though, for the sake of brevity, we shall not dwell on this line of investigation, we mention
that, in the spirit of Theorem and with the same kind of shortcomings, we could validate

(1.10]) /(1.11]) without specializing to either Case (Ca) or Case (Cb).

Theorem 1.8 (Whitham equation). Assume that we are under the assumptions of Theorem
with notational conventions of Theorem[1.3.
Let OV and ICW satisfy respectively (L.10) and (L.11) with initial data

TV (0,x) = (Id —py) " (KTX> : KV (0,-) = veW(o,.).

Then for any t = 0, if Case (Ca) and Wo(- — ¢py) — U € L%(RQ) hold
C (Eoa (1+ Boa) + [Wol- = ¢9) ~ U]l )

H’C(t?) *K:W(t?')HLp < 3
(1+1¢)s 2

331,71 , 2<p< o, Case (Ca),
4 p ' 2

C(Eos(1+E Wol(-— ) —U| 5
[ (t ) = W) o < (Eos (1 + Fog) + [Wol. — o) ~ Ul 5)

, 2<py<p<oo, Case (Ca),

331
(1+t)s 2>
whereas if Case (Cb) holds
( E
0—10’31# ) 2 < p < o0, Subcase (CbO),
(1+t)z 772
t,) =KW (t, )| <
()~ KV el < 45 e

, 2<p<ow,n>0, Case (Cb) but (CbO0) fails,

— 1 1 2 <po < p < o, Subcase (CbO),
(1+t)2»
Copo(Eo s + ER
wnlFos £ E03) o <o >0, Case (Cb) but (Cho) fails.

eV (t,) —®(t, )| <

Remark 1.9. The extra localization of Wy (- — ¢) — U in Case (Ca) is crucially used to obtain the
optimal decay. Without this assumption, one only gets
CE073
1-17
(1+1¢t) »
Actually in the dispersive case (Ca), the nonlinear terms are subcritical so that it is enough to
retain from (|1.10) and (1.11)) their linear approximants

Kt ) — KV (1, )1 < 2<p<w

(1.12) oy, = 2+ dg QK) (V¥ — K) + Ay [V](VE], —K),
and
(1.13) ol = V(dk QK) (K, — K)) + V(A [V](K], — K)).

Obviously the same hope holds for Case (Cb) when subcritical perturbations are considered. Indeed
we prove the following results.
14



Theorem 1.10 (Dispersive case, linearized Whitham equation). Under the Case (Ca) assump-
tions of Theorem and with notational conventions of Theorem let \Ilm and ICK-[; satisfy
respectively (1.12) and (1.13) with initial data

TV (0,x) = (Id —py) ! (KTX> , K70, = vev(o,).
Then, for anyt =0,
1C(t, ) — K (8, ) o < m tc);ﬂ“;;%; , 2<p< o,
[t ) — W) < — 0 2<py<pem.

Theorem 1.11 (Subcritical perturbations, linearized Whitham equation). Under the assumptions
of Theorem nd in Case (Ca) of Theorem@ and with notational conventions of Theorem

let W)Y and IC}}, satisfy respectively ([T.12) and (L.13)) with initial data

¥ (0,3) = (1d )" (KTx) . KV (0,) = Ve 0,).
Then, for any t =0,
Cé 2 < p < w0, Case (Ca)
5_31_1° S E S ’
. 14+t)i" 25" 2
W)~ TR (e e < 4 TS
m’ 2 < p < w0, Case (Cb),
+ p
and
W 2 <p <, Case (Ca),
+ p
%(12—:?’ 2 < p <, Case (CbO),
1Kt ) = Kt (8, ) e < S t t)C p& 2
(1 t)lpllflul , 2<p<p1 <o, Case (Cb) but (CbO) fails,
1) Tr I
Cé&n(2 +t )
(1+ t)1§7+§(1),1,) , p =, Case (Cb) but (CbO) fails,

C’Soln—(Q—i—t)7 2 < p < o, Case (Ca),

, 2 < p <, Case (Cb0),
H\Ij(t7 ) — ¥ (tv ')HLP < 9

lin

2 < p <p <, Case (Cb) but Subcase (CbO) fails,

p = 00, Case (Cb) but Subcase (Cb0) fails.

Again, as in Remark one can remove almost all the In(2 + ¢) in the previous bounds by
assuming more regularity. There is one exception for p = o in Case (Cb) (but (Cb0) fails) since
then the logarithm factor already occurs at the linear level, through Proposition
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1.4. Perspectives, outline and notation.

Perspectives. The present contribution offers an essentially complete analysis of the nonlinear
dynamics near spectrally stable periodic waves of parabolic systems without conservation laws.
Most natural follow-up questions are two-fold. On one hand in order to apply the present results it
is important to provide stability diagrams in all relevant bifurcation scenari, multiplying the type
of analysis carried out in [RR]. On the other hand it is equally important to enlarge the class of
systems encompassed by our nonlinear analysis so as to allow conservation laws, in the same way as
[INRZ14] extends [JNRZ13a, INRZ13b]. This is crucial to be able to deal with most hydrodynamic
applications.

Outline. The organization of the remainder of the paper, after the present introduction, reflects the
plan of the introduction. The second section proves stability theorems, Theorems and The
third section proves modulational-behavior theorems, Theorems and The fourth
section proves theorems on averaged modulation systems, Theorems and The paper
is concluded with four appendices, devoted respectively to

elements of Bloch-wave spectral analysis,

the geometric structure of profile equations,

phase estimates, mostly showing how to bound V¢ with Ag,
geometric optics as needed in the direct derivation of averaged systems.

Notation. We conclude this introduction by collecting some elements of our notational conventions.

When a € R, a; := max(a,0). When x = (z1,22), X := (—29,21).

When a and b are two elements of the same set, d,4 is 1 if a = b, 0 otherwise.

We often identify vectors of R™ with column vectors, elements of M,, ;(R). When A and B are
linear operators, [A, B] := AB — BA. Our complex inner scalar products are skew-linear in their
first argument, linear in their second argument. We denote the canonical basis of R? as (ey, e).

For a map F : R? — R" and x9 € RP, we denote by dF(x¢)(:) the differential of F at xq,
a linear map from RP to R™, by d® F(xg)(-,-) the second differential of F at x, a bilinear map
from R? x RP to R", and by VF(x¢) the gradient of F at xq, the transpose of the Jacobian at
Xg, an element of M, defined by (VF(x));¢ = 0;F¢(x0) (with standard notation for partial
derivative and coordinate). We add a subscript when using partial differential operators, such as
dx H(x0,¥0)(:) to denote the partial differential of H with respect to the x-variable at (x¢,yo)
when H: R? x R? - R", (x,y) — H(x,y).

We make two main exceptions to the previous differential notation by changing at some specific
places where we mark the evaluation point xq. Explicitly, in Section |3, we denote by d¢ q?(~),
de @2 (-) and d¢ Do(+) the differential at O of respectively & +— q?, £ — (ﬁ? and £ — D¢ and, in
Section 4 we denote by dz Dg(:,-) the second differential at 0 of £ — Deg.

Divergence VT and Laplacian operators A are always taken with respect to the spatial variable
only, and we do not mark this partial restriction. We extend this omission to gradients V when
there is no risk of confusion. With respect to the spatial variable they are defined as follows: if G :
R? — My, (R) then VTG (x) is the vector of R" given by (VT G(x)), = 23:1 0;Gje(x0); if F:
R? — R" then AF(xq) := VT(VF)(x0) is the vector of R" given by (AF(xq)), = 2]2-:1 a?Fg(Xo).

In Section when carrying out more abstract algebraic computations with too many spatial
differential operators already involved and no particular functional topology in mind, we switch
from differential notation d to linearized notation L. We use L essentially as d with respect to
where we mark evaluation points, directions of application, restrictions, etc.

We identify spaces of (ej,ez)-periodic functions with closed subspaces of functions over [0, 1]

satisfying suitable boundary conditions. We use the subscript pe; to distinguish those. At an
16



abstract level they may be defined as the closure for the topology at hand of the restrictions to
[0,1]? of smooth (ey, e3)-periodic functions.

Acknowledgment. The authors thank Kevin Zumbrun for his constant interest in the present work.
B.M. thanks the University of Rennes for its hospitality.

2. STABILITY

2.1. Linear estimates. We begin our stability analysis with linear estimates. In this part we
make extensive use of the background material provided in Appendix [A]

We consider (S(t));=0 the semi-group generated by L. The linear counterpart to Theorem
is that given some go = (¢, - V)U + V( with initial estimates on (Vo, A¢gy), one is able to split

S(t)[go] as
so as to ensure large-time decay estimates on (V(¢,-), V(t,-),dr¢(t,-)). Note that since L is a
parabolic operator, the fact that it does generate an analytic semigroup and the accompanying

short-time estimates are part of the classical theory for linear PDEs, for which we refer to [Paz83].
Condition (D2) ensures that we may decompose S(t) according to

St)le]l = (s(t)[g]l - V)U + Si(t)[g] + S2(t)[g]

with
o (),
OlEh60 = | x(gexsee ey |
and

(S1(t)[g])(x) = f (1—x(&)) ™ e Te(g(€, ) (x) € + J X(€) e e Fe (1T ) (8(€, ) (x) d €

[_Wvﬂ]2

where ¢ denotes the Bloch transform of g,

e x is a smooth function valued in [0, 1], compactly supported in a sufficiently small neigh-
borhood of 0 and equal to 1 in a (smaller) neighborhood of 0;

II¢ is the spectral projector of L¢ associated with its spectrum near the origin;

(qf,qg) is a basis of the range of Ilg, smoothly dependent on &, such that (q?,q9) =

(01U, 02U);

(ﬁf, ﬁg) is a basis of the range of Hz, smoothly dependent on £ and in duality with (qf, qg);

D¢ is the matrix of the restriction of Lg¢ to the range of Il¢ in the basis (qf, qg)

See Appendix for more details about the construction of such objects. For concreteness, we
introduce &y a sufficiently small positive number measuring the support of x in the sense that on
the support of x, |&]| < &.

Remark 2.1. Note that (q%, qg) is not uniquely determined by the above conditions so that there
is some flexibility in the definition of s(t). This flexibility is irrelevant in the stability analysis but
it will be used to impose further normalization in the asymptotic behavior part.
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Throughout this work, we will use a consequence of (D1)-(D2), related to (D1”) in Appen-
dix that asserts that there exists C; > 0 such that for any & € [—, 7]? satisfying ||€] < & and
any t = 0,

(2.1) et Pe || < CyettE®
We first provide bounds adapted to localized perturbations.

Proposition 2.2. Assume (D1)-(D2).

(1) There exists ' > 0, such that, for any (s,s') € (R+)? such that s’ < s, there exists Cy g
such that for any t > 0

Cy g
s',s — o't HgHHé )
(min({1,2})) =

(2) For any s € Ry and any B € N2, there exists Cs,p such that for any 1 < ¢ <2 <p < +0,
and any t =0

151 (t)[g]] s <

Cs
IS0 seller < e lelur
+ q p

(8) For any o € N2, any B € N? and any { € N, there exists Co 5 such that for any 1 < q <
2<p< 4w, and anyt =0
Cay
| 0% 0f s(t)[oke]ller < ﬁ|+'f+ 2R
(I+¢t) 2 "a»

Proof. To prove the first point, it is sufficient to combine an H¥ — H* bound for 0 < ¢ < 1 with an
H?® — H?® bound for ¢t > 0. Moreover the former follows from the parabolicity of L (combined with
bounds on s(¢) and Sa(t) proved below). In turn, the latter may be derived, through Parseval’s
identity, from

Il ¥ lers,, s, < Ce™, 1€l = o,

per

lle" = (1 —TTe)ll 5, —rrz,, < Ce™”, [€] < &o -

per

As pointed out in Appendix [A.3] these bounds stem from condition (D1)-(D2).
To prove the second point, by using (2.1) and integration by parts in scalar products, from
Hausdorff-Young and Holder inequalities one derives

1S2(8) gl < € 1€l e g€, ) g,

/

P
Le

< | el om0uer

X HgHLZIquaer

L’V‘
< (1+1)~G) g] L0

with p’, ¢’ Lebesgue conjugate respectively to p and ¢, and 1/r = 1/p' — 1/¢’ = 1/q¢ — 1/p. Hence
the second bound.
To prove the third point, note that

b, (@ @xrie)se)

o2 ols(t)[02g]) (x) = elx€ (i rer (€.
@A) = | x(Ee i) (Dg ot ieae |
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From here the third bound is proved essentially as was the second one, the decay stemming from

lof+€ 1
2 +r

e~ g+t e senl

0

We now focus on bounds adapted to initial data given as phase modulations. Throughout we
make regular use of bounds from Appendix [C] and we implicitly assume that ¢ has no affine
component at o0, in the sense that ¢ = A~!A¢. Consistently, the phases built with s(¢) also
satisfy the latter condition.

Proposition 2.3. Assume (D1)-(D2).

(1) There exists 8' > 0, such that, for any (s,s’) € Ry such that s'+1 < s and any (po,p1) such
that 2 < pg < p1 < ©, there exists Cp, p, s.s such that for any t >0, and any po < p < p1,

C s.s’ _nl
1S (B)[(¢ - VUl |wew < s € A gy

(min({1,¢}))
(2) For any s € Ry and any po > 2, there exists Cp, s such that for any pg < p < +0, and any
t>=0

CpO S

[S2(8)[(¢ - V)U]wsr < ( HA¢HL1 :

1+t)

(3) For any a € N2, any £ € N and any 2 < p < +0o0 such that |a| + ¢ — 2% > 0, there exists
Cp.ae such that for any t = 0
Cpaé

| 0% o s(t)[(¢ - V)U]| v < W|A¢|L1'
+t) 2w

To ease comparisons with bounds of Proposition we recall that |A¢|r1 s should be thought
as a relaxed version of |V ¢| gs+1. Note moreover that the condition |a| + ¢ — % > 0 may be written
more explicitly as |a| + ¢ > 2 or (|a] + £ =1 and p > 2).

Proof. To establish various bounds it is convenient to single out the low-frequency part of ¢,
according to

¢ = ¢+ dup, (Prr) = XP.

The contribution of ¢ to the first bound may be deduced from the corresponding estimate in
Proposition Indeed, since 2 < p < 0,

1510 [(Prr - V)Ullwsr < [S1(O)[(@np - V)U]|se1
[(@rr - VIUlgseie S |@uplpse s 1A 50 -

The analysis of the contribution of ¢ requires more care. To begin with, we recall that

(2.2) (Drr - VIU)(E %) = (¢10)() - V)U(x)

and observe that this may be used to gain an extra |£|-factor in the second part of the definition
of S through

(I-Te)(prr - VIU)(E, ) = (1-Tle) (o — ) ((frr - VIU)(E, )
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since 01U and 0,U lie in the range of Il and (I —Il¢) is a projector. Moreover, an extra ||€|-factor
in the first part of S is readily obtained from the trivial (1 — x(£)) < |€||. With this in hands,

from Hausdorff-Young inequalities and the embedding Hg’jrl — Wpdk, one derives

1S [(¢rr - VIUwer < e [Adpplp [€— €] 1HLp’ <se ' |Ag|

since p > 2, thus p’ < 2. This achieves the proof of the first bound.
The contribution of ¢ to the second bound may also be deduced from the corresponding
estimate in Proposition Indeed

(2.3) I(Prr-V)Ulrr S lbnple < [Ad]L-

The analysis of the contribution of ¢; r to the second bound follows from (2.2)), Hausdorff-Young
inequalities and, since p > 2,

el e

<y B
Le
The third bound is proved similarly. O

The last set of linear estimates we need to close our nonlinear stability argument consists in
short-time bounds. It shall be used to ensure that the nonlinear phase ¢ does satisfy ¢(0,-) = ¢y.
At the linear level we just need to prove that s(0)[(¢- V)U] is not too far from ¢. Note that if one
relaxes Theorem by removing the condition ¢(0,-) = ¢, from its statement, these short-time
bounds become irrelevant.

Lemma 2.4. Assume (D1)-(D2). For any a € N?, any £ € N and any 2 < p < +00 such that
p>2if|al =0 and p < o if |a| = 2, there exists Cp o such that for any t =0

3 (1= (112 .
|02 (s(t)[(¢- V)U] = @) |10 < Cpa | A 1 - pyrtiai=21s 0 1+t O 02), ifla] =2 #1

In(2 +t) otherwise

Proof. Since |af + 1 — % > 0, from Proposition [2.3| stems

o ¢ dr

| 0% (s(t) = s(0)[(@- V)Ul|r S |ADl1 | ——Fm7 7
O(1+7) 2 »
which predicts the growth time rates. An examination of the proof of Proposition also gives
|AQ| 11
|23 s()[(@pr - VU1 < w1 1Al
(1+1t)2

Since, moreover the conditions on p ensure

lprrlwior < (A1 wie-210

there only remains to bound s(0)[(¢rr - V)U] — ¢ .
Now we observe that

(O rr DU =d50) () = | 006~ 1) Burie) ae

2

]
<Q1 as; ( ¢LF)(€) : V)H>L2 )
' f[ ™ ”] <q2 ag; ( ¢LF)(€) )H>L2 ¢

per
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Thus
16 (s0)[(&- VU] - ) 1o < A1 x € €]l

74

¢
Hence the result (since p’ < 2 when |a] = 0). O
2.2. Introducing phases. To carry out our analysis, it is convenient to write equation (/1.5
directly in terms of ¢ and V such that W (¢t,- — ¢(¢,-)) = U + V(¢,-). When doing so, we have in
mind Lemma and its variants.

We would like to stress here that the argument is quite robust and to spare unnecessary detailed
computations we provide it in abstract form. To do so, we introduce

PIW] = P(W, VW, VW) := VT (KTKYW) + VT (KT (G(W) + cWT)) + £(W)
and consider its image under a change of variable ®
(2.4) P[W,®] = P(W,VW, VW, V®, V2®) := (P[Wod ') o d
— Ve[ 'V (jve| (K [ve] ) (K[Ve] ) VW)

+ Ve[V (Ve (K [ve] )’

(G(W) + QWT)) +f(W).
At the linear level, the key observation is that
—LsP[U, 1d](¢) = LwP[U]((¢ - V)U) — (¢ - V)(P[U])

thus, since P[U] = 0,

(25)  Ligy.gPIUI(V.~¢) = LwPUI(V + (¢ V)U) = L(V + (¢ V)U),

where Lg, Lw and L(W, ) stand for linearized operators. With this in hands, we may rephrase
).

Lemma 2.5. Let W and (¢, V) be smootfm functions such that

(2.6) W(t,x - ¢(t,x)) = U(x) + V(t,x),

and for any t, [V @(t,-)| pomey < 1. Then W satisfies if and only if (¢, V) satisfies

(2.7) (0, —L)(V+(¢p-V)U) =N[V,¢],

or equivalently
(28) V- LeV = ~(¢[12~Ve]'V)(U + V) + P[U,1d —¢] — P[U, 1d] + Ao[V, ¢],
with
LgV := LgP[U,Id —¢](V),
N[V, ] = Moy(V o, V2, V, VV):=P[U + V,Id—¢] — P[U,Id —¢] — LV~VP[Q, Id —¢](V),
N[V, 9] = N(¢, Ve, V>, V,VV,V?V)
= (LgP[U,1d -] - LgP[U,1d]) (V) + No[V, @] — (¢ - V@ [1. -V¢] ' V)U
— (¢, [12-V¢]"'V)V + P[U,1d —¢] — P[U,1d] —~ LsP[U,1d](—¢).
108ince the content of the present lemma is essentially algebraic and in the end we only consider classical solutions,

we do not make precise assumptions about the level of regularity needed here.
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Proof. To begin with, note that if ¥ is defined by ¥(t,-) := ®(¢,-)~!, then
V(%) = VR T, Wt x) = ~[(V(, (1, x))T] ! At B (r,x))

Define W by W(t, ®(t,x)) = W(t,x) or equivalently \NN(t,X) = W(t,¥(t,x)). Then W solves
(1.5) if and only if (®, W) satisfies

W, — (&, [V®]"'V)W = P[W,®].

Inserting W=U+Vand & =1d —¢, we readily deduce (2.8) and derive ([2.7) by combining it

with (2.5]). O
The form ({2.7)) is adapted to the large-time analysis whereas the form ({2.8]) is used in nonlinear

regularity estimates. Obviously, we do not need full details of the expression of N to carry out our

analysis. Yet, for concreteness’ sake, let us observe that V¢(t,x) commutes with Iy —V (¢, x) and

(2.9)

[12 —V(,b(t, x)]il =D +V¢(t, X) [12 _v¢(t7 X)]il =D +V¢(t, X) + (V(,b(t, X))2 [12 _v¢(t7 X)]il )

so that we have the pointwise estimate

(2.10) [NV, 8| < [VV] (o] + [Vl + [V2)) +V2VIIVO[+[Vel (IV2 8] + || + V).

The main upshot of Lemma is that, as long as |V¢|r» < 1, (L.5) is equivalently written as

V(t,) + (e(t,-) - VU = S(t)[Vo + (¢ - V)U] + L S(t—=7)N[V(r,-),¢(7, )] dT.

At this stage, we need to make a choice so as to split the foregoing equation. We would like to
simply use the semigroup splitting of the linear analysis but we need to enforce ¢(0,-) = ¢,. To
do so, we pick X a smooth function on Ry valued in [0, 1], compactly supported in [0, 1] and equal
to 1 on [0, 5]. Then, we consider

(211)  @(t,) = s(t)[Vo + (¢ - V)U] + fo s(t— IINV(7, ), ¢(r, )] d
+ X(t) (g — s(t)[Vo + (¢g - V)U])

(2.12) V(t,-) = (514 52)(t) [Vo + (do - V)U] + Lt(Sl +8)(t = T)N[V(7,-), (7, )] d 7

= x(1) ((¢0— s()[Vo + (¢ V)U)) - V)U
and observe that, as long as |[V¢| e < 1, (2.11))-(2.12)) imply that W defined by
W(ta ) = (H + V(t7 )) © (Id _¢(t’ ))71

satisfies (1.5) with W(0,-) := (U + V) o (Id —¢,) .

Remark 2.6. Though our strategy is inspired from [JNRZ13al [JNRZ14], we point out that we make
here a small departure in the way the short-time layer argument is incorporated. The choice in
[INRZ13al .[JNRZ14] enforces ¢(t, ) = ¢pg when 0 < ¢ < % but results in a slightly more cumbersome
analogue of (2.11)-(2.12). For comparison, we also observe that in [BJN'13] and in other previous

pieces of work where the linear separation is presented in terms of Green functions rather than
semigroups, the time-layer is hidden in the definition of the object playing the role of (s(t))>0-

Remark 2.7. Let us stress that uniqueness in solving — is essentially useless since (2.11))-
implies but is not equivalent to . However, under our assumptions W (0, -) is a Lipschitz
bounded function and classical theory for semilinear heat equations provides a local well-posedness
result for for data in BUC?(R?;R"), the space of bounded uniformly continuous functions,
with blow-up criterion expressed in terms of ||[W (¢, )| .
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To some extent, the introduction of the phase ¢ has turned the semilinear parabolic system
into a quasilinear parabolic equation In particular, since A contains terms involving V2V, using
directly the Duhamel formulas - ) to prove the existence of (V,¢) satisfying suitable
bounds would be, if not 1mp0881ble at least extremely 1nconvenlent|ﬂ Instead, we shall use a fixed-
point scheme, classical for quasilinear equations and involving, here L*, high-frequency slaving

energy estimates to close in regularity. The linear estimates used to derive the latter are provided
in the following lemma.

Lemma 2.8. (1) For any 0 < mno <1 and any £ € N, there exist 0 > 0 and C = 0 such that for
any ¢ such that [V | Loz, m)) < M0 and any V € WE(R2;R™) such that Dy(V) < 400
and LgV € WH(RERY)

Z J ”é’aVH2 0V - 0%(LyV) < —0Dy(V ) + C||V”L4 (1+ ”v2¢”2(2e+1>
laf=¢

+ CIVO [y Ve

RN

D(v) = | Y f |V [V
|or|=¢

(2) For any { € N, there exists C such that for any V.e W*L4(R2,R"™) and any je N, j < ¢,

IVIV s < CIV][ED(V), with o= =

N[ —

Proof. We first prove the second point. Note that since for any (7, /), j < ¥,

. =3 7
IV Ve < VIS VOV

it is sufficient to prove the case j = ¢. The subcase j = ¢ = 0 is trivial. Moreover, an integration
by parts shows that for any a with |o| > 1,

[0°V (74 < 107V s [V Vo [0V [V 0* V] 2 -
Thus for any £ > 1

_ i 2
IVVI§4 < VIV, Dy(V)5 < HVHL4 HVZVH Dy(V)?,
and the result follows.

As for the first part, to underline the core of the argument we begin by proving the case when
a = 0. We first observe that

| VIV 9T ([ -Vl )R 1 -Vl V)
_ 2 1 _ 2
= | IV KL -vel OV 5 | K-l VI s —Dov)*.
From here one deduces readily
fRQ VIV - LgV < =Do(V)* + | V|74 [ V2| e Do(V)? + [V 74 (1 + [V 1)
< =Do(V)* + V14 (1 + V@)

HAg it would require large-time maximal regularity estimates
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We now go back to the general case. Combining commutator bounds recalled below with the
arguments of the case o = 0 yields for any «

f |0°V|2 87V - 6%(Lys V)
R2
< —Do(0*V)* + [0*V |11 Do(0°V)? (V] wiata (1 + V2P| 1) + V@ yyiata [V]wie ) -

Thus, for any ¢,

1

=T 2426
> J [0V oV - 3Q(L¢>V) —Dy(V)* + V]2 De(V)" &5 (14 |V 10)
|oo|=£

l\')

2+-L
+ HV\|L42 D(V) 2 (V] L+ [V2[r2) + [Velwes [Viw=) |

from which the result follows through Young inequalities. We point out that in the case ¢ = 1, as
in the case ¢ = 0, one may obtain the same estimate without the |[V|yea [|[V]yy1.0 term. O

In the foregoing proof, to carry out integrations by parts, we have used the standard facts that
over R%, d e N*, if VT a is integrable and a € Span (U1<p<i Lp> then the integral of V' a is
SP<g=1

zero and that if Va is integrable and a € Span (U1 <p<oo Lp> then the integral of Va is zero.

In the foregoing proof, to bound commutator terms, we have used the following standard non-
linear bounds — to be used intensively later on — :

IV @by < lalwes [Blwer ,
IV @bz < IV als bl + lalz= [Vl o |
I[0%, alblLe < |V *lalLs b= + |Val e [ V0] s

/—1
I9*(g 0 @) |0 < IVglypters (50 a0y (1+ 12150 ) IV%allo,  when g(0) = 0.
We shall also use

IV¥(9(a) = g(0))z» < IV9l 0, ) IV (@ = D)o
+ [Vglwes @,y 0+ lalf=?" + [bI522%) (Il 0 + [V'b]1s) [a — b=

where By p := B(0, max({|al/r»,|b|r=})).

We conclude this subsection devoted to the analysis of the effects of the introduction of ¢ by
making explicit the affine auxiliary problems used to set up a fixed-point problem at the nonlinear
level.

To begin with, note that the cases £ = 0 and ¢ = 1 of the first estimate of Lemma (or rather
the precised versions of its proof) provide the bounds necessary to check by standard'“ arguments
that when @™ is such that V™ € CO(R*; Wh*(R?; M2(R))) with [V¢™| 1o < 1, 6; — L does
generate an evolution system (Sgin(, 5))i=s>0 on LY(R?;RM).

12T hat is, by approximating Lin by piece-wise constant-in-time operators.
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Under suitable assumptions on ¢, g, we claim that we may likewise solve uniquely in (VU ¢°'%)
(in relevant spaces)

(2.13)  VOU(t,) = Syin(t,0)(Vo) +JO Sgn(t, 7)[(— (@ — L) ((°* - V)U) + g™)(r,)]d7,

(2.14)  @™(t,) = s()[Vo + (¢ - V)U] + JOtS(t ~D(Lgn — L)V + g™)(7,)]d T

+X(t) (@0 — s(t)[Vo + (¢ - V)U]) .
Note that the problem is designed to also ensure that for ¢ > 0
(2.15) VOR(t,1) = (S1 + 52)(t) [Vo + (¢ - V)U]

+ L (S1+ S2)(t = T)[((Lygn — LYV + g™)(7,)]d7

= x(t) (60— s()[Vo + (¢ - V)U]) - V) U,
so that
(216) AV — Ly VO = g™ 4 () (& — Lyin) (( (60 — s(H)[Vo + (¢ - V)U]) - v) g).

Since, because of the short-time cut-off Y, the problem is not invariant by time-translations, the
most convenient way to prove the claim is to observe that on any time interval [0, T'], there exists an
iterate of the natural fixed-point map that is strictly contracting. We omit to provide more details
on the statement and the proof of the claim, partly because some of these details are tedious and
classical, partly because the other ones are essentially redundant with those used below to prove
nonlinear stability.

2.3. Nonlinear stability: proof of Theorem To prove Theorem we set up a fixed
point argument on the map that associates with a given (V™ ¢™) the solution (V°Ut, ¢°") to

E19)-219) vith
gin = _( 7ifn . V¢in [12 —V¢in]_1V)H o ( itn . [12 —V¢in]_1V)Vin

+ P[U,Id —¢™] — P[U,1d] — LeP[U,Id](—¢™) + Np[V'®, ¢™],

where P and N are respectively defined through and in Lemma

For some Cp > 0 to be taken sufficiently large, we consider X" the space of functions (V, ¢) such
that (V,Ve,¢,) € CO/(RT; L*) n L2(R*; W?24) and ¢ — ¢, € CO(R*; L*) with ¢(0,-) = ¢, that
satisty [(V, @)||lx < Cp Ep, where

0V, @)l = sup (1+ TV, Vb, )¢, ) ws -

Note that
_3 1
sup (1 +1t)" 4| @(t,) — g s < §1>110>(1 + )1t s < [V, 0)]x -

=0
We constraint Ey to be sufficiently small compared to 1/Cy so that (V, ¢) € X implies

1

” (V7 Vo, ¢t)HL°O(R+;W1’°C) < 5 .

The latter is sufficient to ensure that the constants introduced below do not depend on Cy and Ej.
We first show that if Cj is sufficiently large and, accordingly, Ej is sufficiently small then the
map (VI, ™) — (VOU, $°") introduced above is well-defined from X to itself.
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Let us pick (VI®,¢") € X and consider the associated (VO ¢°"). From Lemma product
estimates and the embedding W4 < L®, we deduce that (2.16)) implies for some C,C’ > 0 and
0 >0,

HVout (t, ')Hé{/l‘l

t
< [Vollyea e +C J e (VO La + IV [yaa + 02" [y + g™ fiyra ) (1) d7

0
< IV, 4 —0t ' ' —0(t—7) yout 4 v pout 4 out (|4 H(Vin’¢1n)H8X d
< Vol 10" | e (V14 1967 s+ 197 i) (7) + Fo 20 ) ar

Besides, from Propositions [2.2] and [2.3] and Lemma [2.:4] product estimates and the embedding
H' — L* we deduce that (2.14)-(2.15)) imply for some C,C’ > 0 and 6 > 0

[Vt )s + V@™ (¢ ) w2

CE t 679 (t—7) 1 - o in
<o (= - ) (V@™ s Voo + g™ ) (7) d
(1+1t)a 0 \(min({1,t—7}))z (1+t—1)12
CE t 1 Vin’ ql)il’l o Vin’ ¢in 2
< 01 + C' J T . H( z”x HV t(,]_’ ')HW2’4 + H( EHX dr.
(1+1t)a 0 (t—71)2(1+t—7)4 (1+7)2 (1+7)2

Likewise for some C,C’ > 0
[ (2, ) lw2.s
CE, Vin in Vin, in\ 2
Lo (H( N oty g 4 IV >|X>

A

(40 (1+t)3 (1+1)2
/ ¢ 1 H (Vina ¢in) HX out H (Vin, ¢in) H2X
c VO (r, ) s + e C X ) 7,
! jo (t—7)3(1+t—7)T ( TSR S e o A

As a result, for
C(t) == sup (1+7)T|(VoU, Vg™, 2" ) (¢, ) fywas

ost<t

by combining the foregoing inequalities with Gronwall like arguments and direct integrations, one
obtains, for some constant K > 0, for any ¢ > 0

((t) < K (Eog+ CoEoC(t) + (Co Eo)?)
that implies, when K Cy Ep < 1,
C(t) <2K (Ey+ (Cy Ep)?).

Therefore, if Cyp > 2 K and FEj is sufficiently small (depending on the choice of Cj), one concludes
that X is indeed left invariant by the map.
To conclude the proof, we first point out that X is a complete space for the distance

1
dx((V1,61), (Va, 63)) :=sup (1 + 8)3[ (V1 = V2, V($1 = ¢3). (61 = P2)i) (¢ ) s
and we leave to the reader to check that, when Ej is sufficiently small, estimates similar to the
ones expounded above prove that the map (V" ¢™) — (V°Uul ¢°"") is strictly contracting for
the distance dy. This achieves, by the Banach fixed-point theorem, the proof of the first part of
Theorem [1.1]
26



There only remains to prove the further bounds. On one hand, using the embedding H LI 5 ,

for any 2 < p < o0, for some K, for any t > 0,
[(V,Vé,0,)(t, )|
K, E K, (Co Ep)? t 1 1
< p 10_l + p( 0 f) Kp (CO EO)2 J — T dr.
(1+t)2"» (1+1)2 0 (t—T) Q1+t—7)a 2 (14+7)2
This yields the claimed LP-bounds by integration. On the other hand, when ¢ € N, £ > 2, by using
the smoothing effects of (s(t))¢>0, one derives for some Ky and any ¢ = 0
K¢ (Eoe + (Co Eo)?)
[(V, @) (t, ) [wea <
(1+14)1

and, this may be used to show that for some K, and 6, > 0 and any t > 0

— t Co E )4 (C E, )4
V(¢ )4 < |V 4 Ot K J‘ 0p (t—7) ( 0 £0,0 0 Lo N
” (tv )HWZA H OHI/VEA € + Ky . e (1 ) (1 ) ” (7.’ )H o 1 :

which provides the missing bound by a Gronwall-type argument. Note that in the last estimate,
we have crucially used the tame character of product estimates.

2.4. More localized perturbations: proof of Theorem We now sketch the proof of
Theorem The arguments being quite similar to the ones for Theorem we only stress
departures from the foregoing detailed proof.

At the linear level, the main variation is that Proposition and Lemma [2.4] should be replaced
with the following proposition and lemma whose proofs are nearly identical since Hgb arlre < |Vo|re

and
X
dur(€ Z H£H2

Proposition 2.9. Assume (D1)-(D2).
(1) There exists 8’ > 0, such that, for any (s,s’) € Ry such that 8 < s and any qo such that
2 < qo < 0, there exists Cy s ¢ such that for any t > 0, and any 2 < p < qo,

Coo,s,s' o
1510006 - T Ul lwer < —— B [V

(min({1,t}))

(2) For any s € Ry, there exists Cs such that for any 2 < p < +0, and any t =0
Cs
I9:(01(&- T Ul <~ V1.
(141

(3) For any o € N?, any £ € N and any 2 < p < +o0 such that || + £+ 1 — % > 0, there exists
Cpae such that for any t = 0

(67 C a,
|22 s(t)[(¢- V)Ullw < ——22L |V,

(1+t) =2 »

Note that here the constraint |a + ¢+ 1 — % > 0 is reduced to (o, £) # (0,0) or p > 2.
Lemma 2.10. Assume (D1)-(D2). For any a € N2, any £ € N and any 2 < p < +o such that
la| +1— % > 0, there exists Cp o such that for any t =0
1 _2
et 3 o) -

| %% (s(D[(@- VU] = ) [1r < Cpa VO 11 syrtal-ns
In(2 +t) otherwise
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There are only three more elements that require some change.

(1) To gain more localization on N[V(r,-),®(r,-)], we complement with more standard L2
energy estimates the less usual L* estimates of Lemma This brings some control on
the L'-norm of N[V(r,-), ¢(7,-)].

(2) In the Duhamel formula part of the argument, the contribution of nonlinear terms through
So, or s, is analyzed by breaking the integral in two parts. The Sé/ 2 part is estimated with
L' — LP bounds, whereas the S; /2 part is bounded using L? — LP estimates.

(3) The last estimate follows from Proposition [2.2}(3) together with Remark[C.3] Note that ¢,
is the only constant such that ¢, — ¢, belongs to L2(R?) and that s(t)[(¢, - V)U] = ¢,

Incidentally, we point out that the arguments sketched above do prove that nonlinear terms are
indeed asymptotically irrelevant in large-time.

Remark 2.11. We stress that actually one may remove the log(2+1t) factor of the L* estimate. One
way to prove this is to use LY — L* bounds, with ¢ > 2, to estimate nonlinear contributions in the
Duhamel formulation. This requires techniques beyond those of the present section, expounded in
the following one. Yet, since our focus is mostly on critical decay, we shall not provide details for
those extra arguments. We point out however that the LY — L* bounds, ¢ > 2, mentioned here
scale badly in large-time and therefore are not sufficient to remove similar log(2 + ¢) factors in the
critical case.

3. MODULATIONAL BEHAVIOR

3.1. Linear estimates. In the stability part, the starting point of the phase separation was the
normalization q? = 0;U, j = 1,2. The following lemma provides a similar, higher-order, spectral
normalization to set the frame for a wavenumber identification.
Lemma 3.1. Assume (D2) and consider a wave parametrization as in Proposition [B.1]

(1) For any n € R?,

d¢Do(n) = —iK' (dk, c(K)(Kn) dx, c¢(K)(Kn)) .

(2) For any particular choice of the wave profile parametrization, one may normalize ((qf, qg))g,
((Gﬁ,qg))g to ensure that, for any n € R? and any j € {1,2},

(3.1) deqj(n) = idx, UK)(Kn).

In the following we will sometimes use the notation A(i§) := d¢ Do(€) in agreement with Ap-
pendix Note that

2
(3.2) de¢ Do(€) =i (2 dk, Q(K) (K€) eﬁ) +1(K&)Te(K) I
j=1

so that Assumption (Ca) or Assumption (Cb) give the behavior of dg Do(£) with respect to €.

Proof. Along the proof, we use notation from Appendix [Bl To begin with, by differentiating the
definition D¢ = (<(~1§, L£q§> 12 );e¢ and using (B.3), one derives for any n € R?

per

o~ T )~
deDo(n) = i ((@% (L (@) Ky, ) = —1 (@ (KT dc, o(K)(Km) - V) )
which yields the first part of the lemma.
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Now, by differentiating (I —II¢) Lg¢ [qf] = 0, j = 1,2, (encoding that II¢ commutes with L¢), one
obtains, for any 1 and j,

) T
(3.3) (1-Tho) (Lolde af(m)] +i (LV[0,U]) ' Kn) = 0
which, combined with (B.3)), implies
Lo[de af (n) — i dk, U(K) (Kn)]

(I-Ip) Lo[de g () — i dk, U(K)(Kn)]
= i(I-o) (K" dx, c(K)(Kn) - V)U) = 0.

Therefore, for any n and j, dg¢ q?(n) — i dk, U(K)(Kn) belongs to the kernel of Lo.

To conclude the proof, we only need to prove that by replacing ((qﬁ,qg))g, (((Nﬁ,ag))g with

some ((pf, pg))g, ((f)f, f)g))g satisfying the same spectral conditions one may also achieve the extra

normalization condition: for any n, j and ¢,
BYide pf()rz, = 1Bk, UK)(Kn))Lz,, -

per

This may be achieved, for & sufficiently small, through
L. ¢ al2). ¢
a a
(Pf Pg) = <Q§ qg) <I2 + <a(2,1) £ a2 5)) ’

-1
L. ¢ al2) . g\*
~E ~ ~E ~ a a
(5% B5) = (af ) <I2 + <a(2,1) £ a2 .5> )
with vectors of C2, al®9), determined by: for any 7,

al).m = —(@;de )z, + 1€d0; dk, UK)(Kn))Lz,, -

per

Under normalization (3.1]), we may refine the decomposition of S(t¢) into

S(t)[g] = Smoa(t)[g] + S1(t)[g] + Sa(t)[g]
with

Smoa(t)[g] = (s(t)[g] - VU + ) dx, UK)(KVs;(t)g]),

je{1,2}
. | _((aheen),

per
where, for j =1, 2,
€. of 0 0
r>i=q; —q; —deq;(§).
At this stage, one could just mimick the analysis of Section and derive for gg(t) estimates

similar to those for Sa(t) but with an extra (1 + t)_% decay factor. Yet because of the estimation
of

L Si(t — )NV (7, ), p(r, )] d7

this would limit the LP-decay of W(t,-) — UE)(W(¢,.)) in Theorem to the L2-decay of
N[V(t, ), o(t, )], that is, (1 + t)_%. To bypass this limitation, we extend the analysis of Sec-
tion to incorporate LY — LP decay with ¢ > 2. The price to pay is that the analysis is more

involved and does not follow readily from Hausdorff-Young estimates.
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To replace Hausdorff-Young estimates, in regimes where they are not available, we shall use
Green function representations of finite-rank Bloch multipliers,

| eeme (0ae),, ag = o | Tl dy,

per

where I'x,y):= J el (x=y)€ m(&,x) pé(y)d€
[—m,m]?

that are obtained from the explicit expression of the Bloch transform. For our purposes, it it
sufficient to prove L* — L* on this type of operators, thus to bound |I'[|zs r1)- The following

lemma provides convenient ways to obtain this kind of bound (with z playing the role of x — y).

Lemma 3.2. (1) There exists a constant C such that if m is a smooth function on R?/(2r Z)? x
R?2, then
1
— iz € ~ ~ 5
H ) J[—mr]2 ’ E‘ L*(R?) <Clm ”Lw Lg) Hm”L;@(ngl) :

(2) There exists a constant C such that if v is a smooth function on R?/(2n Z)?, then

HZ = f o 7€
[77‘-77"]2

The form of the periodicity in € used here is consistent with Remark

1 1
< C[mlz, [m]z. .

L(R2)

Proof. Both estimates hinge on the fact that for any 1 < py < o0, if r > 2/p|, (with p} Lebesgue-
conjugate to pp), for any function I'

2 2

(3-4) (INRRES HFHLpO O

To prove the latter it is sufficient to optizime in zy > 0 the bound obtained by splitting the L'-norm
between contributions from |z|| < zp and those from |z| = 2.

The second bound is then obtained by applying the foregoing with py = 2, r = 2 and concluding
with Parseval identities. The proof of the first bound starts from the foregoing with pg = o, r = 4,
and the observation that |z||* el %€ = Ag(ei z())(¢), and is concluded by the integration by parts

of A% and triangle inequalities. 0

With this tools in hands, we may now turn to linear estimates.

Proposition 3.3. Assume (D1)-(D2).

(1) There exists 0" > 0, such that, for any (s,s’) € (Ry)? such that s’ < s and any 2 < q < ©,
there exists Cy 5 4 such that for any t >0

C/ _9/
= 7 gl
(min({1,}))
(2) For any s € Ry and any B € N2, there eists Cs g such that for any 2 < p < +00, 1 < q < p,
and any t =0

[S1®)[gllwsa <

C
51’6, — llgllze -
EJme({i’E})

|82 (D)L lwsr < 1
(1+1)2ta
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(8) For any o € N2, any 8 € N? and any { € N, there exists Co g3 such that for any 2 < p <
+0,1<g<p,and anyt =0

c

Vi LB

B T TR S— 1
(14 )i rmin({55}) -2

Proof. We begin by proving the second estimate. We skip the proof of the cases when ¢ < 2 as
nearly identical to the proof of the corresponding estimates in Proposition [2.2] By interpolation, it
is sufficient to consider the cases when s € N and p = ¢ = c0. Now to bound H&fg%(t)[&)ﬁ(g]ﬂpo, we
expand both 6,‘!1‘?('), j=12ad < a,and 85(}?(-), ¢ =1,2, 3 < f3, with respect to & respectively
up to third and first order. The part containing remainders is obtained through integration against
a Green function of the form

| et emiexy) de
[_71-771-]2
with m smooth, compactly supported in & near 0 and such that
_ _ 2
IVem(t, &% y)| < (J€]C0% + €]’ (1 +1)) e70r1E”, (0.

Applying the first part of Lemma provides the required (1 + t)_% bound for this part. The
part containing only coefficients of the expansions takes the form of a sum of terms obtained by
integration against a Green function of the form

a(x) b(y) j oV Em(r ) dg

[77“77]2

with a, b bounded and m smooth, compactly supported near 0 and such that

[Vém(t€)| < (Il + g2 (1 +1)) 0HIEr, (0.

Applying the second part of Lemma provides the required (1 + t)fé bound for these terms.
This achieves the proof of the second bound.

The proof of the third bound is omitted since it follows readily from a combination of arguments
of the proof of the corresponding bound in Proposition [2.2] and of arguments expounded hereabove
to prove the second bound.

We now focus on the first bound. By using short-time parabolic estimates, one may reduce the
analysis to the case s = s’. Then, we observe that for any wy > 0, the contribution to S;(¢)[g] of
the part of the spectrum with real part larger than —2wg takes the form of a finite sum of terms
given as

<f51 (57 '); g(&a ')>L1236T
f ,Xxo(€) X (p1(&,%x) - Pm(€,%)) e : g
[—m.7] <I~)mo (Eu '); g(év ')>L2

per

with o a cutt-off function and efF¢ exponentially decaying in time at a rate independent of wy.
Applying the first part of Lemma [3.2] to the corresponding Green functions we deduce that for some
0" > 0 independent of wy and ¢, its contribution to an W% — W#%4 is bounded by a multiplﬂ of
et For clarity, let us temparily denote as Sj ., (¢)[g] the remaining part. On one hand, arguing
as in the proof of Proposition one derives that the H* — H® norm of S ., (t) is bounded by
a multiple of e™@0!, On the other hand, let us pick some ¢ < go < o0 and observe that for some
wy > 0, one deduces from parabolic estimates that the W% — W% norm of S(t) is bounded by

13Possibly depending on wy.
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a multiple of e¥1?, thus, as a consequence of bounds proved so far, so is the W9 — /4% norm
of S, (t). The last bound to prove then follows by chosing wy sufficiently large to ensure

11 1 _1
9 9 2 g /
—Wwo 7 T Twig T < 0
2 q 2
and interpolating. O

The only linear bound left to establish before turning to the proof of Theorem [I.3] is a small
variation of Proposition [2.3]
Lemma 3.4. Assume (D1)-(D2).

(1) There exists 8' > 0, such that, for any (s,s’) € Ry such that s’ < s and any (po,p1) such
that 2 < pg < p1 < 0, there exists Cp p, s & such that for any t >0, and any po < p < p1,

Chopi,s.s' Y
|S1(O)[(¢ - V)U|wer < = S VN~
(min({1,t}))

(2) For any s € Ry, there exists Cs such that for any 2 < p < +00, and any t = 0
Cy

1S2() (¢ - V)U][wer < = |A -
3.2. Proof of Theorem With (V, ¢) as in the proof of Theorem let us consider
(3'5) Z(ta ) = V(tv ) - 2 dKj U(K)(KV(,b](t, )) :
J

Since we are now enforcing normalization (3.1)), Z is equivalently written as

Z(t,-) =(S1 + 5) (1) [Vo + (¢ - V)U] + L (81 + ) (t = IN[V(r, ), o(7, )] d7

+X(1) <Smod(t) [Vo + (¢ - VU] = (¢ - V)U = > | dk, U(K)(KV(Cbo)j)) :
J
Let us point out that the estimates used to prove Theorem also yield

E In(2+¢
HV2¢(t7 ')HLP < 7017 2 < p <0, ||V2d)(t, )HLOO < EOLR,

(1+4)27» (1+1)2

so that together with the estimates of Theorem [L.1]and standard product estimates on the pointwise

estimate (2.10)) we obtain

(36) |NTV(t,), d(t,)Le < pIn(2+1)

E? 4
1—_1° 9 <g< 47 HN[V(tv ')7 ¢(ta ')]HL4 EO 3
1+t 3 (L+1)7

To bound the contribution of nonlinear terms to Z, we use an L™n{P4) — pprlmint{p.4}) egtimate
for S| and a L% — LP estimate for §2, with é = % (% +

)
(

%). This results in the following bounds

In(2 +

(In2 + £))*

1Z(t,-)|zr < Eo i
(1+1t)2

2<p<o,  |Z4t )= s Eo

Nl | o~

N

+

1 b
)

NI

1
p

M\H

(1+1)
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Then by changes of variable, Lemma and a quadratic approximation in wavenumbers, we
note that

IW(t, )~ U @) gy 1205 + IV 1]
IRt ) ~ Kl + 102 = Doomege < IV + 106 (1o

Indeed, since K := VW and ¥ is defined from ¢ as ¥(¢,x) := (Id—(t,-)) ! (KT (x—tc)), we
notice that

(3.7) K(t,x) = (K+KV(t, ) + K(Ve(t, ) (1 ~Va(t,) ") (¥(tx)) ,
(3.8) 2 (t,x) = —K(t,x)Te + (KK(t,x)) dio(t, T(t,x)).
The proof of Theorem is then achieved since
1 %1_%+%, l<p<oo,
o212, < IVott B < 0t 0
apits PTE

We now specialize the discussion to either Case (Ca) or Case (Cb) and refine the estimates
correspondingly.

3.3. Scalar case. We begin our refined analysis with Subcase (Cb0) since it requires less changes
and is significantly simpler. Since Q(K) = —KTc(K), using (3.2]), we note that for some £y € R?,
deDo(§) = A(i§) =i - & Lo

The main task is to improve Proposition |3.3

Proposition 3.5. Assume (D1)-(D2) and Subcase (CbO0).
(1) For any s € Ry and any B € N?, there exists Cs g such that for any2 < p < 40, 1 < g < p,
and any t =0

Cs.
1 t)s1+11 “gHLq-
—+ q p

|S2(t) [l <

(2) For any o € N2, any 8 € N? and any { € N, there exists Co g3 such that for any 2 < p <
+0,1<g<p,and anyt =0

Ca,
oz ol s(t)[ole]lr < LD gl

(1+1) 2 tu

Proof. We only indicate departures from the proof of Proposition We carry out the expansions
of é’,oélrf(), j=12 o < a, and 4 (ﬁg(), ¢ =1,2, B < B, with respect to £ respectively up to
fourth and second order so that the remainder part does provide the required (14 ¢)~! extra decay.
Then, when we write the part containing only coefficients of the expansions, it involves integrals of
the form

(3.9) | dvrereme g ag
[_7r77r]2
with £y the common speed introduced above and m such that
[Vém(t,©)] < (I€]® 0 + |€I> (1+)f) e 0t (0.

Applying the second part of Lemma provides the required (1+¢)~! bound for these terms. This
achieves the proof. O
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We now prove Theorem restricted to Subcase (Cb0).
To remove the log-factor in the estimates of Theorem we notice that Proposition implies
Cs
|S2(t)[oZellwer < ——F 5 lglis, 2<p<w,1<q<p.

(1+8)7Ta >

One may use this in L*-bounds to replace L? — L% bounds with an LY — L® bound for some

2 < g < © together with (3.6) when estimating the Sﬁ Jo Part of the nonlinear contribution of Ss.
Similar estimates also give

E? 4 Eoln(2 +t
INTV(E ), @t e 5 — 20 3 cgd, 120 )l < 22CED 5 ey
(1+0)'e 3 1+t >

To optimize improvements in L? estimates of Theorem when p > 4, we first need to derive
sharp estimates for |[N[V(t,-), @(t,-)]||zr. This follows readily from the following LP-version of
Lemma, whose proof is essentially identical to the one of the original lemma, hence omitted.

Lemma 3.6. (1) For any 0 < ny <1, any 2 < p < o0 and any { € N, there exist 6 > 0 and
C' = 0 such that for any ¢ such that IV@ll o m2mor)) < M0 and any V € whP(R%R)
such that Dy (V) < +o0 and LyV € WP (R?%; R?)

D f [V [P2 67V - 6%(Lg V)
A=t

2[ 1
0D (VY + C (VI (141962 0) + V10, VI )
where
)
Dip(V)i= [ ) f |VP2 [V V2
|| =2

(2) For any £ € N and any 2 < p < o, there exists C such that for any V € W*LP(R%,R")
and any j € N, j < ¢,

VIV < CIV7% Dep(V), 1Mha:€i

N

With this in hands one can show that, if 4 < p; < +00 and E( ) o, the W?2Pl-norm of
(V, Vo, d,) globally exists in time with

K E(pl)
IV, Vb, ) () |2 < %, 4<p<p.
(1+t)2»
Combining them with, for any 2 < pg < 4,
K, E
H(V, Vo, V2¢)a d)(t, )HLP < (1]30)01 ) Do <p<@.
+t)2 v
this yields, for any % <qo <4< p <+,
K E E(Pl)
INTV(E ), (2, )]s <m0 20 w<a<p

(1+1¢)
Then, to bound the contribution of nonlinear terms to Z, we use an L™n({pp1}) — pylmin({p.p1})

estimate for Sy and a L™n(PP1}) 5 [P estimate for §2. This results in the claimed bounds for
|Z] v
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3.4. Scalar-like case: proof of Theorem We now study Case (Cb) in general. The main
difference with Subcase (Cb0) is that the required version of Proposition [3.5|is significantly harder
to prove.

To begin with, note that the assumption ensures that for some £y, £ € R?, and some invertible

P e M3(R),
PAGEP 1 =ify -nly+diag(il-n,—il-n).

The already analyzed Subcase (CbO0) corresponds to £ = 0 and, thus, we assume here £ # 0. As
in the proof of Lemma we point out that with

P(Dg— AG€) P =: (44[€]) 1 pcn - 1€l < o,
one has for some § > 0 and any & € R? such that [&| < &,

R(g;i€]) < —0)€)°,  j=1,2.
Introducing
Eg(t) = e—i Lo-Et diag(e—i Z{t’ ei Z-Et) PetDE P—l , H£H < {07

one derives for (k,j) € {(1,2);(2,1)},

4

(Behalt) =l [ onslf) U2 g 18] (8,00 o

t ; .
(Es)j,k(t> _ fo 0%.il€] (t=0) o(=1)7 21 £&0 qj,k[E] (Eg)k,k(U) do.

Note that the fact that £ # 0 introduces a significant anisotropy in the way the solution spreads.
To measure this, with £+ := (—f3,¢;) (where £ := ({1,/5)), let us introduce adapted coordinates
& = L£-& & := £+ & and denote as d,, &, corresponding partial derivatives. Then, from an
integration by parts in the above time integrals one derives that for any a € N, b € N, there exists
C and 0 > 0 such that for any & € R? such that |¢] < &, for any ¢ > 0, and j # k

(3.10) 195 37 (Zj)e O + 101 7 (Spe — e+ (1))

< C o OtlEl (1+ t)a+22b <|£.|| + min ({1’ E&L’IZ }>> ‘

Proposition 3.7. Assume (D1)-(D2) and Case (Cb). Then estimates of Proposition [3.5 still
hold.

Proof. We only show how to bound the contributions to the L* — L* bounds of the new type of
terms arising from the integral terms discussed above. We have to estimate in L (R?) integrals of
the form

J et g ag,
and
(3.11)
ﬁ - el (z+£0ie)'£(Ej,k‘)&(t)X(ﬁ)ﬁa d¢, J‘[ . ei(z+£0i£)'£((2k,k)§(t) _ eqk,k[g]t)X(E)Ea de,

where j # k and £€* = £7€°2 is a monomial with o € N2. The first term can easily be estimated
from Lemma [3.2}(2) so we focus our attention on the last two terms. We proceed in two steps.
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To begin with, we replace estimate (3.4]) in the proof of Lemma with a suitable anisotropic
estimate. Namely, if a1, b1, ag, ba are real numbers such that

1 1 1 1 1 1
(3.12) b1<§<a1, a2<§<b2, <a1—2> <62—2>><2—bl> <2—a2>,

there exists a constant C' such that for any function I" of z = (2., 2,) € R?,

2a1bg—2bjagtag—bo+bj—ag
HFHLl < C HFHL2 2a1bg—bjag

bap—ag

X [lzL]® [z T 752"
a1—=by

x [lzL]% [z T 75270

though it is sufficient for this work to consider the case a1 = by = 1 and ag = by = i. To prove the

foregoing claim, we set
/8_: (1—2@2)(2@1—1)
' (1-201)(2b2—1)

so that
(1 — 2@2)
B

and, for any 7 > 0, R > 0, we split R? into three zones defined respectively by

B B
<’Zﬂ <1 and —‘Z”‘ < 1>, <|ZL >1 and —’Z”‘ < 21 ), <|Z" >1 and —|z”‘ |2 >,
r r

2&1—(1—2b1)ﬁ>1, and 2by — >1,

\%

R R RA r r RS
to derive
la—2b1) 3(1-2a2)
a b T2 a b Rz
ITl e < T2 Ve R+ [[[20]* |2 Tl 2 Py [zL% |20 T 2 (2ha1)
( /,',.R)(l—Zbl) R(bz—az)

= [Tllze VP R+ [l22]® |2/ Tl 2 + M=z |2/*2 T 2

R(a1—b1) (v/r R)(2b2=1)

Optimizing the latter in (r, R) (or equivalently in (vr R, R)) achieves the proof of the claim.
The second step consists in proving that if

I (t,2) = f e Em@ (¢, ¢) d¢
[777'777]2

where a € N, m(® smooth, compactly supported near 0 and if there exists Ny € N such that for
any a, b € [0, No], we have

|01 P m(@ (¢, €)|

< o e—etHﬁHZ <|‘£H(a—(a+b))+ + Hg”a (1 + t) a+22b> (’fl‘ + min <{1, Ef})) )

then for any a,b € [0, No],

1
_a+2b

(1+4)1+5—"3
By interpolation, it is sufficient to analyze the case when a and b are integers and then one may
use

(3.13) 1201 12 T (¢, ) g2 <

[ze|* |2 T, )2 = [(z0)° () T )2 < 10 8 m ()2
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from which the result follows. Let us point out that in the foregoing, the contribution of the min
term to the required L? bound is conveniently estimated by splitting the integral in two zones
corresponding to |¢,| < |¢1[? and |¢1[2 < |£,|, bounded the factor e #1&1* by 1 when it is necessary.
Combining the two first steps one obtains for any such I'(®)

1
(1+t)z
This provides the missing ingredient to complete the proof along the lines of Proposition ]

[T, s

We omit the details of the end of the proof of Theorem as identical to those for the Sub-
case (Cb0).

3.5. Dispersive case: proof of Theorems and We now turn to Case (Ca). Once
again the main task is to improve estimates on S3(t), So(t) and s(t) by relying on the special
structure of efPs.

To describe this structure in the present case, let us introduce notation e;(w) := (cos(w), sin(w))
and use the terminology that a function & — A(&) is smooth in polar coordinates if it is defined
on {&;0 < [€] < &}, for some & > 0, and the map (r,w) — A(r e;(w)) extends smoothly from
(0,&] x R/(27Z) to [0,&] x R/(27wZ). In the following we shall not distinguish between maps
€ — A(€) and (r,w) — A(r e;(w)), thus we identify d,A with &- - V¢A and 0,4 with ﬁ - VeA.
Note that if A is smooth in polar coordinates, it follows that for any «, |0g A(£)| < €]~ 1.

After these preliminary definitions, we observe that in Case (Ca), there exist complex-valued
maps A1, Ay and complementary projector-valued maps my, 72, all smooth in polar coordinates,
such that

2
eth _ Zet)\j(ﬁ) 7Tj<€)
j=1

and, for j = 1,2, A\, is continuous at £ = 0 with value 0 and for some 6 > 0,

RN (€)) < -0 €)*.

Dispersive effects arise from the fact that the dependence of 0, A; on w is non trivial in the following
sense.

Lemma 3.8. By lessening & if necessary, one may enforce that 0, \; +53,8T)\j s nowhere vanishing.

Note that, in contrast, if A; were linear in £, then the quantity under study would be identically
zero since 05 e = —ep.
Proof. We first observe that each \; satisfies

£—0

Ai(€) "= 18- £+ €i4/Q(€,6) + O(¢]),

where € € {1, —1}, £y € R? and Q is a positive definite quadratic form.
It is sufficient to prove that A : w — +/Q(e(w), e(w)) is such that 0> A + A is nowhere vanishing.
Direct computations provide

Q(e(w), e(w))Q(e(w)!, e(w)') — Qle(w), e(w)*)?
(Qe(w), e(w)))?

so that the result stems from the Cauchy-Schwarz inequality. 0

(A +A)(w) =

Proposition 3.9. Assume (D1)-(D2) and Case (Ca).
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(1) For any s € Ry and any B € N2, there eists Cs 3 such that for any2 < p < +00,1 < g <2,
and any t =0

- C,
|S2(t)[02g]wer < 0

11,1 . 1_11_1
l+§ ;+§m1n<{§ Sia T3

(1+1)

(2) For any o € N2, any B € N? and any ¢ € N, there exists Cayp such that for any 2 < p <
+0,1<g<2,andanyt =0

C

¢ 4B

H a)oé at S(t) [a)ﬁcg]HLp < lal+2 | 1 1a 1. 1011 1 Hg”Lq .
(140 i amin({3-50-4})

(8) For any s € Ry, there exists Cs such that for any 2 < p < +0, and any t =0

15[ V)Ullwer < — 5 |AG|11 -
(1+1)

(4) For any a € N2, any £ € N and any 2 < p < +0o0 such that |a| + ¢ — % > 0, there ezists
Cp.ae such that for any t = 0

le% C, N4
| 0% o s(t)[(¢p- V)U]| v < ot 1ot 1AL

(L4+1)2 i

Proof. Let us first observe that it is sufficient to prove new L' — L® bounds since then one may
interpolate with the already known bounds LY — L? and L? — LP. This single argument covers all
the cases except for LP bounds on Vys(t)[(¢ - V)U] when 2 < p < oo since the needed L' — L?
bound does not hold. Here, instead, one observes that an L' — L*%® bound does hold and that it is
sufficient so as to apply an interpolation argument. The former claim about the L' — L*% bound
is essentially shown by studying the most singular part of the associated Green kernel and stems
from the fact that VA~™! sends L' to L>»*. We have implicitly used here part of the classical theory
on Lorentz spaces and we refer the reader to [LR02, Chapter 2] for the necessary background.

The first elements of the strategy to prove L® bounds on S (t)[04g] or 02 of s(t)[dhg] from
an L' bound on g are similar to those of previous subsections: kernel representation, expansions
with respect to &€ of left and right bases up to a stage where remainders are trivially bounded,
identification of terms of the expansions as products of a smooth periodic function of x times a
smooth periodic function of y times an integral of the type

J ol Y)ERN (Ot (g) d ¢
[_7r77r]2

with m smooth in polar coordinates, compactly supported near 0 and vanishing at least at second
order at & = 0. The other bounds to prove may be obtained along the same lines, the only
significant difference lying in the degree of vanishing of m at 0 that may even have a first-order
singularity in the worst estimate under consideration.

By using polar coordinates, one deduces that it is thus sufficient to prove bounds uniform with
respect to (rg,wp) € (0,4+0) x R/(27Z) on integrals of the form

3 ~
J ’ J el (ro cos(w—wo)+A(w))rt e—TZtA(r,w) ﬂl(?“, w) ro 1l qw dr
0 JR/(27Z)

with @ > —1, m compactly supported and smooth in (r,w), A real-valued, smooth and such

that |[A + A”| is positively lower bounded and A smooth and such that R(A) is positively lower

bounded. The control on A + A” is provided by Lemma It follows from this control (and an

examination of the regime ry — +00) that one may split the above integral into a finite number —
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controlled uniformly with respect to (rg,wp) — of integrals over (0,&p) x (a(ro,wo), 5(r0,wo)) with
|8(r0,wo) — aro,wp)| < 27 and either |rg cos(- —wp) + A| or | —rg cos(- —wp) + A”| positively lower
bounded on («(rg,wp), B(ro,wo)).

As for pieces on which a control on |rg cos(- — wp) + Al is available one may use

1 .
i(ro cos(w—wo)+A(w)) -t
i (ro cos(w —wp) + A(w)) tér (e ) ()

ei (ro cos(w—wo)+A(w))rt _

3 a 1
and integrate by parts in the r variable. This provides a bound by ¢t~ 2~ 2, which is ¢~ 4 better than
required. Concerning pieces where | — ro cos(- — wp) + A”| is under control, we apply the classical
van der Corput Lemma to the integral in w. This yields a total bound by a multiple of

f&) o 0rt b ratl dp < % eroo e 0% pats
0 Vrt tatz Jo

for some # > 0 and achieves the proof. As for a statement and a proof of the van der Corput
Lemma used in the final argument, we refer the reader to either [Rod18, Lemma 3.3] or [LP15]
Corollary 1.1].

Finally, to prove the third and fourth points, we first proceed as in the proof of the second point
of Proposition 2.3 by decomposing into low and high frequencies. The high-frequency part can be
deduced from the previous point and whereas the low-frequency part follows from and
the strategy used in the previous point. O

With this in hands, the proof of Theorem is achieved in a straightforward way and we omit
the involved details. Likewise, since no new idea nor significantly new estimates are needed to
derive Theorem we skip its proof.

Let us observe that under the assumptions of Theorem the arguments of the present section
also yield estimates for [W(t,-) — UG (W (t,.))|r» when p > 4. Yet the decay we would get
in a straightforward way is expected to be suboptimal. As described in Remark [1.7] this spurious
limitation is due to a lack of initial regularity.

4. AVERAGED DYNAMICS

The last point to be elucidated is the leading-order large-time dynamics of ¥ and VW intro-
duced in Theorem and its refinements. In this part we use extensively elements provided in

Appendix

4.1. Linear estimates. At the linear level, typically we would like to compare s(t)[(¢, - V)U]
with ¥y (t)[¢o] where ¥ (o) denotes the evolution operator for

orp = K" di ¢(K)(KVxp) + Ag[KVy](KVx ).

Since the former system has been designed, in Appendix[D.2] to match the large-time low-frequency
behavior from the system derived in Appendix

o = —K" dk c(K)(KVx0) + AR[KV,](KVx ¢),

at the spectral level it is sufficient to prove that the latter system matches the low-frequency
expansion of Dg, or, with notation from Appendix that it is equivalently written as d0;¢p =
D% (Vx)o¢. In combination with Lemma this is the content of the following lemma.

Remark 4.1. Let us stress that if one is not interested in getting an independent formal derivation
of the latter system, one could have defined AX by the condition 6,0 = DW (V)¢ and corre-
spondingly skipped the discussion in Appendix In disguise, this is the intermediate choice
made in [Rod18].
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Lemma 4.2. Assume (D2) and consider a wave parametrization as in Proposition Jointly
with normalization (3.1). For any n € R?, and ¢ € R?

1 . .
5 déDo(n,m) ¢ = AS[iKn](iKne'),
with A as in (D.4)-(D.5]).

Proof. The starting point is, through (3.1)) and (B.1J),

5 (2 Do(n, M) = ~0rn K] + (@0: (L0 [k, UK GKn)) | 1Ky

per

T (de(@0)° (m): (LD [0, U]) (1 Kn) + Lolok, UK) (Kn)])ys

per

Now, by using (B.3)) and duality relations, one derives
~ T,. .
(de(@e)°(m);(LM[2, 1)) (1Kn) + Lo[ok,, UK)(iKn)])r2,,

= _ Z<d§ qg ); 0 U>L2 K dk,, ¢ (K)(iKn)

Z (@f; dk, U(K)(iKn))r, K" dk,, ¢, (K)(iKn).

Hence the result. O

With this in hands, the general machinery developed in Appendix provides the relevant
comparisons for 2(0) — Y1F where Y1 F is defined as

(SLe(t)9)(€) = x(£) P (&)

Therefore, at the linear level, the remaining task now is to be able to reduce, at leading order, each
s(t)[W] to a Xpp(t)[¢@w] for a suitable ¢y . The latter reduction simply arises from the first-order
expansion of ﬁ%, ¢ = 1,2, thus bounds on the approximation error share many similarities with

bounds on Sy, that is arising from the approximation error of the first-order expansion of qg.. The
precise statements are as follows and one proves them similarly to Propositions and

Proposition 4.3. Assume (D1)-(D2) and Case (Ca).

(1) Let F be a smooth (e1,es)-periodic function. For any a € N2, any k € N such that
k <|a|+1, and any £ € N, there exists Co o such that for any2 <p < 400, 1 < ¢ <2, and
anyt =0

C
R ’“”+———+ai Smin({3-2 1 11) [V¥elLe.

~0.
o3 o s(t)[p F] — 0% & Sup(t) (so (@ F>)

©(q3; F)

e (1+41)

(2) For any a € N2, any £ € N and any 2 < p < +0 such that |a| +£+1—2 > 0, there exists
Cpae such that for any t = 0

Proposition 4.4. Assume (D1)-(D2) and Case (Cb).
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(1) Let F be a smooth (e1,es)-periodic function. For any o € N2?, any k € N such that
k < |a|+1, and any £ € N, there exists Cq o such that for any 2 < p < 400, 1 < ¢ < p, and
anyt =0

P @@ F>> Cat

~ == || —k+£

@), et et

(2) For any a € N?, any £ € N and any 2 < p < +00 such that || + ¢+ 1 — % > 0, there exists
Cpae such that for any t = 0

H 0% ol s(t)(¢p- V)U] — 02 0! Srp(t)[]

IV @lza

+

0% 0; s()[p F] — 03 0 Zrr(t) (

N|=

1_1
q P

Cp7a7z ‘
la|+€ 1,1
2

<
a2 %

AP L1 -

We observe that the scalar products involved in the foregoing propositions shall be ultimately
computed by relying on the facts that <(~1?; 0;U) = 04,1 <j, £ <2, and that, when F belongs to
the range of Lo, (@;F) =0, £ =1,2.

Remark 4.5. We shall use the possibility to trade some time decay against spatial derivatives on
© to distribute integrability constraints when estimating contributions of nonlinear terms through
Duhamel formula. We point out that to a lesser extent this is also possible when estimating Sa(t)

and S5(t). This leads to bounds, for k < 1,

1—k 1CfHV1k90”L(q{l 11 1})
Trtgmptamin({a-pg-3g)
150 Fllwew < { “Ehen
P %, 1<g<p< o, in Case (Cb),
+t a P

1<¢<2<p<ow, inCase (Ca),

o]+

to similar bounds for (1 + t)% Sy(t)[¢ F] HW when k£ < 2 and for (1 + ) 7 |logof s(t)[» F]HU,
s,P
when |o| + ¢ >1and k < |a| + £+ 1.

4.2. Additional preliminary estimates. To prepare the final comparison with averaged equa-
tions, we need to transfer a few more properties of the geometrical expansions, measured in powers
of ¢ in Appendix into large-time asymptotics, measured in powers of t~'. The key points to
reproduce are that

(1) the leading-order description is of modulation type;
(2) the evolution of local parameters is slow;
(3) at leading-order one may express time derivatives of ¢ as a combination of its space deriva-
tives.
The estimates of Section [3] already prove a version of the first point. However, to analyze
nonlinear terms we need a version with higher-order derivatives. Let us observe that the arguments
of Section [3 do yield that, with notation from Theorem [I.T}

(1111()2%’ 2<py<r<ow in Case (Ca),

Vav 3 t)' < Cy E T

(VT2 < B Ty s Case (B,
+)27T

I(I;(QJ;%) in Case (Ca),

Z(t, - 41 < CE tt

122w 0 @+ iy Case (Cb).
(1+¢)2

These bounds are sufficient to show that N[V, ¢] = N[(V — Z) + Z, ¢] is a sum of terms of the

form ¢ F with F smooth and periodic and ¢ quadratic in (¢, V¢, V2¢), and of a faster decaying

remainder (given as a sum of terms that are at least cubic and of quadratic terms involving Z).
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Concerning the second point, we need to prove that placing extra derivatives on ¢ brings extra
decay. All the linear estimates on s(¢) contain a version of the latter. We only need to observe that
this may be transferred at the nonlinear level into the form

1 .
- in Case (Ca),
IV2@llwas + IV arlwas + |Z(E Nwas < CEog § 07 0
ol in Case (Cb).

Note that the initial control follows from the embedding L' n W3% < H? n W2%®, whereas the
propagation is proved by a continuity argument on [(V2¢, V,)(t, )| w24, the Z-bound then fol-
lowing. The main difference with our analysis so far is that we use the above observation about
the form of N[V, ¢] and, for the parts of the decomposition of the form ¢ F, with F periodic and
¢ quadratic in (¢,, V@), we bound their Sﬁ /2—contributions through Duhamel formula transferring
an extra derivative on ¢ thanks to Remark The same kind of argument also allows to remove
almost all the In(2 + ¢) in previous bounds so that one can prove the bounds of Remark except
for the bound on |[W(t,-) — UXE) (W (¢, )|, in Case (Ca) (that we discuss separately below).

Then, to solve the third point about trading time derivatives for space derivatives, we only need to
obtain linear bounds. However (0, + K" (dk, ¢(K)(KV) dk, c(K)(KV))) s(t) satisfies the same
bounds as the ones proved for V2s(t) thanks to Lemma so that i+ 3 KT dk; c¢(K)(KV¢;)
decays following the bounds proved for V?¢.

With this in hands, we may now achieve the analysis of nonlinear terms preliminary to compar-
isons with averaged equations.

Proposition 4.6. Assume (D1)-(D2) (and normalization (3.1)). Then the pair (V, @) given by
Theorem [1.1] may be chosen to ensure

NIV, 9] = ( (5 B AR KV, KT9) + (K T6)" duc o) KVS) — K doc oK) K(V9)) ) -7 )

~ (2o (& VIR KO + UK ) ) b

¢=Vo
with
Cp, Eo E
= ;077%i§7 §<po <p <4, in Case (Ca),
el < § G
LP=Y Cp Eo B
£ ? ?il ) %<po<p<4, in Case (Cb).
(1+t)2»

The cumbersome form involving a ¢ is chosen to emphasize that the leading-order part of N[V, ¢]
has the tensorized form ¢ F with F periodic required to apply the linear estimates of the former
subsection. Note also that as announced the involved periodic factors either belong to the range of
Lo or are 0;U for some j. One may also prove estimates of the remainder in L? for any p € (1, 0]

but we omit those as useless for the rest of our analysis.
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Proof. Combining (B.3) with the above bounds on V¢, Z and V2¢, one derives (with notation
from Lemma

(L P[U,1d —¢] — L P[U, 1) (V) — (¢, - [l =V] ' V)V
= (KV¢V)' (dG(U) (dk U(K)(KV))) — (dk QK)(KV¢) - V) (dx UK)(KV¢))
+ VT (KT Vo) + KT (K Vo)) V (dx UK)(KV)) ) + 1o
P[U + V,Id—¢] — P[U,1d —¢] — L& P[U,Id —¢](V)
= d*f(U)(dk U(K)(KV¢), dx U(K)(KV¢))
+ (KV)" d*G(U)(dx U(K)(KV9], dx UK)(KV)) + 11
~(¢ Vo[l ~V¢]"'V)U
— (KV¢)" dk c(K)(KV¢) - V)U + 1y
P[U,Id —¢] — P[U,1d] — LsP[U, Id](—¢)
= —Lo[dk UK)(K(V¢)*)] — (K" dx ¢(K)(K(V¢)*) - V)U
+ VT (KV¢) (KV)VU) + 15

with rj, j € {0,1,2,3}, decaying as claimed for r in Proposition The result then follows by
summing the foregoing identities and using (B.4)). O

Thanks to the previous proposition one can also prove that, if Ey is small enough,

ﬁ, in Case (Ca),
Viply1a < CE e
[V @la 0,3 1 - in Case (Cb).

(1+t)4
This last bound allows us to prove the bound on |[W(t,-) — UK (W(¢, )|z~ in Case (Ca) in
Remark [LL71 Note also that

CE
”V3¢||Lr < %, 2 <r < o in Case (Cb).
(1+t)27r

4.3. Averaged systems: proofs of Theorems and We have now all elements
in hands to prove our last round of main results, on averaged systems. We provide details for

Theorem proofs of Theorems and [1.11] following from smnlar computations.

We first observe that the existence of a global solution ¥" to stems from Proposition .
Motivated by the estimates of Proposition and following the hnes of Subsection we get

It ) =KV ()| S[Ve(t, ) = Ve (t, )| e
+ [V (t,) = Vo (t.)er + [Volt, e + V" (8 ) [720,
where bounds on the second and fourth terms of the right-hand side are provided by Proposition[D.6]
bounds on the third stem from either Theorem 1.4 or Theorem and ¢y satisfies ¢y, (0,-) = ¢y
and Equation (D.19] m, that we write as
oy = —K' dx c(K)(KVey) + Ag[KV](KVy,) + Q(Vey)
with .
Q(K) := 3 di Q(K) (KK, KK) + (KK)" di c(K)(KK) - KT dk c(K)(K (K£)?).

There only remains to bound V¢ — Vey, .
43



On one hand, using notation near (D.14)) and Lemma the Cauchy problem for ¢y is equiv-
alently written as

i (1) = S0 (D) do] + fo S0)(t — )[Q(Vehyy (7))]dr

On the other hand, the preliminary estimates of the present section and estimates of Appendix

yield
t

@(t) = Z)(t)[@o] + L )t —1)[Q(Ve(r))ldr + R(?)
where the residual R satisfies

C(Eog(l-l-Egg) ||V(]H 3)
3_31,1 ) 2<p<00,Case(Ca),
(1+t)azp"2
CE
HVR<t)HLP < 9 10 31 1 2<p< oo, Case (CbO)7

(1+t)27 272

Eys(1+ E

CnFos (1 FEos) 2 <p <, n>0, Case (Cb) but (Cb0) fails.

(141275 30m3)

Actually in the estimate of the remainder R, when Case (Cb) holds but Subcase (Cb0) fails, we
have completed Proposition with

C,

LF

IV(ELr — X)) (D)[g]ller < — - |V?g||La
(1+t)r;+§<”;) 2

for any 1 < ¢ < 2 < p < o such that % — % > % > 7, whose proof is omitted as similar to

other estimates of Proposition The proof is then concluded with a continuity argument on
V¢ — V. To provide some details on the latter, we point out for instance that in Case (Cb)
(when (CbO0) fails) when 2 < p < 3, the Sé/ ? part of the integral is bounded using L3 - P
estimates whereas the Sz /2 part is bounded with L™2(®3) — [P estimates.

APPENDIX A. SPECTRAL BACKGROUND

A.1. The Bloch transform. In the present subsection, we provide main properties of the suitable
Bloch transform. We shall be rather bold concerning summation issues and meaning of equalities
since, the actual resolution of these questions follows from a combination of the classical arguments,
or even results, for the Fourier transform/series. In particular, everything is readily justified when
applied to Schwartz-class functions and extensions to more general spaces follow from classical
density arguments.

The Bloch transform is designed to ensure the following Bloch-wave decomposition of any func-
tion g over R?

o= | @ aenae
where, for each Floquet parameter & € [, 7%, §(&, ) is (e, eg)—periodic It is explicitly given as

B(g)(&,x) = 3(§,x) Z e?1™PX (¢ 4 27p) = p Z e 186t g(x 4 q),

peZ2 qeZ?

where * denotes the Fourier transform normalized by

F(@)(©) = i) = Gz | e 0lx) dx

and the equivalence of both formula stems from the Poisson summation formula.
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Elementary computational rules are

(Vx9)(€,%) = (Vx +16)(§)(& %),

M(ﬁ,x) = h(x)g(&,x), when h is (e, eq)-periodic,
Q(E,X) = g(€)7 when Suppg = [_71-’7[-]27

where ¢ is scalar, and the Bloch transform is applied coordinate-wise. We say that a function
is slow when it satisfies the foregoing support condition on its Fourier tra@m. Note that, as a
consequence of the above relations, when g is slow and h is (e, ez)-periodic, (g h)(€,x) = §(&) h(x),
a relation particularly useful when extracting averaged dynamics from slow modulation behavior.

For any s € N, 27 times the Bloch transform provides a total isometry fromlﬂ H*(R?) to
L ([—m, )% 1Oer([O 1]?)) endowed with respective norms, equivalent to standard norms,

Z Ve 9HL2 R2) > g Z € — [I(Vx +1&)¥g(&, ')HL2([0,1]2)H%ﬁ([_mﬂp) )

la|<s la|<s

with H5..([0,1]?) denoting the closure for the H*([0, 1]*)-topology of restrictions to [0, 1]* of smooth
(e1, ez)-periodic functions. Throughout the text we call these isometry properties Parseval identi-
ties. Interpolating between those and simple triangle inequalities one derives inequalities that we

call Hausdorft-Young inequalities throughout the text,

2 1 1

lgllrr ey < Cm) 2 (9] Lo ([ mj2,20(j0,112)) - 2<ps o, » + 2 L,

Ig1 S — 2<p<o, 4=l

glr —m,m]2; L7 ([0,1]2 S 2 19l (R2 SPs ) = VI

P([—m,m]? L7 ([0,1]%)) (277)172 P(R?) > p P
By using explicit representations of derivatives when s € N and interpolation, those also yield
5 1
lgllwse®z) < ||9||Lp’([_mw]z;ws,p([o,l]z)) ) seR, 2<p< o, » + % =1,

also referred to as Hausdorfl-Young inequalities.
Incidentally, let us point out that throughout the text we also use classical Parseval identities
and Hausdorff-Young inequalities, adapted to the Fourier transform.

A.2. Spectral perturbation. We gather here some standard facts, specialized to our present
analysis, about spectral perturbation analysis as contained in [Kat76]. In particular we sketch a
proof of . We warn the reader that in the present case one can use neither a spectral theorem
for self-adjoint operators nor Evans’ function arguments based on a spatial dynamics interpretation.
Our present account remotely echoes the arguments sketched in [Rod13l p.30-31] for plane waves.

As a relatively compact perturbation of (KV)'(KV) acting on L2([0,1]%;R") with domain

1Oer(RQ R"), each L¢ has compact resolvents, hence discrete spectrum with finite multiplicity.
For each &, and Ao ¢ o(Lg,),

(Mo I—Le)™' = (Mo I—Lg,) ' (I—(Lg, — Le)(Mo I—Le) ™)

provides a smooth representation of the resolvent (Ag I —L¢)™! when £ is sufficiently close to &,.

This is transferred to spectral projectors through Riesz’ formula

1 _

Mg = — | (\I—Lg)~" dA

2im T

MWe omit to mark the space in which scalar maps are valued so as to omit the standard discussion between

complex-valued maps and real-valued maps, whose Bloch transforms are characterized by an extra symmetry in the
£ variable.
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where I' is a simple positively-oriented curve. The spectral projector HE projects on the sum of
generalized eigenspaces associated with eigenvalues of L¢ inside I', its rank providing the sum of
algebraic multiplicities of these eigenvalues. Incidentally note that it follows from the formula that
Hg is the sum of the residues of the resolvent map A — (A1 —Lg)f1 at eigenvalues contained inside

I'. Note moreover that the ranges of Hg and (Hg )* are both valued in H% (R? C"). We refer the
reader to [Kat76l Section II1.6] for details concerning the foregoing arguments.

At this stage, we may already sketch a proof of (1.8). If for any & € [—m, 7%, Xo ¢ o(Le), it
follows by continuity over the compact [—, 7]? that supg [ (Ao I—L¢) Y22 < +00 and, by the

Parseval identity, that Ao ¢ o(L) with
Q1= @0 = | d 00117 @& D00 ae.

In the reverse direction assume that Ao € o(Lg,) for some &, and denote q" a corresponding
eigenvector. Then, using again Parseval identities, since q” € ngr([o, 1]%), with § > 0 sufficiently
small,

@) = | ¢ o) de
[—m7]2nB(&,0)
defines a nonzero qY € H%(R?) such that

[0 T-L) aflr2mey  I11-mmi2nBeq.6) () (Le, — Lﬁ)(qo)(')HL%([fﬂ,ﬂ]Q;LZ([O,lP)) 50

— 0.

lag | 2(m2) B 11— 12800 () Q| L2 (1= m12:22(10,112))

Hence Ag € o(L). This concludes the proof of (L.8). Note that the same arguments apply if, for
some s € N, one considers L as an operator on H*(R?;R") with domain H**?(R?;R") and each
L¢ as an operator on H3 ([0,1]* C") with domain H3%?([0,1]*;C"). Incidentally, we observe
moreover that it stems from elliptic regularity that the spectrum of each L¢ does not depend on
which Hg..([0, 1]%;C") it is considered.

To go further and analyze the implicitly finite-dimensional spectral problems arising from pertur-
bations in &, it is convenient to introduce coordinates. Let Ao be an eigenvalue of L¢, of multiplicity

mo and Ty a simple positively-oriented curve such that the intersection of o(Lg,) with its interior
is {\o}. Pick (qgo))lgjgmo a basis of the range of HF;’, and ((ngo))lgjgmo a dual basis of the range
of (Hgg)* One may extend those to & near £, by
0 ~ —1~(0 .
Q&) = Uz q” g ) = (i) g”, j=1,--,m,

provided that (U£F 0)¢ is a smooth family of bounded invertible operators such that

UgroO =1, UEFO Hgg = Hgo Ugo , for & near ;.
Such a family is obtained by setting

1
r Ty 1T r r r r 2
Ul .= (Hgo " + (1-115") (I—H&;’)) (I—(Hgo - H£8)2> 2 for & near &,.
There are various ways to build such a family of operators, we follow here the construction in

1
[Kat76, Subsection I-4.6] to which we refer for details. Let us simply recall that (-)” 2 is analytic
on the open unit ball centered on I so that the above definition makes sense when £ is sufficiently
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close to &;. Note that in this way one obtains for £ near &,
@1°(&,); Dr2(oajz.cn)
Mg = (a°(&) - ay (&) s :
@50 (€, Dr2(o.1)2:0m)
@1°(€, ) Vre(oagz:cn)
LeTl® = (qf°(&,) -+ qfy(€,) Dg° : :
<65$0 (Ea ‘); '>L2([0,1]2;Cn)
r <<if“ (57 ); '>L2([0,l]2;C")
TP = (qi°(€) < ahn(€,) ¢ PE s ot
@50 (€,); Dr2(0112:0m)

\%
o

with
D = (@O, ); Lea) (€ Do) )

In particular, under Assumption (D2), we may apply the latter construction with £, = 0, A9 = 0,

1<) 0<mo

mg = 2, some convenient I'g symmetric with respect to 0, (qgo), q(QO)) = (01U, 0oU), and throughout
the text we denote

Hf? q?()v j:1727 (N:IE()7 j:1727 D€7

the corresponding objects. Moreover we denote ¥¢ the range of II¢ and Ei’gf the range of Hz.

Note that the real symmetry is propagated through the construction, for any & sufficiently small,
Hg = Hfg, D£ = Dfs.

Remark A.1. Note that there is some freedom in the construction of q?(-), ﬁf(), j =1,2, hence of
D¢. Yet, except in a few places where this is explicitly specified, which particular choice is made is
essentially immaterial. A simple fact in this direction is that the first-order expansion of D¢ with
respect to & does not depend on this choice.

Remark A.2. We have expounded spectral perturbation arguments by varying & over the compact
[~7,7]%. Yet it is more intrinsic and, for some purposes, also more convenient when &, lies on
the boundary of [—m,7]? in R? to consider ¢ as varying over R?/(27 Z)2. With this point of
view, translation by an element of the lattice n € (27 Z)? leaves the spectra invariant but affects
generalized eigenspaces according to

q,°(§+m,%) =e "X q,°(¢,%), Q6 +mx) =e g, (¢,x).
A.3. Diffusive stability. In the present subsection, we investigate equivalent formulations of
Assumption (D1). Our main result is the following proposition.
Proposition A.3. Assume (D2). Then (D1) is equivalent to the union of the following conditions:
(D1’) For any nonzero &,
o(Le)c{A; R(N\) <0},
(D1W) The operator oy — A(V) is hyperbolic and there exists @ > 0 and § > 0 such that for any
¢ e [—m,7)? satisfying €| < &o,
oD (i) = { A5 RV < —0J¢[* }

where A and DY are defined below in (A1]).
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Let us first observe that it follows from standard elliptic estimates that there exist w e R, C' > 0
and M € R* such that for any £ € [, 7],

o(Leg) = {Ae C; S| < —C(R(N) —w)}
and that, when [S(\)| = —C (R(\) —w),
M
A—wl

Combining this with standard analytic semigroup theory and a continuity argument in & shows
that (D1) is equivalent to the following assertions (1) and (D1'):

(1) for any & > 0, there exist § > 0 and C' > 0 such that for any € € [—7,7]? satisfying
€]l < & and any ¢ = 0

A T-Le)™H| <

et te || < Ce el
(D1’) for any nonzero &,
o(Le)c{A; RA) <0},
Similarly, the same arguments can be applied to the restriction of Lg¢ to the range of (I —II¢) when

& is sufficiently small. One can show that (D2) and (D1’) imply that there exist {& > 0, 6 > 0
and C > 0 such that for any £ € [, 7]? satisfying [&| < & and any ¢t > 0

ete (1-T0)|| < Ce %% < Ce O IE”,

For background on standard analytic semigroup theory used in the foregoing discussion the reader
is referred to [Paz83].
Therefore, assuming (D2), condition (D1) is equivalent to (D1’) and

(D1”) There exist & > 0, § > 0 and C > 0 such that for any & € [, 7]? satisfying [£] < & and
any t = 0
letPe ) < cem el

We now focus on elucidating (ID1”). To do so we introduce the second-order expansion,

(A1) D “=° Aig) + B(i&) +O(|¢[*),
| S ——
DY (ig)
with

A(C) = A1G+ Az(o,
B({) = B11({ +2B12G G+ B,
where A1, Ay, By 1, By, Ba g belong to Ma(R). The next lemma contains a first reduction.

Lemma A.4. Assume (D2). Then (D1”) is equivalent to
ere exist g > 0, 0 > 0 an > 0 such that for any § € |—m, 7| satisfying < o an
D1W”) Th ' 0, 0 >0 and C > 0 such th 2 satisfyi d
anyt =0
| PV GO | < ce ol

Moreover (D1”) implies that 0y — A(V) is an hyperbolic operator.

Proof. Assuming (D1”) with some (&, 0, C), one proves (D1W?”) for (€0,0',C") where 0’ may be
chosen arbitrarily in (0, 6), & small enough and C” is tuned accordingly. This follows readily from
a Gronwall argument on
sup e s 1€ || 5P (&)
0<s<t
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based on .
ot DV (i€) _ D¢ _f e(t—s)Dg(Dg —DW(ig)) esDV(E) g4
0

The reverse implication is obtained by reversing the roles of D (i¢) and Dg.
At last, it follows from a similar comparison argument that from (D1”) with some (&g, 6,C),
there exists C,w > 0 such that for any ¢ > 0 and any & € R? with €] < &,

I ot ALE) I < Cewl€?t

By applying the previous inequality to (é, e€) for t > 0 and & € R? and letting ¢ goes to 0, we get
the hyperbolicity. ]

This first reduction is extremely robust. Now we turn to arguments that use the dimension at
hand. In this direction, for comparison, note that in dimension 1, a first-order constant-coefficient
hyperbolic system of two equations is either scalar or strictly hyperbolic. Yet, in general, hy-
perbolicity is equivalent neither to direction-wise hyperbolicity nor to Friedrichs symmetrizability.
Nevertheless this is known to be true for constant-coefficient systems of two equations in arbitrary
dimension, see the appendix in [Str67]. For further related comments and basic background on
multidimensional hyperbolic equations we refer the reader to [BGS07].

Our analysis goes further by benefiting from the fact that we have essentially two equations in
two dimensions.

Lemma A.5. Let AY, AY € My(R), and A° be defined by A°(¢) := AV + AY¢a. Then the
hyperbolicity of o — AY(V) is equivalent to any of the following conditions
(1) For any unitary &, 0 — A°(&, 0x) is hyperbolic.
(2) There exists S € Ma(R) such that S is symmetric positive definite and S AY and S AY are
symmetric.
(8) One of the two following conditions holds

(a) For any unitary &,, A°(i&,) has real distinct eigenvalues.
(b) There exists P € Ma(R) invertible such that P AYP~! and P AYP~! are diagonal.

Remark A.6. Condition (3)(a) can occur. For instance, one can take for any § # 0,

0o (05 o (13
Al‘(a 1>’ A2_(50‘

Proof. The facts that on one hand hyperbolicity implies direction-wise hyperbolicity, and that on
the other hand Friedrichs symmetrizable systems, strictly hyperbolic systems or systems of uncou-
pled scalar equations are indeed hyperbolic are standard elementary parts of the hyperbolic theory.
We only need to prove that direction-wise hyperbolicity implies both Friedrichs symmetrizability
and the third condition. Thus we assume the first condition.

To be more concrete, we introduce coordinates

Y . a-¢£ b-¢
A0 = (Y J), ~1,2, A%(¢) = < )
j ( ¢ dj J €3] c-& d-¢
By elementary considerations the first condition is seen to be equivalent to the fact that for any
&€ € R? one of the two following conditions holds

(i) A°(€) has real distinct eigenvalues;

(ii) (a—d)-£€=0,b-£=0and c- £ =0.
If Condition (ii) of the alternative holds for some nonzero £, then (a — d), b and c are colinear,
thus for some £ € R? and AY € My(R), for any € € R?,

A%€) = 3 ((a+d)-&) L+(£-&) Ag,
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and, if £ # 0, hyperbolicity in the direction £ implies that AJ is diagonalizable with real eigenvalues.
Therefore, in this case, independently of whether £ = 0 or not, we meet the second part of the
third condition of the lemma. It is elementary to check that this implies Friedrichs symmetrizability.
Indeed, if P is the corresponding diagonalizing matrix, S := P*P is a Friedrichs symmetrizer.

The only thing left is to check that in the present case strict hyperbolicity, Condition (i) for any
non zero &, implies Friedrichs symmetrizability. In this direction, note first that strict hyperbolicity
is equivalently written as, for any nonzero £ € R?,

2
(b-€)(c-€&) + ((32)5)
This implies that b and a — d are not colinear. Thus there exist real o and § such that ¢ =
ab+ f(a—d). Then, for any &,

a—d)-¢)?
b e+ PV ame? a8 L(a-d)-ep

so that the above sign condition is equivalent to o > 32. This implies that

s (% )

is a Friedrichs symmetrizer. ([l

> 0.

From the latter lemmas, one deduces readily the following corollary. In the following, we denote
by R(-) the self-adjoint part, R(M) = (M + M*)/2.

Corollary A.7. Assume (D2). Then (D1”) (thus also (D1)) implies that 0y — A(V) is Friedrichs
symmetrizable. In the reverse direction, if S is a Friedrichs symmetrizer of oy — A(V) such that

for any unitary &, € R?, R(SB(&,)) is positive definite, then (D1”) holds.

Remark A.8. In order to apply Corollary[A.7] note that in the strictly hyperbolic case, S is uniquely
determined (up to multiplication by a positive constant) whereas in the case where the system
consists in two uncoupled scalar equations, the set of allowed S forms a 1-dimensional family (up
to multiplication by a positive constant) if A is not identically scalar and a 3-dimensional family
otherwise. One may use the latter freedom to optimize positivity of R(SB(&)). The same level of
1-dimensional freedom may also be obtained in the strictly hyperbolic case, provided that one uses
symbolic symmetrizers instead of Friedrichs symmetrizer and notices that the corollary also holds
for symbolic symmetrizers.

By benefiting from the foregoing considerations, we derive the following lemma about low-
frequency diffusivity of second-order systems of two equations.

Lemma A.9. Assume (D2). Then (D1”) is equivalent to any of the following propositions.
(1) The operator 0, — A(V) is hyperbolic and there exists @ > 0 and & > 0 such that for any
¢ e [—m,7)? satisfying €| < &o,
oDV (ig)) = { A; RO < —-0)¢)* } .
(2) There exists 0 > 0 such that, for any unitary &, € R?,
(a) either 0,—A (€ 0,) is strictly hyperbolic, and, for any pair (€2, V°) such that (£°; VO g2
1, with VO an eigenvector of A(€,) and £° an eigenvector of A(€y)T for the same eigen-
value, we have
(€% B(&) V))r2 > 0;
(b) or Oy — A(&y 0y) is scalar and the eigenvalues of B(&,) have real part larger than 6.
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(8) There exists 8 > 0 such that, for any unitary €, there exist & > 0 and C > 0 such that for
any £ € [0,&] and any t =0

[ /P (E&0) || < Ce I’

(4) There exists 0 > 0 such that, for any unitary &, there ezist & > 0 and C > 0 such that for
any & € [0,&] and any t =0

e Peco || < Ce 0t

Remark A.10. With this lemma in hand, one can characterize all the operators D" (V) satisfying
a low-frequency diffusive stability. Note that a bad interaction between the hyperbolic part and
the second order part can result in the absence of a low-frequency diffusivity. We illustrate this
point with the following matrix

pag -i(5 o) +ier (S )

where the second order part is diffusive and yet, D" (i€) does not satisfy the second condition
of the previous lemma. A spectral perturbation argument at low frequencies reveals that, for
€ € R? such that & = [€], o(DY(1€)) = {A{, A5} with X} = i[[¢] + L[] — |€]* + O(|€]*) and
Xg = — €| + O(&|3) so that it is clear that (D1W?) is not satisfied.

Proof. That (D1”) implies the first condition stems from Lemma Now we show that the first
condition implies the second. It is classical that hyperbolicity implies direction-wise hyperbolicity.

Assume first that 0, — A(€,0;) is strictly hyperbolic. Then, when ¢ is small, DV (i £&,) is
smoothly diagonalizable with simple eigenvalues, with eigenvectors perturbing from those of A (i€&)
and eigenvalues expanding as

A2 idggE — EUYB(E) VR + O(IEP).

where \g is an eigenvalue of A (&,) and (£°, V°) is an associated dual pair of left-right eigenvectors.
Therefore the first condition implies the second in the direction &, with a uniform 6.

Assume now that d; — A(&,0,) is scalar, with characteristic speed ¢”. Then DW (i £&,) =
i&c? — 2B(&,). It is clear that that in this case also the first condition implies the second in the
direction &, with a uniform 6.

Now we aim at proving that the second condition imply (D1”). Thanks to a compactness
argument and Lemma it is sufficient to prove that (D1W?”) holds in the neighborhood of
any direction &,. If the strictly-hyperbolic part of the second condition holds at &, one can
introduce P € Ms(R) invertible that diagonalizes A(&;) and easily get eigenvalue expansions of
P !P" (8 P~ when % is sufficiently close to €, and |£| is small enough. It is also quite immediate

if 0y — A(V) is scalar, since then one may use dissipative symbolic symmetrizers adapted to the
second-order part. Thanks to Lemma [A5] this means that we are only left with the analysis of
the case when 0y — A(V) is scalar in the direction &, but strictly hyperbolic in nearby directions.
After a global diagonalization and a change of coordinates, one may assume that §; = e;, A; and

A5 are diagonal and that
_ (o B
Bl,l - (7 5) )

with @ > 0, § > 0 and a9 > B~. Note that we have used here that there is a uniform spectral

gap for nearby directions to determine the signs of « and 9, since otherwise the assumption in the

direction &, would only yield & + 6 > 0 and «d > . As in Corollary [A7] it is sufficient to find
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0’ > 0 and a real symmetric positive definite S such that S A(£) is symmetric and R(SB(&)) = ¢’
when £ is unitary and sufficiently close to &,. If v # 0,

b o

fits the requirement. If 5 =0 (resp. v = 0), then « > 0 and § > 0 and

oo (49). 5= (3 5))

with M > 0 sufficiently large, does the job. Note that when checking the requirements we are using
that when a; > 0, ay > 0, as € R, as € R, the matrix

ap Q2
a3 04

has positive real part provided that a; oy > (%)2 This achieves the proof that the second
condition implies (D1”).
The second condition, being direction-wise, is clearly equivalent to the third, whereas the equiv-
alence of the third and fourth conditions follow by a perturbation argument as in Lemma
This concludes the proof. [l

APPENDIX B. PROFILE EQUATIONS

B.1. Local structure. The present subsection is devoted to the proof of the following proposition
ensuring that Assumption (D2) encodes sufficient information to elucidate the structure of nearby
periodic waves.

Proposition B.1. Assume (D2). Then there exist £ > 0 and a smooth map
B(K, o) — Hy ([0, 1] R") x R? . K — (UX(),¢(K))

per

such that, for any wavematriz K € B(K, o), (K, UX(.),c(K)) solves (1.3) and for any (U,c) €
HZ2..([0,1]%R") x R? such that (K, U,c) solves (1.3) and
lc —¢| < eo, (pég@ U = U( + o)l mz,,(0,112:R") < €0,
one has ¢ = ¢(K) and there exists ¢ € R? such that U = UX(- + ). Moreover the map K — UX
is valued in HZX,([0,1]%; R™) and, for any s € N, there exists 0 < e < €9 such that it is smooth as

per

a map from B(K, &) to Hs..([0,1]%R™).

per

The proof follows the Lyapunov-Schmidt reduction. We first show that we can factor out trans-
lational invariance. To do so, we may apply the Implicit Function Theorem to the map

n ~(0
H([0,1]%R") x R? > R?, (U, ) — (@ U( = @) ra(o1pzmm))i=12
in a neighborhood of (U, 0), where (ago)’ago)) is the basis of ¥ in duality with (q§0)7qgo)) =
(01U, 0oU). Indeed the map is C! and, at (U, 0), its differential map with respect to ¢ is —I. By
using translational invariance, this implies that there exist € > 0 and C' > 0 such that if (U, ¢y) is
such that
U = U( + o) mz,,(01)2R") < €
then there exists ¢ such that U = U(- — ¢) satifies

|T - Ul qoa2me) < C U= Ul + @)z

per

([0,1]2:R™) 5 (I-IIp) (U - U) =
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It is thus sufficient to prove a genuine uniqueness under the assumption that U — U is small and
(I-IIp) (U -1) = 0.

Let us denote by LI) the inverse of Lg restricted to the range of (I —IIy). With the extra constraint
(I-IIp) (U — U) = 0, Equation is equivalent to

U = U-— Lj[(I-Tlp) R]
T T (@520
c = (K—IK) c— (K—l) N%O), L2([0,1]%;R"™) R
Ay 5 Dr2([0,1]2:R™)
with
R = ((KV)T(KV) - (KV)"(KV)) U + (K'e — K'c) - V)(U - U)
+(KV)'G(U) ~ (KV)' (G(U) + dGU)(U - 1))
+1(U) - £(U) - df(U)(U - U)).
The proof is then achieved by another application of the Implicit Function Theorem.

B.2. Profile variations. We collect here some algebraic relations between the expansions of Lg¢
when £ is small and the derivatives of wave profiles, obtained by differentiating profile equation

3.
To prepare comparisons, we expand Bloch symbols L¢ as
(B.1) LeV = LoV + (LOV) i(Ke) — [Kg[*V
where
LYV = 2KVV +dG(U)(V) +cV'.

By design and invariance by translation, for any ¢, (K, UX(- + ¢), c(K)) solves (I.3). Differen-
tiating this with respect to ¢ gives

(B.2) Lod;U =0, 3=12
while differentiating it with respect to K; in the direction n leads to
T
(B.3) Lo[dg, UK)(n)] + (LWo,U) n+ (K" dk, c(K)(n) - V)U =0, forj=1,2.
Finally, with Q(K) := —K"c¢(K), differentiating the same relation first with respect to K; in the

direction m then with respect to Ky in the direction ¢ leads to
Lo[di, x, UK)(n, )] + ¢*f(U)(K)(dk, UK)(n), dx, UK)(())
+ (KV)" d*G(U)(dk, U(K)(n), dk, U(K)(C))
+00(AG(U) (dk, U(K)(m))) "¢ + ;(dG(U) (dx, UK) () "m
+2(K'¢ - V)a(dk, UK)(n)) +2(K"n - V)d;(dk, UK)(0) +2(n'¢) 07,U
~ (di, (K) () - V) dic, UK)(C) + (dic, R(K)(C) - V) dx, U(K)(m)
+ (4, x, UK)(1.0)- V) U, j=1,2, =12,

(B.4)

APPENDIX C. PHASE RELATED ESTIMATES

We gather here some estimates associated with the presence of a spatially-dependent phase
modulation.
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C.1. Sobolev-like estimates. In the present subsection, we bound ¢ and V¢ in terms of Ag.

Up to immaterial perpendicular rotations, the reconstruction of V¢ from ¢ coincides with the
Biot-Savart law that recovers divergence-free vector fields from their curl. For this reason, the
estimates gathered here are essentially special cases of harmonic analysis estimates commonly used
in the analysis of incompressible fluid mechanics. However, for the sake of consistency with the rest
of our analysis, we have decided to provide simplified versions of the latter so as to prove them solely
from Young and Hausdorff-Young inequalities and elliptic regularity in Calderén-Zygmund form.
For sharper estimates, we refer the reader to either [Rod07, Annexe C] or [Rod09al Section 1.1].
Yet we do make some comments and remarks involving more advanced functional spaces and we
refer the reader to [LR02 Part 1] for the necessary background.

Obviously, bounds are affordable only in regimes where we already know that A¢ determines
V¢ or even ¢. When ¢ is a tempered distribution, A¢ determines ¢ up to a polynomial and
a further condition is needed to ensure uniqueness. In our case, the reconstruction implicitly
hinges on the uniqueness result that the only harmonic tempered distribution that belongs to

Span (U1<p<oo Lp’q(R2)> is the zero function. In the foregoing, LP? denotes Lorentz spaces,
1<g<owo
whose Lebesgue spaces LP = LPP are special cases, and the uniqueness follows from the fact

that no nonzero polynomial belongs to the latter span. As a consequence, when ¢ is a tempered
distribution,

e the knowledge of A¢ and the condition V¢ € Span <U]_<p<w LP4(R?; Mg(R))) determines
1<g<oo
V¢ completely thus it also determines ¢ up to a constant function;

e for any fixed ¢, the knowledge of A¢ and the condition ¢p—¢, € Span <U1<p<00 LP9(R?; R2)>

1<g<o0
determines ¢ thus also V.

The first extra condition is consistent with the way we recover V¢ since it ensures that A¢ € L!
implies V¢p € L2 (R?; M3(R)). Moreover, it follows from Propositions[2.2]and [2.3]and Lemma[2.4]
that both extra conditions are propagated by the time evolution.

Since the reconstruction is done component-wise, we may reduce to the consideration of a scalar
#. We begin by recovering V¢ from A¢. Given some d € L'(R?), we define v := VA~!d such that
VAav=0,V'v=d by

(©1) ) = radle).
or equivalently through
(C.2) v:i=Gxd, G(y) Ly y € R%.

C2ry2’

Proposition C.1. (1) There exist (Cp)a<p<w such that for any d € (L' n L?)(R?), v defined
by (C)) lies in Nacp<oo LP(R?*; R?) and
Ivlzr®er2) < Cpld|(rar2)®2) > 2<p<o.

(2) For any 1 < pp < 2 < p1 < o, there exists Cpp, such that v defined by (C.1)) from d
satisfies

IVlie®zr2) < Cpopr [l (oo ALey(R2) -
(3) For any 1 < p < o, there exists Cp such that v defined by (C.1) from d satisfies

HVVHLP(R2;M2(R)) < Cp HdHLP(RQ)'
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(4) Assume that || - | d € L*(R?) and d € LP(R?) for some p > 1. Then v defined by (C.1)
from d belongs to L*(R%; R?) if and only if SR2 d=0.

We prove the last point only to justify a remark of the introduction.

Proof. Since Vv = VVA~!d, the third estimate stems directly from Calderén-Zygmund theory
that ensures that V(—A)fé acts boundedly on LP, 1 < p < 0.

The first estimate follows from Hausdorff-Young and Hélder inequalities since & — |€]~! belongs
to (Na<p<oo L) + (N1<p<2LP) and | d lr2Ane < ||| 1 ~r2- The second estimate follows from Young
inequality since G € (Na<p<aoLP) + (N1<p<2LP).

To prove the last point, we first observe that for any 1 < g < p,

ldlzawrey < ldlizewey + (|- | d w2y,
so that we may use any of these norms in the argument. Now, it follows from Hausdorff-Young and
Holder inequalities that the L2 norm of the high-frequency part of v is controlled by |d| ; min((p.2}) (R2)-
Moreover, from the pointwise bound

~ i€ ~
) - 1esdl0 >H < 1Ved lomems) < I - |dlgee)

one deduces that v is locally square-integrable if and only if J(O) = (. Hence the result. g

We now turn to the reconstruction of ¢ from A¢. Given some d € L'(R?), we define ¢ := A~d
such that A¢ = d by

(C3) 3(6) = po. (”22> i),

or equivalently through
1
(C.4) ¢:=Goxd, Go(v) = - (Iyl”) . yeR”.

Note that conventions are consistent in the sense that V(A~1d) = (VA™1)d.

Proposition C.2. (1) Assume that x is a smooth compactly supported functions equal to 1 in
a neighborhood of 0. Then there exist (Cpq) 1<q<p<oo Such that if ¢ is defined by (C.3)
(¢,p)#(1,00)
from d and ¢gr is defined by (¢ppr) = (1 — x) ¢, there holds
lorFlLer2) < CpgldlLare) l<g<p<o, (¢p) #(1,2).
(2) For any 1 < pg < o0 and 1 < p; < 0, there exists Cy, p, such that ¢ defined by (C.3] - from
d satisfies

N——

1 _1
o= ([ 4) gms 01, ey = Coom (“‘lwomzﬁ]-ﬁ(l 7) @+ 1) d

and, in particular, ¢ belongs to L®(R?) if and only if Srzd =0.

LP1(R?2)

Here also, we prove the last point only to justify a remark of the introduction.

Proof. Since & — [|€]|72 (1 — x(&)) belongs to MNi<g<2 W24, its inverse Fourier transform belongs

t0 (Nocreon L'((1 + || - I?)) thus to (<, L5. Therefore the first estimate follows from Young
inequalities.
We now turn to the second bound. We first observe that
1
2(1—— 3
Jdlzx < 0@+ - ) dl s < ldlzso + |- 120770 o - ) d
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When ||x| < 1, splitting
= f Go(y)d(x —y) dy
R2
according to whether |y| <1 or |y|| = 1, one deduces that

[6(x)| < lldlzeo + (2 + [ - ) d] .2
since Gy belongs locally to any L9 with 1 < g < 0c0. We now assume that |x| > 1 and split the

integral in
1 2y _ L Iyl
o) (Lﬁ) i () = o J (r |> dxmy) dy

according to [y| < 3|x[|, 3| < |y| < 2|)x| or 2]y|| < |x|. The contribution from 3|x| < |y| <
2| x| is bounded by a multiple of |d|z:. In the regime |y| < [x|, we also have |[x — y| > [x| so

since

that its contribution is bounded by a multiple of
LP1
1
< I (7).

() e
Ix| J e q1<50x)

At last, in the regime [y| > 2|x|, we also have |[x —y| > 3|y| so that this contribution is bounded

-2 (07 4

by a multiple of

1
P08 oy )P ] since
LPr1

[i-1720=7) -2

L4 (1)
O
Note that an argument similar to the one used to prove the first estimate yields for any ¢, if we
denote ¢pp := ¢ — dur,
(C.5) lorFlize < |]Le I<p<g<ow,

that we use without mention throughout the text.

The condition d € L' only ensures ¢ = A~'d e BMO. Two classical ways to restore ¢ € L* are
to assume that d belongs either to the real Hardy space H' or to the homogeneous Besov space
B1 1- We stress that this is consistent with Proposition since both H! and B0 i1 are included in
the space of integrable functions with zero integral.

Remark C.3. We also have:

(1) For any r € [1,2[, there exists a constant C, such that for any locally integrable function
¢, there exists a constant ¢, so that

|6 = ¢l
(2) there exist (Cp)a<p<oo such that for any function ¢ that vanishes at infinity

|ollrr2y < Cp [VOll(1AL2)m2R2) 5 2<p<w,

(3) for any 1 < pp < 2 < py < o, there exists Cy, p, such that for any function ¢ that vanishes
at infinity

< Cr |Vl (r2y-

L2rR2

19l (r2) < Cpopr [VOl(zronrey®r2R?) >

(4) there exists C' > 0, such that for any function ¢ that vanishes at infinity

lprrlLamz) < CIVe|Lre) 1<g<o.
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The proofs of the last three point is similar to the previous ones. The main new ingredient is the

fact that
_ _12 280() = ~i X590
J

where h; belongs to (Na<p<oo L) + (ml<p<2Lp) and Ve ((1 — x)h;) belongs to [, _,<» W4 so that
the inverse Fourier transform of (1 — x)h; belongs to (Nyc, oo L7((| - | + [ - [|*)) thus to ()<, L*.
The first point is a consequence of an homogeneous Poincaré-Wirtinger type inequality.

C.2. Change of variables. We store here a basic estimate, useful to invert Id —¢(t, -) and quantify
its impact on bounds. It is almost identical to the first half [JNRZ14, Lemma 2.7].

Lemma C.4. Assume that ¢ : R? — R? is a Lipschitz function such that V| o mer2y < 1.
Then Id —¢ is invertible and for any 1 < p < o0,

2
|A—=Bo(1d—¢) |z < (1 + |V Lo rer2))? |40 (1d—¢) — Bl s,

1 _
Ao (Id—¢) - Bl < 5 |A—Bo(Id—¢) L.

(1 =Vl Lomzr2))”

Finally, if ¢1,¢9 : R* — R? are Lipschitz functions such that we have |V 10 mr2,r2) < 1 and
IVl Lomer2) < 1, then for any 1 < p < o0

2
(1 +||V¢HLOO(R2R )?

— [Vl e rzr2) [p1 = ol -

|(1d —¢py) ™" — (1d —¢p) 1w <

Proof. The invertibility is a direct consequence of the Banach fixed point argument. The first two
estimates follow from a change of variable. The last one is a consequence of the equality

(Id—¢) ' — (Id—¢py) ' = (¢1 — ) 0 (Id—¢p)) ' + Py 0 (Id—¢p)) ™! — py 0 (Id—py) "
]

The second — and less trivial — half of [INRZI4, Lemma 2.7], estimating |A — B o (Id +¢)||z»
in terms of [Ao(Id —¢) — B|» and |V@|r», is of no use here because it requires ¢ to be bounded.

Note that, though we do not bother to state those, it is clear from the proof that variants
involving regularity in x or in passive variables — such as ¢ — also hold.

APPENDIX D. GEOMETRICAL OPTICS

In the present appendix, we show how to guess from formal geometrical optics considerations the
conclusions about modulation behavior and averaged dynamics that our analysis proves rigorously
following different paths.

D.1. Formal derivation of averaged equations. To begin our formal process, let us consider
the slow/fastly-oscillatory ansatz

(©)
(D.1) WO (t,x) = U (57575)(; W)

5
with, for any (7,Y), ¢ — U (T,Y;¢) (e1,e2)-periodic and, as € — 0,
UT,Y;¢) = U (T, Y3¢) +eUy(T,Y;6) + O,

TET,Y) = 0 (T,Y) + e Ty (T,Y) + O(e?) .
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Requiring (D.1]) to solve (L.1)) up to a remainder of size O(e) is equivalent to ¢ — U (T,Y;()
being a scaled periodic traveling wave of profile. Explicitly,

0 = (KoVe) (Ko)Vol) + (K Ve)' (GUw)) — (R - Velh) + E W),
with local parameters (depending on slow variables (7', Y)) related to phases by
¥ ) = ), Vy¥ () = K-

Choosing a wave parametrization as in Proposition this is solved by imposing the slow-
modulation form

U)(T,Y;¢) = UR0TY)(¢), Ko)(T,Y) =Vy¥)(T,Y).
jointly with the slow evolution equation
(D.2) or¥ ) = QVy¥ ().

System fails to capture dissipative effects, because they are high-order with respect to
slow expansions. As far as large-time analysis is concerned, one could just correct System
with an artificial semilinear second-order term enforcing a good description of slow/low-Floquet
expansions up to second-order. For an example of the latter we refer the reader to [Rod18] (with
dispersion instead of diffusion). Yet, instead, we follow [NR13] and show how going on with the
formal identification provides a relevant higher-order correction.

Requiring to solve up to a remainder of size O(e?) provides, besides the foregoing
equalities, the extra constraint

0 = (KoyVe) (Ko Vo)) + (KoyVe) ' (AGU) Uay)) — (o) - Vel + df U o) Uy)
+ (K1) Vo) (Ko Vo) + KoV (KoYl ) + (Knm Vo) (GUw)) — (R - Vol o)
+Vy ' (Ko Vo) + (K Ve) T (Vyl) + Vv (GU()) — ol

with IC(1) := Vy ¥ (), Q) := 0¥ (y). Denoting Laco the linearized operator L in the variable ¢ and

corresponding to the profile U o) = U0 and using relations from Subsection the constraint is
equivalently written as

0 = Lg*[Un) — dic U(K0) ()] = () — dx 2K 0) (Kqw)) - Ve) U
+Vy ' (Ko Vo) + (Ko Ve) (VylU) + Vy ' (GU)) — a1l ) ,

Introducm. a;’, q2 a basis of the kernel of the adjoint of Lf)(o, in duality with de,U o) = 01 Uk,
U o) = 02U we deduce as a necessary constraint

Q) — dx QUK () (K1)

(22; i; )[VYT((’C(U)Vc)U(m)+(IC(0)V<)T (VylU )

per

+Vy' (GU())) - dx U(K(O))(VYQ(’C(O)»] :
that we denote in abstract form
(D'?’) aT‘I’(l) = dk Q(VY‘I’(()))(VY‘I’(D) + AVY‘P(O) [Vy] (vY‘I’(o)> s
with

(D.4) Z Z 2 Z AZL(K) 0;(Kpm) e

15We warn the reader of the notational inconsistency ajg = ?1?.
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where

2
(D5) AF(K) = G by + @S (LW [0k, UKD €5 + Y] die, UK)(K ok, e (K)))iz,
r=1
Lg) being associated with L¥ through , as LW with L.
Introducing ¥ = ¥ + ¢ ¥(q) and grouping together (D.2)-(D.3) yield, up to O(e?) terms that
we discard,
or® = Q(Vy¥®) + AVY¥[e Vy]|(Vy P).

Going back to original (¢, x)-variables, the upshot of the formal analysis is that we may expect
W(t, x) ~ UXEX) (B(t, %)) | K(t,x) = V¥(t,x),

with W satisfying

(D.6) O = Q(V,®) + AV=Y[V,](V4P).

Alternatively, one may observe that the slow evolution obeys

(D.7) oK = Vi (K)) + Vi (AF[VA](K)) |

with IC curl-free.

Whereas the formal arguments expounded so far do contain some form of large-time considera-
tions since implicitly here the time variable ¢ lives in an interval of length O(1/¢) with ¢ — 0, it is
not specialized to the situation at stake in the rest of the paper where ¢t — o0 and IC is sufficiently
close to K. In the present paper, we consider cases where nonlinear terms are at worst critical
from the point of view of time decay so that it is only necessary to retain nonlinear terms with the
worst decay rates if one aims at a leading-order description. Moreover, at the level of wavevectors,
the decay is inherently the one of conservative hyperbolic-parabolic s%lstems near constant states

so that every extra spatial derivative is expected to bring an extra ¢t~ 2 decay. With this in mind,
for our purposes we expect that it should be sufficient to retain from either

T = 9+ A UK (Vo ~ K) + 5 & QK (Vo ~ K, Vx — K) + AK[V,] (V)

or, alternatively, if one prefers to keep a compact form with the same level of approximation
(D.8) W = Q(Vi¥) + AB[V, (V).

We stress that we regard the rigorous justification of System from as a routine task in
the sense that the proof of the above formal claims that quadratic second-order terms (or even cubic
first-order terms) could be discarded would follow from a direct inspection of a Duhamel formula if
we already knew that System was well-posed in some dissipative sense, including some form
of high-frequency damping estimates similar to (but possibly weaker than) those of Lemmas
and [3.6

In cases subcritical from the point of view of time decay, almost by definition, we expect to be
allowed to go even further and simply retain the linear version

(D.9) 0 = Q+ dk QK) (VX — K) + AE[V,] (VD).

D.2. Asymptotic equivalence of hyperbolic-parabolic systems. The issue we want to ad-
dress now is that the derivation of (D.6)), in a slow expansion regime, brings relevant information
only of low-frequency type. In particular, it could well be that despite the fact that contains
a correct large-time low-frequency description of , the system is ill-posed because of high-
frequency instabilities having nothing to do with the original system. The issue is ubiquitous in
the theory and we refer the reader to [NR13| [Rod18] for closely related discussions.
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To be more precise, we observe that in the low-frequency regime the leading-order part is the
first-order hyperbolic part and the second-order part only brings corrections. As a consequence, in
a direction where strict hyperbolicity is met for the first-order part, Assumption (D1) is reduced
to a sign condition on two coefficients of the four-dimensional second-order operator whereas the
high-frequency properties involve the missing coefficients. To give a concrete example, note that

Opur + Ogyur = (02, + 02,) ur + 202 uy
Orug — (9x1u2 = ((93261 + (93262)U2 + 2(99201 Ul

exhibits both a diffusive low-frequency behavior, compatible with (D1), and a violent high-frequency
ill-posedness. Consistently, the only situation where we are able to deduce good high-frequency
properties is when the first-order part is strictly hyperbolic in no direction, that is, in Subcase (Cb0)
when the first-order part is scalar.

For this reason, we show here how to replace with a well-posed system expected to share,
at leading-order, the same large-time dynamics. The discussion is parallel to the one in [JNRZ14
Appendix B.2] and extends in various ways, including the class of systems considered and the
sharpness of estimates proved, the analysis about artificial viscosity systems in [HZ95), [Rod09b]
(discussed further in [Rod07] and [Rod13l Appendix A]). Even if System were known to be
well-posed in some dissipative sense, there would be a gain in simplicity — but a loss in explicitness
— in replacing in the way expounded here since the systems introduced below are to be
semilinear, genuinely parabolic, with first-order and second-order parts commuting at the linear
level. This is precisely the commutation property that enables one to extend the good low-frequency
properties to the whole dynamics.

The issue is linear in essence so that our task is to identify a Ay[V] such that one could replace
with

¥ = 0+ dg QK)(Vo¥ — K) + Ay[V](VE).

To begin with, we take a step back from the foregoing discussion and continue the study of Ap-
pendix — with notational conventions introduced there — so as to prove that the linearized
evolution contained in does reproduce correctly the averaged low-Floquet evolution. To ease
comparisons we write ¥ in a co-moving frame and in a perturbative form

(D.10) T(t,x) = KT (x—tg)—kd;(t,KT (x—tg)) .
This turns into
(D.11) onp = —K' dk c(K)(KVxt) + AR[KV,](KVx )

Note that Lemmas [3.1] and contain that the latter system is equivalently written as o) =
DW (V,)4. Accordingly we introduce evolution operators (S (t))i=0 and (Srr(t))i=0 defined as

(D.12) (Sw(D)d)(€) = x(€) P19 §(g), (See(D)d)(€) = x(€) e'P¢ $(£).

Note that the low-frequency cut-off is needed in the definition of ¥y because of the ill-posedness
issues already mentioned and in the definition of ¥ since D¢ is not even defined when £ is not
small.

We now come back to the question of identifying A, such that one may replace with

(D.13) oy = —KT dk C(K) (Kvx¢) + A(] [Kvx] (Kvx ¢)

and derive parabolic behavior without altering large-time low-frequency dynamics. Let us anticipate
the choices of A detailed below and define for later comparisons

(D.14) DO (n)p := A(n)d + Ay[Kn](Kn¢")
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and

(S O[N)(€) = PO Gg),
(SEEO[RN(E) = x(€) P09 g(e),

(0) (4 2
(S O[BDE) = (1—x(€)) P08 g(¢).
In Subcase (Cb0), we may simply set A = AX so that E%OF) = Y.

Proposition D.1. Assume (D1)-(D2) and Subcase (Cb0), and define A, by A, = AX.

(1) For any o € N? and any € N, there exists Cyq such that for any 2 <p <+, 1 < ¢ < p,
and any t =0

C
e 7£
62 ot (S — SOl < — i I8l
(1+t) 2 Tapt2
(2) For any o € N? and any ¢ € N, there exists Co, such that for any 2 < p < +00, and any
t=0
Cop
|25 6 (Sur — S O[Bler < —— ot A1
(I+¢t) 2 "27»
(8) For any o € N? and any { € N, there exists Cy o such that for any2 < p <+, 1 < ¢ < p,

and any t =0

« Ca,ﬁ
| og o =gy ()&l < a1 18lLe -

1+¢t) 2 "ap

(4) For any a € N2, any £ € N and any 2 < p < +0o0 such that |a| + ¢ — % > 0, there exists
Cp.ae such that for any t = 0

Cp.ae
62 3 SEE O[]l 0 < — 22L | AG|, .
(1+t) 2 »
(5) There exists 0 > 0 such that for any a € N? and any € N, there exists Co,e such that for
any2<p<+0,1<g<p,andanyt>=0
C y efGt
| og ot 2oy ()&l e < : e T lelza -
(min({1,¢})) 2" 0
(6) There exists > 0 such that for any o € N? and any { € N, there exists Cay such that for
any 2 <p <+, and any t =0

N Ca,é e—@t
| o ol S ()] < gy 19l
+

(min((1, )

Proof. Let us recall that
t

(D15) etDS _etDW(iﬁ) _ J e(t—s) D, (Dg - DW(lg)) esDW(ig) ds
0

where [|[Dg — DV (i¢)|| < [€]. This is sufficient to deduce from Hausdorff-Young inequalities the
L% — [P bounds when 1 < ¢ < 2 < p < 400. However formula is also well-adapted to the
arguments of Subsection When considering the case p = ¢ = +00, we get an integral with a
form similar to and one can use Lemma [3.2}(2). Altogether this yields the first two sets of
inequalities.
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The last estimates follow from Hausdorff-Young inequalities and arguments of Subsection
through Green functions representations. O

When Case (Cb) holds but Subcase (CbO0) fails, we define A, through
(D.16) Ao[Kn)(Kn ¢T) := P~ diag((PB(n)P )11, (PB(m)P ™ )22)P ¢

where P diagonalizes A; and A,. We stress that this definition does not depend on P (since two
convenient Ps only differ by a multiplication from the left by a diagonal matrix) and that it reduces
System (D.13]) to two uncoupled scalar transport-diffusion equations (in a suitable basis).

Proposition D.2. Assume (D1)-(D2) and Case (Cb) but with Subcase (Cb0) failing. Define
A, by (D.16).

(1) For any a € N?, any £ € N, and any 2 < p < +0, 1 < q < p, there erists Catp,q sSuch that
foranyt =0

Cy
’ LF ( )\a\2+l+fj}7q+§(l l) ”gHLq ’ (p7 q) #* (OO, 1)a
| 0% 0y Cor — SOl < § &7 Loty T
o CotognltD gL, (p0) = (0,1).
(1+¢) +3

(2) For any o € N2, any £ € N, and any 2 < p < +ow0, there exists Coy, such that for any
2<p< 4w, andanyt =0

Cla,
\aH—Z élij( ) HA¢HL1 , P #F 0,

|23 8f (Sur — S O[B]lr < { 40 2,
© Cotan A 11 p=o0.
+t)T

(3) For any o € N? and any { € N, there exists Cay such that for any 2 < p < +00, 1 < q < p,
and any t =0

« Ca,ﬁ
| 0% o (o) (De] e < T lglza-

lof+€

1
(L+¢t) 2 Ta >

(4) For any a € N2, any £ € N and any 2 < p < +o0 such that |a| + ¢ — % > 0, there exists
Cpae such that for any t = 0

« C ol
o2 ol SIEO[]Ie < —2 [ A¢] L.
(L+t) 2 »

(5) There exists @ > 0 such that for any o € N? and any £ € N, there exists Coy such that for
any2<p<+0, 1 <g<p,andanyt =0

. Ca,f e—@t
| 0% aé E(0)( )ellzr < [o[+20 , 11 lglza-
(min({1,¢})) = "

(6) There exists @ > 0 such that for any o € N? and any £ € N, there exists Coy such that for
any 2 < p <400, and any t = 0

Ca,( e—@ t

| o2 & SHE (O[] < Ny

(min((1,1) (5



Proof. A small variation on the proof of Proposition provides a version of the proposition where
in the first two estimates 21(01; is replaced with Xy (and the time decay is actually stronger). Thus

we only need to explain how to bound Yy — E%(S. We denote

I'(t,z) = f elz€ (ethv —etD(O)(i€)> x(&)d& := f e #em(t, €)d €
[777771-]2 [77‘-77‘-]2
and we have to bound |T'(¢,-)|zr®w2) for 1 < r < +00. As encoded in (3.10)-(3.13)), the analysis

of Subsection (applied with et DV (i) replacing e'P¢) is actually already written in terms of
comparisons with the evolution of (D.13) so that m satisfies estimates similar to (3.10). The
arguments expounded there complete the proof when 1 < r < 2 and also 2 < r < +0, since,

using Hausdorff-Young inequalities, we only have to bound |my(t, )| ,+=r- There is one detail worth

mentioning, in we have absorbed a factor |£[?¢ in the exponential but it is useful to keep
it apparent when bounding with |A¢|[;1. Furthermore when r = 40, we can bound ||m(t, )|
by splitting the integration domain into three areas corresponding to |€,| < [€1], |€1]? < |&)] <
(14 t)[€1]? and (1 + 8)[€L[2 < |&], the factor e 161" being bounded by 1 in the first two areas
and, when ¢t > 1, by a multiple of (¢||?)~" for some n > 0 in the last area. O

We now turn to Case (Ca). With polar coordinates conventions of Subsection including
identification of & with (r,w), let us recall that there exist complex-valued maps A, A2 and com-
plementary projector-valued maps 71, ms, all smooth in polar coordinates, such that

2
etD& _ Zet)\j(ﬁ) W](S)
j=1

with, for j = 1,2, A\; continuous at £ = 0 with value 0, and for some 6 > 0,

R(A;(€) < —0[€)?,
and 0p\j + ﬁgé’r)\j nowhere vanishing. We define

05(€) =+ (0 )o—0l). 51(6) = 5 7 (@A)oo(8)
AO(€) =1 a;(8) + B;(€), () = (1})—o(€)

where |,_o means that instead of evaluating at (r,w) we evaluate at (0,w). Note that aj, 8; and

(0)

m; " are defined over R?, with respective homogeneity 1, 2 and 0, that a; is real valued with

Oraj + 020ra; bounded away from zero, that R(024;) is bounded from above away from zero and
that

£—0 £—-0

) + 0D, AGE) = Diay©)n (e

j=1

2 =222 roxlel?), )

Now we define A, through
2
(D.17) Ao[Kn)(Kn ¢T) = 3 5w (m) 6.
j=1

Replacing D¢ with DW(i¢) in the foregoing definition of A, would not change the value of A, since
it only involves Taylor expansions captured by DV (i¢). In particular, A, may equally be obtained

from .
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Remark D.3. We stress that definition is conceptually similar to in that both define
the new second-order operator as being, in a frame diagonalizing the first-order expansion, the di-
agonal part of the second-order expansion. A strong difference is that since here the diagonalization
is given by a Fourier multiplier instead of a constant matrix, the resulting operator is an homo-
geneous second-order multiplier instead of a differential operator. Incidentally we point out that
similar analyses in the literature are for the moment restricted to either one-dimensional situations
[LZ97] or isotropic situations [HZ95, Rod09b], thus to cases where extra cancellations do give back
a differential operator.

Proposition D.4. Assume (D1)-(D2) and Case (Ca). Define Ay by (D.17)).
(1) For any a € N? and any £ € N, there exists Cay such that for any 2 < p < +00, 1 < ¢ <2,
and any t =0
Coz,é

| 0% o (Zrr — ) (0)lellze < z
* © (1 —|—t)| ‘2%*%’%*%*%““({5*;@*5

(2) For any a € N? and any ¢ € N, there exists Cyy such that for any 2 < p < +0 and any
t>=0

« Ooa,é
| 0% 0 (Bur — So) (0)[D]]2e < ey 12N

(1 + t)T 1" 2p
(3) For any a € N? and any £ € N, there exists Cay such that for any 2 < p < +00, 1 < ¢ <2,
and any t =0

| 05 0 2oy (D) [g] e <

[o[+0 1 Faf. o 8l
1+ ) T i amn(lid))

(4) For any a € N2, any £ € N and any 2 < p < +o0 such that |a| + ¢ — 2% > 0, there exists
Cp.ae such that for any t = 0

Cp,a 4

|| +£

(1+1¢) 2

(5) There exists § > 0 such that for any a« € N? and any £ € N, there exists Co 4 such that for
any2<p<+0,1<qg<p, andanyt >0

C y efGt
| 0% 0 Sty (D[]l e < : e T lglza -
+
(min({1,¢})) TP
(6) There exists 0 > 0 such that for any o € N? and any £ € N, there exists Cay such that for
any 2 <p <+, and any t =0

| 05 0 2oy (D[] e < 7 1AL
+1-3%

C ‘ e—@t
= la|+2¢ 1) HA¢HL1
+

o ol SB[l r <

(min((1, i)

Proof. The two first sets of estimates are derived by applying the arguments of Subsection to
operators arising from the decomposition

otDe _ otDO(i€) Zem 3 ( (&) — ;0)(£)>

2
P2 f =@ () — A0 (€)) m"(€) d 5.
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The third and fourth sets of estimates are obtained by applying directly to 21(01; the arguments of

Subsection whereas the last ones follow from Hausdorff-Young inequalities and arguments of
Subsection through Green functions representations. O

D.3. Implicit change of variables. The last transformation we would like to perform on formally
derived equations is to convert equations on a W or a @ into equations for a ¢ related to ¥, ¥ by

(D18)  W(tx) = (d+9p(t, ) (KT (x—te)) = (M-g(t, )" (KT (x~te)) |

so as to get closer to the phase introduction in the stability analysis. Our purpose is similar
to the one in [JNRZI14, Appendix B.3] but we stress that for planar waves of reaction-diffusion-
advection systems as considered in [JNRZ13a, [INRZ13b] this discussion may easily be overlooked
since systems for ¢ and 1) are essentially the same.

In Case (Cb), System ((1.10)
o wW = Q(VEWY) + A [V](VEY)

is differential and thus explicitly expressed in terms of &, ¥", V®" and V2®W. Therefore the
relevant algebraic manipulations stem directly from the fact when ¥, v, and ¢ are related through

one derives
de (t,x)(n) = K'n + dx y(t, K" (x —t¢))(K'n),
Vx¥(t,x)(n) = K+Ksz/J(t K’ (x—tc)),
dx W (t,x)(n,¢) = di (1, KT (x —tc))(K'n,K'¢),
0¥ (t,x) (I+d $(tK (x—tc))) (@) + app(t, KT (x — te))

and

dx @t x + 9 (t,%))(n) = dx P (L, %)
Vxo(t,x +9(t,x)) = (I+Vxp(t,%))” 1Vx¢(t X),
dx d(t,x + 9 (t,x)) (0, ¢) = I+ dx h(t,x)) 7 g (t, %) (1 + dx (t,%)) "', T+ dx (¢, %)) 7'C)
0rp(t, x + (1, %)) = (I+dx P (t,%))~ 13t¢(t X)..

In Case (Cb), the upshot of the computations is that when ¢" is defined from ¥", solving (1.10]
with VoW — K sufficiently small,

(T+dxw(t,x)"'n),
t

06" = K dic o(K) (K" ) + Ag[KV,J(KVx 6) + 3 i Q(K) KV KV,6™)
+ (K Vs ") di c(K)(KVx0") — KT di ¢(K)(K (Vxop")?) + 1"V

with r' pointwise bounded by |Vx@" || [V20" |+ | Vxe" |3, with consistent bounds for its deriva-
tives. This suggests that it it sufficient to consider a solution to

(D.19)
oy = —K dic oK) (K V) + Ag[KVSJ(K Vs i) + 5 0k UK (K, KVxhy)

+ (K Vxow) " di c(K)(KVxy) — KT dk c(K)(K (Vxdw)?)

with the same initial data, when working on the ¢-side.
We now explain how to extend the above computations to Case (Ca), when System ([1.10)) is not
differential. The main issue is the lack of smoothness of involved Fourier multipliers. A convenient
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way to bypass this difficulty is to use as an intermediate step 2" solving
QM = (TE) 4 x(K) T V)AK[V)(VE) + (1 ((K)7'V) VT(KTK) " v

with the same initial data as ¥". The equation for ¥*"™ is still non local, because of frequency
cut-off operators, but non locality is encoded by smooth multipliers. In order to identify the leading-
order part of the equation for ¢™* defined from ¥*** | the only missing argument is contained in
the following lemma.

Lemma D.5. Let x € [0,1), s € N and X smooth and compactly supported. There exists Cy, s 5
such that for any ¥ such that |V|re < k, for any F, any |a| < s, and any 1 < p < o0,

| o*[(RG V) [Fo(ld =) )] o (Id=¢) — X~ V) F],
o
<G 2 7, 71544,

Proof. Note that

XE' V) [Fo(d—¢) )lx - 9(x) - X[~ V) [F](x) = fRQ I(x,y)F(y)dy

with

I'(x,y) = f

ei & (x—y) ( det(I —V’l/J(y'))
R2

P R (1-My(x.y)6) - X€) ) de
where

1
My (x,y) = fo Vip(y +7(x—y)) dr.

From here, simplest techniques used throughout the text to provide pointwise bounds achieve the
proof of the lemma. O

By combining the lemma with algebraic computations expounded above one derives that as long
as Ve P*"™ — K remains sufficiently small,

0™ = —K' dk c(K)(KVx¢™™) + x(i™' V)AE[KV,](KVy ¢™™) + (1 — x(i ' V))Ag™™
+ %d%{ (K) (Kvx‘ﬁauxﬂgvxcﬁaux)

+ (K Vyx ¢™)" dk c(K)(KVx¢™) — KT dk ¢(K)(K (Vx¢™)?) + ™

with r®* bounded in LP by |Vx¢™ |1 [VZ2™™ | e + ||| Vx> |?|Lr, With consistent bounds for
its derivatives. As a final intermediate step, ¢*"* may be compared to ¢,,, solving the same
equation without the remainder r®"¥*, and starting from the same initial data. In turn, ¢, is

readily compared to ¢y solution of (D.19).
The final result is as follows.

Proposition D.6. There exist g > 0, (C(py))po>2 and (Co)een, =1 such that if for some sublmeaﬁ
o

1AGo | (L1~ R2R2) < €0
then, there exist a unique global solution ¢y to with initial datum ¢y (0,-) = ¢y and a
unique global solution ¥V to with, initial datum ®"(0,-) = ¥y given by

wo(x) = (1d—¢y) " (K'x) .

1675 in Theoremwe mean that ¢, may differ from A™*(Ag¢,) by a constant function but not by a non-constant
affine function.
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such that, with
in Case (Ca)

in Case (Cb)

D= ol
_l’_
]IV}

[N [V
4 "=
ol

Tp,s = {
there holds for any t = 0,
C\al |AGo 11 Aprial-24

* < =
0% 15s < St o, ol > 2,
Claj+1 [Ago| 1 Apyial-1.4
Haa¢W”L7’ < = (1 T t)rp,\ar?—l ) |Oé| =2, 2<p<w,
Clpo) A0 1114
\Y% < , 2<po<p< 0,
H ¢WHLP (1 + t)rp’o PoxDp

and, with " defined from OV and Wy from ¢y, through (D.18)), for any t = 0,
Claj+2 | Ao L1 Apy1al4
(1+t)»lalts
_ Cla+2 [Aol 1 awiers

(1+t)wlalts
We skip the proof of Proposition because we have already discussed the main ingredients
of the proof, and the remaining parts are very similar to arguments detailed elsewhere along the

text. Let us simply point out that the existence part stems from a simple fixed-point argument,
since equations are essentially of semilinear parabolic type. Note that the last estimate follows from

Lemma

la| >0, 2<p<w,

[0%(pw — &")zv <

y

[0 (®w — ") 1o la] >0, 2<p<om.

)
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