
HAL Id: hal-04679804
https://hal.science/hal-04679804v1

Preprint submitted on 28 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing ideal calibration for sequential predictions
Thibault Modeste, Clément Dombry, Anne-Laure Fougères

To cite this version:
Thibault Modeste, Clément Dombry, Anne-Laure Fougères. Testing ideal calibration for sequential
predictions. 2024. �hal-04679804�

https://hal.science/hal-04679804v1
https://hal.archives-ouvertes.fr


Testing ideal calibration for sequential predictions

Thibault Modeste ∗ Clément Dombry † Anne-Laure Fougères ‡

August 28, 2024

Abstract

Forecasts and their evaluation are major tasks in statistics. In real applications,
forecasts often take the form of a dynamic process evolving over time and this sequen-
tial point of view must be taken into account. A strategy for forecast evaluation is
calibration theory based on the Probability Integral Transform. The idea is to check
the conformity between the forecast and the observation. Here, ideal forecasts are
characterized by conditional calibration and we present some new tests based on re-
gression trees.
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univ-fcomte.fr
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1 Introduction

Forecasting is an important task in statistics with many applications such as in meteorol-
ogy (Vannitsem et al., 2021), hydrology (Tiberi-Wadier et al., 2021), health (Henzi et al.,
2021), energy (Hong et al., 2016). To take account for uncertainties or statistical errors, a
prediction is not just a single value. Several approaches exist to deal with these uncertain-
ties, including interval prediction and probabilistic prediction. We will focus on the latter
approach. To estimate the trend of the future, predictions then take the form of probabil-
ity measures, i.e. the forecaster predicts several, even infinitely many, possible scenarios
with different probabilities of success. This is the idea introduced by Epstein (1969b)
where the process studied is governed by deterministic laws but the initial conditions are
unknown.

Forecast verification is crucial in order to improve a forecasting method or compare dif-
ferent forecast strategies. Assessing forecast accuracy is done by comparing the predictive
distributions and the actual observations which are real valued. But since these two quan-
tities are not intrinsically comparable, assessing in this case is a difficult task. Two main
methods exist, scoring rules (Gneiting and Raftery, 2007) and calibration theory (Gneiting
et al., 2007). The idea of the first approach is to create a pseudo distance between the
observations and the predictions, while the second one is in some way more qualitative.
We can find an early introduction of the notion of calibration in Dawid (1984) and Diebold
et al. (1998). The reliability of a probabilistic forecast is defined as its skill to be conform
with the actual observation.

The evaluation methods depend on the assumptions about these measures. In some cases,
probability measure is discrete and uniform over its atoms. This type of prediction is
called ensemble forecast. It is a common approach in meteorology with the Numerical
Weather Prediction (NWP) where each atom represents a different scenario starting from
a different initial point. Several diagnostic tools have been introduced (Bröcker, 2009;
Weigel, 2011), the rank histogram is one of them and one of the most studied (Anderson,
1996; Talagrand et al., 1997). The measures can also be assumed with a density, as is the
case in financial risk management (Diebold et al., 1998).

In the general case, the fundamental notion of Probability Integral Transform (PIT, David
and Johnson (1948)) is introduced, which plays a crucial role in calibration theory. More
recently, Tsyplakov (2013) describes the use of the PIT as a diagnostic tool for calibration.
The review by Gneiting and Katzfuss (2014) provides a nice discussion of these notions.
Several types of calibrations have been introduced over time. Their definitions and links
will be given in Section 2. For this article, we are interested in a particular type of
calibration, the ideal calibration. A prediction of a phenomenon Y is said to be ideally
calibrated with respect to an information F if the latter prediction is the conditional
distribution of Y for F . That is to say that the forecaster predicts the phenomenon
perfectly with respect to the known information. Few results exist in the literature for
this type of calibration. This notion of ideal calibration is closely related to the cross-
calibration defined by Strähl and Ziegel (2017), which aims at predicting perfectly with
the knowledge of other forecasters’ information. In this context, the authors propose two
tests based on the study of PIT.

In Bröcker (2022), the author also focuses on ideal calibration but in the specific case
of binary events. This sub-case of probabilistic prediction is called probability forecasting.
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The concept of his test is to write the calibration in terms of an empirical process involving
the observations of the phenomenon and its forecasters. Under some conditions, this
empirical process has good asymptotic behavior under the ideal calibration hypothesis.
We will proceed in an analogous way.

Section 2 sets the definitions and details the classical framework, the PIT and the different
notions of calibration. This section ends with Corollary 3 that is a key result from which
we will be able in Section 3 to write the ideal calibration in terms of an empirical process.
Under certain conditions, this process will converge to a Gaussian limit process. Since
this limit has an unknown distribution, we will justify the bootstrap to approximate it.
Section 4 introduces three new tests based on regression trees (CART algorithm). The
purpose of this section is to show that this regression is rewritten as the functional of
the empirical process that involves the PITs. The performance of these three tests are
then numerically investigated in Section 5 in an auto-regressive model framework. We
conclude this paper with Section 6 where we give some limitations of ideal calibration and
our tests. Then we present a recent notion of weaker calibration and discuss an adaptation
perspective for our tests. All the proofs are relegated to Section 7.

2 Calibration theory for the validation of dynamic forecast

2.1 Probability Integral Transform

Before introducing the different notions of calibration for probabilistic forecasts, we provide
the definition of the Probability Integral Transform (PIT) for deterministic probability
measures, see David and Johnson (1948) or Brockwell (2007).

Definition 1. Let F be a deterministic cumulative distribution function (CDF), Y be a
random variable and V ∼ Unif([0, 1]) independent of the variable Y . Their PIT is defined
as

ZY
F = V F (Y −) + (1− V )F (Y ).

When F is continuous, we have simply ZY
F = F (Y ). In this case it is well known that

Y ∼ F implies that F (Y ) is uniformly distributed on [0, 1]; the converse is also true that
F (Y ) ∼ Unif([0, 1]) implies Y ∼ F . To extend this fundamental property to the general
case when F is not necessarily continuous, it is necessary to introduce the randomization
V in the definition of the PIT.

Lemma 1. Let F be a deterministic CDF, Y be a random variable and ZY
F the associated

PIT. The following statements are equivalent:

i) Y ∼ F ;

ii) ZY
F ∼ Unif([0, 1]).

The preceding lemma states a fundamental property of the PIT and seems to be well-
known, even if we do not know a clear reference (especially for the proof of the implication
ii) ⇒ i)). We postpone the proof to Section 7.
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2.2 Prediction Space

We introduce the classical framework of prediction space developed in Gneiting and Ranjan
(2013) and Strähl and Ziegel (2017).
Let (Ω,G,P) be a probability space and Y : (Ω,G,P) → R a random variable representing
the quantity of interest that we wish to predict. Let M1(R) be the space of probability
measures P on (R,B(R)) endowed with the σ-algebra generated by the maps P 7→ P (A),
A ∈ B(R). With a slight abuse of notation, we often identify a probability measure on
R and its CDF. A (random) probabilistic forecast is a measurable map F : (Ω,G,P) →
M1(R). Let F ⊂ G be a sub-σ-algebra representing the information available to the
forecaster. Sometimes it will be assumed that F = σ(X) where X : Ω → Rd is an observed
covariate used to produce the prediction. The constraint that the forecaster has only access
to the information encoded by F corresponds to the F-measurability of F . An auxiliary
random variable V ∼ Unif([0, 1]), independent of F and Y , is introduced that will be
useful to define the PIT ZY

F = V F (Y −) + (1− V )F (Y ). Note that the PIT is measurable
with respect to G, see Proposition 20. To summarize, the one step prediction space is a
triple (Y, F, V ) defined on (Ω,G,P) together with a sub-σ-algebra F and with F assumed
F-measurable.

A sequential prediction space consists in an extension of the preceding construction to
model sequential prediction. The probability space (Ω,G,P) is endowed with a sequence
of random variables (Yn)n∈N. At time n ∈ N, we wish to predict Yn+T where T ≥ 1
is the so-called lead time. A sequence of (random) probabilistic forecasts (Fn)n∈N is a
sequence of measurable maps Fn : (Ω,G,P) → M1(R). The available information evolves
over time and is represented by a filtration (Fn)n∈N, i.e. a nondecreasing sequence of
sub-σ-algebras Fn ⊂ G. The sequence of forecasts (Fn)n∈N is assumed to be measurable
with respect to the filtration (Fn)n∈N. Sometimes we will assume filtration generated by
a sequence of covariates (Xn)n∈N, i.e. Fn = σ(Xk, k ≤ n). Finally, we consider an i.i.d.
sequence (Vn)n∈N of random variables uniformly distributed on [0, 1] and independent of
(Fn)n∈N and (Yn)n∈N. To summarize, a sequential prediction space is a sequence of triples
(Yn, Fn, Vn)n∈N defined on (Ω,G,P) together with a filtration (Fn)n∈N and with (Fn)n∈N
assumed measurable with respect to (Fn)n∈N.

2.3 Ideal probabilistic forecast and calibration

The main purpose of this work is to build a statistical procedure to verify the quality of a
probabilistic forecast and its ability to exploit the information available to the forecaster.
This is related to the notion of ideal forecast.
The ideal forecast with respect to a sub-σ-algebra F is defined as the conditional distri-
bution

F ∗ = L(Y | F).

Heuristically, the ideal forecast F ∗ is the best probabilistic forecast of Y that can be
achieved if the forecaster has only access to the information F .
The qualitative assessment of probabilistic forecast relies on the notion of calibration.
Roughly speaking, calibration means that the observation Y and the probabilistic forecast
F are in agreement and this is made precise thanks to the probability integral transform.
We refer to Tsyplakov Tsyplakov (2013) and Gneiting and Katzfuss Gneiting (2014) for
comprehensive reviews on probabilistic forecast and calibration.
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Definition 2. Let (Y, F, V ) be a one step prediction space on (Ω,G,P). The probabilistic
forecast F is said probabilistically calibrated if ZY

F ∼ Unif([0, 1]).

Gneiting and Ranjan (2013, Theorem 2.8) show that an ideal forecast F ∗ (with respect to
any σ-field F) is always probabilistically calibrated. A partial converse holds in the case of
binary outcome: Gneiting and Ranjan (2013, Theorem 2.11) show that a probabilistically
calibrated forecast F is ideal with respect to the σ-field F = σ(F ) which it generates,
i.e. it satisfies F = L(Y | F ). This property is called auto-calibration. Note that the
assumption of binary outcomes is crucial here, see Gneiting and Resin (2021, Example
2.4) for a counter example.
These properties show that probabilistic calibration is an important property of ideal
forecast. It is is however a weak property that does not take into account the information
F . To this purpose complete calibration was introduced (Diebold et al., 1998; Mitchell
and Wallis, 2011; Gneiting and Ranjan, 2013).

Definition 3. Let (Y, F, V ) be a one step prediction space on (Ω,G,P). The probabilistic
forecast F is said completely calibrated with respect to F ⊂ G if ZY

F ∼ Unif([0, 1]) and ZY
F

is independent of F .

This notion was introduced in Mitchell and Wallis (2011) for density forecasts. A similar
notion of cross-calibration is introduced in Strähl and Ziegel (2017) where the information
F = σ(F1, . . . , FK) is generated by competitive forecasts and the goal is to check whether
the forecaster can efficiently exploit the information provided by alternative forecasters.
It is clear from the definition that complete calibration is a stronger property than proba-
bilistic calibration, since independence between information and PIT is assumed in addition
to the uniform distribution of the PIT. Interestingly, complete calibration is equivalent to

L
(
ZY
F | F

)
= Unif([0, 1]). (1)

The notion of complete calibration is the correct notion to verify that a forecast is ideal,
as stated in the following proposition.

Proposition 2. Let (Y, F, V ) be a one step prediction space on (Ω,G,P) and F ⊂ G be a
sub-σ-field such that F is F-measurable. The two following statements are equivalent:

i) F is ideal with respect to F ;

ii) F is completely calibrated with respect to F .

The link between ideal forecast and complete calibration was partially found by Diebold
et al. (1998) where the first implication i) ⇒ ii) is proved under extra regularity condition
(see the first Proposition of Part 3); see also (Gneiting and Ranjan, 2013, Theorem 2.9).
The equivalence i) ⇔ ii) is established in (Strähl and Ziegel, 2017, Proposition 2.11) in
the framework of cross-calibration. We propose here a different proof based on Fubini
theorem for the conditional distribution.
For future reference, we provide an extension of Proposition 2 to the framework of a
sequential prediction space.

Corollary 3. Let (Yn, Fn, Vn)n∈N be a sequential prediction space on (Ω,G,P) with Fn

adapted to the filtration (Fn)n∈N. For a lead time T ≥ 1, we note Zn = Z
Yn+T

Fn
the PIT.

The following properties are equivalent:
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i) (Fn)n∈N is ideal with respect to (Fn)n∈N, i.e.,

Fn = L(Yn+T | Fn), for all n ∈ N;

ii) (Fn)n∈N is completely calibrated with respect to (Fn)n∈N, i.e.

Zn ∼ Unif([0, 1]) and independent of Fn, for all n ∈ N.

In this case, assuming that (Fn)n∈N contains the filtration generated by (Yn)n∈N, the se-
quence (Zn)n∈N is (T − 1)-dependent. In particular, when T = 1, the sequence (Zn)n∈N is
i.i.d. with uniform distribution on [0, 1].

The assumption that (Fn)n∈N contains the natural filtration generated by the sequence
(Yn)n∈N is realistic in many applications. It means that, at time n, the past observations
Yn, Yn−1, . . . are available to the forecaster in order to produce Fn.

Remark 4. When T = 1 and (Fn)n∈N is the natural filtration associated with (Yn)n∈N,
i.e. Fn = σ(Yk, k ≤ n), the implication i) ⇒ ii) is provided in Diebold et al. (1998)
under some stronger conditions on the model and it is also observed that (Zn)n∈N is i.i.d.
uniformly distributed. In various places of the literature, one can find that i) and ii) are
also equivalent to

iii) (Zn)n∈N is i.i.d. with uniform distribution on [0, 1].

Clearly ii) implies iii) but it appears that the converse implication does not hold. We
provide a counter-example in Section 5.1.2 (Remark 18) and show that, for the unfocused
forecaster, the PIT are i.i.d. uniformly distributed even if the forecast is not ideal.

3 Empirical process and calibration

The previous section stated the importance of complete calibration to verify that a forecast
is ideal. Our goal is now to proceed as in Bröcker (2022) to write the calibration assumption
in terms of some empirical processes.

3.1 Assumptions and notation

We will slightly modify the dynamic framework and assume that the sequences are indexed
in Z. Let us recall that, Zn is the PIT of Yn+T by Fn. The following assumptions are
made :

(A1) Model : the filtration (Fn)n∈Z is generated by a vectorial sequence (Xn)n∈Z,
contains the filtration endowed by the quantity of interest (Yn)n∈Z and for n ∈ Z

L(Yn+T | Fn) = L(Yn+T | Xn);

(A2) Stationarity : the sequence (Zn, Xn)n∈Z is stationary;
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(A3) Dependence : For two σ−algebras A and B, the α−mixing coefficient is defined
by

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)|.

The σ−algebra are independent if and only if the coefficient is null, see Rosenblatt
(1961) for more details on mixing dependent coefficients. We assume that there
exists ε > 0, such that

α(n) := α(σ(. . . , X−1, X0), σ(Xn, Xn+1, . . .)) = O(n−2d−ε).

The consequence of the Markovian Assumption (A1) will be discussed in Remark 7. This
formulation of Assumption (A2) is mathematical. It is stated in this way to make fewer
assumptions. In a less general framework, for example, if the triplet (Xn, Yn+1, Fn)n∈Z is
stationary then Assumption (A2) is verified. This framework means that the predicted
and observed phenomena are stationary as well as the way of forecasting.
We want to test the following null hypothesis

(H0) : the sequence (Fn)n∈Z is ideally calibrated relatively to (Fn)n∈Z.

This means that for each n ∈ Z, Fn = L(Yn+T | Fn). With Assumption (A1) and
Corollary 3, this null hypothesis can be rewritten

(H0) : for each n ∈ Z, Zn ∼ Unif([0, 1]) and Zn is independent of Xn.

We may assume without loss of generality that the stationary sequence (Xn)n∈Z takes its
values in [0, 1]d. The common CDF of the Xn is denoted by F . We consider the empirical
process

G(n)(y, t) =
1

n

n∑
i=1

(
1{Zi≤y,Xi≤t} − yF (t)

)
, y ∈ [0, 1], x ∈ [0, 1]d,

and denote by Γ the limit covariance function

Γ((y, t), (y′, t′)) =
∑
i∈Z

Cov
(
1{Z0≤y,X0≤t},1{Zi≤y′,Xi≤t′}

)
.

Here the symbol ≤ denotes componentwise comparison of vectors so that x ≤ t means that
xi ≤ ti for all i = 1, . . . , d. The negation x ̸≤ t means that xi > ti for some i = 1, . . . , d.
The following Proposition is a direct application of Theorem 10.2 in Dedecker et al. (2007).

Proposition 5. Under Assumptions (A1)-(A3) and assuming the calibration null hypoth-
esis (H0), the empirical process converges in distribution

√
nG(n) ⇝ G in ℓ∞

(
[0, 1]× [0, 1]d

)
and the limit G is a centered Gaussian process with covariance function Γ.
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3.2 Decomposition of the empirical process

Let us consider the decomposition of the empirical process

G(n)(y, t) = F(n)
1 (y, t) + F(n)

2 (y, t) + yF(n)
3 (y, t)

with

F(n)
1 (y, t) =

1

n

n∑
i=1

(
1{Zi≤y} − y

)
F (t)

F(n)
2 (y, t) =

1

n

n∑
i=1

(
1{Zi≤y} − y

) (
1{Xi≤t} − F (t)

)
F(n)
3 (y, t) =

1

n

n∑
i=1

1{Xi≤t} − F (t) .

This decomposition is motivated by the following simple yet interesting lemma.

Lemma 6. The following properties hold true:

1. the process F(n)
1 is centered if and only if Zi ∼ Unif([0, 1]) for all i;

2. the process F(n)
2 is centered if and only if Zi and Xi are independent for all i;

3. the process F(n)
1 + F(n)

2 is centered if and only if Zi ∼ Unif([0, 1]) and Zi and Xi are
independent for all i.

As a consequence, the ideal calibration assumption (H0) holds if and only if F(n)
1 and F(n)

2

are both centered processes.

A short interpretation of this lemma is that the first term tests probabilistic calibration
and the second term tests the independence of the PIT with the information. The last
term only uses the information (Xn)n∈Z. Thus in general, to test ideal calibration, one

should essentially use the first two terms F(n)
1 ,F(n)

2 and not the last one F(n)
3 . Indeed, the

sum encodes ideal calibration and has the advantage of being observable since it does not
depend on the unknown CDF F , for y, t ∈ [0, 1]× [0, 1]d,

F(n)
1 (y, t) + F(n)

2 (y, t) =
1

n

n∑
i=1

(
1{Zi≤y} − y

)
1{Xi≤t}.

Remark 7. Assumption (A1) on the Markovian character of the conditional distribution
is used only to prove the last consequence of the previous lemma. Without it, the three
points are still true.

We now investigate the asymptotic behavior of the empirical processes (F(n)
i )1≤i≤3. We

need to introduce these two limit covariances,

Γ1((a, t), (b, s)) =
∑

|i|≤T−1

F (t)F (s)Cov
(
1{Z0≤a},1{Zi≤b}

)
,
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Γ2((a, t), (b, s)) =
∑

|i|≤T−1

Cov(
(
1{Z0≤a} − a

) (
1{X0≤t} − F (t)

)
,

(
1{Zi≤b} − b

) (
1{Xi≤s} − F (s)

)
).

The next theorem follows from Proposition 5 and the continuous mapping theorem.

Theorem 8. Under Assumptions (A1)-(A3) and (H0),

√
n
(
F(n)
1 ,F(n)

2 ,F(n)
3

)
⇝ (G1,G2,G3) ,

where G1,G2,G3 are Gaussian processes, with covariances respectively given by Γ1 and
Γ2 for the two first processes. In the specific case where T = 1, these two processes are
independent.

We remark that the covariance structure of G1 and G2 is simple because the covariance
functions involve sums with 2T−1 terms, which is a consequence of the (T−1) dependence
of the sequence of PITs (Zi)i∈Z. In particular, when T = 1, Γ1 and Γ2 involve only a single
term. For the sake of brevity, we do not provide the full expression for the covariance
function of (G1,G2,G3).
For the following, we need also

Ḡ(n)(y, t) =
1

n

n∑
i=1

1{Zi≤y}1{Xi ̸≤t} − yF̄ (t), where F̄ (t) = 1− F (t).

Similarly as before, we decompose this process as

G(n)
(y, t) = F(n)

1 (y, t) + F(n)
2 (y, t) + yF(n)

3 (y, t).

Note that for i = 1, 2,

F(n)
i (y, t) = F(n)

i (y,1)− F(n)
i (y, t), ∀y, t ∈ [0, 1]× [0, 1]d. (2)

We get also a convergence result for this other empirical process.

Corollary 9. Under Assumptions (A1)-(A3) and (H0),

√
n

F(n)
1 F(n)

1

F(n)
2 F(n)

2

F(n)
3 F(n)

3

⇝
G1 G(·,1)−G1

G2 −G2

G3 −G3

 ,

where (Gi)1≤i≤3 is the same as in Theorem 8.

The tests we will propose in the next Section can be seen as functionals of these empirical
processes and we will use the functional delta method to derive their asymptotic behaviour
(van der Vaart and Wellner, 1996, Section 3.9).

As the ideal calibration is encoded by (F(n)
1 ,F(n)

2 ), it makes sense to ask that the asymp-
totics involve only the components (G1,G2) as in the following theorem. Here ℓ∞ =
ℓ∞([0, 1]× [0, 1]d).
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Theorem 10. Assume Ψ: ℓ∞ × ℓ∞ × ℓ∞ → ℓ∞ is differentiable at (0, 0, 0) with

Ψ(0, 0, 0) = 0 and ∂3Ψ(0, 0, 0) = 0.

Then under Assumptions (A1)-(A3) and the ideal calibration hypothesis (H0),

√
n

Ψ
(
F(n)
1 ,F(n)

2 ,F(n)
3

)
Ψ
(
F(n)
1 ,F(n)

2 ,F(n)
3

)⇝ (
d0Ψ(G1,G2, 0)

d0Ψ(G(·,1)−G1,−G2, 0)

)
.

It is too difficult to compute the exact law of these asymptotic empirical processes. There-
fore we will approximate these limits by bootstrap. As already mentioned, the case T = 1
is the simplest and we will focus on this case.

3.3 Bootstrap for the lead time T = 1

To approximate the limiting distribution arising in Theorem 10, we will use a form of
bootstrap where we replace the sequence of PITs (Zn)n∈Z by a new uniform sequence
(Z⋆

n)n∈Z which is i.i.d. and independent of the information (Xn)n∈Z. Note that it is
not obvious that the new empirical process has the same limit, because the sequences
(Xn, Zn)n∈Z and (Xn, Z

⋆
n)n∈Z do not have the same distributions under (H0). Indeed, (H0)

implies that Zn is independent of the past (X1, . . . , Xn) but in general, as Zn depends on
Yn+1, there exists some dependency between Zn and Xn+1, and more generally between
Zn and the future observations. We introduce the usual notation to denote the bootstrap
process

G(n)⋆(y, t) =
1

n

n∑
i=1

1{Z⋆
i ≤y}1{Xi≤t} − yF (t),

and we construct the same process (F(n)⋆
i ,F(n)⋆

i ) as previously, but with Z⋆
n replacing Zn.

Theorem 11. Let (Z⋆
n)n∈Z be an i.i.d. uniform random sequence, independent of (Zi)i∈Z

and (Xi)i∈Z. Under the Assumptions (A1)-(A3) and the null hypothesis (H0),

√
n


F(n)
1 F(n)

1

F(n)
2 F(n)

2

F(n)⋆
1 F(n)⋆

1

F(n)⋆
2 F(n)⋆

2

F(n)
3 − F F(n)

3 − F

⇝

G1 G(·,1)−G1

G2 −G2

G⋆
1 G⋆(·,1)−G⋆

1

G⋆
2 −G⋆

2

G3 −G3

 ,

where (
G1 G(·,1)−G1

G2 −G2

)
law
=

(
G⋆

1 G⋆(·,1)−G⋆
1

G⋆
2 −G⋆

2

)
,

and these two vector processes are independent.

Remark 12. The term bootstrap is a slight abuses of language. In fact, resampling is
done with a new sample.

This result states that the bootstrapped process has the same asymptotic behavior even if
the two sequences (Xn, Zn)n∈Z and (Xn, Z

⋆
n)n∈Z do not have the same distribution. Then

thanks to Theorem 10 and Theorem 11, we get the next result that justifies the use of
bootstrap to adjust our tests. As the distributions of (G1,G2,G3) and (G⋆

1,G⋆
2,G3) are

not the same, it is important to assume that the functional Ψ satisfies ∂3Ψ(0, 0, 0) = 0.
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Corollary 13. Let (Z⋆
n)n∈Z be an i.i.d. uniform random sequence, independent of (Zn)n∈Z

and (Xn)n∈Z. Assume Ψ: ℓ∞ × ℓ∞ × ℓ∞ → ℓ∞ is differentiable at (0, 0, 0) with

Ψ(0, 0, 0) = 0 and ∂3Ψ(0, 0, 0) = 0,

then under Assumptions (A1)-(A3) and (H0),

√
n

 Ψ
(
F(n)
1 ,F(n)

2 ,F(n)
3

)
Ψ
(
F(n)⋆
1 ,F(n)⋆

2 ,F(n)
3

)⇝ (
d0Ψ(G1,G2, 0)
d0Ψ(G⋆

1,G⋆
2, 0)

)
.

Moreover, the two limit processes have the same distribution and are independent.

In practice, the calibration of the test uses several independent sequences (Z⋆
n)n∈Z to

obtain a sample approximation of the limit distribution.

4 Testing for ideal calibration

4.1 Heuristic and strategy

The main idea driving our tests for ideal calibration relies on Corollary 3, stating that the
forecast (Fn)n∈Z is ideally calibrated if and only if

(H0) : for each n ∈ Z, Zn ∼ Unif([0, 1]) and Zn is independent of Xn.

We recall that this characterization was obtained thanks to the Markov assumption (A1),
which implies that Zn is independent from Fn if and only if it is independent from Xn.
Note that even if the Markov assumption does not hold, our tests can still be used with a
controlled level but will detect only if Zn depends onXn and will not be able to detect more
subtle forms of non-calibration. However, it is always possible in theory to augment the
dimension of the covariate space and test the dependency of Zn from (Xn, . . . , Xn−m+1),
that is consider memory of length m ≥ 1. In practice, augmenting the dimension of the
covariate space has a cost, both in terms of computational time and loss of power.

The proposed methodology for testing (H0) relies on the simple observation that Zn is
uniformly distributed on [0, 1] and independent of Xn if and only if

E
[
g(Zn) | Xn ∈ A

]
= 0,

for all functions g : [0, 1] → R such that
∫ 1
0 g(y) dy = 0 and measurable sets A ⊂ [0, 1]p.

In practice, this integral can be estimated by

1
n

∑n
i=1 g(Zi)1{Xi∈A}

1
n

∑n
i=1 1{Xi∈A}

(3)

which must be approximately zero under (H0). In order to detect default of calibration,
one needs to find a test function g and a region A where this mean significantly deviates
from 0. We will consider several natural choices for the choice of g that are related to
cumulative distribution functions, moments or histograms. The search for the region A is
guided by the CART algorithm as explained in the next section.
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4.2 General approach for tree based tests

The CART algorithm (Breiman et al., 1984) is a popular method from statistics and
machine learning used for prediction, both in classification and regression. It produces
simple predictors, called trees, in the sense that they can be represented graphically by a
decision tree and predict finitely many different values on finitely many different subgroups
of the population. More precisely, the procedure constructs a partition of the feature
space [0, 1]d into regions A1, . . . , AK , called leaves, and the tree function T : [0, 1]d → R is
constant on each leaf. In regression, the predicted value on Ak is simply the sample mean
of the response variable in the sub-sample of individuals with features in Ak.

For our purpose, we will use the CART algorithm to predict the PIT Zn, or rather a
transformation of it g(Zn), as a function of the covariate Xn. Under (H0), the covariate
is uninformative to predict g(Zn) but, under the alternative, the CART algorithm should
detect the dependency between g(Zn) and Xn. Interestingly, the CART algorithm is
completely non parametric and assumes no model between g(Zn) and Xn. Furthermore,
it is known to be quite robust in high dimension, i.e. its power is not too much hindered
by the curse of dimensionality.

We next briefly describe the construction of the tree in our setting. Let (Xi, g(Zi))1≤i≤n ∈
[0, 1]d × R be the sample data. The construction of the partition A1, . . . , AK of [0, 1]d

relies on recursive binary splitting, where a splitting rule is used repeatedly to form the
partition. The first split forms the partition [0, 1]d = A1 ∪ A2 in order to minimize the
mean square error ∑

Xi∈A1

(
g(Zi)− g(A1)

)2
+
∑

Xi∈A2

(
g(Zi)− g(A2)

)2
, (4)

where g(A) is the mean of the transformed PITs g(Zi) for Xi ∈ A. Not all possible
partitions are used, but only the so-called admissible ones. An admissible partition is
obtained by choosing a covariate index j ∈ {1, . . . , d} and a threshold u ∈ (0, 1) and by
letting

A1 = {x ∈ [0, 1]d : xj ≤ u} and A2 = {x ∈ [0, 1]d : xj > u}.

Finding the admissible partitions that minimize the mean square error (4) can be done very
efficiently, see Breiman et al. (1984) for more details. Using this splitting rule recursively
on both A1 and A2 we then obtain 4 leaves, renamed A1, . . . , A4. Repeating the procedure
d times, we obtain the tree with depth d with 2d leaves. For our purpose, we will consider
shallow trees with depth d = 1, 2, 3 only.

As a simple illustration, Figure 1 represents a data set in dimension d = 2 and the
associated partition. The points Xi ∈ [0, 1]2 represent the covariates and the transformed
PITs g(Zi) are represented by the color of the points. We can see a strong dependence
since Xi and g(Zi) tend to be large at the same time. The CART algorithm detects this
dependence and produces regions A1, . . . , A5 which are quite homogeneous.
König-Huygens Formula implies this rewriting of the splitting criterion (4)

n∑
i=1

g(Zi)
2 −

∑
Xi∈A1

g(A1)
2 −

n∑
Xi∈A2

g(A2)
2
. (5)

So minimizing this variance quantity is equivalent to maximizing the following quantity
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Figure 1: Created region by CART algorithm for the dummy case

∑
Xi∈A1

g(A1)
2
+

n∑
Xi∈A2

g(A2)
2
. (6)

In its simplest version, our proposed test for ideal calibration relies on the choice of a
test function g : [0, 1] → R such that

∫ 1
0 g(u)du = 0 and on the choice of a depth d ≥ 1

(typically d = 1, 2, 3). The test statistic takes the form

∆ =

2d∑
k=1

∑
Xi∈Ak

g(Ak)
2
,

where the partition (Ak)1≤k≤2d is the one associated to the tree with depth d. Under the
null hypothesis (H0), this statistic must be close to zero. To adjust the test, we use the
bootstrap (see Theorem 11) and we compute the mean square error ∆⋆ obtained when
fitting a regression tree with depth d to the sample (Xi, g(Z

⋆
i ))1≤i≤n, where (Z⋆

i )1≤i≤n

denotes an i.i.d. sample with uniform distribution on [0, 1] (independent of everything
else). This statistic has a more explicit form coming from an optimization problem

∆ = max
admissible regions

(B1,...,B2d
)

2d∑
k=1

∑
Xi∈Bk

g(Bk)
2
. (7)

4.3 Specification of test functions

In practice, using only one test function seems limited and several of them should be used.
We discuss different natural choices and also how to combine different test functions in
our approach.

4.3.1 Test 1: cumulative distribution function

The first test focuses on the CDF of the uniform distribution and considers the family of
test functions

gp(u) = 1{u≤p} − p, p ∈ (0, 1).
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This approach is closely related to the test based on Conditional Exceedance Probability
(CEP) by Strähl and Ziegel (2017), see also section 5.1.1 for more details on this test. It is
natural choice because, since the CDF characterize the PIT distribution, ideal calibration
is equivalent to the fact that

E[gp(Zn) | Xn ∈ A] = 0, for all p ∈ (0, 1) and A ⊂ [0, 1]d .

In practice we consider finitely many values p1 < . . . < pK , (for instance p1 = 0.1,. . . ,p9 =
0.9 in the simulation study) and fit K trees with depth d. The k-th tree uses the sample
(Xi, gpk(Zi))1≤i≤n and the corresponding mean squared error is noted ∆k. Similarly, for
a bootstrap sample (Z⋆

i )1≤i≤n we obtain the mean squared errors ∆⋆
k, 1 ≤ k ≤ K. We

use here aggregation of the K errors, that is the test statistic is ∆ =
∑k

i=1∆k that we

compare with the bootstrap distribution of ∆ =
∑k

i=1∆
⋆
k.

4.3.2 Test 2: moments

The second test focuses on the moments of the uniform distribution and more precisely on
the first four moments. In order to check whether the PITs are uniformly distributed, we
want to verify that mean, variance, skewness and kurtosis match those of the uniform dis-
tribution. In a slightly different context of calibration of ensemble forecast, this approach
was used by Jolliffe and Primo (2008).
Here we consider the orthogonal polynomials

g0(u) = 1, g1(u) = u− 1

2
, g2(u) =

√
12

(
u− 1

2

)2

, . . .

that are obtained by the Gram-Schmidt orthonormalisation procedure applied to family
of polynomials (uk)0≤k≤4 in the Hilbert space L2([0, 1]). As we will see in Proposition 16,
orthogonality offers the benefit to yield asymptotically independent tests.
Thanks to this asymptotic independence, we do not aggregate the four mean square errors
but rather perform four independent tests with test function g1, . . . , g4 respectively. This
strategy here seems interesting because it offers some qualitative interpretation: if a devi-
ation to uniformity is detected, we are able to see whether it is rather in mean, variance,
skewness or kurtosis.

4.3.3 Test 3: histogram and χ2-test

The third test is related to the histogram and χ2-test and is slightly different from the
previous ones as we will see that it can be related to classification trees rather than
regression trees.
For L ≥ 2, we consider the histogram of the PITs (Zn)n≥1 based on L bins of equal size
[0, 1/L), . . ., [(L− 1)/L, 2]. Here we introduce the centered vectorial test function

g(u) =

(
1
[
(l−1)

L
, l
L
)
(u)− 1

L

)
1≤l≤L

.

On a region A ⊂ [0, 1]2, the squared (euclidean) norm

∥g(A)∥2 =
L∑
l=1

(∑n
i=1 1{Xi∈A,Zi∈[ (l−1)

L
, l
L
)}∑n

i=1 1{Xi∈A}
− 1

L

)2
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corresponds, up to a multiplicative constant, to the χ2-distance obtained when testing the
uniformity of the PIT in A with the χ2 test with L classes. This quantity is related to the
Gini criterion

G(A) =
L∑
l=1

(∑n
i=1 1{Xi∈A,⌈LZi⌉=l∑n

i=1 1{Xi∈A}

)2

by the relation ∥g(A)∥2 = G(A) − 1/L. Here the L classes used for the computation of
the Gini criterion are the bins number l = 1, . . . L and the class associated with a PIT
Zi is ⌈LZi⌉. Hence the l-th term of the sum defining G(A) corresponds to the estimated
probability of the l-th class in A.

Interestingly, the Gini criterion is one of the homogeneity criteria used in the construction
of classification trees. Their construction is similar as the one of regression trees and is
again based on recursive binary splitting. But now a split consists in the search of the
admissible partition A1 ∪A2 that maximizes the Gini criterion G(A1)+G(A2) (instead of
minimisation of the mean squared error in regression).

The methodology for our third test is the following. We fit a classification tree with depth
d on the sample (Xi, ⌈LZi⌉) using the Gini criterion. Denoting by (Ak)1≤k≤2d the resulting
partition, the test statistic is

∆ =

2d∑
k=1

G(Ak).

Up to constants, this is the sum, over the different leaves, of χ2-distances obtained when
testing the uniformity of the PIT in each leaf. Adjustment of the test is again based on a
bootstrap replication ∆⋆ of the test statistic using the bootstrap sample (Xi, ⌈LZ⋆

i ⌉).

4.4 Statistics ∆ and empirical processes

In this section, we see how the CART algorithm, and especially the splitting criterion (4)
and the statistic ∆, can be rewritten in terms of the empirical processes introduced in
Section 3. Let us recall the form of ∆ in term of optimization problem

∆ = max
admissible regions

(B1,...,B2d
)

2d∑
k=1

∑
Xi∈Bk

g(Bk)
2
.

We give a proof only for the first split. For this split, the shape of the region B1, B2 is
{x ∈ [0, 1]d | x ≤ t}, {x ∈ [0, 1]d | x ̸≤ t} for an admissible t ∈ [0, 1]d, then

∆ = max
admissible t∈[0,1]d

∑
Xi≤t

g({x ≤ t})2 +
∑
Xi ̸≤t

g({x ̸≤ t})2 (8)

These two terms can be rewritten in the following way to make the empirical processes
appear more naturally,

n∑
i=1

1{Xi≤t}

(∑n
k=1 g(Zk)1{Xk≤t}∑n

k=1 1{Xk≤t}

)2

+

n∑
i=1

1{Xi ̸≤t}

(∑n
k=1 g(Zk)1{Xk ̸≤t}∑n

k=1 1{Xk ̸≤}

)2

,

or in the same way
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√
n

1
n

∑n
k=1 g(Zk)1{Xk≤t}√
1
n

∑n
k=1 1{Xk≤t}

2

+

√
n

1
n

∑n
k=1 g(Zk)1{Xk ̸≤t}√
1
n

∑n
k=1 1{Xk ̸≤t}

2

. (9)

These are the sums that can be interpreted as functionals of our processes. Indeed, let us
introduce the following integral notation. Let g be a piecewise continuously differentiable
function, it can be decomposed as

g(y) = g0(y) +

k∑
i=1

wi1{y≤αi},

where g0 ∈ C1 and wi, αi ∈ R. For f ∈ ℓ∞, we define its integral with respecto to dg(y) as∫
R
f(y) dg(y) :=

∫
R
f(y)g′0(y) dy −

k∑
i=1

wif(αi).

This integral is only a notation. It is not directly related to the Stieltjes integral because
our definition allows to consider functions f, g with common points of discontinuities. The
minus sign in the notation is natural because the function 1{·≤α} has a negative jump.
The following Lemma is useful. It is a kind of integration by parts.

Lemma 14. Assume g : [0, 1] → R piecewise continuously differentiable. Then for each
t ∈ [0, 1]d,

1

n

n∑
i=1

(
g(Zi)−

∫ 1

0
g(u) du

)
1{Xi≤t} = −

∫ 1

0

(
F(n)
1 (y, t) + F(n)

2 (y, t)
)
dg(y).

Similarly

1

n

n∑
i=1

(
g(Zi)−

∫ 1

0
g(u) du

)
1{Xi ̸≤t} = −

∫ 1

0

(
F(n)
1 (y, t) + F(n)

2 (y, t)
)
dg(y).

This lemma links quantity (9) with empirical processes because
∫ 1
0 g(u) du = 0, because

the quantity (9) can be rewritten

√
n

∫ 1
0 F(n)

1 (y, t) + F(n)
2 (y, t) dg(y)√

F (t) + F(n)
3 (1, t)

2

+

√
n

∫ 1
0 F(n)

1 (y, t) + F(n)
2 (y, t) dg(y)√

F̄ (t) + F(n)
3 (1, t)

2

(10)

This invites us to define the functional

ΨF
g (F1, F2, F3; t) =

∫ 1
0

(
F1(y, t) + F2(y, t)

)
dg(y)√

F (t) + F3(1, t)
. (11)
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By combining (8) and (10),

∆ = n max
admissible t∈Cε

ΨF
g

(
F(n)
1 ,F(n)

2 ,F(n)
3 ; t

)2
+ΨF

g

(
F(n)
1 ,F(n)

2 ,F(n)
3 ; t

)2
. (12)

We had already noticed that the sum F(n)
1 +F(n)

2 was observable because it did not depend
on the CDF F . We can make the same remark about this quantity. Of course, the process

F(n)
3 and the application ΨF

g depend on F separately but this dependence is simplified in

the denominator. To use the delta method on ΨF
g , the condition of differentiability must

be verified. This is only possible on a restriction of this set because the square root is not
derivable in 0, so we need to avoid regions where F or F is too close to 0. For ε > 0, Let
us consider the restriction on ℓ∞(Cε) with Cε ⊂ [0, 1]d and

∀t ∈ Cε, ε ≤ F (t) ≤ 1− ε. (13)

Proposition 15. Assume g : [0, 1] → R piecewise continuously differentiable. Let ε ∈
(0, 1), the functionals ΨF

g and ΨF
g are differentiable at (0, 0, 0) when the variable t is

restricted to a subset Cε ⊂ [0, 1]d satisfying (13) and

∂3Ψ
F
g (0, 0, 0) = ∂3Ψ

F
g (0, 0, 0) = 0.

It remains to be seen that the application max is continuous in ℓ∞. Then ∆ converges to
a certain distribution by the contiunous mapping theorem.

The Corollary 13 states that ∆⋆ approximates the asymptotic distribution of ∆. Some-
times, the ideal calibration of a forecaster (Fn)n∈Z will be tested with several functions g.
When these functions are pairwise orthogonal, see Equation (14), the aggregation of the
multiple tests will be exact.

Proposition 16. Assume g, f : [0, 1] → R centred piecewise continuously differentiable.
Let ε ∈ (0, 1), under Assumptions (A1)-(A3) and (H0), if∫ 1

0
f(u)g(u) du = 0, (14)

then
√
n

ΨF
g

(
F(n)
1 ,F(n)

2 ,F(n)
3

)
ΨF

g

(
F(n)
1 ,F(n)

2 ,F(n)
3

) and
√
n

ΨF
f

(
F(n)
1 ,F(n)

2 ,F(n)
3

)
ΨF

f

(
F(n)
1 ,F(n)

2 ,F(n)
3

) are asymptotically in-

dependent in ℓ∞(Cε).

5 Numerical illustrations

The aim of this section is to illustrate the performances of the three tests defined in
Section 4.3. We first propose a simulation study and then an application on real data
related to weather forecast.

5.1 Simulation study

5.1.1 Competing testing procedures

Regression and classification tree. We consider the three tests introduced in Sec-
tion 4.3. A brief preliminary exploration led us to limit the depth of the trees to two splits.
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The other arbitrarily fixed parameters are the partition of the interval [0,1] of Test 1, the
number of polynomials of Test 2 and the number of classes of Test 3. For the first test,
we choose the partition into ten classes ((i − 1)/10, i)/10), i = 1, . . . , 10. For the second
test, polynomials up to degree 4 are used. For the third test, 7 classes are considered.
Adjustment of the tests is done through B = 600 bootstrap replications. In the rest of
the Section, these tests will be respectively denoted T1, T2 and T3.

Conditional Exceedence Probability : The testing procedure by Strähl and Ziegel’s
(Strähl and Ziegel, 2017) consists in writing the characterization of the ideal calibration,
namely that the sequence of PIT (Zn)n∈N are uniformly distributed and independent of
the information (Xn)n∈N, in terms of logistic regression. In our framework, this translates
into

logit(P(Zn ≤ z | Xn)) = β0,z +
d∑

i=1

βi,zX
(i)
n , n ≥ 0, (15)

with z ∈ (0, 1), logit(z) = log(z/(1 − z)) and X
(i)
n the ith coordinate of Xn. The null

hypothesis (H0) corresponds to

β0,z = logit(z) and βi,z = 0 for each z ∈ (0, 1) and i ∈ {1, . . . , d}. (16)

The logistic regression is run for different values of z to test if Equation (16) is satisfied.
To combine the different tests, multiple test adjustment are used (Cox and Lee, 2008).
For more details, see Strähl and Ziegel (2017, Section 6.1) . In the following, this test will
be referred as CEP.

Remark 17. Other tests related to this problem have been introduced in the literature.
For example, in Strähl and Ziegel (2017) or Held et al. (2010), the authors work on a
gaussian scale and apply a linear model to detect a dependence between the transformed
PIT and the covariates. We decide to focus here on nonparametric models and therefore do
not include these latter tests in the benchmark. Besides, one could also think of considering
the weaker hypothesis of probabilistic calibration (see Berkowitz (2001)). However, most
of these procedures test the i.i.d. of PITs, which is not equivalent to complete calibration,
see Remark 18. In our context, we consider serial dependence so that these tests might
lead to rejection most of the time for ”bad reasons”.

We propose two deta generating processes to test the performances of the competitors
described in the previous section. The first one is the simple autoregressive model AR(1).
The second one is a specifically designed to challenge the CEP test.

5.1.2 Numerical experiment in the autoregressive model

Data generating process. For ρ ∈ (−1, 1), α2 > 0, define

Y0 ∼ N (0, α2), Yn+1 = ρYn + εn, n ≥ 0,

where (εn)n∈N is an i.i.d. sequence with gaussian distribution N (0, σ2), σ2 > 0. The initial
variance α2 is chosen such that the sequence (Yn)n∈N is stationary, i.e. α2 = σ2/(1− ρ2).
The correlation ρ represents the strength of the dependence across time. For ρ = 0, the
sequence is i.i.d. We assume that the covariate and observations are equal, i.e. Xn = Yn
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for all n ≥ 0. The known information is thus Fn = σ(X0, . . . , Xn). The autoregressive
equation implies that, at time n ≥ 0, the ideal forecast F ∗

n is N (ρXn, σ
2).

Different forecasters. In this autoregressive model, four different forecasts are con-

sidered for comparison, denoted respectively by F
(1)
n , . . . , F

(4)
n . Note that the three first

alternatives have been considered in Gneiting and Ranjan (2013); Strähl and Ziegel (2017):

• Climatological forecaster: F
(1)
n = N (0, α2);

• Unfocused forecaster: F
(2)
n = 1

2N (ρXn, σ
2) + 1

2N (ρXn + τn, σ
2) with τn = ±1 with

probability 1/2 independently of (Xn, εn)n∈N;

• Sign-reversed forecaster: F
(3)
n = N (−ρXn, σ

2);

• Corrupted observation forecaster: F
(4)
n = N (ρ(Xn + δn), σ

2), where δn ∼ N (0, 1)
independently of (Xn, εn)n∈N.

Remark 18. For the first two forecasters, probabilistic calibration holds, meaning that the
associated PITs are uniformly distributed (Gneiting and Ranjan, 2013). The unfocused
forecaster also has the interesting additional property that the PITs are i.i.d. Indeed, for
n ∈ N, and σ2 = 1,

Zn =
1

2
Φ(Yn+1 − ρYn) +

1

2
Φ(Yn+1 − ρYn − τn),

where Φ is the CDF of standard Gaussian distribution, so that Zn = 1
2Φ(εn)+

1
2Φ(εn−τn),

implying the indepndance of the PITs. Note that the PITs of the unfocused forecaster are
i.i.d. uniformly distributed without ideal calibration because the PIT depends on Fn.

Results. Table 1 summarizes the results obtained for the four tests under the different
alternatives. The empirical powers reported therein are calculated from 1000 replications,
with a test level chosen at α = 0.05 for the four tests. The variance parameter σ2 is 1 for
all simulations. All the test parameters (depth, number of classes, level, . . .) are fixed as
detailed in Section 5.1.1.

Climatological Forecaster F
(1)
n

(ρ,N) T1 T2 T3 CEP

(0.1, 50) 0.08 0.07 0.06 0.07
(0.3, 50) 0.35 0.23 0.17 0.27
(0.5, 50) 0.81 0.63 0.48 0.75
(0.8, 50) 0.99 0.97 0.97 0.99

(0.1, 100) 0.10 0.07 0.06 0.07
(0.3, 100) 0.62 0.46 0.31 0.54
(0.5, 100) 0.97 0.91 0.78 0.98
(0.8, 100) 1 1 1 1

(0.1, 500) 0.39 0.24 0.15 0.32
(0.3, 500) 1 1 1 1
(0.5, 500) 1 1 1 1
(0.8, 500) 1 1 1 1

Unfocused
Forecaster F

(2)
n

(ρ,N) T1 T2 T3 CEP

(0.1, 50) 0.04 0.06 0.04 0.03
(0.3, 50) 0.05 0.05 0.05 0.03
(0.5, 50) 0.05 0.06 0.05 0.05
(0.8, 50) 0.06 0.05 0.05 0.05

(0.1, 100) 0.04 0.06 0.04 0.03
(0.3, 100) 0.05 0.05 0.05 0.03
(0.5, 100) 0.05 0.06 0.05 0.05
(0.8, 100) 0.06 0.06 0.05 0.05

(0.1, 500) 0.06 0.06 0.05 0.04
(0.3, 500) 0.07 0.06 0.06 0.06
(0.5, 500) 0.07 0.05 0.06 0.06
(0.8, 500) 0.05 0.07 0.05 0.06
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Sign-reversed Forecaster F
(3)
n

(ρ,N) T1 T2 T3 CEP

(0.1, 50) 0.17 0.13 0.10 0.14
(0.3, 50) 0.92 0.81 0.63 0.87
(0.5, 50) 1 1 1 1
(0.8, 50) 1 1 1 1

(0.1, 100) 0.32 0.19 0.14 0.25
(0.3, 100) 0.99 0.98 0.90 0.99
(0.5, 100) 1 1 1 1
(0.8, 100) 1 1 1 1

(0.1, 500) 0.94 0.85 0.66 0.92
(0.3, 500) 1 1 1 1
(0.5, 500) 1 1 1 1
(0.8, 500) 1 1 1 1

Corrupted observation Forecaster F
(4)
n

(ρ,N) T1 T2 T3 CEP

(0.1, 50) 0.05 0.05 0.05 0.05
(0.3, 50) 0.06 0.08 0.05 0.05
(0.5, 50) 0.08 0.16 0.09 0.10
(0.8, 50) 0.16 0.46 0.17 0.23

(0.1, 100) 0.05 0.05 0.05 0.05
(0.3, 100) 0.06 0.08 0.05 0.05
(0.5, 100) 0.08 0.19 0.09 0.10
(0.8, 100) 0.20 0.65 0.31 0.36

(0.1, 500) 0.05 0.04 0.05 0.05
(0.3, 500) 0.06 0.10 0.09 0.08
(0.5, 500) 0.15 0.61 0.35 0.34
(0.8, 500) 0.80 1 0.98 0.99

Table 1: Empirical power of the four competing tests for Alternatives 1 to 4 with different
numbers of realizations N and values of parameter ρ, based on 1000 replications, with
theoretical level test 0.05. The closer this rate is to 1, the better the test performs. Boldface
highlights the best results obtained.

Several comments can be formulated on the basis of Table 1:

• As expected, the power of the tests increases with the sample size.

• Alternative 2 fails to be detected by any test. This fact has already been noted in
Strähl and Ziegel (2017). This is still very surprising as the PITs are only uniformly
distributed and independent but not of the information (see Remark 18).

• Tests based on regression trees (T1, T2, T3) perform better or are at least comparably
to CEP test. Unfortunately, no single test is best in all cases.

• Due to the shape of the alternatives, the greater the time dependency, the more
powerful the tests are.

5.1.3 Non linear model

Data generating process. Let us now consider a framework that might be specifically
challenging for the CEP test. We consider an i.i.d. sequence (µn, εn, δn)n∈N the marginals
are also independent and εn ∼ Unif({−1, 1}), µn ∼ N (0, 1) and δn ∼ N (0, 1). We define
the sequence

Yn+1 = εnµn + δn, n ≥ 1.

The covariate used for prediction is Xn = µn? Note that that the laws of Yn+1 given
Xn = ±x are equal. This symetry suggests that the coefficent associated to Xn in the
logistic regression will vanish so that the dependence will not be detected by the CEP.

Data generating process. Now consider the Climatological Forecaster F = N (0, 2).
Recall that this forecaster is not ideally calibrated for the information (Fn)n∈N. Thus

the sequence of PIT (Z
Yn+1

F )n∈N is not simultaneously independent of the information and
uniformly distributed. More precisely, the PITs will be uniformly distributed – since F
is the distribution of (Yn)n∈N – and the PITs will also be i.i.d. The only difference with
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bootstrap samples (Z⋆
n)n∈N will be their independence with respect to the information

(Fn)n∈N.

Table 2 summarizes the results obtained for the four tests for different values of N . The
empirical powers reported therein are calculated from 1000 replications, with a test level
chosen as α = 0.05 for the four tests. All the test parameters are fixed as detailed in
Section 5.1.1.

(d,N) T1 T2 T3 CEP

(1, 50) 0.14 0.29 0.14 0.09

(2, 50) 0.08 0.26 0.11 0.09

(3, 50) 0.08 0.20 0.11 0.09

(1, 100) 0.25 0.56 0.24 0.11

(2, 100) 0.20 0.64 0.23 0.11

(3, 100) 0.12 0.53 0.19 0.11

(1, 200) 0.44 0.94 0.63 0.13

(2, 200) 0.42 0.96 0.65 0.13

(3, 200) 0.29 0.94 0.5 0.13

Table 2: Empirical power of the four competing tests with different numbers of realizations
N and values of depth d, based on 1000 replications, with theoretical level test 0.05. Since
CEP test does not depend on d, its power is repeated three times. The closer this rate is
to 1, the better the test performs. Boldface highlights the best results obtained.

Several comments can be formulated on the basis of Table 2:

• Naturally, the power increases with the size of the sample.

• Test 2 outperforms uniformly all its competitors, whatever the sample size or the
depth are.

• Increasing the depth d, i.e. making too many splits in the regression tree, might
decrease the power.

• The CEP test has a weak power, even for larger sample size N/

5.2 Real Data related to Weather Forecasting

We next consider an illustration with real data related to weather forecasting . It consists
at 2-meter temperature forecast at the surface of the station of Airport Lyon-Bron (France)
between 01/01/2011 and 31/12/2014. These forecasts take the form of ensemble forecasts.
In other words, the forecast is made up of 35 equiprobable scenarios, obtained from numer-
ical simulations (NWP). Obviously, such forecast cannot be ideally calibrated. In practice,
these simulations are only the first step of forecasting. Statistical post-processing is done
before they can be used, allowing them to be partially debiased and their under-dispersion
to be fixed (Hamill and Colucci, 1997; Richardson, 2001).
We use here the simple method of statistical postprocessing called Ensemble Model Output
Statistics (EMOS) and introduced in Gneiting et al. (2005). Let xn ∈ R35 the ensemble
forecast produced the day n. In the simplest EMOS model, the predictive distribution Fn
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given the information provided by the ensemble forecast is a normal distribution of the
form

Fn = N (axn + b, (cσ(xn) + d)2),

where (xn, σ(xn)) are respectively the empirical mean and standard deviation of the en-
semble and a, b, c, d ∈ R are model parameters. The parameters are determined adaptively,
meaning that they will change over time to best adapt to the seasonality of the weather.
In addition, the parameters are chosen so as to minimize an empirical risk

an, bn, cn, dn = argmin
a,b,c,d

1

T

T∑
t=1

loss(Fn−t, yn+1−t),

with t is the delay time of adaptation and yn is the realization of Yn. Without going into
detail, the loss function used in this minimisation is the Continuous Ranked Probability
Score (CRPS), that is widely used in practice Epstein (1969a); Hersbach (2000); Bröcker
(2012).
We compare the 4 tests for ideal calibration presented above to check whether the post-
processing uses ”perfectly” the ensemble forecast xn, i.e. the information from the nu-
merical weather predictions. The experiment will be repeated 4 times, one repetition per
yearr. Delay time is T = 30 so that the number of realizations is N = 365 − 30 = 335.
The following table shows the p-values of the different tests with this dataset. Remember
that the test rejects the hypothesis that the post-processing method is ideally calibrated
if the p-value is less than 0.05. Test 2 returns four p-values, one for each moment, that
are independent of each other.

Test 1 Test 2 Test 3 CEP

Year 2011 0.42 (0.83,0.09,0.01,0) 0.05 0.24

Year 2012 0.05 (0.10,0.53,0,0.18) 0.46 0.47

Year 2013 0.94 (0.705,0,0,0) 0.27 0.59

Year 2014 0.32 (0.79, 0.07, 0, 0.02) 0.51 0.22

On the whole, the post-processing method is not rejected, if the 3rd and 4th order moment
is not taken into account. It is justified not to take them into account, as this method
only estimates the first two moments. The CEP test has the advantage of being stable
over the four tests, unlike our tests based on the CART algorithm.

6 Discussion

6.1 Testing cross-calibration

In the simulations, we compared our tests to the test CEP in Strähl and Ziegel (2017). The
framework of this article is the cross-calibration, which is different from our setting of ideal
calibration. We have adapterd their test to our framework but it is worth noting that the
reverse is quite possible, meaning to take our tree based tests to test for cross-calibration.
We present here some further details on cross-calibration. Let (F1,n)n∈N, . . . , (Fk,n)n∈N be
k different dynamical forecasters. The dynamical forecaster (Fn)n∈N is said cross-calibrated
with respect to (F1,n)n∈N, . . . , (Fk,n)n∈N if

∀n ∈ N, Z
Yn+1

Fn
∼ Unif([0, 1]) and Z

Yn+1

Fn
⊥⊥(F1,n, . . . , Fk,n,Gn
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where Gn = σ(Yk, k ≤ n, Fn, F1,n, . . . , Fk,n). Ideal calibration compares the forecast Fn

with the ideal forecast

F ∗
n = L(Yn+1 | Yk, k ≤ n, F1,n, . . . , Fk,n).

This means that the forecaster perfectly uses the information from the past observations
and from the other forecaster, and hence performs better than his competitors. Our
tree based test can be adapted with very little modification to the framework of cross-
calibration. Similarly as for the CEP test for cross-calibration, we can consider 0 < p1 <
· · · < pK) < 1 and consider the explanatory variable Xn = (Yn, F

−1
i,n (pj), 1 ≤ i ≤ k, 1 ≤

j ≤ K). Then we can use our procedures to test whether the PITs F
Yn+1
n , n ≥ 0, are

independent of Xn, n ≥ 0.

6.2 Weaker calibration

In applications, for instance in meteorology, it is impossible to retrieve exactly the ”true”
conditional distribution, so that testing for ideal calibration might be too optimistic. The
null hypothesis is very restrictive and the test may lead to many rejections. We have
nevertheless proposed several statistics to test whether a forecast is ideal or not. The
ideas behind the construction of these tests could be useful and moreover the proof of the
asymptotic normality and asymptotic behaviour of the boostrap is interesting and hold
under general assumptions (e.g. including several dependence). .

A recent kind of calibration, Gneiting and Resin (2021), is the T -calibration where T is a
functional of the probability measure such as the median, the mean, the variance. . .

Definition 4. A random forecast F is T -calibrated if

T (L(Y | T (F ))) = T (F ) a.s.

A functional T is said to be identifiable if there exists V : R× R → R such that V (·, y) is
increasing, left-continuous for all y ∈ R and satisfying for each F ∈ P,

∀x < T (F ),
∫
R V (x, y) F (dy) < 0

∀x > T (F ),
∫
R V (x, y) F (dy) > 0∫

R V (T (F ), y) F (dy) = 0

.

In a similar way to their proof of Theorem 2.10, the T -calibration can be written in terms
of a conditional expectation.

Proposition 19. Let T be an identifiable functional, and let F be a random forecast. The
forecast F is T -calibrated if and only if

E[V (T (F ), Y ) | T (F )] = 0.

Proof. We have

E[V (T (F ), Y ) | T (F )] =

∫
R
V (T (F ), y) FT (dy), where FT = L(Y | T (F )).

Then it is equal to 0 if and only if T (F ) = T (FT ).
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This writing in terms of conditional expectation makes it possible to use the same method
based on empirical process to analyse T −calibration. More precisely, similarly as in
Lemma 6, one can show that the process(

1

n

n∑
i=1

1{T (Fi)≤x}V (T (Fi), Yi)

)
x∈R

is centered if and only if the dynamic forecast (Fn)n∈Z is T -calibrated . This preliminary
result suggests to follow the techniques presented in this article to propose tests for T -
calibration.

7 Proofs

7.1 Proofs of Section 2

Proof of Lemma 1. The implication i) ⇒ ii) is stated in (Brockwell, 2007, Lemma 2).
We prove here the converse implication ii) ⇒ i) and assume that ZY

F ∼ Unif([0, 1]). We
denote by G the CDF of Y and we want to prove that G = F .
The fact that F is nonincreasing together with the definition

ZY
F = V F (Y −) + (1− V )F (Y )

imply the following inclusions: for all x ∈ R,

{Y ≤ x} ⊂ {ZY
F ≤ F (x)},

{Y > x} ⊂ {ZY
F ≥ F (x)}.

Taking probabilities, we deduce

G(x) ≤ P
(
ZY
F ≤ F (x)

)
= F (x),

1−G(x) ≤ P({ZY
F ≥ F (x)}) = 1− F (x).

As a consequence, F (x) = G(x) and, x ∈ R being arbitrary, F = G.

For future reference, we note that Lemma 1 can be rewritten in the following equivalent
form. The implication i) ⇒ ii) states that

∀z ∈ [0, 1],

∫ 1

0

∫
R
1{vF (y−)+(1−v)F (y)≤z}F (dy)dv = z, (17)

where the left hand side is an integral form for P(ZY
F ≤ z) valid when Y ∼ F . The

implication ii) ⇒ i) states that(
∀z ∈ [0, 1],

∫ 1

0

∫
R
1{vF (y−)+(1−v)F (y)≤z}G(dy)dv = z

)
⇒ (G = F ) (18)

Equality for all z ∈ [0, 1] can be restricted to equality for all z in a dense subset.
The following technical proposition justifies the measurability of the PIT for random
probabilistic forecast and may possibly be skipped at first reading.
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Proposition 20. Let (Y, F, V ) be a one step prediction space on (Ω,G,P). Then the PIT
ZY
F is measurable on (Ω,G,P).

Proof. We denote by µ the probability kernel associated with the random forecast F (seen
as a random CDF). Define, for w, y ∈ Ω× R,

g1(ω, y) = F (ω, y−) = µ(ω, ]−∞, y[),

g2(ω, y) = F (ω, y) = µ(ω, ]−∞, y]).

We prove the joint measurability of g1 and g2 in both variables (ω, y). The measurability
properties of µ imply that, for all fixed y ∈ R, g1(·, y) and g2(·, y) are measurable. For
fixed ω ∈ Ω, g1(ω, ·) is left continuous and g2(ω, ·) is right continuous. Consider, for n ≥ 1,
the approximations

gn1 (ω, y) = g1

(
ω,

⌊ny⌋
n

)
and gn2 (ω, y) = g2

(
ω,

⌈ny⌉
n

)
.

Note that we use the floor operator (closest lowest integer) in g1 and the ceiling operator
(closest largest integer) in g2. The measurability of gn1 and gn2 is easily checked as well as
their pointwise convergence as n → ∞ to g1 and g2 respectively. The measurability of g1
and g2 follows.
Finally, the measurability of the PIT is a consequence of the equality

ZY
F (ω) = V (ω)g1(ω, Y (ω)) + (1− V (ω))g2(ω, Y (ω))

and from basic properties of measurability (composition, product and sum of measureable
maps).

Proof of Proposition 2. For the direct implication, let A ∈ F and z ∈ [0, 1], as F = L(Y |
F),

P(A ∩ {ZY
F ≤ z}) =

∫
A

∫ 1

0

∫
R
1{vF (ω,]−∞,y[)+(1−v)F (ω,]−∞,y])≤z}F (ω,dy)dvP(dω),

by Fubini Theorem for conditional distribution and V is independent of F . Then with the
Equation (17) for ω ∈ A fixed,∫ 1

0

∫
R
1{uF (ω,]−∞,y[)+(1−u)F (ω,]−∞,y])≤z}F (ω,dy)du = z

Hence P(A ∩ {ZY
F ≤ z}) = P(A)z, so ZY

F ∼ Unif([0, 1]) and is independent of F .

For the reciprocal implication, the F−measurability of F allows us to apply Fubini The-
orem for conditional distribution. Let z ∈ [0, 1] ∩ Q and A ∈ F , the independence and
uniform distribution on [0, 1] imply,

E
[
1A1{ZY

F ≤z}

]
−P(A)z =

∫
A

∫ 1

0

∫
R
1{vF (ω,]−∞,y[)+(1−v)F (ω,]−∞,y])≤z}µ(ω,dy)dv − z︸ ︷︷ ︸

F-measurable

P(dω),

where µ is L(Y | F). The F-measurability of the integrand is a consequence of the Fubini
Theorem. As this integral is null for A ∈ F ,

a.s., ∀z ∈ [0, 1] ∩Q,

∫ 1

0

∫
R
1{uF (ω,]−∞,y[)+(1−u)F (ω,]−∞,y])≤z}µ(ω,dy)du = z.
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Then by the Equation (18),
a.s., F = µ = L(Y | F).

Proof of Corollary 3. It is a direct consequence of the Proposition 2. To get the last point,
it suffices to remark that if (Fn)n∈N contains the filtration endowed by (Yn)n∈N then Zn

is σ (Fn+T , Vn) measurable, and Zn+T is independent of Fn+T and Vn.

7.2 Proofs of Section 3

Proof of Proposition 5. Under (H0) with Assumptions (A1)-(A3), Theorem 10.2 of Dedecker
et al. (2007) is applicable. In this book, the convergence is in the Skorokhod space
D([0, 1]d). But the authors prove the tighness in ℓ∞([0, 1]d). Then by their Proposi-
tion 4.2, the convergence is also in ℓ∞.

Proof of Lemma 6. 1. This equivalence is the definition of Z ∼ Unif([0, 1]);

2. Recall that (Zn, Xn)n∈N is stationary

F(n)
2 is centred ⇔ ∀y, t ∈ [0, 1]d+1, Cov

(
1{Z1≤y},1{X1≤t}

)
= 0

⇔ ∀y, t ∈ [0, 1]d+1, P(Z1 ≤ y,X1 ≤ t) = P(Z1 ≤ y)P(X1 ≤ t)

⇔ (Z1, X1) are independent.

3. For y, t ∈ [0, 1]× [0, 1]d,

F(n)
1 (y, t) + F(n)

2 (y, t) =
1

n

n∑
i=1

(
1{Zi≤y} − y

)
1{Xi≤t}.

The stationarity implies

F(n)
1 + F(n)

2 is centred ⇔ ∀y, t ∈ [0, 1]d+1, E
[(
1{Z1≤y} − y

)
1{X1≤t}

]
= 0

⇔ ∀y, t ∈ [0, 1]d+1, P(Z1 ≤ y,X1 ≤ t) = yF (t)

⇔ (Z1, X1) are independent and Z1 ∼ Unif([0, 1]).

Proof of Theorem 8. As the evaluation is continuous, the mapping theorem yields

√
n

F(n)
1

F(n)
2

F(n)
3

 =

Φ1

Φ2

Φ3

(√nG(n)
)

⇝

Φ1 (G)
Φ2 (G)
Φ3 (G)

 =

G1

G2

G3

 ,

where 
Φ1(G)(y, t) = G(y,1)F (t)

Φ2(G)(y, t) = G(y, t)−G(y,1)F (t)− yG(1, t)

Φ3(G)(y, t) = G(1, t)

.
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The covariance functions of the two first processes are, for a, b ∈ [0, 1] and s, t ∈ [0, 1]d,
Γ1((a, t), (b, s)) =

∑
i∈ZCov

(
F (t)1{Z0≤a}, F (s)1{Zi≤b}

)
Γ2((a, t), (b, s)) =

∑
i∈ZCov (H0(a, t), Hi(b, s)) ,

where Hi(a, t) =
(
1{Zi≤a} − a

) (
1{Xi≤t} − F (t)

) .

The first function is directly simplified because the sequence of PITs (Zi)i∈Z is (T − 1)
dependent. However, this is not true for the sequence (Xi, Zi)i∈Z. Nevertheless, the
simplification is possible. Let |i| ≥ T , then Zi is independent of (X0, Z0, Xi),

Cov (H0(a, t), Hi(b, s)) = E[1{Zi≤b} − b]E[
(
1{Xi≤s} − F (s)

)
H0(a, t)] = 0.

In the case where T = 1, the sequence (Zi)i∈Z is independent. The independence of G1

and G2 is a consequence of the decorrelation between F(n)
1 and F(n)

2 . For i ̸= j, Zi is
independent of (Xi, Zj) then

Cov(Hi(a, t),1{Zj≤b} − b) = E[1{Zi≤a} − a]E[
(
1{Xi≤t} − F (t)

)
(1{Zj≤b} − b)] = 0.

For i = j, the PIT Zi is independent of Xi then

Cov(Hi(a, t),1{Zi≤b} − b) = E[1{Xi≤t} − t]E[
(
1{Zi≤a} − a

)
(1{Zi≤b} − b)] = 0.

Proof of Theorem 10. It is a direct consequence of the δ-method in van der Vaart and
Wellner (1996, Theorem 3.9.4) and the fact that as ∂3Ψ(0, 0, 0) = 0,

d0Ψ(G1,G2,G3) = d0Ψ(G1,G2, 0)

.

Proof of Theorem 11. The random sequence (Zi, Z
⋆
i , Xi)i∈Z still checks Assumptions (A1)-

(A3) then this convergence is a consequence of Theorem 10.2 in Dedecker et al. (2007),

√
n

(
G(n)

G(n)⋆

)
⇝

(
G
G⋆

)
.

The application of the Mapping Theorem is done in the same way as in the proof of
Theorem 8. The essential part of this theorem is the equality between the classical limit
and the bootstrapped limit and the asymptotic independence. This part will be shown in
several steps. As many of these steps are identical, we will not show them all. Moreover,
since they are Gaussian vectors, the pairwise independence of the components implies the
independence of the vectors.

1. G1 and G⋆
1 have the same distribution;

2. G2 and G⋆
2 have the same distribution;

3. G1 is independent of G⋆
1;

4. G2 is independent of G⋆
2;
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5. G2 is independent of G⋆
1;

6. G1 is independent of G⋆
2.

Firstly, for T = 1, the PITs (Zi)i∈Z and the bootstrapped PITs (Z⋆
i )i∈Z are independent

and have the same distribution. Then it is the same for the processes (F(n)
1 ,F(n)

2 ) and their
limits. So the Point 1 and 3 are shown. Point 2 comes from the fact that for the lead time
T = 1, the covariance of G2 simplifies to

Γ2((a, t), (b, s)) = Cov(
(
1{Z0≤a} − a

) (
1{X0≤t} − F (t)

)
,(
1{Z0≤b} − b

) (
1{X0≤s} − F (s)

)
),

which is the same that G⋆
2. The last three points are shown by studying the correlation

of the processes. As the proofs are identical, we only detail Point 4. For i, j ∈ Z,

Cov
((
1{Zi≤a} − a

) (
1{Xi≤t} − F (t)

)
,
(
1{Z⋆

j ≤b} − b
)(

1{Xj≤s} − F (s)
))

= E
[((

1{Zi≤a} − a
) (
1{Xi≤t} − F (t)

) (
1{Z⋆

j ≤b} − b
)(

1{Xj≤s} − F (s)
))]

= E[1{Z⋆
j ≤b} − b]E

[((
1{Zi≤a} − a

) (
1{Xi≤t} − F (t)

) (
1{Xj≤s} − F (s)

))]
= 0

Proof of Lemma 14. Let us recall that for y, t ∈ [0, 1]× [0, 1]d,

F(n)(y, t) := F(n)
1 (y, t) + F(n)

2 (y, t) =
1

n

n∑
i=1

(
1{Zi≤y} − y

)
1{Xi≤t}.

Let us develop the integral

∫ 1

0
F(n)(y, t) dg(y) =

1

n

n∑
i=1

1{Xi≤t}

∫ 1

0
g′0(y)(1{Zi≤y} − y) dy −

k∑
j=1

wj(1{Zi≤αj} − αj)


=

1

n

n∑
i=1

1{Xi≤t}

g0(1)− g0(Zi)− [g0(y)y]
1
y=0 +

∫ 1

0
g0(y) dy −

k∑
j=1

wj(1{Zi≤αj} − αj)


=

1

n

n∑
i=1

1{Xi≤t}

(∫ 1

0
g(u) du− g(Zi)

)
.

Proof of Proposition 15. Let h1, h2, h3 ∈ ℓ∞, the function ΨF
g is null at (0, 0, 0),

ΨF
g (h

(n)
1 , h

(n)
2 , h

(n)
3 ; t) = −

∫ 1

0
h1(y, t) + h2(y, t) dg(y)√

F (t) + h3(1, t)

= −

∫ 1

0
h1(y, t) + h2(y, t) dg(y)√

F (t)
×
(
1− h3(1, t)

2F (t)
+ o(∥h3∥/F )

)
.
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The Taylor expansion is uniform in t because ε ≤ F (t) ≤ 1 − ε. We therefore define the
linear application

H(h1, h2, h3; t) = −

∫ 1

0
h1(y, t) + h2(y, t) dg(y)√

F (t)
(19)

The continuity of this linear application is a direct consequence of the following inequality

∣∣∣∣∫ 1

0
h1(y, t) + h2(y, t) dg(y)

∣∣∣∣ ≤ ∥h1 + h2∥∞

∥g′0∥∞ +

k∑
j=1

|wj |

 . (20)

This inequality also proves that there exists C > 0 such that∥∥∥∥∥∥∥∥Ψ
F
g (h

(n)
1 , h

(n)
2 , h

(n)
3 ; ·) +

∫ 1

0
h1(y, ·) + h2(y, ·) dg(y)√

F (·)

∥∥∥∥∥∥∥∥
∞

≤ C(∥h1∥+ ∥h2∥)∥h3∥,

and this bound is o(∥h1∥ + ∥h2∥ + ∥h3∥). This concludes that ΨF
g is differantiable at

(0, 0, 0) and d0Ψ
F
g is the linear application H.

Proof of Proposition 16. Let f, g be centred piecewise continuously differentiable. For sake
of simplification, we assume that they are just continuously differentiable. Let us prove
that for all t, s ∈ Cε,

−
∫ 1

0
(G1(y, t) +G2(y, t)) dg(y)⊥⊥−

∫ 1

0
(G1(y, s) +G2(y, s)) df(y).

By the Mapping theorem as the integral is continuous and Lemma 14,∫ 1

0
−g′(y) (G1(y, t) +G2(y, t)) dy = lim

√
n

∫ 1

0
−g′(y)

(
F(n)
1 (y, t) + F(n)

2 (y, t)
)

dy

= lim
√
n

(
1

n

n∑
i=1

g(Zi)1{Xi≤t}

)
.

By a dependent Central Limit Theorem,

√
n

(
1
n

∑n
i=1 g(Zi)1{Xi≤t}

1
n

∑n
i=1 f(Zi)1{Xi≤s}

)
⇝ N (0,Σ) ,

where

2Σ1,2 =
∑
i∈Z

cov
(
g(Z0)1{X0≤t}, f(Zi)1{Xi≤s}

)
If i ̸= 0 by the Assumption (A1) and the Corollary 3, Zi is independent of (Z0, X0, Xi),
for i > 0, or Z0 is independent of (Zi, Xi, X0), for i < 0, then

cov
(
[g(Z0)−m(g)]1{X0≤t}, [f(Zi)−m(f)]1{Xi≤s}

)
= 0,
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and for i = 0,

cov
(
g(Z0)1{X0≤t}, f(Z0)1{X0≤s}

)
= E

(
g(Z0)f(Z0)1{X0≤t}

)
= F (t)× E (f(Z0)g(Z0))

= F (t)

∫ 1

0
f(u)g(u) du = 0.

As the limit is Gaussian, this decorrelation implies the independence of the marginals.
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