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Abstract

This paper proposes an approach to obtain correlations for high pressure con-
ditions for the weighted-sum-of-gray-gases (WSGG) model. The proposed for-
mulation, which extends the wide-band based WSGG (WBW) model, entails
solving the gray gas coefficients by partitioning the spectrum into a series of
spectral intervals, and then using the classic version of the WSGG model to
individually solve each segment. The line-by-line (LBL) method is used in the
WBW model to first calculate the emittance of each band in which the spectra
was divided. Polynomial temperature fits are then employed to compute the
temperature and pressure-absorption coefficients. The sum of the contributions
from every spectral band individually yields the overall radiative heat source and
radiative heat flux. Showing deviations in most cases less than 5% concerning
the benchmark solution, the results demonstrate that, even at high pressures,
the proposed method is capable to accurately resolve the radiative transfer.
Keywords: radiative transfer, participating medium, spectral models,

wide-band models, high pressures
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1. Introduction

In combustion processes, which occur at elevated temperatures, the thermal
radiation is frequently the principal mechanism of heat transfer because of
the soot and participating gases formation [1]. The modeling of radiation in
combustion processes under atmospheric conditions is already a very arduous
task, however in scenarios at high pressure, it can become considerably more
difficult [2]. Nevertheless, despite of the challenges, studies involving combustion
at high pressures have recently gained attention [3—6], since strict environmental
regulations, motivated by worries about global warming, urge the adoption of
protocols in an effort to lessen the release of emission pollutant resulting from
the burning of fossil fuels [7].

Rockets, gas turbines and piston engines are only a few examples of combus-
tion systems that work at high pressures higher [2]. Oxy-combustion is another
example of high pressure combustion, which is employed to capture and storage
carbon [8]. Accurately describing the participating medium’s radiative transfer is
essential for optimizing combustion processes, particularly those that take place
at elevated pressures, which present a higher computational cost in comparison
to those that occur at atmospheric pressure. The total pressure system is also
influenced by thermal radiation. As the radiation absorption rises with the
total pressure and that the pressure also influences the chemical reactions, this
significance increases at high pressures [9]. The increase in the soot production
is the main way that soot radiation impacts the chemical reactions and is highly
dependent on the pressure [2].

Transitions in vibrational and rotational energy states produce spectral lines
centered around specific wavenumbers that are responsible for the absorption
and emission of gases’ thermal radiation. The generation of the properties of the
gases with a high level of detail is achievable with high-resolution databases, as
the HITEMP [10] and HITRAN [11], for instance. The entire radiation spectrum
of gaseous species can include millions of spectral lines, each of which has its own

dependence regarding the thermodynamic conditions (total pressure, temperature
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and molar composition of the gases involved). The LBL benchmark solution
[12] of the RTE, which takes into account each of these lines, allows for the
calculation of thermal radiation with great accuracy. However, this methodology
entails prohibitive computational costs for most real applications in engineering.
Therefore, the advancements of accurate spectral models for the RTE solution is
of great interest [13].

A great number of global spectral models, including the full-spectrum
correlated-k (FSCK) method [14] and the spectral line-based WSGG (SLW)
model [15], were developed with the intention of fastly and accurately deter-
mining the properties of the chemical species. Among them, the WSGG model
[16] is the simplest, and perhaps the most widely used even as of today. In the
WSGG model, the radiative intensity integration over all the wavenumbers is
substituted by a sum over the partial intensities associated to each gray gas, and
the erratic behavior of the spectrum of the participating medium is substituted
by a little group of gray gases that occupy not necessary uninterrupted, fixed
portions of the spectrum, for which the RTE is solved separately. In addition
to being suitable for numerical calculations in engineering, the simplicity of the
WSGG model allows it to save computational resources and ensure computational
accuracy [17]. It can also be combined with computational fluid dynamics (CFD)
solvers in order to resolve practical problems, having been recently applied by
Refs. [18-20].

While atmospheric pressure conditions have generally yielded satisfactory
results for the WSGG model [21-31], there are only a few applications of the
model to high pressure combustion [3, 5, 32]. Since there are few WSGG correla-
tions available at high pressures, some authors have attempted unsuccessfully to
use these coefficients to high pressures scenarios, but they had obtained unsatis-
factory results [33-35]. In high pressure situations, the WSGG coefficients are
commonly applied at pressures between 1atm and 40 atm [3, 4, 36, 37]. Above
40 atm, the WSGG model was studied by [5, 6].

As an alternative to the radiative calculation at high pressures, Paul et. al

[38] proposed a simplified stepwise-gray spectral model, under the premise that
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the smoothing of the absorption spectrum as the total pressure increases would
allow the use of a band model, which is easier to implement into code than
global models. A similar band mode was developed and tested by Johnson et
al. [39]. When compared to the benchmark solution, the obtained results from
other spectral models, including the SLW, SNB, SNBCK and FSK, were likewise
extended to high pressure scenarios and showed satisfactory accuracy. The SLW
model, for instance, was applied to pressures in the range of 0.1 atm and 50 atm
by Refs. [40, 41] for participating media composed of HyO, CO, and CO, and
for jet diffusion flames ranging from atmospheric pressure up to 30 atm by [35].
The FSK method was studied at high pressures by [33-35, 42—-45] providing
accurate solutions. For systems subjected to total pressures over 30 atm, the
SNBCK model presented maximum deviations of 2.5 % in relation to the SNB
model [33-35, 43].

The current work’s purpose is to bring a formulation for the WSGG model’s
high-pressure coefficient generation. The current approach is predicated on the
WBW model [31]—originally developed for 1 atm—, where each spectral interval’s
contribution is solved using the standard WBW model after the spectrum is
segmented into a series of intervals. It is worth highlighting that the WBW
approach is distinguished from the standard WSGG model in the sense that
rather than dealing with the entire radiation spectrum at once, every spectral
interval that the spectrum was split up into is individually solved and then, to
get the overall result, summed the contributions of each segment. The objective
here is to present a methodology which is fast and accurate with a respectable
offering between computational cost and accuracy. Expressed by the radiative
heat flux and radiative heat source, the accuracy results found through the
present method are tested against the solutions obtained via WSGG parameters

of Ref. [3] and LBL benchmark integration.
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2. Radiation modeling

2.1. LBL integration method

The solution of thermal radiation in participating media is based on solving
the RTE along a given trajectory, which it can be expressed as [1, 13]:

% = —hiyly + finley (1)
in which &, indicates the spectral absorption coefficient of the gas (or of a
gaseous mixture), I, represents the spectral radiation intensity and Iy, is the
spectral blackbody radiation intensity at the temperature of the medium at the
position s. On the right-hand side of the RTE, the first term corresponds to
the reduction in the radiation intensity due to absorption, and the second one
expresses the mechanism of emission. In Eq. (1), the scattering of radiation is
neglected, which is fully justified in media formed by participating species.

In the present study, non-uniform temperature and concentration distribu-
tions describe the participating medium formed by a H,0-CO, mixture. The

absorption coefficient is obtained according to the relation below
ky =NYC,. (2)

In the above equation, C, is the absorption cross-section, Y is the mole fraction of
the participating species and N is the molar density of the gas. The construction
of the absorption spectra of the combustion byproducts, considering the collision

broadening, is based on the Lorentz profile [1, 13]
M
Sm Ym
SRy T ®

in which S,, is the m-th line integrated intensity, v, is the line half-width, 7.,
is the line location and M is the amount of lines that make up the spectrum.
The parameter 7,, is calculated accounting for the pressure and temperature

according to [10]

Tref n
Ym = ( T ) PeYself,m + (P - pe)’Yair,my (4)

ot
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where p, is the partial pressure of the participating species e, Vseir and yai are
the half-widths considering the collision of gas molecules with each other and
with air molecules, respectively, and n is the temperature-dependent coefficient.
The values of S, Yair, Vseif and n are obtained from a molecular spectroscopic
database.

In solving the energy equation, the thermal radiation can be incorporated
as a volumetric source term, directly related to the radiative flux divergence.
Solving for the spectral radiation intensity using Eq. (1), the radiative heat flux
(¢r) divergence at each position of the medium can be determined using the
expression below:

oo pdw
V.g = / / [—tn Ly + Ep ey dw; dn (5)
n=0 Jw;=0

For the radiative heat flux divergence to be determined, it needs two forms of
integration. The first one corresponds to the spatial integration, which involves
both the integration of Eq. (1) in a given direction, and the integration of
Eq. (5) in all directions in the solid angle dw;. There are several spatial numeri-
cal methods, including P-N approximations, discrete ordinates method, zonal
method, Monte Carlo etc. Despite the complexity of the problem, the spatial
integration methods are well-established and can be found in specialized texts
on thermal radiation [1, 13]. The second integration corresponds to the spectral
integration of Eq. (3), which corresponds to the sum of the radiative energy
at each wavenumber 7. The gas absorption coefficients present a very complex
behavior in relation to the wavenumber, and may be made up of millions of
absorption lines. However, the greatest difficulty lies in how the thermodynamic

state influences k,, which is even more critical in combustion processes.

2.2. WSGG model

The WSGG model considers that the absorption spectrum of a gas can be
divided into a gray gases set and transparent windows. In this spectral model,
the distribution of &,, is normalized by the partial pressure p, of the participating

gases, Kpy = FKn/Da, for the gray gases 1 to J, distributed non-contiguously
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along the wavenumber, with no overlap between them. Under this assumption,

the total emittance of the medium for a path-length L can be written as

e= a;(T)[1 — exp(—ryppal)] | (6)

j=1
where the total of the chemical species’ partial pressures that form the gaseous
mixture is denoted by p,, a;(T) represents the portion of blackbody energy
emanating from the spectrum’s sections in which &, = &, ;; in the above
equation, Ky, = Ky/pq represents the pressure-dependent spectral absorption
cocfficient. In practice, the above equation corresponds to an interpolation func-
tion of total emittance data of the medium, where generally, but not necessarily,
the coefficients &y, ; are considered constant and a; is represented by polynomial
functions of the temperature. The determination of the total ¢ depends on the

integration of the spectral emittance, such that

fooo Enlpy [ —exp(—rpypaL)] dn

€= = 7
Jo dendn ™
The integration of the RTE leads to
dr;
o = fwaPal; + fpiPaasly, (®)

in which I represents the total blackbody radiation intensity. The overall
intensity can be determined by summing the individual intensities obtained for
each one of the gray gases, §

1=>"1;. (9)

j=0

Despite its simplifications regarding the real spectrum of the gases, the WSGG model
proved capable of generating results with very satisfactory accuracy in a set of
problems with elevated temperature and concentration gradients of the involved

species, similar to those found in combustion processes [4, 6, 18, 19, 46].

2.3. WBW model

In spite of its simplicity by representing the spectrum commonly with only

four gray gases (J = 4), the WSGG model is capable of obtaining solutions with
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very satisfactory accuracy in relation to the application of the LBL integration
method, typically with maximum local errors below 10 % and average deviations
below 5 %. The computational time of the WSGG model is much lower than that
needed by the LBL benchmark solution, in the order of 0.001 %. The SLW and
FSK global models typically have greater accuracy than the WSGG model, but
they are more complex and require around five times more computational time.
Considering the long time needed to solve the RTE in problems in which the
thermal radiation is just one of the phenomena involved, such as in combustion
problems, the WSGG model may be a good option when the uncertainties
introduced by other phenomena are greater than those of the model itself.
Because of this, the present study proposes a new methodology for the WSGG
model, which consists of applying the WBW model [31] for total pressures above
the atmospheric (i.e., above 1 atm). By segmenting the spectrum into a series of
M bands of width An,,, the proposed method seeks to widen the the standard
WSGG model accuracy using its assumptions by calculating the contributions of
all bands individually. The number J,,, of gases in each band does not necessarily
need to be the same, this being an aspect that allows optimization, i.e., using a
greater or lesser number of gray gases in a interval according to their importance
in the global calculation. The results of each band are added together to calculate
the total quantities.

The emittance of the m-th band can be calculated by use the LBL method
of the spectral data extracted from HITEMP 2010 according to the following

equation
fAﬂm Ib'q [1 - exp(_ﬁpnpaL)} d77

fm,m Lo dn 7

where f A, Iy, dn = fm 1y, in which f,, is the blackbody energy fraction that

(10)

Em =

emanates from each spectral band An,, and is calculated using the distribution
of Planck [1, 13]. With the aforementioned definition, the emittance of a band
€m can reach a maximum value of 1, as well as the total emittance defined in
Eq. (7), which are related as € = Zf\,{:l fmém.

With the other WBW assumptions being equivalent to those of the WSGG
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model, for each band the value of ¢ as follow as

JIm
Em = Z ajm(T) [1 — exp(—Fp,jmpal)] , (11)

j=1
in which a; , is the temperature-dependent coefficient, x,, ;,, is the pressure-
dependent coefficient—both related to the gray gas j and band m. Finally, as
in the classic model, the coefficients of the WBW model are determined by
correlating Eq. (11) with the values of emittance of the bands calculated via
LBL integration of Eq. (10), considering the coefficients £y, ; m as constant and
the coefficients a; ., are represented by temperature polynomial functions.
The RTE, in the context of the proposed method, is given by

dljm
ds

= _ﬁp,j,mpajj,m + K/p,j,mpaaj,mfmjb ) (12)

where the blackbody energy emission in the wide-band m is weighted by f,,, the
overall radiation intensity is computed as the total of the individual intensities

calculated for each gray gas j, according to the equation below

M T
I=>">Tim. (13)

m=1 ;=0

and a; , is fitted using a temperature polynomial function

K
ajm(T) = > bjmsT", (14)
k=0

with b; p, . displaying the coefficients of the temperature polynomial of the order &
for the gray gas j and band m. In a participating medium enclosed by boundaries
that are black, Eq. (12) is constrained by the boundary condition: Ij7m|wall =
(aj’mfmjb)‘wau = ajm(Tw) frn(Lw)Ip(Ty). The terms of the boundary condition
are all evaluated in relation to the wall temperature T,,, which, in the present
paper, is prescribed for all test cases investigated here.

Finally, by integrating the RTE and resolving the intensities for ng directions,
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g and radiative heat source, S,., at each point can be computed as

M ng J

ar(2) = 303 S 2w [ (@) = 1 (3)] (15)

m=1[]=1 j=0

ng J

M
Sp(z) = Z Z Z 2T Kpj mPal {I;fl)m(x) + I;l)m(x)} — AT Kpj mPatjmfmdy(z),

m=11=1 j=1

(16)
in which I, and I;'l) i are the gray gas radiation intensities in the negative and
positive directions, respectively, w; are the weights of the quadrature and p; are

the direction cosines. The full WBW model formulation is available in [31] for a

more thorough understanding.

3. Results and discussions

In the present paper, the formulation is implemented to a 1D system, in
which the plates are black and separated by X = 1m, illustrated in Fig. 1. The
fixed mole fraction of the medium is p,,/p. = 2 and it experiences three total
pressures: 1atm, 10atm and 20 atm. Using the direction cosines and weights
presented in Ref. [47], the RTE directional integration was completed via discrete
ordinates method for 8 directions; 200 equally spaced cells were used for the
discretization of the computational domain spatial mesh. These parameters were
chosen through complementary studies analyzing the quality of the spatial and
directional meshes, which demonstrated that a higher level of refinement had
no impact on the accuracy of the solutions, so that the values adopted for the
problem under study were considered adequate. As shown in Table 1, five spectral
bands was the quantity of divisions into which the spectrum was fractioned. The
criteria to establish the division of the bounds of each band are the same used
by Refs. [31, 48]. Fixed mole fractions of Y. = 0.1 and Y,, = 0.2 (with the
letters ¢ and w standing for carbon dioxide and water vapor, respectively), and
43 values of L (ranging from 0.001 m up to 30 m) were adopted to generate the
band emittances. Although the WBW model, in its your original formulation,

has already provided correlations for the case in which the total pressure is 1 atm

10
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Figure 1: Schematic of the computational domain.

Table 1: Bounds of the spectral bands evaluated in this paper.

Spectral band 7 [em™!] 7, [em™!]

1 0 1000
2 1000 2600
3 2600 4400
4 4400 6000
5 6000 10000

through Ref. [31], new coefficients were produced for this value of p, since the
upper limit of the final interval in that paper was different from the case under
study here. Due to the similarity between the coefficients proposed by [31], even
though the last spectral band is slightly different, it was decided to omit the
WBW coefficients for 1 atm. For the other values of total pressure under study
here, the WBW correlations are available in Appendix A.

The temperature and medium composition profiles are described by a set of
cases. Case 1 presents simple symmetry regarding the x-axis, and its behaviors
for the temperature profile and mole fraction of carbon dioxide are expressed,

respectively, as

T(z) = 400 + 1400 sin*(n), (17)

Y.(#) = 0.1sin*(n2), (18)

where the parameter & represents the dimensionless distance relative to the left

boundary (# = z/X). In the second case, T and Y. present double symmetry,

11
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and these two quantities are described, respectively, by

T(z) = 400 + 1400sin*(271) , (19)

Y,(z) = 0.1sin?(27z). (20)

The profiles described in Eqs. (17) and (19) have a maximum value of temperature
at 1800 K and an average temperature of 1100 K. In Eqs. (18) and (20) the peak
of carbon dioxide mole fraction is 0.1 and the value average of the medium
composition is 0.05. Another set of temperature is also tested, but with the
average and maximum temperatures of 1300 K and 2200 K, respectively, as

follows

T(&) = 400 + 1800sin?(27), (21)

880 + 1320 sin?(2r#), if & < 0.25

T(2) = (22)

400 + 1800{1 —sin? [%”(i = 0.25)]}7 ifz>0.25.
Regarding the above profiles, Case 3 combines Eqgs. (18) and (21) for CO, mole
fraction and temperature profiles, respectively. Finally, Case 4 is represented by
Egs. (20) and (22) for the carbon dioxide mole fraction and temperature profiles,
respectively. In Cases 1 to 3, both walls are at a temperature of 400 K. In Case 4,
the left boundary is at 880 K while the right wall is at 400 K.

With the objective of optimizing the computational cost required to generate
the results for the WBW model, the quantity of gray gases spread within each
segment in the four test cases under investigation in this paper was varied
between the values of two and four. It was decided to adopt this quantity of
gray gases in each spectral interval based on the study carried out by [31], in
which it was found that it is appropriate to distribute a greater number of
gases to the most important bands and a smaller number to the less important
ones. In Approach A, a total of 20 gray gases are distributed across the five
bands. In Approach B, 14 gases are used to represent the proposed method.
And, in Approaches C and D, are distributed a total of 12 and 16 gray gases,

respectively, along the spectrum. Further, the results obtained by Approaches

12
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Table 2: Gray gases quantity in each interval for each one of the tested WBW approaches.

Approach Band 1 DBand2 DBand3 Band4 Bandb5 Total

A 4 4 4 4 4 20
B 2 4 4 2 2 14
C 2 3 3 2 2 12
D 2 3 3 4 4 16

A-D are obtained through combinations of the sets of correlations presented in
Appendix A. Table 2 presents a summary with the number of gray associated to
each band for each approach.

To measure the accuracy of the proposed formulation regarding the LBL
method, maximum and average normalized deviations were calculated, according
to the equation below:

56 = 2LBL— Gappl 1007 (23)

max(|¢Lpr|)

In the above equation, ¢ is either g, and S,., the subscript “app” indicates the
tested approach against the LBL method (indicated by the subscript “LBL"),
and max(|¢rpL|) represents the maximum absolute value for ¢, or S, obtained
by the reference solution. Later, the maximum and average deviations in relation
to the benchmark solution will be indicated by the use of the subscripts “max”
and “avg”, respectively.

Using the methodology outlined in Ref. [3], the absorption spectra of CO,
and HyO at high pressures were generated from the HITEMP 2010. All five
of the intervals’ emittances were obtained via Eq. (10), and the adjustments
of € were completed in an analogous way to that reported in Ref. [31]. The
function presented in Eq. (11) was employed in order to fit the proposed model’s
parameters. As in Ref. [31], the WBW correlations were generated assuming a
number between two and four to describe the amount of gray gases in each band,
adopting a polynomial of fifth order to describe the dependence on temperature.

The emittance charts for 10 atm and 20 atm are shown in Figs. 2 and 3. The ¢

13
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Figure 2: Emittances of three of the selected bands and p = 10atm.

ais values depicted in these figures illustrate the solutions found with the WBW
sir - model considering four gray gases per interval. Only 4 of the values of L that
sis were used to calculate € were displayed in the figures for the sake of brevity; the
a0 remaining path-lengths exhibit tendencies that are similar to what is addressed
20 next.

31 At a total pressure of p = 10 atm, the results illustrated in Fig. 2 demonstrate
2 a good fit between the WBW model and the LBL integration method, with a
»3  maximum relative error (determined as |erpr, — ewsw|/eLBL X 100%) of less
24 than 2 %, occurring in the areas with cooler temperatures. Given that the WBW
»s  model outperformed the benchmark solution, the polynomial fitting is deemed
s adequate for the purposes of this paper’s analysis.

327 The emittances for the three bands produced using the WBW model and the
»s  LBL method for p = 20 atm are compared in Fig. 3. At contrast to p = 10 atm,
29 2.1 % was the maximum local deviation found at the temperature-highest region,
;0 where the biggest disparity between the two methods was observed. Despite
s the omission of € results for 1atm, the deviations for the other values of total
s pressure are comparable to those that were disclosed by [31], corroborating the

33 suitability of the polynomial fitting.

14
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Figure 3: Emittances of three of the selected bands and p = 20 atm.
334 The WBW model is now used to calculate ¢. and S, for the four case

s studies that were described. The pressures of 1atm to 20 atm are displayed
s in the following figures together with ¢. and S, for each case. Calculations
a7 for atmospheric pressure were carried out with the WBW model coefficients
1s  presented in [31], but with new correlations generated for the last spectral
s band. The results obtained by applying the WBW model, assuming that there
u are two to four gray gases in each spectral band, are plotted in Figs. 4-7.
s Additionally, under the identical physical conditions, these diagrams show the
a2 resulting curves produces by applying the WSGG coeflicients that were generated
us by [3]. The goal is to assess whether the proposed methodology’s accuracy might
us  be improved upon in comparison to an alternative WSGG model formulation
us for high pressures that is currently existing in the literature. Tables 3 and 4
us  provide a summary of the average and maximum normalized errors with the
w7 LBL method in comparison to the WSGG and WBW models, respectively. In
us order not to impair the understanding of the figures with the results, only the
uo curves that describe the solutions containing four gray gases in each band were
s0  plotted in Figs. 4-7 (curves “WBW-A” in these figures). The performance of the

s other solutions (Approaches B to D) are expressed only in terms of maximum
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and average errors regarding the reference solution and can be seen in Table 4.

Figure 4 presents g, and S, results for Case 1 for the WBW and WSGG
approaches against the LBL integration for the three total pressures assessed
in this paper. When comparing the two methods studied in this paper with
respect to the LBL solution, a good agreement is found between the WBW
model and the LBL method throughout the three total pressure values for g,
and S,.. Although the atmospheric pressure does not characterize a high pressure
scenario, it was decided to also present the results obtained with 1atm, so that
the performance of the proposed method could be evaluated as the value of
the total pressure system rises. Thus, for 1 atm, Table 3 shows that the biggest
errors obtained via WSGG model of Ref. [3] for 1atm are 5.1% and 3.2 %,
respectively. According to Table 4, all the four approaches of the WBW model
presented a better performance for the atmospheric pressure in comparison with
the WSGG model. The results with greater accuracy were obtained with the
Approach A of the WBW model, with maximum errors of 3.0 % for ¢, and 3.4 %
for S,.. With Approach C, which presents 12 gray gases distributed throughout
the spectrum, the WBW model also presented smaller deviations compared
to the WSGG model, with maximum errors of 4.1% (g,) and 3.1% (S,). For
p = 10atm, the WSGG model provides maximum errors of 5.6 % and 3.8 %
for ¢, and S, respectively. With the WBW model, the Approaches B and D
carried out to the best results, such that: for ¢,, the maximum errors were
1.8% (Approach B) and 1.3% (Approach D); for S, the maximum deviations
were 0.7 % (Approach B) and 0.6 % (Approach D). For 20 atm, the maximum
deviations with the WSGG model were 3.4 %, for q,, and 3.8%, for S,.. Again,
all the tested WBW approaches presented a superior accuracy compared to the
WSGG model, with the Approaches A and C reaching the most accurate results:
1.4 % and 1.35 % for the radiative heat flux, respectively, and 0.6 % and 0.7 % for
the radiative heat source, respectively. These results show that highlight the fact
that optimizing the gray gases number distributed in each interval can further
improve the results, which were already better than those obtained through the

WSGG correlations proposed by Ref. [3].
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Figure 4: Case 1: (a) radiative heat flux; (b) radiative heat source.

Table 3: Percentage deviations of ¢, and S between the WSGG model of Ref. [3] and the

reference solution.

p =1 atm [%)] p = 10 atm [%)] p = 20 atm [%]
(6q7‘)max (6‘]r)avg (68’7‘)1’)’1&)( (687‘)an (6‘1r)max (6qr)avg (6Sr)max (6Sr)avg (6qr)max (5‘]7“)an (68’7‘)]’)’1&)( (687‘)an
Case 1 5.10 3.67 3.22 1.38 5.61 2.39 3.80 2.14 3.37 1.83 3.82 1.61
Case 2 5.24 2.50 6.21 1.97 5.51 3.32 8.08 2.71 7.09 3.10 7.95 2.96
Case 3 7.20 3.47 7.54 2.47 5.27 2.13 3.74 1.61 5.48 3.22 6.44 2.33
Case 4 10.36 5.41 7.42 1.74 4.13 1.75 4.73 1.01 5.22 2.28 5.48 1.22

383

For Case 2, Fig. 5 displays ¢, and S, for each one of the three total pressure

s values. Once again, there was a good match between the LBL and WBW

s solutions, with the latter performing superior to the WSGG model, since, the

s Case 1, the proposed method showed the least inaccuracy with respect to the

7 LBL integration. Based on Tables 3 and 4, for 1 atm, the maximum deviations

s were obtained with the Approaches A and B, being 3.6 % and 4.1 %, respectively,

w0 for g, and 4.0% and 3.7 %, respectively, for S,., against 5.2% (¢,) and 6.2 %

s (S)) via WSGG approach. For 10 atm, the Approaches C and D presented the

s best performances, with maximum deviations of 2.6 % and 2.0 %, respectively,

17



Table 4: Percentage deviations of ¢, and S, between the proposed method and the reference

solution.

(6qT)max (5qr)avg (657‘)max (657‘)an (5qr)max (6(]7‘)an (5ST)max (6Sr)avg

WBW Approach A [%)] WBW Approach B [%]
p=1atm
Case 1 3.03 1.87 3.36 1.09 3.59 2.30 3.17 1.01
Case 2 3.60 1.50 4.04 1.54 4.09 1.76 3.73 1.38
Case 3 4.06 1.77 6.02 2.46 4.70 2.10 5.05 2.19
Case 4 4.16 2.57 6.25 1.45 4.72 2.21 5.99 1.36
p =10 atm
Case 1 2.01 0.89 1.78 0.68 2.11 1.24 1.26 0.59
Case 2 2.81 1.17 2.47 0.95 2.89 1.22 2.41 0.90
Case 3 5.28 2.13 3.67 1.55 6.90 2.99 2.88 1.38
Case 4 4.35 2.34 4.67 1.34 6.61 3.61 4.38 0.64
p = 20 atm
Case 1 1.37 0.63 2.11 0.70 1.35 0.73 2.14 0.66
Case 2 2.41 0.78 4.66 1.39 1.85 1.04 4.43 1.24
Case 3 2.88 1.18 4.16 1.47 2.48 0.84 3.67 1.23
Case 4 3.23 1.24 4.44 0.81 4.86 1.08 5.04 1.34
WBW Approach C [%] WBW Approach D [%)]
p=1atm
Case 1 4.13 2.95 3.09 1.17 3.96 2.78 3.05 1.13
Case 2 5.42 2.42 4.31 1.84 5.26 2.33 4.06 1.80
Case 3 4.93 1.87 4.01 1.42 4.53 1.65 3.95 1.33
Case 4 6.65 4.68 4.70 1.11 8.73 4.29 4.60 1.11
p =10 atm
Case 1 1.53 0.90 1.62 0.49 1.60 0.67 2.23 0.82
Case 2 2.62 0.99 1.99 0.85 2.04 0.73 2.22 1.03
Case 3 5.15 2.19 3.76 1.11 3.07 1.17 2.27 0.86
Case 4 4.20 2.24 4.38 0.80 1.92 0.86 3.35 0.70
p = 20 atm
Case 1 0.82 0.39 1.23 0.48 2.35 1.56 3.06 0.99
Case 2 1.92 0.90 2.86 0.84 2.50 0.58 3.42 1.03
Case 3 3.50 1.62 2.05 0.94 1.84 0.75 3.31 1.32
Case 4 2.93 1.10 2.36 0.60 2.85 0.76 3.45 0.90
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Figure 5: Case 2: (a) radiative heat flux; (b) radiative heat source.

for ¢, and 2.0% and 2.2 %, respectively, for S,.. The WSGG model, in turn,
reached maximum deviations of 5.5 %, for ¢, and 8.1 %, for S,.. For the third
value of total pressure tested in this paper (i.e., 20 atm), the Approaches B
and C carried out to the smallest errors, whose magnitudes of deviations for
g and S, were 1.8 % and 4.4 %, respectively, with the first one, and 1.9 % and
2.9 %, respectively, with the second one. Meanwhile, the WSGG model, in turn,
provided maximum errors of 7.1 % and 7.9% for the radiative heat flux and
radiative heat source, respectively. Again, the WBW solution demonstrated to
be a superior substitute for calculating the radiative transfer compared to the
standard WSGG model, since the results obtained with the proposed method
presented more accuracy.

The results depicted in Fig. 6 show ¢, and S, for Case 3 for the three values
of pressure under consideration. According to data from Table 3, for the three
values of total pressure, the worst results were obtained for 1 atm, with maximum
errors of 7.2 %, for ¢, and 7.5 %, for S,. These deviations decrease with the
increase of the total pressure, becoming 5.3 % and 3.7 %, for p =10 atm, and 5.5 %
and 6.4 %, for p =20 atm. Regarding the WBW model, all the tested approaches
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Figure 6: Case 3: (a) radiative heat flux; (b) radiative heat source.

performed better compared to the classic version of the WSGG model, since the
discrepancies regarding the LBL solution were less than those calculated by the
WSGG coefficients proposed by Ref. [3]. For 1atm, the best performances of
the WBW model were obtained with the Approaches C and D, with maximum
deviations of 4.9% and 4.5%, respectively, for the radiative heat flux, and
4.0% and 3.9 %, respectively, for the radiative heat source. For p = 10atm,
Approaches C and D presented the smallest deviations for the radiative heat
flux, with magnitudes of 5.1 % and 3.1 %, respectively; for the radiative heat
source, Approaches B and D reached the best results, with maximum deviations
of 2.9% and 2.8 %, respectively. For p = 20 atm, again Approaches C and D
presented the best performances, being 3.5 % and 1.8 % the maximum errors
obtained for ¢, and 2.0 % and 3.3 % the deviations for S, respectively.
Finally, Fig. 7 shows the results for ¢, and S, for Case 4 for all the analyzed
values of total pressure. As in previous test cases, the proposed method outper-
formed the standard WSGG model. For the first value of total pressure evaluated
(i.e., p = 1atm), the maximum error for the radiative heat flux exceeded 10 %;

for the radiative heat source, the performance of the WSGG model was not very
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Figure 7: Case 4: (a) radiative heat flux; (b) radiative heat source.

good either, with 7.4 % of deviation. The results for the highest pressures, 10 atm
and 20 atm, were slightly better, with maximum deviations whose magnitudes
were 4.1 % and 5.2 %, respectively, for g, and 4.7 % and 5.5 %, respectively, for
Sr. Analogously to what was observed with the WSGG model, Case 4 was the
one that had the biggest errors regarding the LBL method, in contrast to the
other test cases studied. Still, on average, the WBW model presented a better
performance in comparison to the standard WSGG model. The Approaches A
and B presented the smallest deviations, being 4.2 % and 4.7 %, respectively,
for the radiative heat flux, and 6.6 % for both approaches, for the radiative
heat source, for p = 1atm. For the intermediate value of total pressure (i.e.,
p = 10atm), the best performances were obtained by Approaches C and D, in
which the maximum deviations 4.2 % (g¢,) and 1.9 % (S,), with the first one, and
4.4% (gr) and 3.3 % (S,), for the second one. For the last value of total pressure
(i.e., 20 atm), the smallest errors also were provided through Approaches C and
D, whose the magnitudes were 2.9 % and 2.8 %, respectively, for g,., and 2.4 %
and 3.4 %, respectively, for S,.

Additionally, it is important to highlight that the solution with 20 gray gases
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(Approach A) is equivalent to a classic approach of the SLW model, which uses
from 20 to 25 gases distributed throughout the entire spectrum. Therefore, by
reducing from 20 to 12 gray gases, the WBW model will decrease the number of
equations to be solved, which, in turn, reduces the computational time required
to run the same test case. So, the Approach D, which in some cases led to the
smallest deviations in relation to the benchmark solution, represents a significant
reduction in the computational cost, since it will be necessary to solve the RTE
only 12 times, i.e., once for each gray gas, instead of solving this equation 20
times. Thus, it is noted that the optimized approaches of the WBW model
become competitive in relation to the SLW model, since the computational time
required is less, in addition to having just as good accuracy. In future studies, it
is planned to numerically compare optimized approaches of the WBW model

with some formulations of the SLW model.

4. Conclusions

A WBW model extension for estimating the radiative transfer at high pres-
sures was carried out in this paper. Based on the LBL data of the emittance for
latm to 20 atm, correlation sets for the proposed model were developed. The
proposed method involves optimizing the standard WSGG model through the
division of the spectrum into a series of segments. The results obtained with
the model that was firstly proposed by [31] for atmospheric pressure showed
that the WBW model can be successfully employed at high pressures scenar-
ios, as evidenced by the deviations for the prediction of the emittance about
2 %. The accuracy of the present formulation was evaluated for four cases with
non-uniform temperature and concentration CO,/H,O mixtures. The maximum
errors were of the order of 5% regarding the LBL integration for ¢. and S,.
Although not very common, the worst results, whose errors exceeded 6 %, were in
cases where even the standard WSGG model presented even lower performance.
In addition, the tested approaches showed that one of the ways to improve the

proposed formulation would be to carry out more in-depth studies to weight the
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importance of the spectral bands, in order to optimize the gray gases quantity,
leading to more accurate results with less computational time. Furthermore,
new correlations are being produced for variable mole fraction ratios of water
vapor and carbon dioxide, in order to increase the flexibility and applicability of
the proposed model to larger variety of engineering problems. Apart from this,
the fact of making the formulation adaptable and suitable to other combustion
situations, new WBW coeflicients are also being produced for different H,O-CO,
mole fraction ratios. Comparisons with other more advanced spectral models
(such as SLW, FSCK etc.) could also be addressed in future studies. Another
possibility for the continuity of the research is to apply the present WBW model
in the solution of non-gray boundaries and high pressure conditions. This topic
has already begun to be explored with the preliminary work of Ref. [49], in which
the WBW model showed a higher accuracy than conventional box models, with
maximum errors of 4 %, and which will be investigated in more detail in future

studies.
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Table 5: One gray gas per spectral band and p = 10 atm.

Fp,j

fatm=! m~1] bj.0 bja (K1) bj2 (K2 bjs K2 bja (K bjs [K 2]
Band 1
41.266 7.854 x 1071 3450 x 107* 2651 x 1077 1.104 x 10710 —2.216 x 107*  1.542 x 10718
Band 2
16.541 4.041 x 1071 2,075 x 1073 —2.873 x107%  1.886 x 10~°  —5.926 x 10713 7.180 x 10~17
Band 3
4.747 6.441 x 1071 1.606 x 10~*  2.953 x 10~7  —3.252x 10710 1.206 x 1073 —1.572 x 1017
Band 4
1.731  —2.616 x 1071 2,023 x 1073  —1.720 x 106 8813 x 10710 —2.469 x 10713 2.853 x 10~'7
Band 5
0.664 2,664 x 1071 1483 x 1073 8428 x 1077 1764 x 10710 8476 x 10715 5820 x 1018
Table 6: Two gray gases per spectral band and p = 10atm.
" b b K1 by K2 bis K3 b K4 bis K5
[atm—" m~) 3.0 i (K7 bi2 | ] bjis (K77 ja K71 bjs K77
Band 1
6.392 5.901 x 1072 2,168 x 1073 —3.340 x 106 2.207 x 1079 —6.967 x 10713 8.536 x 10717
157.314 7.202x 1071 1578 x 1073 2688 x 1076 —1.838 x 1079 5.923 x 10718 —7.370 x 1017
Band 2
4.098 6.541 x 1071 —3.377 x 10~*  —4.406 x 10~ 1.812x 10719 —9.021 x 10~14 1.397 x 10717
92.060 1.598 x 10! 6.770 x 107* 1.049 x 10=%  —5.070 x 10~ 2.902 x 10713 —4.916 x 10717
Band 3
0.845 8.045 x 1071 —3.996 x 107% 2,591 x 1077 1.535 x 10710 —7.461 x 107 1.122 x 10717
21.998  —7.505 x 1072 6.427 x 107 —2.700 x 1077 —2.203 x 10710 9.986 x 10~1*  —1.401 x 10~17
Band 4
0.363 5.602 x 1072 3.526 x 1071 —1.083 x 1077 —5.686 x 10711 1.464 x 1071 3.522x 10718
3.909  —9.346 x 1072 7.268 x 107%  5.016 x 1070 —4.115x 10710 2324 x 10713 —3.910 x 10717
Band 5
0.228 6.727 x 1072 2462 x 1074 —3.665 x 10710 9784 x 10°11 8077 x 107 1.577 x 10717
2.606 —1.917 x 107! 7.385 x 107* 8.323 x 10710 —4.999 x 1010 2.753 x 10713 —4.467 x 10717




Table 7: Three gray gases per spectral band and p = 10 atm.

fip.j .
. —1 —2 -3 —4 —5
7t ) bj0 b K™ bj2 [K™2] bjs [K™7] bja K™ bjs [K™7]
Band 1
1 2.014 4.670 x 1071 —9.185 x 107> 1.319 x 107%  —2.965 x 10710 2.052 x 10713  —-3.818 x 10~17
220292 —1.696 x 1071 5197 x107* 1357 x 107% 1316 x 10~'1  —5.893 x 10~* 1571 x 10717
3 224.620 5.975 x 1071 —2.403 x 10~ 3.009 x 1072 1.272 x 10719 —5.424 x 10~14 6.696 x 10718
Baund 2
1 1.147 6.228 x 1071 6781 x 107*  ~7.712x 107 4817 x 10710 2,716 x 10713 4.521 x 10717
2 17902 1525 x 1071 1064 x 1073 1099 x 1078 -8.322x 10710 4.869 x 1071 -8.262 x 1017
3 283.831 3.998 x 1071 —1.273 x 1074 1.886 x 1079 8779 x 10711 5184 x 10714 8.386 x 10718
Band 3
1 0.499 4.501 x 107! 1.295 x 107%  1.026 x 1078 —3.750 x 10710 2378 x 10713 —4.235 x 10717
2 4.182 5803 x 1071 —8.119 x 10=%  —1.349 x 1078 8.691 x 10710  —5.170 x 10713 8.895 x 10~'7
3 40812 —2982x 1071 9.740 x 107% 4459 x 1079 —6.283 x 10710 3.456 x 10713 —5.658 x 10717
Band 4
1 0.256 2923 x 1072 5495 x 107 —1.409 x 1079 —3.188 x 10710 1.464 x 10~  —1.951 x 10~'7
2 1.981 6.807 x 1073 19390 x107° 2546 x 1077 2818 x 10710  —1.573x 10713 2443 x 10717
3 7.826  —7.555 x 1072 6.006 x 10~* 2593 x 1077 —5.085 x 10710 2.844 x 1071%  —4.643 x 10717
Band 5
1 0.156 7447 x 1072 3432 x107*  7.255 x 10710 5547 x 10711 9.338 x 1071 8.150 x 1071
2 1.359  —9.669 x 1072 2,901 x 10~* —1.427x107° —5.856x 1072 —1.196 x 1074 3.132 x 108
3 6.375  —9.131x 1072 4.255 x 10~* 1561 x 107° —3.923 x 10710 2243 x 10~'®  —3.704 x 1017




Table 8: Four gray gases per spectral band and p = 10atm.

. Kp,j _ B _ _ 5

J [atm~" m~1] bj.0 b K™Y by [K72] bjs K2 bja K™ bjs K9]
Band 1

1 1.115 8.967 x 1072 1775 x 10~%  —3.907 x 10~%  3.099 x 10=°  —1.083 x 1072 1.409 x 10~10

2 7.801  —1.398 x 10~'  —1.087 x 107°  1.887 x 1076 —2.121 x 10~ 8476 x 1071 —1.179 x 10710

3 50.238 4.066 x 1071 —8.260 x 10~*  5.938 x 1077 7.842x 10~'%  —1.270x 107'*  2.368 x 10717

4 287.062 4317 x 1071 —1.413 x 10~* 3175 x 1077  -3.273x107'%  1.320 x 107'®  —1.866 x 1017
Band 2

1 0.747 1.320 —4.071 x 1073 5.260 x 10=%  —3.290 x 107 9.978 x 10713 —1.181 x 10~16

2 6831  —1.067 5.025 x 1073 —6.677 x 1070 4107 x 1079  —1.203x 10712 1.368 x 10~ 10

3 40.984 3.22x 1071 —3.695 x 1074 6907 x 1077 3678 x 10710 6.940 x 10714 2,934 x 1018

4 447.002 1.060 x 1071 6741 x 1074 —1.109 x 107 7.760 x 10710 —2.531 x 1013 3.135 x 1017
Band 3

1 0.379  —3.354x 107" 3.071 x 10~% —4.630 x 1070 3.070 x 10=?  —9.641 x 10~'*  1.167 x 10~'0

2 2.047 1.289 —3.609 x 1073 4.670 x 10~°  —2.863 x 10~° 8.486 x 10713 —9.773 x 1017

3 14672 3.202x 1072 —3.221 x 10=*  9.697 x 1077 —7.204 x 10710 2462 x 10713  —3.228 x 10717

4 73427 —-3.460 x 1071 1.639 x 107°  —1.766 x 1070 9.204 x 10710  —2.472x 1071%  2.695 x 1017
Band 4

1 0.199 1.876 x 1071 —3.719 x 104 1.711 x 1076 —1.710 x 107 6.511 x 10713 —8.725 x 10717

2 1106  —1.890 x 10~! 1.387 x 1073 —2.684 x 1076 2.325 x 1072 —8.638 x 10713 1.165 x 10~16

3 3.813 6.175 x 1072 —6.448 x 10=* 2.079 x 107 —1.780 x 10~ 6.434 x 10713 —8.532 x 10717

4 14.267  —2.349 x 1071 1.462 x 1073 —2.129 x 1076 1.382x 1079 —4.298 x 1013 5.183 x 10~17
Band 5

1 0126 1.818x107' —1.182x107*  7.569 x 1077 —5984x 10710 1.832x 10719 —1.987 x 1077

2 0915 —2.280 x 107" 1.034 x 1073 1407 x 1076 1.014 x 107  —3.341 x 10713 4.077 x 10~17

3 2.921 1129 x 1071 —6.657 x 107%  1.707 x 1076 —1.427 x 10~ 4979 x 10713 —6.331 x 10717

4 12553 —2161 x 1071 1.060 x 1073 —1.454 x 1075 8.836 x 10710  —2.535 x 10713 2.811 x 1077




Table 9: One gray gas per spectral band and p = 20 atm.

Fp,j

fatm=! m~1] bj.0 bja (K1) bj2 (K2 bjs K2 bja (K bjs [K 2]
Band 1
73.822 1.002 —5479 x107* 1114 x 1070 —8.714 x 10710 3.050 x 10713 —3.985 x 1017
Band 2
38.922 2952 x 1071 2456 x 1073 3376 x 1076 2.222x 107?  -7.038 x 10~'%  8.622 x 10717
Band 3
6.632 6.830 x 1071 2325 x107* 2184 x 1077 —3.291 x 10710 1.402x 107  —2.012 x 10~'7
Band 4
3.048 1815 x 1071 1.633 <1072 —9.796 x 10~7  3.188 x 10710  —5815x 10714 4.999 x 10~'®
Band 5
0957 L7356 %1071 1157 x 1073 —3362x 1077 1421 x 10710 1.015x 10713 —1.623 x 10~17
Table 10: Two gray gases per spectral band and p = 20 atm.
" b b K1 by K2 bis K3 b K4 bis K5
[atm‘l m‘l] 5,0 1 | | bj2 | ] bj3 | ] ja | ] bjs | ]
Band 1
8.634 2.545 x 1071 1.603 x 1073 —2.758 x 106 1.869 x 1072 —5.902 x 1013 7.165 x 10717
280.661 7556 x 1071 1,955 x 1073 3.534 x 1076 2506 x 102 8199 x 10713 1,022 x 1016
Band 2
6.968 1.012 —1.877x 1072 2.320 x 107¢  —1.435 x 107 4.401 x 10713 —5.266 x 10717
216.256  —6.075 x 10~1 4.066 x 1073 —5.364 x 1076 3.451 x 1072 —1.081 x 10712 1.313 x 10716
Band 3
1.471 2.030 x 10=2 2.394 x 1073 —3.601 x 10~ 2.356 x 1072 —7.291 x 10713 8.725 x 10~17
38.094 6.177 x 1071 =1.737 x 103 3.157 x 1076 —2.242 x 10~ 7.208 x 10713 —9.043 x 10717
Band 4
0.459 3.043 x 1071 —7.953 x 107* 2024 x 1076 —1.659 x 10~ 5711 x 10713 —7.165 x 10717
6.685  —4.011 x 1071 2,161 x 1073  —2439 x 1070 1.529 x 1070  —4.758 x 10713 5738 x 10717
Band 5
0.264 2481 x 1071 4124 x 1074 9.903 x 1077 —6.056 x 1010 1.543 x 10713 —1.406 x 10717
4131 -3.257 x 107! 1.347 x 1073 —9.666 x 1077 2.646 x 10710 5653 x 1071 —6.105 x 10718




Table 11

: Three gray gases per spectral band and p = 20 atm.

. Kp,j _ _ . _ s

7 (ot w1 bj0 b K™ bjo [K™?] bjs K7 bja K™ bjs [K™7]
Band 1

1 3100 —3.928 x 1071 4392 x 1073 —7.835x 1076 5747 x107?  —1.926 x 10712 2438 x 10716

2 29.327 1.268 —6.301 x 1073 1.128 x 107°> —8.435x 10~ 2.865 x 10712 —3.656 x 1016

3 372427 8.544 x 1072 1.957 x 1073 —3.391 x 1076 2,592 x 1079 —8.925 x 10713 1.147 x 10716
Baund 2

1 1.937 1.328 —3.644 x 1073 4.345 x 1076 2,539 x 1079 7.312x 10713 —8.301 x 10717

2 26507 1162 4.990 x 1073 5822 x 1070 3209x10°° —9.175x 1071 1.011 x 10716

3 375122 3.705 x 1071 4.399 x 1074 ~1.088 x 1076 0.794 x 10710 —3.764 x 10713 5.189 x 10717
Band 3

1 0.718  —5.613x 107" 3.357 x 1073 —4.260 x 1070 2428 x 1070  —6.684 x 10713 7.218 x 10717

2 5.355 1.159 —2.431 x1073 2307 x 107 —9.089 x 10719 1.450 x 10~13  —4.608 x 10~1®

3 69433  —1.304x1072 —2.726 x 107°  1.231 x107% —1.264 x 10~° 4.900 x 10713 —6.759 x 10717
Band 4

1 0.300 3.812x 1071 —1.253 x 1073 3.255 x 10~¢  —2.919 x 10~° 1.076 x 10712 —1.426 x 1016

2 2358 —2.019 x 1071 1.228 x 1073 —2437x 1075 2.200 x 10~  —8.916 x 10~ 1.234 x 1016

3 11186 —-2.251 x 1071 1.195 x 10~%  —7.200 x 10~7  1.908 x 10~'*  0.303 x 1074  —1.982 x 10~17
Band 5

1 0.193 2,612 x 1071 3730 x 10~* 1113 x 1076 —8.438 x 10710 2635 x 10713  —2.972 x 10~17

2 1.795  —1.154 x 1071 4.219x107*  —3.999 x 107 3.535x 10710  —1.364 x 10713 1.811 x 1017

3 0.054  —1.939x 1071 8593 x 10~* —5.451 x 1077 2876 x 10712 7.621 x 1074 —1.557 x 10717




Table 12: Four gray gases per spectral band and p = 20atm.

. Kp,j _ _ _ _ 5

J [atm~" m~1] bj.0 b K™Y by [K72] bjs K2 bja K™ bjs K9]
Band 1

1 2.083 —4.887 x 107! 4.612x 1073 —8404 x 1075 6.302x 1079 —2.145 x 10712 2.743 x 1016

2 17.146 1.204 —6.338 x 1073 1.175x 107°  —9.132 x 10~° 3179 x 10712 —4.124 x 10716

3124311 -2302x 1071 2372 x107%  —4.542x 1070 3.790 x 10=?  —1.374 x 1072 1.827 x 10710

4 723.996 3.752x 1071 —5112x 107 1.071 x 107%  —9.195x 10710 3377 x 10713 —4.532 x 1017
Band 2

1 1.457 1.438 —4.181 x 1073 5.005 x 1076 —2.905 x 1077 8.270 x 10713 —9.273 x 10~17

2 14456 1132 4609 x 1073 5380 x 1076 2955 %x10°°  ~7.822x 10713 8144 x 1017

3 80.403 1231 x 1071 8936 x 10°%  —1.370x 1006 1.085 x 1072 —4.036 x 10713 5,550 x 10~ 7

4 1171.769 1406 x 1071 3536 x 10°%  —6.826x 1077 5237 x 10710 —1.807x 10713 2315 x 10~ 7
Band 3

1 0.533  —1.657 x 1071 1.241 x 1073 —1.082x 1070  2.364 x 10~'© 5073 x 10~ —1.827 x 107

2 2919  —3.331x 1072 2397 x 1073 —4.465x 1070 3510 x 107  —1.248 x 10712 1.656 x 1076

3 20835 1.523 —5.680 x 1072 8.210 x 10~% —5.438 x 107 1.731 x 10712 —2.128 x 10716

4 127.066 —7.164 x 1071 2.844 x 107°  —=3.209 x 1070 1.804 x 10~?  —5.141 x 10713 5.836 x 1017
Band 4

1 0.221 5.365 x 1071 2164 x 1073 4.884 x 1076 —4.232 x 10~° 1.555 x 10712 —2.071 x 1016

2 1190 —3.967 x 1071 2422 x 1073 —4.397 x 1075 3.637 x 1072  —1.340 x 1072 1.811 x 10716

3 5.919 2498 x 1071 —1.426 x 1073 3.051 x 1076 —2.343 x 10~ 8174 x 10713 —1.073 x 10716

4 21.138  —3.572x 107! 1.974 x 1073 —2.693 x 1076 1.698 x 1079 —5.242 x 1013 6.337 x 10717
Band 5

1 0.156 4.093 x 1071 —9.841 x 107 2.062 x 1076 —1.524 x 10~ 4.851 x 10713 —5.665 x 10717

2 1.015  —3.268 x 10~! 1.440 x 1073 —2.107 x 1075 1.544 x 1072  —5154 x 10713 6.371 x 10717

3 4.149 2.092 x 1071 —1.000 x 1073 2.105 x 1076 —1.614 x 10~ 5413 x 10713 —6.732 x 10717

4 17376 —2.649 x 107! 1197 x 1073 —1.454 x 1075 7.904 x 10710 —2.056 x 10713 2.083 x 1077




