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Abstract. There has been a notable effort, in the past five years, to de-
velop and promote GQL as a standard for querying graph data, akin to
the role SQL plays in relational data querying. Although this goal is still
a work in progress, the graph database community has been advancing
by not only defining the GQL specification but also introducing addi-
tional specifications such as PG-Key and later PG-Schema for specifying
graph schema and dependencies. In this regard, a number of proposals
have been made in the literature for expressing FD-like dependencies in
graph data. Our first contribution is a survey of such proposals, high-
lighting important ones and their differences. Our second contribution
is a solution for translating dependencies defined within such proposals
into dependencies that conform to PG-Schema. Our solution is accom-
panied by a working prototype for translating graph dependencies into
PG-Schema compliant dependencies.

Keywords: Property graphs · Graph dependencies · Unified formalism
· Graph schema standard

1 Introduction

Graph databases have gained momentum in recent years and are increasignly
used to model data and knowledge, as suggested by the popularity and adoption
of graph database systems such as Neo4J1, TigerGraph2 and Amazon Neptune3.
They are used in many different areas like social networks, recommendation
systems, biomedical research, and fraud detection – see in [7, 36]. The grow-
ing demand for graph database systems has highlighted a significant issue: the
presence of heterogeneous data models and query languages. This heterogene-
ity poses challenges for achieving interoperability among different systems and
creates difficulties for users and developers who need to navigate diverse data
⋆ This work received support from the National Research Agency under the France 2030 program,

with reference to ANR-22-PESN-0007.
This is a preprint of an article published in the proceedings of the 24th European Conference on
Advances in Databases and Information Systems (ADBIS’24).

1 https://neo4j.com
2 https://www.tigergraph.com
3 https://aws.amazon.com/neptune
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models and understand the nuances of various query languages: openCypher
(Neo4j) [21], GSQL (TigerGraph) [11], Gremlin (Apache TinkerPop) [26] and
PGQL (Oracle) [25] for property graphs and, SPARQL [1] for RDF graphs, to
cite a few – see in [8] for a review.

The above issues have been recognized by academics and industry alike, and
some working groups have started working on standardizing query languages
for property graph databases. A notable effort in this respect is GQL (Graph
Query Language) [20], where the objective is to achieve a success similar to
that of SQL by establishing a new standard for querying graphs. GQL has been
officially published as an ISO/IEC standard in April 20244.

Within the GQL standardization efforts, several initiatives are currently un-
derway at the time of writing. One of these initiatives is the formalism to define
keys for property graphs, called PG-Keys [4], and more recently the specification
of language for property graphs schema, PG-Schema [5].

Several approaches are particularly interested in integrity constraints and
dependencies for graphs defining, for example, Graph Functional Dependencies
(GFD) [19], some of them being temporal [3] or probabilistic [37], Graph Entity
Dependencies (GED) [16, 17], and recently normal forms for property graphs [30]
– see in [8, 32] for a review.

With the emergence of PG-Keys [4] and its extension PG-Schema [5], that
should lead to future property graph schema standard, we argue that it is essen-
tial to understand how existing integrity constraints and dependencies defined
for graphs can be expressed using such future standard. This article contributes
in the following two ways: (1) it provides a survey of existing data models and
types of constraints utilized for graph-shaped data and (2) it presents a mapping
for translating a notable subset of the identified constraint types into the future
property graph schema standard PG-Schema.

The paper is organized as follows. Section 2 contains a brief guide of concepts
and notation. Section 3 includes a concise review of related work on Graph
Dependencies. Section 4 presents the mapping for translating such dependencies
into PG-Schema. Section 5 presents our proof-of-concept prototype. Finally, we
conclude and briefly comment on future work in Section 6.

2 Preliminaries

Using the same notations and concepts of [8, 17, 28], let a O be a set of objects,
L be a finite set of labels, K be a set of property keys, and N be a set of values.
A Labeled Property Graph is a graph G = (V,E, η, λ, v) where:

– V ⊆ O is a final set of vertices and E ⊆ O is a final set of edges;
– η : E → V × V is a function assigning an ordered pair of vertices to each

edge;
– λ : (V ∪ E) → P(L) is a function assigning to each object a finite set of

labels (i.e., P(L) denotes the set of finite subsets of set L);
4 https://www.iso.org/standard/76120.html and https://www.gqlstandards.org/home
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– v → (V ∪ E) × K → N is a partial function assigning values for properties
to objects, such that the object sets V and E are disjoint (i.e., V ∩ E = ∅)
and the set of domain values, where v is defined, is finite.

The left-hand side of Figure 1 shows a property graph example representing the
current article and its authors, where V = {1, 2, 3, 6}, E = {4, 5, 7}, λ(1) =
Article, λ(2) = λ(3) = Author, λ(4) = λ(5) = AuthorOf , λ(6) = Conf , λ(7) =
SubmittedTo, η(4) = (1, 2), η(5) = (1, 3), η(7) = (1, 6), v(1, T itle) = PG_FD,
v(6, Acronym) = ADBIS, and v(6, Y ear) = 2024, for example.

Title=PG_FD

1_Article
Acronym=ADBIS

Year=2024

6_Conf

FirstName=Maude
LastName=M.

2_Author

FirstName=Khalid
LastName=B.

3_Author

4_AuthorOf 5_AuthorOf

7_SubmittedTo

x

Article

y

Conf

SubmittedTo

Fig. 1: A Property Graph example (left) and a Graph Pattern example (right)

A Graph Pattern is a directed graph Q[x̄] = (VQ, EQ, LQ), where (1) VQ

(EQ, respectively) is a finite set of pattern nodes (edges, respectively); (2) LQ is
a function that assigns a label to each node u ∈ VQ (edge e ∈ EQ , respectively);
and (3) x̄ is a list of distinct variables, each denoting a node in VQ.

An example of a graph pattern is represented in the right-hand side of Figure
1, where x̄ contains two variables: a variable x of label Article and a variable y
of label Conf . Both variables are connected with an edge of label SubmittedTo.

A Functional Dependency (FD) has been recognized as integrity constraints
in databases [9]. In relational databases, a functional dependency X → Y is
defined on a relational schema R with attribute sets X and Y , where R specifies
the “scope” of the FD, meaning that, for each instance r of R and for any tuples
t1 and t2 ∈ r, if t1 and t2 have the same value for X, then t1 and t2 must have
the same value on Y . A review of functional dependencies in databases can be
found in [2, 33, 32]. In relational databases, the scope of a relational Functional
Dependency (RFD) spans the entire relation R on which it has been defined,
while applied to graph databases, a Graph FD (GFD) is defined on each sub-
graph matching a graph pattern Q [8].

3 Graph dependencies

In this section, we analyze and compare the main types of dependencies proposed
in the contact of graph data over the last few years, taking into consideration the
kind of graph data model the dependency operates on, the method by which the
dependency’s scope is delineated, and the actual definition of the dependency
itself.

Most of the dependencies proposed in the context of graphs are drawn from
dependencies proposed in the context of relational databases, in particular func-
tional dependencies. In relational databases, however, the scope of the functional
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dependency is well delimited intrinsically by the relation to which the attributes
participating in the FD belong. This is not the case with graph data. As such,
in the context of graph databases, in addition to the dependency itself, informa-
tion about the scope of the dependency delimiting the sub-graphs in which the
dependency is valid, is necessary.

Table 1: Acronyms and references of related work
Acronym Definition References

gFD Graph-tailored functional dependency [30]
GKs Graph Keys [13]
CFDs Conditional Functional Dependencies [14]
GPAR Graph-Pattern Association Rule [18]
GFD Graph Functional Dependency [14]

TGFD Temporal Graph Functional Dependency [3]
GED Graph Entity Dependency [16, 17]
GDC Graph Denial Constraint [17]
GAR Graph Association Rules [15]
GD Graph Dependency [38]

GDD Graph Differential Dependency [22]
GPD Graph Probabilistic Dependency [37]

Table 1 presents the references of graph dependencies approaches, and Figure
2 recalls the relationships between all theses approaches. A part of the related
work define graph dependencies based on graph pattern (See definition in Section
2). These approaches are presented in Section 3.1. We particularly focus on
the ones of W. Fan’s research Team [12] who has defined the GED approach
[17] that has been widely extended (see red node in Figure 2). In Section 3.2,
we present Graph-tailored Functional Dependencies (gFD) of [30] that targets
normalization of graph data. Section 3.3 finally presents how constraints are
defined in PG-Schema [5], the unifying language for property graph, which serves
as a recommendation for GQL standard.

3.1 Pattern-based graph dependencies

Keys are a special case of FDs. Keys for graphs (GKs), identifying entities in RDF
graph, have been defined in [13]. In this work, keys are interpreted by means of
graph pattern matching via sub-graph isomorphism. Analogous to GKs, Graph-
Pattern Association Rules GPARs [18] also capture graph patterns to define
constraints on graph data, by studying association rules between entities [32].

Subsuming Functional Dependencies (FDs) and Conditional5 Functional De-
pendencies (CFDs) of [14], Graph Functional Dependencies (GFD) have been
defined in [19]. A GFD consists of a graph pattern, identifying entities on which
the dependency is defined, and an extension of CFDs specifying the dependencies
5 i.e. FDs that conditionally hold in a part of the relation [32]
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RFD

gFD
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GFD
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GAR

GD

GDD

GPD

Fig. 2: The relationships among graph dependencies related work

of the attribute values of the entities. Temporal Graph Functional Dependencies
(TGFDs) of [3] extend GFD to temporal graph (i.e. sequence of graph snap-
shots).

Later, Graph Entity Dependencies (GEDs) [16, 17] have been defined to ex-
tend GFDs by supporting literal equality of entity id over two nodes in the
graph pattern [3]. GED subsumes GFD of [19] and GKs of [13] – see in [12] for
a complete comparison of GKs, GFD and GED.

As defined in [8, 32], a GED φ is a pair Q[x̄](X → Y ) where: Q[x̄] is a graph
pattern (See definition in Section 2) and, X → Y is a FD to be applied to entities
identified by Q, such that X and Y are two (possibly empty) sets of literals of
x̄. A literal of x̄ can be:

– a constant literal x.A = c where A ∈ K is an attribute of x ∈ x̄ and c ∈ N
is a constant, meaning v(x,A) = c;

– a boolean constant False, meaning that pattern Q[x̄] is “illegal”;
– a variable literal x.A = y.B where A,B ∈ K are attributes of the respective

entities x, y ∈ x̄, meaning v(x,A) = v(y,B);
– an id literal id(x) = id(y), x, y ∈ x̄ and id() denoting the vertex or edge

identities. In this case, pattern Q[x̄] is composed of two similar sub-patterns.

Y can be interpreted as the disjunction of its literals, in an extension of GED
called GED∨s – see in [17] for more details.
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φ1 = Q1[x, y](∅ → False)

FOR (x:Article)
COUNT 0 OF (y:Person) -[:AuthorOf]->(x) <-[:ReviewerOf ]-(y:Person)

Fig. 3: An "illegal" pattern GED and its translation into PG-Schema

The top of Figure 3 represents an example of a GED, where X is empty and
Y = False, meaning that the pattern Q[x, y] is "illegal". Indeed, an author of an
article cannot be a reviewer of one of its articles. The top of Figure 4 represents
an other GED example. It means that if two Article entities x and x′ have the
same title and are submitted to the same conference then, both articles are the
same. An article is therefore identified by its title and the id of the conference
where it has been submitted.

x

Article

x’

Article

y

Conf

y’

Conf

SubmittedTo SubmittedTo

Q2[x, x
′, y, y′]

φ2 = Q2[x, x
′, y, y′](X2 → Y2)

with X2 = {x.title = x′.title, y.id = y′.id}
and Y2 = {x.id = x′.id}

FOR (x:Article) IDENTIFIER x.title , y.id WITHIN (x) -[: SubmittedTo]->(y:Conf)

Fig. 4: A vertex identity GED and its translation into PG-Schema

GEDs have been extended to Graph Differential Dependencies (GDDs) in
[22], by incorporating distance and matching function. Graph Probabilistic De-
pendencies (GPDs) [37] extend GDD with probabilistic and statistical approaches
in order to relax the dependency constraints. Graph Association Rules (GARs)
extend GFDs and GEDs with the existential semantics for attributes and edges,
and by allowing ML classifiers as predicates [15]. Graph Denial Constraints
(GDCs) [17] extends GEDs, replacing the equality relationship in the definition
of GEDs with built-in predicates =, ̸=,<,>,≤ and ≥ [32]. Recent approaches
have been proposed in [23, 39] to discover GEDs in property graphs.

As explained in [30], the aforementioned approaches define graph dependen-
cies that compare values of properties or constants for all pairs of entities iden-
tified by a graph pattern. The next section presents other graph dependencies
having a different expressiveness requiring the existence of some graph objects,
i.e. nodes, edges or properties.

3.2 Existence-based functional dependency

Several approaches limit the graph objects on which the graph dependencies
hold by existence conditions.
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Recently, the graph-tailored functional dependency (gFD), defined in [30],
restricts the set of vertices on which the graph dependency holds to the nodes
for which all properties in a property set P exist, P containing at least all the
properties that occur in the dependency. More formally, a gFD is defined as an
expression L : P : X → Y where L ⊆ L and X,Y ⊆ P ⊆ K. L : P : X → Y
is satisfied iff there are no vertices v1, v2 ∈ V such that v1 ̸= v2, for all A ∈ P ,
v(v1, A) and v(v2, A) are defined, for all A ∈ X , v(v1, A) = v(v2, A) and for some
A ∈ Y , v(v1, A) ̸= v(v2, A). Basically, a gFD indicates that the combination
of values on some node properties uniquely determine the values on some other
node properties.

For example, in the property graph of Figure 1, we can define the gFD stipu-
lating that Conf nodes, with properties Acronym and ConfName, have match-
ing values on ConfName whenever they have matching values on Acronym.:

Conf : {Acronym,ConfName} : ConfName → Acronym

The same authors also defined, in [29, 31], graph-tailored uniqueness con-
straint (gUC), which is an expression L : P : X, which is satisfied iff there are
no vertices v1, v2 ∈ V such that v1 ̸= v2, for all A ∈ P , v(v1, A) and v(v2, A) are
defined, for all A ∈ X , v(v1, A) = v(v2, A). For example, we have:

Conf : {Acronym,ConfName, Y ear} : ConfName, Y ear

As explained in [30], every gUC L : P : X implies the gFD L : P : X → P .
According to the authors, Neo4j UCs of [24] are gUCs [30], which are a sub-class
of PG-Keys [4], that we explain in the next section.

The Graph Dependency (GD) of [38] extend GED 6 of [16, 17] with existence
constraint. A GD φ is a pair Q[x̄](X → Y ) where Q[x̄] is a topological pattern
in the knowledge graph, and X and Y are extended from the GED definition
(see Section 3.1) :

– X is extended to the existence of a graph object (node or edge) in the knowl-
edge graph with certain properties value or labels which can be constant or
related to x̄. More formally, X is expressed as an existing condition, such as
∃o ∈ V or ∃o ∈ E, associated with predicates such as o.label = ℓ with ℓ ∈ L,
or o.A = c with c a constant and A ∈ K, or o.A = x.A with x ∈ x̄.

– Y is extended to support connection between nodes defined in X and nodes
in x̄. Y is expressed in ASCII art notation of Cypher [21], also adopted by
GQL [20]: (x)->(y) means that there exists an edge between nodes x and
y and (x)-[e]->(y) states that edge between nodes x and y is e.

For example, using the Graph Pattern Q[x, y] of the right-hand side of Figure 1,
we can define a constraint indicating that all Article nodes should be connected
to a Conf one with the following GD: Q[x, y], X → Y , with X is ∃ edge e ∈ E,
λ(e) = SubmittedTo and Y is (x)-[e]->(y).

6 Authors of [38] said they adapt GFD of [19]. However, they used graph database and a syntax
inspired from Cypher language [21] and used node id. Therefore, they rather extend GED than
GFD.
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3.3 PG-Schema

PG-Schema [5] specifies a schema language for property graphs that should lead
to future schema standards [20]. A constraint in PG-Schema, that extends the
work on keys for property graphs [4], called PG-Keys, is of the form:

FOR p(x) < qualifier > q(x, ȳ)

where both p(x) and q(x, ȳ) are queries, respectively called the scope and the de-
scriptor, and < qualifier > consists of combinations of EXCLUSIVE, MANDATORY,
SINGLETON, IDENTIFIER and COUNT LB..UB OF, with LB an integer representing
a lower bound and UB, optional, an integer representing an upper bound.

– FOR p(x) MANDATORY q(x, ȳ) means that for every output x of p(x) there
should be at least one tuple ȳ = (y1, y2, .., yn) that satisfies q(x, ȳ). As ex-
plained in [29], MANDATORY combines existence and uniqueness constraints.

– FOR p(x) SINGLETON q(x, ȳ) means that for every output x of p(x) there
should be at most one tuple ȳ = (y1, y2, .., yn) that satisfies q(x, ȳ).

– FOR p(x) EXCLUSIVE q(x, ȳ) means that no ȳ should be shared by two dif-
ferent values of x. As explained in [29], EXCLUSIVE separates existence and
uniqueness constraints.

– FOR p(x) IDENTIFIER q(x, ȳ) is equivalent to: FOR p(x) EXCLUSIVE MANDATORY
SINGLETON q(x, ȳ).

– FOR p(x) COUNT LB..UB OF q(x, ȳ) expresses that the number of distinct
results returned by q(x, ȳ) must be between the lower bound and the optional
upper bound. p(x) COUNT 0 OF q(x, ȳ) means that q(x, ȳ) returns an empty
set.

For example, to express the constraint indicating that "an article should at
least have one author" using PG-Schema, we can write:

FOR x:Article MANDATORY e,y WITHIN (x) -[e:AuthorOf]->(y:Author)

Keyword WITHIN in PG-Schema specifies the pattern to be matched in the prop-
erty graph.

As explained in [5], PG-Schema allows to handle key and foreign key con-
straints defined in property graph and can also express express SQL-style CHECK
constraints and SQL-style CHECK constraints or denial constraints.

4 Expressing graph dependency through PG-Schema

We show, in this section, how graph dependencies can be translated using the
PG-Schema language of [5] for property graph. In Subsection 4.1, we focus on
Graph Entity Dependencies (GEDs) of [17], which is described in Section 3.1.
Subsection 4.2 is dedicated to gFD and gUC of [30], described in Section 3.2.
Subsection 4.3 refers to GD [38], presented in Section 3.2. Finally, Subsection 4.4
presents how relational FD can also be translated using PG-Schema, relational
databases that can be converted into graphs (see in [10] for example). A proof
of the soundness of our proposed translation is presented in Subsection4.5.
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4.1 From GED to PG-Schema

In GED [17], Q[x̄] represents a Graph Pattern where x̄ is a list of distinct vari-
ables, each one denoting a vertex. Let x be the first variable of x̄ and L its label
(λ(x) = L). Variable x corresponds to the node on which the dependency is
defined.

The following rules (numbered from 1 to 4) represent the translation into
PG-Schema of GEDs according to the different forms of FD X → Y . Q, in PG-
Schema constraint, represents the pattern Q[x̄] using the ASCII art:
(var1:NodeLabel)-[var2:EdgeLabel]->(var3:NodeLabel) with var1, var2 and
var3 variables that can be optional.

1. When X and Y only consist of constant literals:
FOR (x:L) WHERE X MANDATORY Y WITHIN Q

2. When X is ∅ and Y consists of variable literals:
FOR (x:L) MANDATORY Y WITHIN Q

3. When X consists of variable literals and Y consists of id literals:
FOR (x:L) IDENTIFIER left side of variable literals X WITHIN Q’

with Q’ a sub-pattern of Q – An example of this form of FD is given in Figure 4,
where pattern Q consists of two article vertices linked to two conference vertices.
Q’ represents one article vertex and its related conference vertex.

4. When X is ∅ and Y is False:
FOR (x:L) COUNT 0 OF Q

An example of this form of FD is given in Figure 3 detailed in Section 4.1.

For example, the bottom of Figure 3 represents the translation of GED Q1

(above in the figure) into PG-Schema. It means that, for a node x of label
Article, there does not exists any node y of label Person participating in both
AuthorOf and ReviewerOf relations. The bottom of Figure 4 represents the
translation of GED Q2, meaning that an article is identified by its title and the
id of the conference where it has been submitted.

4.2 From gFDs to PG-Schema

As explained in [29, 30], a gUC {L1, ..., Lm} : {P1, ..., Pn} : {U1, ..., Uk}, with ∀i,
Li ∈ L, Pi ∈ K and {U1, ..., Uk} ⊂ {P1, ..., Pn} can be specified using PG-Schema
by the following constraint:

FOR x:L1 ... :Lm WHERE x.P1 IS NOT NULL ... AND x.Pn IS NOT NULL
EXCLUSIVE x.U1, ..., x.Uk

For example, the gUC, Conf : {Acronym,ConfName, Y ear} : ConfName, Y ear

can be translated to:
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FOR x:Conf WHERE x.Acronym IS NOT NULL AND x.ConfName IS NOT NULL
AND x.YEAR IS NOT NULL

EXCLUSIVE x.ConfName , x.Year

A gFD [30], defined by {L1, ..., Lm} : {P1, ..., Pn} : {X1, ..., Xk} → {Y1, ..., Yj}
where {L1, ..., Lm} ⊆ L and {X1, ..., Xk}, {Y1, ..., Yj} ⊆ {P1, ..., Pn} ⊆ K, can
therefore be translated using the EXCLUSIVE MANDATORY of PG-Schema:

FOR x.Y1 , ..., x.Yk WITHIN x:L1 ... :Lm
WHERE x.X1 IS NOT NULL AND ... AND x.Xk IS NOT NULL
EXCLUSIVE MANDATORY x.X1 , ..., x.Xj

For example, the gFD Conf : {Acronym,ConfName} : ConfName → Acronym

can be expressed into PG-Schema by:
FOR x.Acronym WITHIN x:Conf

WHERE x.ConfName IS NOT NULL AND x.Acronym IS NOT NULL
EXCLUSIVE MANDATORY x.ConfName

4.3 From GD to PG-Schema

The following two rules represent the translation into PG-Schema of GD, pro-
posed in [38] and presented in Section 3.2.

1. When X is ∃e ∈ E, λ(e) = L and Y is (x)-[e]->(y):
FOR (x:x.label) MANDATORY e,y WITHIN (x)-[e:L]->(y:y.label)

2. When X is ∃x ∈ V , λ(x) = L and Y is (x)->(y):
FOR (x:L) MANDATORY e,y WITHIN (x) -[e]->(y:y.label)

For instance, the example of GD presented in Section 3.2, using the Graph
Pattern Q[x, y] of Figure 1 (right-hand side), and X → Y , with X defined by
∃ edge e ∈ E, λ(e) = SubmittedTo and Y is defined by (x)-[e]->(y), can be
translated using PG-Schema by:

FOR (x:Article) MANDATORY e,y WITHIN (x)-[e:SubmittedTo]->(y:Conf)

4.4 From relational databases to PG-Schema

Relational databases can be converted to property graph [10] or into RDF store
[27] that can be mapped into property graph [6].

Therefore, a functional dependency (FD) X → Y is defined on a relation
schema R(KR), with KR the attribute set containing sets X = {X1, X2, .., Xn}
and Y = {Y1, Y2, .., Ym}, can also be translated into PG-Schema by:

FOR x.Y1 , ... Y.Ym WITHIN (x:R) EXCLUSIVE MANDATORY x.X1, ..., X.Xn
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meaning that the same value of X cannot be shared by two values of Y .
For example, the FD address → region, with address and region being two

attributes of a schema R, means that each address corresponds to an explicit
region. When relation R is mapped to a vertex R, the aforementioned FD is
translated to:

FOR x.region WITHIN (x:R) EXCLUSIVE MANDATORY x.address

4.5 Proof of the soundness of the translation

In this section, we outline the sketch of the proof that can be used to demonstrate
the soundness of the translation operations presented thus far. Let M be a
graph data model, which could encompass various existing proposals ranging
from relational data models to triple-based graph models (RDF) and property
graph models. Consider a data dependency dep expressed within the data model
M. Note that PG-Schema considers graph data expressed using property graphs,
which is an expressive data model that encompasses all the data models used
by existing proposals. Consequently, an instance I of a data model M can be
translated to a property-graph instance IPG without any loss of information.

As defined in [6], the properties of a mapping are: computability, semantics
preservation and information preservation. Our translation is computable. In-
deed, it is easy to see that the mapping rules we define can be implemented as
an algorithm. An implementation is presented in the next section. Our transla-
tion is also information preserving because, due to our mapping rules, it does not
lose any information about the graph dependency being translated. Indeed, we
can define inverse rules to recover the original dependency from the PG-Schema
constraint resulting from the translation process.

To establish the soundness of our proposed translation for transforming a
dependency dep expressed in a model M into a dependency depPS compliant
with PG-Schema, and then prove its semantics preservation, it suffices to prove
that: ∀ I ∈ instances(M) I |= dep =⇒ IPG |= depPS (1)

I ̸|= dep =⇒ IPG ̸|= depPS (2)

In what follows, we show the case where the source model M is the relational
model. Other cases can be proven in a similar manner, [16] showing for example
that relational FDs are special cases of GEDs, when tuples in a relation are
represented as nodes in a graph.

Consider the following FD: X → Y with X = {X1, X2, .., Xn} and Y =
{Y1, Y2, .., Ym}. According to the solution presented in the previous section, the
corresponding PG-Schema dependency is expressed as follows:
FOR x.Y1, ... Y.Ym WITHIN (x:R) EXCLUSIVE MANDATORY x.X1, ..., X.Xn.

Consider an instance I of the relational model where FD holds, signifying
that any two tuples t1 and t2 sharing identical attribute values in X also share
identical values in Y . By contradiction, we can demonstrate that the PG-Schema
dependency mentioned earlier also applies to the instance IPG , thereby showing
(1).
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Now, suppose FD does not hold in a given relational model I, indicating the
existence of two tuples t1 and t2 sharing the same values for attributes in X
but differing in at least one attribute Yi in Y . Upon translation of I into IPG ,
two vertices representing t1 and t2 emerge, each associated with attributes or
properties (edges) specifying values for attributes in X and Y . In this scenario,
the PG-Schema dependency defined previously does not hold, as the two vertices
in question are linked to the same values (or vertices) in X but not to the same
attribute (or vertex) in Y . Hence, this shows (2).

5 Proof-of-concept prototype implementation

To prove that the PG-schema mapping we propose in this article is computable,
we have developed a Python prototype called PG-FD. In order to manage graph
pattern, for GED of [17] and GD of [38], our prototype uses the network7 Python
module, which is a powerful library for manipulating property graphs in Python.
To manage functional dependencies, for gFDs of [30] or relational schema for ex-
ample, PG-FD uses the Python module functional_dependencies8, that defines
the classe FD to represent a functional dependency.

To translate GED (resp. GD) into PG-Schema, user should call function
GED2PGS(GP,X,Y) (resp. GD2PGS(GP,X,Y)), with GP the graph pattern, and X and
Y the right and left part of the graph dependency (coded by list of strings). To de-
fine the graph pattern, user can either manually define it using the MultiDiGraph9

class of the network module or using Cypher/GQL ASCII art style, which will
be translated into MultiDiGraph by our prototype. Our prototype could be ex-
tended to allow the user to create a graph in a graph database (e.g. Neo4j)
or using PG-Types of PG-Schema, that describes the shape of data and the
types of graph components such as nodes and edges. To translate a gFD of
[30] into PG-Schema, user should call function gFD2PGS(L,P,fd) with L a set of
node labels, P a set of properties and fd a functional dependency defined using
the functional_dependencies module. This module is also used to translate a
relational FD, using function Rel2PGS(fd,R), with R the relation name.

The source code of our prototype can be downloaded from GitHub10. The
prototype can be used to replay the examples of this article, some GED examples
defined in [16], as well as to define new graph dependencies to translate.

6 Conclusions

In this article, we have surveyed the different solutions for defining graph func-
tional dependencies in the literature. We have also defined mapping rules al-
lowing to translate graph dependencies, focusing on prominent ones, into the

7 https://networkx.org/
8 https://oer.gitlab.io/cs/functional-dependencies/
9 https://networkx.org/documentation/stable/reference/classes/multidigraph.html

10 https://github.com/MaudeManouvrier/PG-FD
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PG-Schema [5], which serves as a recommendation or upcoming versions of GQL
for specifying property graph schema. A proof of the soundless of the proposed
translation and a proof-of-concept implementation prototype are presented in
this article.

In our ongoing work, we are extending our solution to cater for other graph-
based dependencies, for example the one in [34, 35] which introduces a represen-
tation similar to functional dependencies to translate SQL constraints to SHACL
(Shapes Constraint Language).
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