
HAL Id: hal-04679535
https://hal.science/hal-04679535v1

Submitted on 29 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lower Bounds from Fitness Levels Made Easy
Benjamin Doerr, Timo Kötzing

To cite this version:
Benjamin Doerr, Timo Kötzing. Lower Bounds from Fitness Levels Made Easy. Algorithmica, 2024,
86, pp.367 - 395. �10.1007/s00453-022-00952-w�. �hal-04679535�

https://hal.science/hal-04679535v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Algorithmica (2024) 86:367–395
https://doi.org/10.1007/s00453-022-00952-w

Lower Bounds from Fitness Levels Made Easy

Benjamin Doerr1 · Timo Kötzing2

Received: 2 June 2021 / Accepted: 16 February 2022 / Published online: 28 April 2022
© The Author(s) 2022

Abstract
One of the first and easy to use techniques for proving run time bounds for evolutionary
algorithms is the so-called method of fitness levels by Wegener. It uses a partition of
the search space into a sequence of levels which are traversed by the algorithm in
increasing order, possibly skipping levels. An easy, but often strong upper bound for
the run time can then be derived by adding the reciprocals of the probabilities to leave
the levels (or upper bounds for these). Unfortunately, a similarly effective method
for proving lower bounds has not yet been established. The strongest such method,
proposed by Sudholt (2013), requires a careful choice of the viscosity parameters γi, j ,
0 ≤ i < j ≤ n. In this paper we present two new variants of the method, one for upper
and one for lower bounds. Besides the level leaving probabilities, they only rely on
the probabilities that levels are visited at all. We show that these can be computed or
estimated without greater difficulties and apply our method to reprove the following
known results in an easy and natural way. (i) The precise run time of the (1+1) EA
on LeadingOnes. (ii) A lower bound for the run time of the (1+1) EA on OneMax,
tight apart from an O(n) term. (iii) A lower bound for the run time of the (1+1) EA
on long k-paths (which differs slightly from the previous result due to a small error
in the latter). We also prove a tighter lower bound for the run time of the (1+1) EA
on jump functions by showing that, regardless of the jump size, only with probability
O(2−n) the algorithm can avoid to jump over the valley of low fitness.

Keywords First hitting time · Fitness level method · Evolutionary computation

This work was supported by a public grant as part of the Investissements d’avenir project, reference
ANR-11-LABX-0056-LMH, LabEx LMH, and by the Deutsche Forschungsgemeinschaft (DFG), Grant
FR 2988/17-1.
Extended version of the conference paper [23].

B Timo Kötzing
Timo.Koetzing@hpi.de

1 Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

2 Hasso Plattner Institute, Potsdam, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00952-w&domain=pdf

368 Algorithmica (2024) 86:367–395

1 Introduction

The theoryof evolutionary computation aims at explaining thebehavior of evolutionary
algorithms, for example by giving detailed run time analyses of such algorithms on
certain test functions, defined on some search space (for this paper we will focus on
{0, 1}n). The first general method for conducting such analyzes is the fitness level
method (FLM) [60,61]. The idea of this method is as follows. We partition the search
space into a number m of sections (“levels”) in a linear fashion, so that all elements
of later levels have better fitness than all elements of earlier levels. For the algorithm
to be analyzed we regard the best-so-far individual and the level it is in. Since the
best-so-far individual can never move to lower levels, it will visit each level at most
once (possibly staying there for some time). Suppose we can show that, for any level
i < m which the algorithm is currently in, the probability to leave this level is at least
pi . Then, bounding the expected waiting for leaving a level i by 1/pi , we can derive
an upper bound for the run time of

∑m−1
i=1 1/pi by pessimistically assuming that we

visit (and thus have to leave) each level i < m before reaching the target level m. The
fitness level method allows for simple and intuitive proofs and has therefore frequently
been applied. Variations of it come with tail bounds [64], work for parallel EAs [47],
regard populations [62] or admit non-elitist EAs [8,22,25,44].

While very effective for proving upper bounds, it seems much harder to use fitness
level arguments to prove lower bounds (see Theorem 5 for an early attempt). The
first (and so far only) to devise a fitness level-based lower bound method that gives
competitive bounds was Sudholt [59]. His approach uses viscosity parameters γi, j ,
0 ≤ i < j ≤ n, which control the probability of the algorithm to jump from one
level i to a higher level j (see Sect. 3.3 for details). While this allows for deriving
strong results, the application is rather technical due to the many parameters and the
restrictions they have to fulfill.

In this paper, we propose a new variant of the FLM for lower bounds, which is
easier to use and which appears more intuitive. For each level i , we regard the visit
probability vi , that is, the probability that level i is visited at all during a run of the
algorithm. This way we can directly characterize the run time of the algorithm as∑m−1

i=1 vi/pi when pi is the precise probability to leave level i independent of where
on level i the algorithm is.1 When only estimates for these quantities are known, e.g.,
because the level leaving probability is not independent from the current state, then
we obtain the corresponding upper or lower bounds on the expected run time (see
Sect. 3.4 for details).

We first use this method to give the precise expected run time of the (1+ 1) EA on
LeadingOnes in Sect. 4. While this run time was already well-understood before, it
serves as a simple demonstration of the ease with which our method can be applied.

Next, in Sect. 5, we give a bound on the expected run time of the (1 + 1) EA on
OneMax, precise apart from terms of orderΘ(n). Such bounds have also been known
before, but needed much deeper methods (see Sect. 5.3 for a detailed discussion).
Sudholt’s lower bound method has also been applied to this problem, but gave a

1 Note that this formula can also be inferred by considering occupations times for the Markov chain within
the set {1, ...,m − 1}, see [50].

123

Algorithmica (2024) 86:367–395 369

slightly weaker bound deviating from the truth by an O(n log log n) term. In addition
to the precise result, we feel that our FLM with visit probabilities gives a clearer
structure of the proof than the previous works.

In Sect. 6, we prove tighter lower bounds for the run time of the (1+1) EA on jump
functions. We do so by determining (asymptotically precise) the probability that in a
run of the (1+ 1) EA on a jump function the algorithm does not reach a non-optimal
search point outside the fitness valley (and thus does not have to jump over this valley).
Interestingly, this probability is only O(2−n) regardless of the jump size (width of the
valley).

Finally, in Sect. 7, we consider the (1+ 1) EA on so-called long k-paths. We show
how the FLM with visit probabilities can give results comparable to those of the FLM
with viscosities while again being much simpler to apply.

2 The (1+ 1) EA

In this paper we consider exactly one randomized search heuristic, the (1 + 1) EA.
It maintains a single individual, the best it has seen so far. Each iteration it uses
standard bit mutation with mutation rate p ∈ (0, 1) (flipping each bit of the bit string
independently with probability p) and keeps the result if and only if it is at least as
good as the current individual under a given fitness function f . We give a more formal
definition in Algorithm 1.

Algorithm 1: The (1 + 1) EA to maximize f : {0, 1}n → R.
1 Let x be a uniformly random bit string from {0, 1}n ;
2 while optimum not reached do
3 y ← mutatep(x);
4 if f (y) ≥ f (x) then x ← y

3 The Fitness Level Methods

The fitness level method is typically phrased in terms of a fitness-based partition, that
is, a partition of the search space into sets A1, . . . , Am such that elements of later
sets have higher fitness. We first introduce this concept and abstract away from it to
ease the notation. After this, in Sect. 3.2, we state the original FLM. In Sect. 3.3 we
describe the lower bound based on the FLM from Sudholt [59], before presenting our
own variant, the FLM with visit probabilities, in Sect. 3.4.

3.1 Level Processes

Definition 1 (Fitness-Based Partition [61]) Let f : {0, 1}n → R be a fitness function.
A partition A1, . . . , Am of {0, 1}n is called a fitness-based partition if for all i, j ≤ m
with i < j and x ∈ Ai , y ∈ A j , we have f (x) < f (y).

123

370 Algorithmica (2024) 86:367–395

We will use the following shorthands. We write [a..b] for the set {i ∈ Z | a ≤ i ≤
b}; for x ∈ {0, 1}n we write ‖x‖1 as the number of 1s in x . For a given fitness-based
partition and i < m, we write A≥i = ⋃m

j=i A j and A≤i = ⋃i
j=1 A j .

In order to simplify our notation, we focus on processes on [1..m] (the levels) with
underlying Markov chain as follows.

Definition 2 (Non-decreasing Level Process) A stochastic process (Xt)t on [1..m] is
called a non-decreasing level process if and only if (i) there exists a Markov process
(Yt)t over a state space S such that there is an � : S → [1..m] with �(Yt) = Xt for
all t , and (ii) the process (Xt)t is non-decreasing, that is, we have Xt+1 ≥ Xt with
probability one for all t .

We laterwant to analyze algorithms in terms of non-decreasing level processes,making
the transition as follows. Suppose we have an algorithm with state space {0, 1}n .
Denoting by Yt the best among the first t search points generated by the algorithm,
this defines aMarkov chain (Yt)t in the state space S = {0, 1}n , the runof the algorithm.
Further, suppose the algorithm optimizes a fitness function f such that the state of the
algorithm is non-decreasing in terms of fitness. In order to get a non-decreasing level
process, we can now define any fitness-based partition and get a corresponding level
function � : S → [1..m] by mapping any x ∈ S to the unique i with x ∈ Ai . Then the
process (�(Yt))t is a non-decreasing level process.

The main reason for us to use the formal notion of a level process is the property
formalized in the following lemma. Essentially, if a level process makes progress
with probability at least p in each iteration (regardless of the precise current state),
then the expected number of iterations until the process progresses is at most 1/p.
This situation resembles a geometric distribution, but does not assume independence
of the different iterations (one could show that the time to progress is stochastically
dominated by a geometric distribution with success rate p, but we do not need this
level of detail).

Lemma 3 Let (Xt)t be a non-decreasing level process with underlying Markov chain
(Yt)t and level function �. Assume Xt starts on some particular level. Let p ∈ (0, 1]
be a lower bound on the probability for the level process to leave this level regardless
of the state of the underlying Markov chain. Then the expected first time t such that
Xt changes is at most 1/p.

Analogously, if p is an upper bound, the expected time t such that Xt changes is at
least 1/p.

Proof We let (Zt)t be the stochastic process on {0, 1} such that Zt is 1 if and only if
Xt > X0. According to our assumptions, we have, for all t before the first time that
Zt = 1, that E[Zt+1 − Zt | Zt] ≥ p. From the additive drift theorem [38,45] we
obtain that the expected first time such that Zt = 1 is bounded by 1/p as desired. The
“analogously” clause follows analogously. �	

3.2 Original Fitness Level Method

The following theorem contains the original Fitness LevelMethod andmakes the basic
principle formal.

123

Algorithmica (2024) 86:367–395 371

Theorem 4 (Fitness Level Method, upper bound [61]) Let (Xt)t be a non-decreasing
level process (as detailed in Definition 2).

For all i ∈ [1..m − 1], let pi be a lower bound on the probability of a state change
of (Xt)t , conditional on being in state i . Then the expected time for (Xt)t to reach the
state m is

E[T] ≤
m−1∑

i=1

1

pi
.

This bound is very simple, yet strong. It is based on the idea that, in the worst
case, all levels have to be visited sequentially. Note that one can improve this bound
(slightly) by considering only those levels which come after the (random) start level
X0 (by changing the start of the sum to X0 instead of 1 and then taking expectation).
Intuitively, low levels that are never visited do not need to be left.

There is a lower bound based on the observation that at least the initial level has to
be left (if it was not the last level).

Theorem 5 (Fitness Level Method, lower bound [61]) Let (Xt)t be a non-decreasing
level process (as detailed in Definition 2).

For all i ∈ [1..m−1], let pi be an upper bound on the probability of a state change,
conditional on being in state i . Then the expected time for (Xt)t to reach the state m
is

E[T] ≥
m−1∑

i=1

Pr[X0 = i] 1
pi

.

This bound is very weak since it assumes that the first improvement on the initial
search point already finds the optimum.

We note, very briefly, that a second main analysis method, drift analysis, also
has additional difficulties with lower bounds. Additive drift [38], multiplicative drift
[20], and variable drift [40,49] all easily give upper bounds for run times, however,
only the additive drift theorem yields lower bounds with the same ease. The existing
multiplicative [12,24,63] and variable [13,17,32,35] drift theorems for lower bounds
all need significantly stronger assumptions than their counterparts for upper bounds.

3.3 Fitness Level Method with Viscosity

While the upper bound above is strong and useful, the lower bound is typically not
strong enough to give more than a trivial bound. Sudholt [59] gave a refinement of
the method by considering bounds on the transition probabilities from one level to
another.

Theorem 6 (Fitness Level Method with Viscosity, lower bound [59]) Let (Xt)t be a
non-decreasing level process (as detailed in Definition 2). Let χ, γi, j ∈ [0, 1] and
pi ∈ (0, 1] be such that

123

372 Algorithmica (2024) 86:367–395

– For all t , if Xt = i , the probability that Xt+1 = j is at most pi · γi, j ;
–

∑m
j=i+1 γi, j = 1; and

– For all j > i , we have γi, j ≥ χ
∑m

k= j γi,k .

Then the expected time for (Xt)t to reach the state m is

E[T] ≥
m−1∑

i=1

Pr[X0 = i] χ

m−1∑

j=i

1

p j
.

This result is much stronger than the original lower bound from Fitness Level Method,
since now the leaving probabilities of all segments are part of the bound, at least with
a fractional impact prescribed by χ . The weakness of the method is that χ has to be
defined globally, the same for all segments i .

There is also a corresponding upper bound as follows; in [59] this result was used
to derive a tight bound for LeadingOnes, but we believe it has otherwise not found
application so far.

Theorem 7 (Fitness Level Method with Viscosity, upper bound [59]) Let (Xt)t be a
non-decreasing level process (as detailed in Definition 2). Let χ, γi, j ∈ [0, 1] and
pi ∈ (0, 1] be such that

– For all t , if Xt = i , the probability that Xt+1 = j is at least pi · γi, j ;
–

∑m
j=i+1 γi, j = 1;

– For all j > i , we have γi, j ≤ χ
∑m

k= j γi,k; and
– For all j ≤ m − 2, we have (1 − χ)p j ≤ p j+1.

Then the expected time for (Xt)t to reach the state m is

E[T] ≤
m−1∑

i=1

Pr[X0 = i]
⎛

⎝ 1

pi
+ χ

m−1∑

j=i+1

1

p j

⎞

⎠ .

3.4 Fitness Level Method with Visit Probabilities

In this paper, we give a new FLM theorem for proving lower bounds. The underlying
idea is that exactly all those levels that have ever been visited need to be left; thus,
we can use the expected waiting time for leaving a specific level multiplied with the
probability of visiting that level at all. The following theorem makes this idea precise
for lower bounds; Theorem 9 gives the corresponding upper bound. We note that for
the particular case of the optimization of the LeadingOnes problem via (1+ 1)-type
elitist algorithms, our bounds are special cases of [21, Lemma 5] and [27, Theorem 3].

Theorem 8 (Fitness Level Method with visit probabilities, lower bound) Let (Xt)t be
a non-decreasing level process (as detailed in Definition 2). For all i ∈ [1..m − 1],
let pi be an upper bound on the probability of a state change of (Xt)t , conditional on
being in state i . Furthermore, let vi be a lower bound on the probability of there being

123

Algorithmica (2024) 86:367–395 373

a t such that Xt = i . Then the expected time for (Xt)t to reach the state m is

E[T] ≥
m−1∑

i=1

vi

pi
.

Proof For each i < m, let Ti be the (random) time spent in level i . Thus,

T =
m−1∑

i=1

Ti .

Let now i < m. We want to show that E[Ti] ≥ vi/pi . We let E be the event that the
process ever visits level i and compute

E[Ti] = E[Ti | E]Pr[E] + E[Ti | E]Pr[E] ≥ E[Ti | E]vi .

For all t with Xt = i , with probability at most pi , we have Xt+1 > i . Thus, using
Lemma 3, the expected time until a search point with Xk > i is found is at least 1/pi ,
giving E[Ti | E] ≥ 1/pi as desired. �	

A strength of this formulation is that skipping levels due to a higher initialization
does not need to be taken into account separately (as in the two previous lower bounds),
it is part of the visit probabilities. A corresponding upper bound followswith analogous
arguments.

Theorem 9 (Fitness Level Method with visit probabilities, upper bound) Let (Xt)t be
a non-decreasing level process (as detailed in Definition 2).

For all i ∈ [1..m − 1], let pi be a lower bound on the probability of a state change
of (Xt)t , conditional on being in state i . Furthermore, let vi be an upper bound on
the probability there being a t such that Xt = i . Then the expected time for (Xt)t to
reach the state m is

E[T] ≤
m−1∑

i=1

vi

pi
.

In a typical application of the method of the FLM, finding good estimates for the
leaving probabilities is easy. It is more complicated to estimate the visit probabilities
accurately, so we propose one possible approach in the following lemma.

Lemma 10 Let (Yt)t be a Markov-process over state space S and � : S → [1..m] a
level function. For all t , let Xt = �(Yt) and suppose that (Xt)t is non-decreasing.
Further, suppose that (Xt)t reaches state m after a finite time with probability 1.

Let i < m be given. For any x ∈ S and any set M ⊆ S, let x → M denote the
event that the Markov chain with current state x transitions to a state in M. For all j

123

374 Algorithmica (2024) 86:367–395

let A j = {s ∈ S | �(s) = j}. Suppose there is vi such that, for all x ∈ A≤i−1 with
Pr[x → A≥i] > 0,

Pr[x → Ai | x → A≥i] ≥ vi ,

and

Pr[Y0 ∈ Ai | Y0 ∈ A≥i] ≥ vi .

Then vi is a lower bound for visiting level i as required by Theorem 8.

Proof Let T be minimal such that YT ∈ A≥i . Then the probability that level i is being
visited is Pr[YT ∈ Ai], since (Xt)t is non-decreasing.

By the law of total probability we can show the claim by showing it first conditional
on T = 0 and then conditional on T �= 0.

We have that T = 0 is equivalent to Y0 ∈ A≥i , thus we have Pr[YT ∈ Ai | T =
0] ≥ vi from the second condition in the statement of the lemma.

Otherwise, let x = YT−1. Since YT ∈ A≥i ,

Pr[YT ∈ Ai | T �= 0] = Pr[YT ∈ Ai | YT ∈ A≥i , T �= 0]
= Pr[x → Ai | x → A≥i , T �= 0]
= Pr[x → Ai | x → A≥i].

As T was chosen minimally, we have x /∈ A≥i and thus get the desired bound from
the first condition in the statement of the lemma. �	
Implicitly, the lemma suggests to take the minimum of all these conditional proba-
bilities over the different choices for x . Note that this estimate might be somewhat
imprecise since worst-case x might not be encountered frequently. Also note that a
corresponding upper bound for Theorem 9 follows analogously.

4 The Precise Run Time for LeadingOnes

One of the classic fitness functions used for analyzing the optimization behavior of
randomized search heuristics is the LeadingOnes function. Given a bit string x of
length n, the LeadingOnes value of x is defined as the number of 1s in the bit string
before the first 0 (if any). In parallel independent work, the precise expected run time
of the (1+1) EA on the LeadingOnes benchmark function was determined in [7,59].
Even more, the distribution of the run time was determined with variants of the FLM
in [21,27]. As a first simple application of our methods, we now determine the precise
run time of the (1 + 1) EA on LeadingOnes via Theorems 8 and 9.

Theorem 11 Consider the (1 + 1) EA optimizing LeadingOnes with mutation rate
p. Let T be the (random) time for the (1 + 1) EA to find the optimum. Then

E[T] = 1

2

n−1∑

i=0

1

(1 − p)i p
.

123

Algorithmica (2024) 86:367–395 375

Proof We want to apply Theorems 8 and 9 simultaneously. We partition the search
space in the canonical way such that, for all i ≤ n, Ai contains the set of all search
points with fitness i . Now we need a precise result for the probability to leave a level
and for the probability to visit a level.

First, we consider the probability pi to leave a given level i < n. Suppose the
algorithm has a current search point in Ai , so it has i leading 1s and then a 0. The
algorithm leaves level Ai now if and only if it flips the first 0 of the bit string (probability
of p) and no previous bits (probability (1 − p)i). Hence, pi = p(1 − p)i .

Next we consider the probability vi to visit a level i . We claim that it is exactly 1/2,
following reasoning given in several places before [19,59]. We want to use Lemma 10
and its analogue for upper bounds. Let i be given. For the initial search point, if it is
at least on level i (the condition considered by the lemma), the individual is on level i
if and only if the i + 1st bit is a 0, so exactly with probability 1/2 as desired for both
bounds. Before an individual with at least i leading 1s is created, the bit at position
i + 1 remains uniformly random (this can be seen by induction: it is uniform at the
beginning and does not experience any bias in any iteration while no individual with
at least i leading 1s is created). Once such an individual is created, if the bit at position
i +1 is 1, the level i is skipped, otherwise it is visited. Thus, the algorithm skips level i
with probability exactly 1/2, giving vi = 1/2. With these exact values for the pi and
vi , Theorems 8 and 9 immediately yield the claim. �	

By computing the geometric series in Theorem 11, we obtain as a (well-known)
corollary that the (1 + 1) EA with the classic mutation rate p = 1/n optimizes
LeadingOnes in an expected run time of n2 e−1

2 (1 ± o(1)).

5 A Tight Lower Bound for OneMax

In this section, as a more involved example of the usefulness of our general method,
we prove a lower bound for the run time of the (1+1) EA with standard mutation rate
p = 1

n on OneMax, which is only by an additive term of order O(n) below the upper
bound following from the classic fitness level method. This is tighter than the best gap
of order O(n log log n) proven previously with fitness level arguments. Moreover, our
lower bound is the tightest lower bound apart from the significantly more complicated
works that determine the run time precise apart from o(n) terms. We defer a detailed
account of the literature together with a comparison of the methods to Sect. 5.3.

We recall the definition of the OneMax test functions as OneMax(x) = ∑n
i=1 xi ,

the number of 1s in a given bit string x ∈ {0, 1}n . We further use the standard fitness
levels of the OneMax function as given by

Ai := {x ∈ {0, 1}n | OM(x) = i}, i ∈ [0..n].

We use the notation A≥i := ⋃n
j=i A j and A≤i := ⋃i

j=0 A j for all i ∈ [0..n] as
defined above for fitness-based partitions, but with the appropriate bounds 0 and n
instead of 1 and m.

We denote by Tk,� the expected number of iterations the (1 + 1) EA, started with
a search point in Ak , takes to generate a search point in A≥�. We further denote by

123

376 Algorithmica (2024) 86:367–395

Trand,� the expected number of iterations the (1+ 1) EA started with a random search
point takes to generate a solution in A≥�. These notions extend previously proposed
fine-grained run time notions: Trand,� is the fixed target run time first proposed in
[21] as a technical tool and advocated more broadly in [6]. The time Tk,n until the
optimum is found when starting with fitness k was investigated in [1] when k > n/2,
that is, when starting with a better-than-average solution. We spare the details and
only note that such fine-grained complexity notions (which also include the fixed-
budget complexity proposed in [42]) have given a much better picture on how to use
EAs effectively than the classic run time Trand,n alone. In particular, it was observed
that different parameters or algorithms are preferable when not optimizing until the
optimum or when starting with a good solution.

For all k, � ∈ [0..n], we denote by pk,� the probability that standard bit mutation
with mutation rate p = 1

n creates an offspring in A� from a parent in Ak . We also write
pk,≥� := ∑n

j=� pk, j to denote the probability to generate an individual in A≥� from
a parent in Ak . Then pi := pi,≥i+1 is the probability that the (1 + 1) EA optimizing
OneMax leaves the i-th fitness level.

5.1 Upper and Lower Bounds Via Fitness Levels

Using the notation just introduced, the classic fitness level method (see Theorem 4 and
note that the fitness of the parent individuals describes a non-decreasing level process
with state change probabilities pi) shows that

Tk,� ≤
�−1∑

i=k

1

pi
=: T̃k,�.

To prove a nearly matching lower bound employing our new methods, we first
analyze the probability that the (1 + 1) EA optimizing OneMax skips a particular
fitness level. Note that if qi is the probability to skip the i-th fitness level, then vi :=
1 − qi is the probability to visit the i-th level as used in Theorem 8.

Lemma 12 Let i ∈ [0..n]. Consider a run of the (1 + 1) EA with mutation rate
p = 1

n on the OneMax function started with a (possibly random) individual x with
OneMax(x) < i . Then the probability qi that during the run the parent individual
never has fitness i satisfies

qi ≤ n − i

n(1 − 1
n)i−1

.

Proof Since we assume that we start below fitness level i , by Lemma 10 (and using
the notation from that lemma for a moment) we have

qi ≤ max{Pr[x → A≥i+1 | x → A≥i] | OneMax(x) < i}
≤ max

k∈[0..i−1]
pk,≥i+1

pk,≥i
.

123

Algorithmica (2024) 86:367–395 377

Hence it suffices to show that pk,≥i+1
pk,≥i

≤ n−i
n(1− 1

n)i−1 for all k ∈ [0..i − 1], and this is

what we will do in the remainder of this proof.
Let us, slightly abusing the common notation, write Bin(m, p) to denote a random

variable following a binomial law with parameters m and p. Let k, � ∈ N with k ≤ �.
Noting that the only way to generate a search point in A� from some x ∈ Ak is to flip,
for some j ∈ [� − k..min{n − k, �}], exactly j of the n − k zero-bits of x and exactly
j − (� − k) of the k one-bits, we easily obtain the well-known fact that

pk,� =
min{n−k,�}∑

j=�−k

Pr[Bin(n − k, p) = j]Pr[Bin(k, p) = j − (� − k)]

=
min{n−k,�}∑

j=�−k

(
n − k

j

)(
k

j − (� − k)

)

p2 j−�+k(1 − p)n−2 j+�−k .

Since p = 1
n , the mode of Bin(n − k, p) is at most 1. Since the binomial distribution

is unimodal, we conclude that Pr[Bin(n − k, p) = j] ≤ Pr[Bin(n − k, p) = � − k]
for all j ≥ � − k. Consequently, the first line of the above set of equations gives

pk,� ≤ Pr[Bin(n − k, p) = � − k]
min{n−k,�}∑

j=�−k

Pr[Bin(k, p) = j − (� − k)]

≤ Pr[Bin(n − k, p) = � − k]Pr[Bin(k, p) ∈ [0..min{n − �, k}]]
≤ Pr[Bin(n − k, p) = � − k]

and thus

pk,≥� ≤ Pr[Bin(n − k, p) ≥ � − k]. (1)

We recall that our target is to estimate pk,≥i+1
pk,≥i

for all k ∈ [0..i − 1]. By (1), we have

pk,≥i+1 ≤ Pr[Bin(n − k, p) ≥ i + 1 − k]
≤ (i + 1 − k)(1 − p)

i + 1 − k − (n − k)p
Pr[Bin(n − k, p) = i + 1 − k],

where the last estimate is [29, equation following Lemma 1.10.38]. We also have
pk,≥i ≥ pk,i ≥ (1 − p)k Pr[Bin(n − k, p) = i − k]. Hence from

Pr[Bin(n − k, p) = i + 1 − k]
Pr[Bin(n − k, p) = i − k] =

(n−k
i+1−k

)
pi+1−k(1 − p)n−k−(i+1−k)

(n−k
i−k

)
pi−k(1 − p)n−k−(i−k)

= (n − i)p

(i + 1 − k)(1 − p)
,

123

378 Algorithmica (2024) 86:367–395

we conclude

pk,≥i+1

pk,≥i
≤ (i + 1 − k)(1 − p)

i + 1 − k − (n − k)p

(n − i)p

(i + 1 − k)(1 − p)k+1

= (n − i)p

((i − k) + (1 − (n − k)p))(1 − p)k

≤ n − i

n(i − k)(1 − 1
n)k

,

using again that p = 1
n . For k ∈ [0..i − 1], this expression is maximal for k = i − 1,

giving that qi ≤ n−i
n(1− 1

n)i−1 as claimed. �	
With this estimate, we can now easily give a very tight lower bound on the run time

of the (1 + 1) EA on OneMax.

Theorem 13 Let k, � ∈ [0..n] with k < �. Then the expected number Tk,� of iterations
the (1 + 1) EA optimizing OneMax and initialized with any search point x with
OneMax(x) = k takes to generate a search point z with fitness OneMax(z) ≥ � is
at least

Tk,� ≥ T̃k,� − (� − k − 1)e(e − 1) exp

(
k

n − 1

)

,

where T̃k,� is the upper bound stemming from the fitness level method as defined at
the beginning of this section. This lower bound holds also for Tk′,� with k′ ≤ k, that
is, when starting with a search point x with OneMax(x) ≤ k.

Proof We use our main result, Theorem 8. We note first that when assuming that the
level process regarded in Theorem 8 starts on level k′, then the expected time for it
to reach level � or higher is at least

∑�−1
i=k′

vi
pi
. This follows immediately from the

proof of the theorem or by applying the theorem to the level process (X ′
t) defined by

X ′
t = min{�, Xt } − k′ for all t .
Consider now a run of the (1+1)EAon theOneMax function startedwith an initial

search point x0 such that k′ = OneMax(x0) ≤ k. Denote by xt the individual selected
in iteration t as future parent. Then Xt = OneMax(xt) defines a level process. As
before, we denote the probabilities to visit level i by vi , to not visit it by qi = 1−vi , and
to leave it to a higher level by pi . Using our main result and the elementary argument
above, we obtain an expected run time of

Tk′,� ≥
�−1∑

i=k′

vi

pi
≥

�−1∑

i=k

vi

pi
≥

�−1∑

i=k

1

pi
−

�−1∑

i=k+1

qi
pi

.

We note that the first expression is exactly the upper bound T̃k,� stemming from the
classic fitness level method. We estimate the second expression. We have

pi = pi,≥i+1 ≥ pi,i+1 ≥ (1 − 1
n)n−1 n−i

n , (2)

123

Algorithmica (2024) 86:367–395 379

where the last estimate stems from regarding only the event that exactly one missing
bit is flipped. Together with the estimate qi ≤ n−i

n(1− 1
n)i−1 from Lemma 12, we compute

�−1∑

i=k+1

qi
pi

≤
�−1∑

i=k+1

n − i

n(1 − 1
n)i−1

n

(n − i)(1 − 1
n)n−1

=
�−1∑

i=k+1

(

1 + 1

n − 1

)n+i−2

=
(

1 + 1

n − 1

)n+k−1 �−k−2∑

j=0

(

1 + 1

n − 1

) j

=
(

1 + 1

n − 1

)n+k−1
(
1 + 1

n−1

)�−k−1 − 1
(
1 + 1

n−1

)
− 1

=
(

1 + 1

n − 1

)n+k−1

(n − 1)

((

1 + 1

n − 1

)�−k−1

− 1

)

≤ (n − 1) exp

(
n + k − 1

n − 1

)(

exp

(
� − k − 1

n − 1

)

− 1

)

= (n − 1)e exp

(
k

n − 1

)(

exp

(
� − k − 1

n − 1

)

− 1

)

≤ (n − 1)(e − 1)e exp

(
k

n − 1

)
� − k − 1

n − 1
, (3)

where the estimate in (3) uses the well-known inequality 1+r ≤ er valid for all r ∈ R

and the last estimate exploits the convexity of the exponential function in the interval
[0, 1], that is, that exp(α) ≤ 1 + α(exp(1) − exp(0)) for all α ∈ [0, 1]. �	

The result above shows that the classic fitness level method and our new lower
bound method can give very tight run time results. We note that the difference δk,� =
(� − k − 1)e(e − 1) exp(k

n−1) between the two fitness level estimates is only of order
O(�−k), in particular, only of order O(n) for the classic run time Trand,n , which itself
is of order Θ(n log n). Hence here the gap is only a term of lower order.

5.2 Estimating the Fitness Level Estimate T̃k,�

To make our results above meaningful, it remains to analyze the quantity T̃k,� =
∑�−1

i=k 1/pi , which is the estimate from the classic fitness level method.
Here, again, it turns out that upper bounds tend to be easier to obtain since they

require a lower bound for the pi , for which the estimate pi ≥ (1− 1
n)n−1 n−i

n from (2)
usually is sufficient. To ease the presentation, let us use the notation en = (1− 1

n)−(n−1)

and note that e(1 − 1
n) ≤ en ≤ e, see, e.g., [29, Corollary 1.4.6]. With this notation,

123

380 Algorithmica (2024) 86:367–395

the lower bound (2) gives the upper bound

T̃k,� ≤ enn
�−1∑

i=k

1

n − i
=: T̃+

k,�. (4)

To prove a lower bound, we observe that

pi =
n−i∑

d=1

Pr[Bin(n − i, p) = d]Pr[Bin(i, p) < d].

We can thus estimate

pi ≤ Pr[Bin(n − i, p) = 1]Pr[Bin(i, p) = 0] + Pr[Bin(n − i, p) ≥ 2]

≤
(

1 − 1

n

)n−1 n − i

n
+ (n − i)(n − i − 1)

2n2
, (5)

where the last inequality follows from the estimate Pr[Bin(n, p) ≥ k] ≤ (n
k

)
pk , see,

e.g., [34, Lemma 3] or [29, Lemma 1.10.37]. We note that the first summand in (5) is
exactly our lower bound (2) for pi , so it is the second term that determines the slack
of our estimates. We estimate coarsely

1

pi
≥

((

1 − 1

n

)n−1 n − i

n
+ (n − i)(n − i − 1)

2n2

)−1

= 2enn2

2n(n − i) + en(n − i)(n − i − 1)

= enn(2n + en(n − i − 1)) − e2nn(n − i − 1)

(n − i)(2n + en(n − i − 1))

= enn

n − i
− e2nn(n − i − 1)

(n − i)(2n + en(n − i − 1))
≥ enn

n − i
− 1

2
e2n .

Summing over the fitness levels, we obtain

T̃k,� =
�−1∑

i=k

1

pi

≥
�−1∑

i=k

(
enn

n − i
− 1

2
e2n

)

= T̃+
k,� − 1

2e
2
n(� − k) =: T̃−

k,�. (6)

123

Algorithmica (2024) 86:367–395 381

We note that our upper and lower bounds on T̃k,� deviate only by T̃+
k,� − T̃−

k,� =
1
2e

2
n(� − k). Together with Theorem 13, we have proven the following estimates for

Tk,�, which are tight apart from a term of order O(� − k).

Theorem 14 The expected number of iterations the (1 + 1) EA optimizing OneMax,
started with a search point of fitness k, takes to find a search point with fitness � or
larger, satisfies

enn
n−k∑

i=n−�+1

1

i
− (� − k − 1)e(e − 1) exp

(
k

n − 1

)

− 1

2
e2n(� − k)

≤ Tk,� ≤

enn
n−k∑

i=n−�+1

1

i
,

where en := (1 − 1
n)−(n−1).

We recall from above that e(1 − 1
n) ≤ en ≤ e. We add that for � < n, the sum

∑n−k
i=n−�+1

1
i is well-approximated by ln(n−k

n−�
), e.g., ln(n−k

n−�
) − 1 <

∑n−k
i=n−�+1

1
i <

ln(n−k
n−�

) or
∑n−k

i=n−�+1
1
i = ln(n−k

n−�
)−O(1

n−�
), see, e.g., [29, Sect. 1.4.2] and note that

∑n−k
i=n−�+1

1
i = ∑n−k

i=1
1
i − ∑n−�

i=1
1
i . For � = n, we have ln(n − k) <

∑n−k
i=n−�+1

1
i ≤

ln(n − k) + 1 and
∑n−k

i=n−�+1
1
i = ln(n − k) + O(1

n−k).
When starting the (1 + 1) EA with a random initial search point, the following

bounds apply.

Theorem 15 There is an absolute constant K such that the expected run time T =
Trand,n of the (1 + 1) EA with random initialization on OneMax satisfies

enn
n/2�∑

i=1

1

i
− 4.755n − K ≤ T ≤ enn

n/2�∑

i=1

1

i
+ K .

In particular,

en ln(n) − 4.871n − O(log n) ≤ T ≤ en ln(n) − 0.115n + O(1).

Proof By [11, Theorem 2], the expected run time of the (1 + 1) EA with random
initialization on OneMax differs from the expected run time when starting with a
search point on level AM , M := �n/2�, by at most a constant. Hence we have T ≤
TM,n + O(1) ≤ T̃+

M,n + O(1) = enn
∑n/2�

i=1
1
i + O(1) by Theorem 14.

For the lower bound, we use Eq. (3) in the proof of Theorem 13, which is slightly
tighter than the result stated in the theorem itself. Together with (6), we estimate

T ≥ TM,n − O(1)

123

382 Algorithmica (2024) 86:367–395

≥ T̃M,n − (n − 1) exp(n+M−1
n−1)(exp(n−M−1

n−1) − 1) − O(1)

≥ T̃+
M,n − 1

2e
2
n(n − M) − ne1.5 exp(0.5

n−1)(e
0.5 − 1) − O(1)

= T̃+
M,n − 1

4e
2n − n(1 + O(1n))(e2 − e1.5) − O(1)

= T̃+
M,n − n(54e

2 − e1.5) − O(1) ≥ T̃+
M,n − 4.755n − O(1).

The second set of estimates stems from noting that T̃+
M,n = enn

∑n/2�
i=1

1
i =

enn(ln(n/2�) + γ ± O(1n)) = e(1 − O(1n))n(ln n − ln 2 + γ ± O(1n)), where
γ = 0.5772156649 . . . is the Euler-Mascheroni constant. �	

Let us comment a little on the tightness of our result. Due to the symmetries in
the OneMax process, the probability to leave the i-th fitness level is independent of
the particular search point x ∈ Ai the current parent is equal to. Consequently, in
principle, Theorems 9 and 8 give the exact bound

E[T] =
n−1∑

k=0

2−n
(
n

k

) n−1∑

i=k

vi |k
pi

,

where vi |k denotes the probability that the process started on level k visits level i .
The reasonwhywe cannot avoid a gap of orderΘ(n) in our bounds is that computing

the vi |k and pi precisely is very difficult. Let us regard the vi |k first. It is easy to see
that states i with k < i ≤ (1 − ε)n, ε a positive constant, have a positive chance
of not being visited: By Lemma 12, with probability Ω(1) level i − 1 is visited and
from there, again with probability Ω(1), a two-bit flip occurs that leads to level i + 1.
Since with constant probability the last level visited below level i is not i − 1, and
since skipping level i conditional on the last level below i being at most i − 2 is, by a
positive constant, less likely that skipping level i when on level i − 1 before (that is,
pi−2,≥i+1
pi−2,≥i

≤ pi−1,≥i+1
pi−1,≥i

− Ω(1), we omit a formal proof of this statement), our estimate

qi |k ≤ max j∈[k..i−1]
p j,≥i+1
p j,≥i

already leads to a constant factor loss in the estimate of
the qi , which translates into a Θ(n) contribution to the gap of our lower bound from
the truth. To overcome this, one would need to compute qi |k = ∑i−1

j=k Q j |k
p j,≥i+1
p j,≥i

precisely, where Q j |k is the probability that level j is the highest level visited below
i in a process started on level k. This appears very complicated.

The second contribution to our Θ(n) gap is the estimate of pi . We need a lower
bound on pi both in the estimate of the run time advantage due to not visiting all
levels (see Eq. (3)) and in the estimate of the run time estimate stemming from the
fitness level method (4). Since the qi are Ω(1) when i ≤ (1 − ε)n, a constant-factor
misestimation of the pi leads to a Θ(n) contribution to the gap. Unfortunately, it is
hard to avoid a constant-factor misestimation of the pi , i ≤ (1 − ε)n. Our estimate
pi ≥ (1 − 1

n)n−1 n−i
n only regards the event that the i-th level is left (to level i + 1)

by flipping exactly one zero-bit into a one-bit. However, for each constant j the event
that level i + 1 is reached by flipping j + 1 zero-bits and j one-bits has a constant
probability of appearing. Moreover, for each constant j the event that level i is left to
level i + j also has a constant probability. For these reasons, a precise estimate of the

123

Algorithmica (2024) 86:367–395 383

pi appears rather tedious. We could imagine that either the methods developed in or
partial results proven in [36] could help giving more precise estimates for vi |k and pi ,
or even more directly for vi |k

pi
, but most likely this would still not be elementary.

In summary, we feel that our method quite easily gave a run time estimate precise
apart from terms of order O(n), but for more precise results drift analysis [45] might
be the better tool (though still the relatively precise estimate of the expected progress
from a level i ≤ (1 − ε)n, which will necessarily be required for such an analysis,
will be difficult to obtain).

5.3 Comparison with the Literature

We end this section by giving an overview on the previous works analyzing the run
time of the (1 + 1) EA on OneMax and comparing them to our result. Some of the
results described in the following, in particular, Sudholt’s lower bound [59], were also
proven for general mutation rates p instead of only p = 1

n . To ease the comparison
with our result, we only state the results for the case that p = 1

n . We note that with our
method we could also have analysed broader ranges of mutation rates. The resulting
computations, however, would have been more complicated and would have obscured
the basic application of our method.

To the best of our knowledge, the first to state and rigorously prove a run time
bound for OneMax was Rudolph in his dissertation [53, p. 95], who showed that
T = Trand,n satisfies E[T] ≤ (1− 1

n)n−1n
∑n

i=1
1
i , which is exactly the upper bound

T̃+
0,n from the fitness level method and from only regarding the events that levels are

left via one-bit flips. A lower bound of n ln(n)− O(n log log n) was shown in [18] for
the optimization of a general separable function with positive weights when starting
in the search point (0, . . . , 0). From the proof of this result, it is clear that it holds
for any pseudo-Boolean function with unique global optimum (1, . . . , 1). This lower
bound builds on the argument that each bit needs to be flipped at least once in some
mutation step. It is not difficult to see that the expected time until this event happens
is indeed (1 ± o(1))n ln n, so this argument is too weak to make the leading constant
of E[T] precise.

Only a very short time after these results and thus quite early in the young history
of run time analysis of evolutionary algorithms, Garnier, Kallel, and Schoenauer [33]
showed that E[T] = en ln(n) + c1n + o(n) for a constant c1 ≈ −1.9, however, the
completeness of their proof has been doubted in [36]. Since at that early time precise
run time analyses were not very popular, it took a while until Doerr, Fouz, and Witt
[16] revisited this problem and showed with E[T] ≥ (1 − o(1))en ln(n) the first
lower bound that made the leading constant precise. Their proof used a variant of
additive drift from [39] together with the potential function ln(Zt), where Zt denotes
the number of zeroes in the parent individual at time t . Shortly later, Sudholt [58]
(journal version [59]) used his fitness level method for lower bounds to show E[T] ≥
en ln(n) − 2n log log n − 16n. That the run time was E[T] = en ln(n) − Θ(n) was
provenfirst in [17],where an upper boundof en ln(n)−0.1369n+O(1)2 was shownvia
variable drift for upper bounds [40,49] and a lower bound of E[T] ≥ en ln(n)−O(n)

2 The constant 0.1369 was wrongly stated as 0.369 as pointed out in [48]

123

384 Algorithmica (2024) 86:367–395

was shown via a new variable drift theorem for lower bounds on hitting times. An
explicit version of the lower boundof en ln(n)−7.81791n−O(log n) and an alternative
proof of the upper bound en ln(n) − 0.1369n + O(1) was given in [48] via a very
general drift theorem.

The final answer to this problem was given in an incredibly difficult work by
Hwang, Panholzer, Rolin, Tsai, and Chen [36] (see [37] for a simplified version), who
showed E[T] = en ln(n)+c1n+ 1

2e ln(n)+c2+O(n−1 log n)with explicit constants
c1 ≈ −1.9 and c2 ≈ 0.6.

In the light of these results, we feel that our proof of an en ln(n)±O(n) bound is the
first simple proof a run time estimate of this precision for this problem. Interestingly,
our explicit lower bound en ln(n) − 4.871n − O(log n) is even a little stronger than
the bound en ln(n) − 7.81791n − O(log n) proven with drift methods in [48].

6 Jump Functions

In this section, we regard jump functions, which comprise the most intensively studied
benchmark in the theory of randomized search heuristics that is not unimodal and
which has greatly aided our understanding of how different heuristics cope with local
optima [2–5,9,10,14,15,19,26,28,30,41,43,46,51,54–56,65].

For all representation lengths n and all k ∈ [1..n], the jump functionwith jump size
k is defined by

Jumpn,k(x) =
{ ‖x‖1 + k if ‖x‖1 ∈ [0..n − k] ∪ {n},
n − ‖x‖1 if ‖x‖1 ∈ [n − k + 1..n − 1],

for all x ∈ {0, 1}n . Jump functions have a fitness landscape isomorphic to OneMax,
except on the fitness valley or gap

Gn,k := {
x ∈ {0, 1}n | n − k < ‖x‖1 < n

}
,

where the fitness is low and deceptive (pointing away from the optimum).
For simple elitist heuristics, not surprisingly, the time to find the optimum is strongly

related to the time to cross the valley of lowfitness. For the (1+1)EAwithmutation rate
1
n , the probability to generate the optimum from a search point on the local optimum
L = {x ∈ {0, 1}n | ‖x‖1 = n − k} is pk = (1 − 1

n)n−kn−k , and hence the expected
time to cross the valley of low fitness is 1

pk
.

The true expected run time deviates slightly from this value, both because some
time is spent to reach the local optimum and because the algorithm may be lucky and
not need to cross the valley or not in its full width. The first aspect, making additive
terms of order at most O(n log n) more precise, can be treated with arguments very
similar to the ones of the previous section, so we do not discuss this here. More
interesting appears to be the second aspect. In particular for larger values of k, the
algorithm has a decent chance to start in the fitness valley. It is clear that even when
starting in the valley, the deceptive nature of the valley will lead the algorithm rather
towards the local optimum. We show now how our argumentation via omitted fitness

123

Algorithmica (2024) 86:367–395 385

levels allows to prove very precise bounds with elementary arguments. In principle,
we could also use our fitness level theorem, but since we shall regard only the single
level Nn,k = {x ∈ {0, 1}n | ‖x‖1 ∈ [0..n − k]}, we shall not make this explicit and
simply use the classic typical-run argument (that except with some probability q, a
state is reached from which the expected run time is at least some t , and that this gives
a lower bound of (1 − q)t for the expected run time).

The two previous analyses of the run time of the (1+1) EA on jump functions deal
with the problem of starting in the valley in a different manner. In [19], it is argued
that with probability at least 1

2 , the initial search point has at most n
2 ones. In case the

initial search point is nevertheless in the gap region (because k > n
2), then with high

probability a OneMax-style optimization process will reach the local optimum with
high probability in time O(n2) except when in this period the optimum is generated.
Since all parent individuals in this period have Hamming distance at least n

2 from
the optimum, the probability for this exceptional event is exponentially small. This
argument proves an Ω(1

pk
) bound for the expected run time, and this for all values of

k ≥ 2. In [26], only the case k ≤ n
2 was regarded and it was exploited that in this case,

the probability for the initial search point to be in the gap (or the optimum) is only
2−n

(n
≤k−1

)
. This gives a lower bound of

(
1− 2−n

(n
≤k−1

)) 1
pk
, which is tight including

the leading constant for k ∈ [2.. n2 − ω(
√
n)].

We now show that estimating the probability of never reaching a search point x
with ‖x‖1 ≤ n − k is not difficult with arguments similar to the ones used in the
previous section. We need a slightly different approach since now the probability to
skip a fitness level is not maximal when closest to this fitness level (the probability
to skip Nn,k is maximal when the algorithm is in the lowest fitness level, which is in
Hamming distance k−1 from Nn,k). Interestingly, we obtain very tight bounds which
could be of some general interest, namely that the probability to never reach a point x
with ‖x‖ ≤ n − k is O(1n), when allowing an arbitrary initialization (different from
the global optimum), and is only O(2−n) when using the usual random initialization.

Theorem 16 Let n ∈ N and k ∈ [2..n]. Consider a run of the (1+1) EA with mutation
rate p = 1

n on the jump function Jumpn,k . Denote by N := Nn,k = {x ∈ {0, 1}n |
‖x‖1 ∈ [0..n − k]} the set of non-optimal solutions that do not lie in the gap region of
the jump function and by pk = (1− 1

n)n−kn−k the probability to generate the optimum
from a solution on the local optimum.

(i) Assume that the (1 + 1) EA starts with an arbitrary solution different from the
global optimum. Then with probability 1− O(1n), the algorithm reaches a search

point in N. Consequently, the expected run time is at least (1 − O(1n))p−1
k .

(ii) Assume that the (1+ 1) EA starts with a random initial solution. Then with prob-
ability 1− O(2−n), the algorithm reaches a search point in N. Consequently, the
expected run time is at least (1 − O(2−n))p−1

k .

Proof Denote by f the jump function Jumpn,k . We consider the partition of the search
space into the fitness levels of the gap as well as N and the optimum. Hence let

A j := {x ∈ {0, 1}n | f (x) = j} for j ∈ [1..k − 1],

123

386 Algorithmica (2024) 86:367–395

Ak := {x ∈ {0, 1}n | f (x) ∈ [k..n]} = N ,

Ak+1 := {(1, . . . , 1)}.

Let us also denote by G = A≤k−1 the set of solutions in the gap region. Our first
claim is that, regardless of the initialization as long as different from the optimum, the
probability qk that the algorithm never has the parent individual in Ak is O(1n). Since
we start the algorithm with a non-optimal search point, the only way the algorithm
can avoid Ak is that it starts with a solution in G and that at some time it generates the
global optimum from a solution in G. Denote by r j the probability that the algorithm,
if the current search point is in A j , in the remaining run generates the optimum from
a search point in A j . Then by a simple union bound, qk is at most the sum of the r j .
More precisely, let R j , j ∈ [1..k − 1], denote the event that the algorithm ever has a
search point from A j as parent individual. Then

qk =
k−1∑

j=1

Pr[R j]r j ≤
k−1∑

j=1

r j .

The probability r j is exactly the probability that in the iteration in which from a
search point in A j a better individual is generated, this is actually the global optimum.
Hence r j = Pr[y = (1, . . . , 1) | f (y) > j], where y is amutation offspring generated
from a search point in A j . To be on the safe side, we also make this argument more
precise. Let us denote the parent individual at time t by x (t). Let t0 be a time such that
x (t0) ∈ A j . For all t ∈ N0, let Ot be the event that x (t) ∈ A j and x (t+1) = (1, . . . , 1),
that is, that in interation t the optimum is generated from a parent in A j . Then r j =∑∞

t=t0 Pr[Ot]. Let T+ be the first (and only) time that from a search point in A j a
better solution is generated, that is, such that x (t) ∈ A j and f (x (t+1)) > f (x (t)). By
the law of total probability, we have

Pr[Ot] = Pr[t = T+]Pr[Ot | t = T+] + Pr[t �= T+]Pr[Ot | t �= T+].

We note that Pr[Ot | t �= T+] = 0 because t < T+ implies x (t+1) ∈ A j and thus
x (t+1) �= (1, . . . , 1) and because t > T+ implies x (t) /∈ A j . Hence r j = ∑∞

t=t0 Pr[t =
T+]Pr[Ot | t = T+]. Since we have a Markov process, the particular time t has no
influence on the transition probabilities, and since we have symmetry in all search
points having the same number of ones, the particular parent at time T+ is irrelevant
(apart from the fact that it is in A j). Consequently, r j = Pr[f (y) = (1, . . . , 1) |
f (y) > j], where y is a mutation offspring from an arbitrary point in A j .
We now compute

r j = Pr[y = (1, . . . , 1) | f (y) > j] = Pr[y = (1, . . . , 1)]
Pr[f (y) > j]

≤ n− j

(1 − 1
n)n−1 n− j

n

≤ e

n j−1(n − j)
, (7)

123

Algorithmica (2024) 86:367–395 387

where we estimated the probability to generate a search point with fitness better than
j by the probability of the event that a single one is flipped into a zero. Consequently,

qk ≤ ∑k−1
j=1 r j ≤ ∑n−1

j=1
e

n j−1(n− j)
= O(1n).

Once a search point in Ak is reached, the remaining run time dominates a geometric
distribution with success probability pk = (1 − 1

n)n−kn−k , simply because each of
the following iterations (before the optimum is found) has at most this probability of
generating the optimum; hence the expected remaining run time is at least 1

pk
. This

shows that the expected run time of the (1+1) EA started with any non-optimal search
point is at least (1 − qk)

1
pk
.

For the case of a random initialization, we proceed in a similar manner, but also
use the trivial observation that to skip the fitness range N by jumping from A j , j ∈
[1..k − 1], right into the optimum, it is necessary that the algorithm visits A j . To visit
A j , it is necessary that the initial search point lies in A1 ∪ · · · ∪ A j , which happens
with probability 2−n ∑k−1

i=1

(n
i

)
only. This, together with the observation that the only

other way to avoid Ak is that the initial individual is already the optimum, gives

qk ≤
k−1∑

j=1

⎛

⎝2−n
j∑

i=1

(
n

i

)
⎞

⎠ r j + 2−n .

Using a tail estimate for binomial distributions (equation (VI.3.4) in [31], also to be
found as (1.10.62) in [29]), we bound

∑ j
i=1

(n
i

) ≤ 1.5
(n
j

)
for all j ≤ 1

4n. We also note

from (7) that r j ≤ 4n− j in this case. For j ≥ 1
4n, we trivially have

∑ j
i=1 2

−n
(n
i

)
r j ≤

r j ≤ er−(j−1). Consequently,

qk ≤
n−1∑

j=1

⎛

⎝2−n
j∑

i=1

(
n

i

)
⎞

⎠ r j + 2−n

≤ 2−n1.5
�n/4�∑

j=1

(
n

j

)

r j +
n−1∑

j=n/4�
en−(j−1) + 2−n

≤ 2−n1.5
�n/4�∑

j=0

n j

j ! 4n
− j + O(n−(n/4)+1)

≤ 2−n6
�n/4�∑

j=0

1

j ! + O(n−(n/4)+1)

≤ 2−n6
∞∑

j=0

1

j ! + O(n−(n/4)+1) = 2−n6e + O(n−(n/4)+1).

Hence, as above, the expected run time is at least (1 − qk)
1
pk

= (1 − O(2−n)) 1
pk
. �	

123

388 Algorithmica (2024) 86:367–395

Wenote that theO(1n) term in thebound for arbitrary initialization cannot be avoided
in general, simply because when starting with a search point that is a neighbor of the
optimum, the first iteration with probability at least 1

en generates the optimum. The
O(2−n) term in the bound for random initialization is apparently necessary because
with probability 2−n already the initial random solution is the global optimum.

We also note that we did not optimize the implicit constants in the O(1n) and O(2−n)

term.Withmore care, these could be replacedby (1+o(1)) 1
e−1

1
n and (1+o(1)) e

e−12
−n ,

respectively.

7 A Bound for Long k-Paths

Long k-paths, introduced in [52], have been studied in various places; we point the
reader to [57] for a discussion, which also contains the formalization that we use. A
lower bound for long k-paths using FLM with viscosities was given in [59].

We use [57, Lemma 3] (phrased as a definition below) and need to know no further
details about what a long k-path is. In fact, our proof uses all the ideas of the proof of
[59], but cast in terms of our FLM with visit probabilities, which, we believe, makes
the proof simpler and the core ideas given by [59] more prominent. Note that [59]
first needs to extend the FLM with viscosities by introducing an additional parameter
before it is applicable in this case.

Definition 17 Let k, n be given such that k divides n. A long k-path is function f :
{0, 1}n → R such that

– The 0-bit string has a fitness of 0; there are m = k2n/k − k bit strings of positive
fitness, and all these values are distinct; all other bit strings have negative fitness.
We call the bit strings with non-negative fitness as being on the path and consider
them ordered by fitness (this way we can talk about the “next” element on the
path).

– For each bit string with non-negative fitness and each i < k, the bit string with
i-next higher fitness is exactly a Hamming distance of i away.

– For each bit string with non-negative fitness and each i ≥ k, the bit string with
i-next higher fitness is at least a Hamming distance of k away.

For an explicit construction of a long k-path, see [19,57]. The long k-paths are designed
such that optimization proceeds by following the (long) path and true shortcuts are
unlikely, since they require jumping at least k.

The following lower bound for optimizing long k-paths with the (1+1) EA is given
in [59]. Note that n is the length of the bit strings, m is the length of the path and p is
the mutation rate.

m
1 − 2p

p(1 − p)n
1 − 2p

1 − p

(

1 −
(

p

1 − p

)k
)m

. (8)

We want to show here that we can derive the essentially same bound with the same
ideas but less technical details.

123

Algorithmica (2024) 86:367–395 389

Note that the lower bound given in [59] is only meaningful for k ≥ √
n/ log(1/p),

as the last term of the bound would otherwise be close to 0:
(

1 −
(

p

1 − p

)k
)m

≤
(
1 − pk

)m ≤ exp(−mpk)

≤ exp(−2n/k pk) = exp(−2n/k−k log(1/p)).

We have that n/k − k log(1/p) is positive if and only if n/ log(1/p) ≥ k2.

In fact, if k = ω
(√

n/ log(1/p)
)
, we have

(

1 −
(

p

1 − p

)k
)m

≥
(
1 − (2p)k

)m

≥ 1 − m(2p)k

≥ 1 − 23n/k−k log(1/p)

= 1 − 2
√
no(log(1/p))−√

nω(log(1/p))

= 1 − 2−√
nω(log(1/p))

≥ 1 − 2−√
n .

This also entails

p ≤ exp(−n/k2).

With our fitness level method, we obtain the following lower bound. It differs
from Sudholt’s bound (8) by an additional term m, which reduces the lower bound.
Analyzing why this term does not appear in Sudholt’s analysis, we note that the γi, j
chosen in [59] are underestimating the true probability to jump to elements of the path
that aremore than k steps (on the path) away.When this is corrected, as confirmed to us
by the author, Sudholt’s proof would also only show our bound below. Consequently,
there is currently no proof for (8).

Theorem 18 Consider the (1+ 1) EA on a long k-path of length m with mutation rate
p ≤ 1/2 starting at the all-0 bit string (the start of the path).3

Let T be the (random) time for the (1 + 1) EA to find the optimum. Then

E[T] ≥ m
1 − 2p

p(1 − p)n
1 − 2p

1 − p

(

1 − m

(
p

1 − p

)k−1
)m

.

Proof We are setting up to apply Theorem 8. We partition the search space in the
canonical way such that, for all i ≤ m with i > 0, Ai contains the only i-th point
of the path and nothing else, and A0 contains all points not on the path. In order to

3 This simplifying assumption about the start point was also made in [59].

123

390 Algorithmica (2024) 86:367–395

simplify the analysis, we will first change the behavior of the algorithm such that it
discards any offspring which differs from its parent by at least k bits. This will allow
us to apply Theorem 8 quickly and cleanly, afterwards we will show that the progress
of this modified algorithm is very close to the progress of the original algorithm.

In this modified process, we first consider the probability pi to leave a given level
i < m. For this, the algorithm has to jump up exactly j < k fitness levels, which is
achieved by flipping a specific set of j bits; the probability for this is

pi =
k−1∑

j=1

p j (1 − p)n− j ≤ (1 − p)n
∞∑

j=1

(
p

1 − p

) j

= (1 − p)n
p/(1 − p)

1 − p/(1 − p)

= p(1 − p)n
1

1 − 2p
.

Next we consider the probability vi to visit a level i . We want to apply Lemma 10,
so let some x ∈ A<i be given, on level �(x). Let d = i − �(x). Note that d is the
Hamming distance between x and the unique point in Ai . Thus, in case of d ≥ k, we
have Pr[x → Ai] = 0, so suppose d < k. Then we have

Pr

[

x → Ai

∣
∣
∣
∣ x →

m⋃

j=i

A j

]

= Pr[x → Ai]
Pr[x → ⋃m

j=i A j]

= pd(1 − p)n−d

∑k
j=d p j (1 − p)n− j

= 1
∑k

j=d p j−d(1 − p)d− j

= 1
∑k−d

j=0 p j (1 − p)− j

≥ 1
∑∞

j=0 p
j (1 − p)− j

= 1 − p

1 − p

= 1 − 2p

1 − p
.

By Lemma 10, we can use this last term as vi in Theorem 8 (it also fulfills the second
condition of Lemma 10, since the process starts deterministically in the 0 string). Note
that neither pi nor vi depends on i . Using Theorem 8 and recalling that we have m
levels, we get a lower bound of

m
1 − 2p

p(1 − p)n
1 − 2p

1 − p
.

123

Algorithmica (2024) 86:367–395 391

Note that this is exactly the term derived in [59] except for a term correcting for the
possibility of jumps of more than k bits, which we also still need to correct for.

We now show that this probability of making a successful jump of distance at least
k is small. To that end we will show that it is very unlikely to leave a fitness level with
a large jump rather than just move to the next level.

Suppose the algorithm is currently at x ∈ Ai . Leaving x with a jump of at least k
to a specific element on the path is less likely the longer the jump is (since p ≤ 1/2).
Thus, we can upper bound the probability of jumping to an element of the path which
is more than k away as pk(1 − p)n−k . Thus, conditional on leaving the fitness level,
the probability of leaving it with a ≥ k-jump is

Pr[x → A≥i+k | x → A>i] = Pr[x → A≥i+k]
Pr[x → A>i]

≤ mpk(1 − p)n−k

p(1 − p)n−1

= m

(
p

1 − p

)k−1

.

Thus, the probability of never making an accepted jump of at least k is bounded from
below by the probability to, independently once for each of the m fitness levels, leave
the fitness level with a 1-step rather than a jump of at least k:

(

1 − m

(
p

1 − p

)k−1
)m

.

By pessimistically assuming that the process takes a time of 0 in case it ever makes
an accepted jump of at least k, we can lower-bound the expected time of the original
process to reach the optimum as the product of the expected time of the modified
process times the probability to never make progress of k or more. �	

8 Conclusion

In this work, we proposed a simple and natural way to prove lower bounds via fitness
level arguments. The key to our approach is that the true run time can be expressed
as the sum of the waiting times to leave a fitness level, weighted with the probability
that this level is visited at all. When applying this idea, usually the most difficult
part is estimating the probabilities to visit the levels, but as our examples Leading-
Ones, OneMax, jump functions, and long paths show, this is not overly difficult and
clearly easier than setting correctly the viscosity parameters of the previous fitness
level method for lower bounds. For this reason, we are optimistic that our method will
be an effective way to prove other lower bounds in the future, most easily, of course,
for problems where upper bounds were proven via fitness level arguments as well.

Our method makes most sense for elitist evolutionary algorithms even though
by regarding the best-so-far individual any evolutionary algorithm gives rise to a

123

392 Algorithmica (2024) 86:367–395

non-decreasing level process (at the price that the estimates for the level leaving
probabilities become weaker). We are optimistic that our method can be extended
to non-elitist algorithms, though. We note that the level visit probability vi for an
elitist algorithm is equal to the expected number of separate visits to this level (sim-
ply because each level is visited exactly once or never). When defining the vi as the
expected number of times the i-th level is visited, our upper and lower bounds of
Theorems 8 and 9 remain valid (the proof would use Wald’s equation). We did not
detail this in our work since our main focus were the elitist examples regarded in [59],
but we are optimistic that this direction could be interesting to prove lower bounds
also for non-elitist algorithms.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Antipov, Denis, Buzdalov, Maxim, Benjamin, Doerr: First steps towards a runtime analysis when
starting with a good solution. In: Parallel problem solving from nature, PPSN 2020, Part II., pp.
560–573. Springer, Cham (2020)

2. Antipov, Denis, Buzdalov, Maxim, Doerr Benjamin: Lazy parameter tuning and control: choosing
all parameters randomly from a power-law distribution. In: Genetic and Evolutionary Computation
Conference, GECCO 2021, pp. 1115–1123. ACM (2021)

3. Antipov, Denis, Doerr, Benjamin: Runtime analysis of a heavy-tailed (1+ (λ, λ)) genetic algorithm on
jump functions. In Parallel Problem Solving From Nature, PPSN 2020, Part II, pp. 545–559. Springer,
(2020)

4. Antipov, Denis, Doerr, Benjamin, Karavaev, Vitalii: The (1+ (λ, λ)) GA is even faster on multimodal
problems. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1259–1267.
ACM, (2020)

5. Benbaki Riade, Benomar Ziyad, Doerr Benjamin: A rigorous runtime analysis of the 2-MMASib on
jump functions: ant colony optimizers can cope well with local optima. In: Genetic and Evolutionary
Computation Conference, GECCO 2021, pp. 4–13. ACM, (2021)

6. Buzdalov, Maxim, Doerr, Benjamin, Doerr, Carola, Vinokurov, Dmitry: Fixed-target runtime analysis.
In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1295–1303. ACM, (2020)

7. Böttcher, Süntje, Doerr, Benjamin, Neumann, Frank: Optimal fixed and adaptive mutation rates for
the LeadingOnes problem. In: Parallel Problem Solving from Nature, PPSN 2010, pp. 1–10. Springer,
(2010)

8. Corus, Dogan, Dang, Duc-Cuong., Eremeev, Anton V., Lehre, Per Kristian: Level-based analysis of
genetic algorithms and other search processes. IEEE Trans. Evolut. Comput. 22, 707–719 (2018)

9. Corus, Dogan, Oliveto, Pietro S., Yazdani, Donya: On the runtime analysis of the Opt-IA artificial
immune system. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 83–90.
ACM, (2017)

10. Corus, Dogan, Oliveto, Pietro S., Yazdani, Donya: Fast artificial immune systems. In: Parallel Problem
Solving from Nature, PPSN 2018, Part II, pp. 67–78. Springer, (2018)

11. Doerr, Benjamin, Doerr, Carola: The impact of random initialization on the runtime of randomized
search heuristics. Algorithmica 75, 529–553 (2016)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2024) 86:367–395 393

12. Doerr, Benjamin, Doerr, Carola, Kötzing, Timo: Static and self-adjusting mutation strengths for multi-
valued decision variables. Algorithmica 80, 1732–1768 (2018)

13. Doerr, Benjamin, Doerr, Carola, Yang, Jing: Optimal parameter choices via precise black-box analysis.
Theor. Comput. Sci. 801, 1–34 (2020)

14. Dang, Duc-Cuong, Friedrich, Tobias, Kötzing, Timo, Krejca, Martin S., Lehre, Per Kristian, Oliveto,
Pietro S., Sudholt, Dirk, Sutton, Andrew M.: Escaping local optima with diversity mechanisms and
crossover. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 645–652. ACM,
2016

15. Dang, Duc-Cuong., Friedrich, Tobias, Kötzing, Timo, Krejca, Martin S., Lehre, Per Kristian, Oliveto,
Pietro S., Sudholt, Dirk, Sutton, Andrew M.: Escaping local optima using crossover with emergent
diversity. IEEE Trans. Evol. Comput. 22, 484–497 (2018)

16. Doerr, Benjamin, Fouz, Mahmoud, Witt, Carsten: Quasirandom evolutionary algorithms. In: Genetic
and Evolutionary Computation Conference, GECCO 2010, pp. 1457–1464. ACM (2010)

17. Doerr, Benjamin, Fouz, Mahmoud, Witt, Carsten: Sharp bounds by probability-generating functions
and variable drift. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 2083–
2090. ACM (2011)

18. Droste, Stefan, Jansen, Thomas, Wegener, Ingo: A rigorous complexity analysis of the (1 + 1) evolu-
tionary algorithm for separable functions with boolean inputs. Evol. Comput. 6, 185–196 (1998)

19. Droste, Stefan, Jansen, Thomas, Wegener, Ingo: On the analysis of the (1+1) evolutionary algorithm.
Theor. Comput. Sci. 276, 51–81 (2002)

20. Doerr, Benjamin, Johannsen, Daniel, Winzen, Carola: Multiplicative drift analysis. Algorithmica 64,
673–697 (2012)

21. Doerr, Benjamin, Jansen, Thomas, Witt, Carsten, Zarges, Christine: A method to derive fixed budget
results from expected optimisation times. In: Genetic and Evolutionary Computation Conference,
GECCO 2013, pp. 1581–1588. ACM (2013)

22. Doerr, Benjamin, Kötzing, Timo: Multiplicative up-drift. In: Genetic and Evolutionary Computation
Conference, GECCO 2019, pp. 1470–1478. ACM (2019)

23. Doerr, Benjamin, Kötzing, Timo: Lower bounds from fitness levels made easy. In: Genetic and Evo-
lutionary Computation Conference, GECCO 2021, pp. 1142–1150. ACM (2021)

24. Doerr, Benjamin, Kötzing, Timo, Gregor Lagodzinski, J.A., Lengler, Johannes: The impact of lex-
icographic parsimony pressure for ORDER/MAJORITY on the run time. Theor. Comput. Sci. 816,
144–168 (2020)

25. Dang, Duc-Cuong., Lehre, Per Kristian: Runtime analysis of non-elitist populations: from classical
optimisation to partial information. Algorithmica 75, 428–461 (2016)

26. Doerr, Benjamin, Le, Huu Phuoc, Makhmara, Régis, Nguyen, Ta Duy: Fast genetic algorithms. In
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

27. Doerr, Benjamin: Analyzing randomized search heuristics via stochastic domination. Theor. Comput.
Sci. 773, 115–137 (2019)

28. Doerr, Benjamin: Does comma selection help to cope with local optima?. In: Genetic and Evolutionary
Computation Conference, GECCO 2020, pp. 1304–1313. ACM (2020)

29. Doerr, Benjamin: Probabilistic tools for the analysis of randomized optimization heuristics. In: Ben-
jamin Doerr and Frank Neumann (ed.), Theory of Evolutionary Computation: Recent Developments
in Discrete Optimization, pp. 1–87. Springer, 2020. Also available at arxiv: 1801.06733

30. Doerr, Benjamin, Zheng, Weijie: Theoretical analyses of multi-objective evolutionary algorithms on
multi-modal objectives. In:Conference onArtificial Intelligence,AAAI2021, pp. 12293–12301.AAAI
Press (2021)

31. Feller, William: An introduction to probability theory and its applications, vol. I, 3rd edn. Wiley,
Amsterdam (1968)

32. Feldmann, Matthias, Kötzing, Timo: Optimizing expected path lengths with ant colony optimization
using fitness proportional update. In: Foundations of Genetic Algorithms, FOGA 2013, pp. 65–74.
ACM (2013)

33. Garnier, Josselin, Kallel, Leila, Schoenauer, Marc: Rigorous hitting times for binary mutations. Evol.
Comput. 7, 173–203 (1999)

34. Gießen, Christian, Witt, Carsten: The interplay of population size and mutation probability in the
(1 + λ) EA on OneMax. Algorithmica 78, 587–609 (2017)

35. Gießen, Christian, Witt, Carsten: Optimal mutation rates for the (1 + λ) EA on OneMax through
asymptotically tight drift analysis. Algorithmica 80, 1710–1731 (2018)

123

http://arxiv.org/abs/1801.06733

394 Algorithmica (2024) 86:367–395

36. Hwang,Hsien-Kuei., Panholzer, Alois, Rolin, Nicolas, Tsai, Tsung-Hsi., Chen,Wei-Mei.: Probabilistic
analysis of the (1+1)-evolutionary algorithm. Evol. Comput. 26, 299–345 (2018)

37. Hwang, Hsien-Kuei, Witt, Carsten: Sharp bounds on the runtime of the (1+1) EA via drift analysis and
analytic combinatorial tools. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 1–12. ACM
(2019)

38. He, Jun, Yao, Xin: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell.
127, 51–81 (2001)

39. Jägersküpper, Jens:Algorithmic analysis of a basic evolutionary algorithm for continuous optimization.
Theor. Comput. Sci. 379, 329–347 (2007)

40. Johannsen, Daniel: Random Combinatorial Structures and Randomized Search Heuristics. PhD thesis,
Universität des Saarlandes, (2010)

41. Jansen, Thomas, Wegener, Ingo: The analysis of evolutionary algorithms - a proof that crossover really
can help. Algorithmica 34, 47–66 (2002)

42. Jansen, Thomas, Zarges, Christine: Performance analysis of randomised search heuristics operating
with a fixed budget. Theor. Comput. Sci. 545, 39–58 (2014)

43. Lehre, Per Kristian: Negative drift in populations. In: Parallel Problem Solving from Nature, PPSN
2010, pp. 244–253. Springer, (2010)

44. Lehre, Per Kristian: Fitness-levels for non-elitist populations. In: Genetic and Evolutionary Computa-
tion Conference, GECCO 2011, pp. 2075–2082. ACM, (2011)

45. Lengler, Johannes: Drift analysis. In Benjamin Doerr and Frank Neumann, editors, Theory of Evolu-
tionary Computation: Recent Developments in Discrete Optimization, pp. 89–131. Springer, (2020).
Also available at arXiv:1712.00964

46. Lissovoi, Andrei, Oliveto, Pietro S., Warwicker, John Alasdair: On the time complexity of algorithm
selection hyper-heuristics formultimodal optimisation. In: Conference onArtificial Intelligence,AAAI
2019, pp. 2322–2329. AAAI Press, (2019)

47. Lässig, Jörg., Sudholt, Dirk: General upper bounds on the runtime of parallel evolutionary algorithms.
Evol. Comput. 22, 405–437 (2014)

48. Lehre, Per Kristian, Witt, Carsten: Concentrated hitting times of randomized search heuristics with
variable drift. In: International Symposium on Algorithms and Computation, ISAAC 2014, pp. 686–
697. Springer, (2014)

49. Mitavskiy, Boris, Rowe, Jonathan E., Cannings, Chris: Theoretical analysis of local search strategies to
optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput.
Cybern. 2, 243–284 (2009)

50. Meyn, Sean: Tweedie. Markov chains and stochastic stability. Cambridge University Press, Richard
(2009)

51. Rowe, Jonathan E., Aishwaryaprajna: The benefits and limitations of voting mechanisms in evolution-
ary optimisation. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 34–42. ACM, (2019)

52. Rudolph, Günter.: How mutation and selection solve long path problems in polynomial expected time.
Evol. Comput. 4, 195–205 (1996)

53. Rudolph, Günter.: Convergence properties of evolutionary algorithms. Verlag Dr, Kovǎc (1997)
54. Rajabi, Amirhossein, Witt, Carsten: Self-adjusting evolutionary algorithms for multimodal optimiza-

tion. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1314–1322. ACM,
(2020)

55. Rajabi, Amirhossein, Witt, Carsten: Stagnation detection in highly multimodal fitness landscapes. In:
Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 1178–1186. ACM, (2021)

56. Rajabi, Amirhossein, Witt, Carsten: Stagnation detection with randomized local search. In: Evolution-
ary Computation in Combinatorial Optimization, EvoCOP 2021, pp. 152–168. Springer, (2021)

57. Sudholt, Dirk: The impact of parametrization in memetic evolutionary algorithms. Theor. Comput.
Sci. 410, 2511–2528 (2009)

58. Sudholt, Dirk: General lower bounds for the running time of evolutionary algorithms. In: Parallel
Problem Solving from Nature, PPSN 2010, Part I, pp. 124–133. Springer, (2010)

59. Sudholt, Dirk: A new method for lower bounds on the running time of evolutionary algorithms. IEEE
Trans. Evol. Comput. 17, 418–435 (2013)

60. Wegener, Ingo: Theoretical aspects of evolutionary algorithms. In: Automata, Languages and Pro-
gramming, ICALP 2001, pp. 64–78. Springer, (2001)

123

http://arxiv.org/abs/1712.00964

Algorithmica (2024) 86:367–395 395

61. Wegener, Ingo: Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In:
Ruhul Sarker, Masoud Mohammadian, and Xin Yao (ed.), Evolutionary Optimization, pp. 349–369.
Kluwer, (2002)

62. Witt, Carsten: Runtime analysis of the (μ + 1) EA on simple pseudo-Boolean functions. Evol. Comput.
14, 65–86 (2006)

63. Witt, Carsten: Tight bounds on the optimization time of a randomized search heuristic on linear
functions. Combinatorics, Probab. Comput. 22, 294–318 (2013)

64. Witt, Carsten: Fitness levels with tail bounds for the analysis of randomized search heuristics. Inf.
Process. Lett. 114, 38–41 (2014)

65. Whitley, Darrell, Varadarajan, Swetha, Hirsch, Rachel, Mukhopadhyay, Anirban: Exploration and
exploitation without mutation: solving the jump function in Θ(n) time. In: Parallel Problem Solving
from Nature, PPSN 2018, Part II, pp. 55–66. Springer, (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Lower Bounds from Fitness Levels Made Easy
	Abstract
	1 Introduction
	2 The (1 + 1) EA
	3 The Fitness Level Methods
	3.1 Level Processes
	3.2 Original Fitness Level Method
	3.3 Fitness Level Method with Viscosity
	3.4 Fitness Level Method with Visit Probabilities

	4 The Precise Run Time for LeadingOnes
	5 A Tight Lower Bound for OneMax
	5.1 Upper and Lower Bounds Via Fitness Levels
	5.2 Estimating the Fitness Level Estimate tildeTk,ell
	5.3 Comparison with the Literature

	6 Jump Functions
	7 A Bound for Long k-Paths
	8 Conclusion
	References

