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Hybrid Soft/rigid Robots for medical applications

François Schmitt1, Olivier Piccin2, Laurent Barbé1 and Bernard Bayle1

The late twentieth century has seen the development of
robotic systems that are ever more accurate, powerful, rigid...
Those developments allowed them to complement the work-
force in industrial environments, but also to help physicians
in the medical field with a wide range of application, from
surgical assisting tools [1], [2], positioning tools [3], [4] to
active instruments [5]. However, while those rigid robots
are very effective in fully constrained environments or as
slaves where humans have an active role in the loop, they
lack the ability to interact with complex and unconstrained
environments without requiring a constant supervision.

In parallel, the 90’s have seen new robotic concept appear,
initially taking inspiration from biological structures where
rigid elements are not as predominant as they are in classical
robotics [6]. Those soft robots take advantage from their low
stiffness to create motions with large amplitude. They can
also react to unplanned interaction with environment of vari-
ous nature thanks to they high compliance and their ability to
”morphologically compute” those interactions [7]. Although
usually more complex to model and thus less precise than
their rigid counterparts, those concept are usually simpler to
use and adapt to medical applications requiring adaptability,
such as active orthesis [8], [9], [10], for the assistance or
replacement of physiological structures [11], [12], or also to
help the exploration of internal cavities [13], [14].

Some more complex tasks may however benefit from
both worlds, chiefly for medical applications. Indeed, a
robot may need, for example, accurate positioning while
ensuring the safety of patients and medical staff by reducing
the interaction forces. Those problems can be solved by
combining features from both soft and rigid robots.

I. HYBRID SOFT/RIGID ROBOTS

By hybrid soft/rigid robots (HSR) [15], [16], we define
robots that combine elements that are either soft, rigid or
both, in any fashion. Typical example would be the intro-
duction of flexible elements in a rigid transmission chain,
as we could found in the series elastic actuators [17]. The
robots based on this kind of actuators can not be considered
as soft robot or hybrid, but they were the first step to increase
flexibility with respect to classical robots, allowing them
to carry several types of task: low-pass filtering of shocks,
improved interaction control with unexpected envrionment,
and energy storage and restitution similarly to what can be
seen in animal locomotion.
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In general, the hybridization between soft and rigid ele-
ments can be seen first at a system level, such as endo/exo-
skeletal robots using soft pneumatic muscles [18], [19] or
rigid robots articulated by soft deformable joints [20], [21].
These systems generally combine parts that are either soft or
rigid, using the advantageous force-displacement relationship
of the soft elements with the kinematics of the rigid elements
acting as skeletons. Such stiffening soft structures can also
allow to harvest more mechanical energy in soft actuators,
by limiting the elastic deformation of the soft elements [22],
increase their controllability [23] or allow actuation and
structure integration in a compact footprint (see fig. 1).

Other HSR are built on the idea of changing their behavior
depending on the situation. These systems can for example
exhibit a soft behavior in a first configuration, in order to
explore or interact with fragile environments, and then at
another moment exhibit rigid behavior, allowing to develop
high forces or to move accurately. This challenge has been
addressed for example in endoscopic surgery [24], where
high dexterity and low interaction forces are required during
exploration or free motion phases, and high forces and
precision are needed during the actual surgical tasks. Another
drastic change in behavior can be seen with deployable
soft mechanisms that can transition from a compact, folded
state to an unfolded state [25], [26], with variable geometry
systems that can actively change their morphology [27],
[28], or with phase transitioning elements that can ”switch”
between a soft and a rigid state [29].

Fig. 1. An example of a hybrid origami-inspired soft/rigid pneumatic
actuator able to create high-force/short-stroke motion [30]. A rigid polymer
(in white) structures the deployment kinematics while a flexible elastomer
(in black) forms compliant hinges and tightens the internal pneumatic room.

The main advantage of the HSR lies in their adaptability
with their environment and with the task. The combinations
of soft and hard, passive or active, at a materials and
structural level, allow a huge number of possibilities for
kinematics, interactions, modularity, etc... Because of the
ever-growing diversity of medical tasks, the adaptability of
HSR could play a major role in the field, but this may be
overshadowed by several drawbacks that come with these
systems.

Indeed aggregating elements of varied nature obviously



combines the flaws of all the combined parts. Although some
of these flaws can be compensated by the combination of ot-
her elements, a system can do so much until its weakest part
fails. Another issue comes from the heterogeneous nature of
HSR: their manufacturing generally requires multiple steps
and the formed interfaces may introduce weaknesses such as
stress concentrations, peeling, chemical incompatibilities...
As the consequence of a failure may be dire in the medical
field, those issues have to be investigated and tackled by the
community in order for those systems to be widely adopted
for medical applications.

CONCLUSION

In this paper we explored briefly an emerging field of
robotics that has started to sprout in the recent years: the
Hybrid Soft/rigid Robots (HSR) [15], [16]. Even though
medical application are still limited yet, we think that these
system may become major players in this field as they may
offer answers to some of the main challenges any designer
has to tackle.

Although not listing exhaustively all existing HSR, this pa-
per invites the reader to imagine how blurring the boundaries
between soft and rigid mechanisms may allow the develop-
ment of new emerging solutions and create new systems that
can be capable, efficient and safe. We believe however that
these concepts may allow the creation of a new generation
of medical instruments in the near future, answering the
growing need of dedicated tools for increasingly complex
tasks.
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