
HAL Id: hal-04679503
https://hal.science/hal-04679503v2

Preprint submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geography of the Teichmüller stack
Laurent Meersseman

To cite this version:

Laurent Meersseman. Geography of the Teichmüller stack. 2024. �hal-04679503v2�

https://hal.science/hal-04679503v2
https://hal.archives-ouvertes.fr


GEOGRAPHY OF THE TEICHMÜLLER STACK

LAURENT MEERSSEMAN

Abstract. In this article, we describe the geography of the Teichmüller
stack of [31] and of one of its variants we introduce here, giving some
answers to questions as: which points are orbifold points? What are the
different local models of special points?... We give a rough description
in the general case, and we use the compacity of the cycle spaces to get
a much more detailed picture in the Kähler setting.

1. Introduction.

Let X0 be a compact complex manifold with underlying C∞ manifold
denoted by M . For such a non-necessarily Kähler manifold, Hodge Theory
does not apply and the set of complex structures close to X0 is controlled by
its Kuranishi space through Kodaira-Spencer theory of deformations. Thus
to obtain the full moduli space of complex structures onM , it is theoretically
enough to glue at most a countable number of Kuranishi spaces, or a suitable
quotient of them.

This process cannot however be realized in this degree of generality with
classical, GIT, or orbifold quotients. General Artin Stacks are needed. In
[31] (see also [32] for a comprehensive presentation), under a very mild hy-
pothesis, we build a moduli stack of complex structures on M , resp. a
Teichmüller stack of M , describing explicitly the gluing process involved.
Rather than gluing Kuranishi spaces, we glue Kuranishi stacks. These stacks
are, roughly speaking, the quotient of Kuranishi base spaces by the auto-
morphism group of the base points. The moduli and Teichmüller stacks
thus obtained are an analytic enriched version of the topological moduli and
Teichmüller spaces.

This being said, the next step consists of analyzing the geometric structure
of these stacks, understanding why they are in general neither analytic spaces
nor orbifolds, classifying the different types of points, giving adequate local
models of the special points and establishing a cartography of them. This
is what we begin to do in this paper.

A first very well known obstruction for the moduli/Teichmüller space
being locally an analytic space at some complex manifold X0, is the fact
that the dimension of the automorphism group of X0 may differ from the
dimension of the automorphism group of close complex manifolds. This
dimension is an upper semicontinuous function of the Kuranishi space for
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2 LAURENT MEERSSEMAN

the Zariski topology [19]1, so the geography of the points where it jumps
is clear. They are located on a strict analytic subspace. Moreover, the
corresponding Kuranishi spaces have a foliated structure described in [30]
from which local models can be derived. All this analysis can be transposed
to the moduli/Teichmüller stack, cf. §3.

Another well known fact is that the action of the mapping class group
on the Teichmüller space (whose quotient is the moduli space) can be very
wild with dense or locally dense orbits. This is the case for complex tori
of dimension at least 2, for K3 surfaces, ... So we avoid this wildness by
considering here only the Teichmüller stack T (M) and not the moduli stack.
We also introduce a variant of it, the Z-Teichmüller stack T Z(M), that
basically satisfies all the properties of T (M).

We show in this paper that there exists another subtler phenomenon.
In the brief account of the construction of the Teichmüller stack at the
beginning of this introduction, we said that we glue Kuranishi stacks to
obtain it. This is a slight simplification for it is not always true that the
Teichmüller stack is locally isomorphic at some X0 to the Kuranishi stack
of X0. Points where this does not happen are called exceptional or Z-
exceptional in the case of T Z(M). They exhibit a different local model and
some strange properties that are analyzed in §8. Their geography is also not
so clear than that of jumping points.

It is not easy to find exceptional or Z-exceptional points - none of the
classical examples admits one. Indeed, this work was strongly delayed be-
cause, for a long time, we did not have any example. We finally build a
non-Kähler example of a Z-exceptional point that is presented in §8.4 and
Theorem 8.17. We note that it is not exceptional. In the Kähler case, that is
when we restrict to the open2 substack of Kähler points of the Teichmüller
stack, we show in Theorem 10.1 that the closure of exceptional points as
well as that of Z-exceptional points form a strict analytic substack, mak-
ing use of the compacity of the cycle spaces. It is important to stress that
all the arguments using compacity of cycle spaces break completely when
X0 is neither Kähler nor in Fujiki class (C ), so that it is natural to expect
a dichotomy between the Kähler and the non-Kähler cases. Pushing for-
ward this analysis, we state in the very polarized Conjecture 6.2 that there
does not exist neither exceptional nor Z-exceptional Kähler points; whereas
such points can be dense in a connected component of non-Kähler points of
the Teichmüller or the Z-Teichmüller stack. Theorems 8.17 and 10.1 cited
above are the best results we obtained on exceptional points. But they left
wide open several assertions of Conjecture 6.2 starting from the existence
of an exceptional point as well as several important associated questions,
especially whether the set of exceptional points is closed.

As a consequence of this dichotomy, the local structure of T (M) or
T Z(M) at a general non-Kähler point may be much more complicated than

1 Indeed, upper semicontinuity is proven in [26] for the ordinary topology on a smooth
base, and the general case can be deduced from the proof of Grauert’s direct image theorem
in [19].

2 By a classical result of Kodaira-Spencer, Kählerianity is a stable property through
small deformations.
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at a Kähler point. An example of this phenomenon for T Z(M) is given in
Corollary 8.16. This is somewhat surprising since, at the level of the Kuran-
ishi space (and Kuranishi stack), there is no difference: the Kuranishi space
of a Kähler, even of a projective, manifold can exhibit all the pathologies (for
example not irreducible [20], not reduced [37], arbitrary singularities [42])
the Kuranishi space of a non-Kähler, non class (C ) one can have. More-
over, due to the possibly wild action of the mapping class group, there is
no difference between them at the level of the Riemann moduli stack. This
difference only appears when considering the Teichmüller stack. Its full com-
plexity is only seen at non-Kähler non class (C ) points hence its geometry

cannot be fully understood without dealing with such manifolds. We hope
to understand this better in the future.

Going back to the paper, we introduce the notion of normal and Z-normal
points in §7.1. They almost coincide with non-jumping, non-exceptional
points. They form an open substack of T (M) and T Z(M). We show in
Theorem 7.16 that both can be reduced to an étale stack, that is a stack
locally isomorphic to an at most discrete quotient of an analytic space. These
normal Teichmüller stacks are quite easy to handle. Once again, and for the
same reasons, more can be said in the Kähler case: the normal Teichmüller
stacks are then orbifolds.

At the end of the day, we obtain the following rough description of the
geography of the Teichmüller stacks in the general case (see Theorem 13.3
for a precise statement):

— Jumping points are the most pathological points but are quite well un-
derstood and form a strict analytic substack of T (M) and T Z(M).

— Exceptional points exhibit a different strange behaviour but also quite
well understood, falling into three types. Their existence and geography,
as well as those of the different types, are however unclear.

— Normal points form an open substack associated to the étale normal
Teichmüller stack that is easy to handle.

— Complementary points (if exist) have a non-reduced Kuranishi space with
some special property.

In the Kähler case3, making use of the compacity of the cycle spaces allows
us to get a much more detailed picture of the geography of T (M) and
T Z(M) (see Theorem 13.1 for a precise statement):

— The closure of exceptional points is a strict analytic substack of T (M)
and of T Z(M).

— The normal Teichmüller stack is an orbifold.

Here is an outline of the paper. The main protagonists, that is the Te-
ichmüller and Kuranishi stacks, are introduced in §2-3. The material comes
essentially from [31] but with some slight differences and additions. Notably,
we show in Theorem 3.11 that the germ of Kuranishi stack at a point has
a universal property. This generalizes the semi-universality property of the
Kuranishi space. At a rough level, this is folklore (see for example [45]),
but we never saw a precise statement of such a property, probably because
the stack setting developed in [31] is necessary to a get clear formulation.

3Some - but not all - statements are valid under the weaker Fujiki class (C ) hypothesis.
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We introduce the Z-Teichmüller stack in §4. Every statement about the
Teichmüller stack given in this paper holds with obvious changes for the
Z-Teichmüller stack. In the sequel, to avoid redundancies, we often content
ourselves with stating the full results and definitions only for the Teichmüller
stack and with briefly indicating the changes needed for the Z-Teichmüller
stack. The main interest of introducing T Z(M) is the already cited Theo-
rem 8.17 of a Z-exceptional point. It is not an example of an exceptional
point but it is a strong evidence that such points exist. Section §5 begins
the local analysis of T (M) and T Z(M). It culminates with Theorem 5.3
showing that the natural morphism from the Kuranishi stack to the Te-
ichmüller stack is étale. This gives a complete solution to the problem of
comparing these two stacks at a point. Section §6 begins with Definition 6.1
of exceptional points and then states the main Conjecture 6.2 about them.
In §7, we define and study normal points and the normal Teichmüller stack.
The main result is the already mentionned Theorem 7.16. Of interest also is
the characterization of points with Kuranishi stacks being orbifolds in §7.2.
We then swith to the analysis of exceptional points in §8. We introduce the
cycle spaces that are related to T (M) and T Z(M) but the most important
results are Theorem 8.17 on a 3-fold that is a Z-exceptional point and the
associated Theorem 8.15 showing that the subgroup of the automorphism
group of these 3-folds formed by elements inducing the identity in cohomol-
ogy with coefficients in Z is infinite discrete. Such a phenonmenon cannot
occur on Kähler manifolds, so we obtain here points whose Z-Teichmüller
stack is not locally isomorphic to that of any Kähler manifold, see Corollary
8.16. The next two sections §9-10 focus on the Kähler case. We first draw all
the consequences of the compacity of cycle spaces in the Kähler setting, as
Theorem 9.13 showing that the étale morphism from the Kuranishi stack to
the Teichmüller stack is indeed finite, allowing to characterize easily points
where T (M) is an orbifold from the analogous results proven for the Ku-
ranishi stack. Then we show in Theorem 10.1 that the closure of exceptional
points is an analytic substack of T (M) and T Z(M). As an interlude, §11
gives somes variations about exceptionality, for example introducing the no-
tion of exceptional pairs and showing that non-separated pairs of points are
exceptional pairs in §11.3. Going back to the Kähler setting, we investigate
in §12 the structure of T (M) from the side of pathological families. One of
the main interests in using stacks is to give a dictionnary between properties
of T (M) as a moduli space and properties of families of compact complex
manifolds diffeomorphic to M . In this way, jumping points are related to
jumping families that is families with all fibers biholomorphic except for
one. We define several types of pathologies and analyze then from both the
family and the moduli space point of view. The philosophy developed in §12
is that, at least in the Kähler case, pathologies only may occur at jumping
and/or exceptional points so occur on a strict analytic substack. We also
comment in §12.2 on a false statement of [30]. Finally, we gather all the pre-
vious results to state in §13 the two main results (Theorems 13.3 and 13.1)
on the cartography of T (M) and T Z(M) in the general and in the Kähler
case. Many additional comments are included. We also revisit this geogra-
phy through the concept of holonomy points that sheds a different light on
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our results. Jumping points are points with continuous holonomy, normal
points have at most discrete holonomy, and exceptional points are points
a neighborhood of which is not controlled by the holonomy group. Section
§13 ends with some remarks on Teichmüller stacks and GIT quotients.

The notions of exceptional vs. normal points are reminiscent from Catanese
question in [10], see also [11], on conditions under which the Teichmüller and
Kuranishi spaces are locally homeomorphic. This question has played a cen-
tral role in the genesis of this work. We turned it into giving conditions under
which the Teichmüller and Kuranishi stacks are locally isomorphic. We first
thought that this is always the case, before the concept of exceptional points
emerges.

I am indebted to An-Khuong Doan, Julien Grivaux and Etienne Mann
for illuminating discussions on some parts of this work.

2. The Teichmüller Stack: basic facts

We recollect some facts about the Teichmüller stack of a connected, com-
pact oriented C∞ manifold M admitting complex structures. We refer to
[31] for more details.

The general idea is the following. From the one hand, the Teichmüller
stack is the category of analytic families of compact complex manifolds dif-
feomorphic toM (in Diff0(M)) together with a functor that sends a family to
its base. From the other hand, it has an atlas (which is not unique), that is
an analytic space with a smooth and surjective mapping to the Teichmüller
stack. Roughly speaking, the Teichmüller stack appears thus as a quotient
of the atlas, say T . The morphism from the atlas T to the Teichmüller stack
T (M) is given by the choice of a family of compact complex manifolds above
T , thanks to Yoneda’s Lemma. It is smooth and surjective if the projec-
tions T×T (M)T → T are smooth and surjective morphisms between analytic
spaces. This allows to form the analytic groupoid T ×T (M)T ⇒ T that con-
tains all the information needed to reconstruct the Teichmüller stack as a
category of families. Indeed, starting with T , one recovers a stack isomor-
phic to T (M) through a process called stackification. And any other choice
of an atlas of T (M) gives an analytic groupoid that is Morita equivalent to
that associated to T .

Let us begin with the categorical viewpoint. Let S be the category of
analytic spaces and morphisms endowed with the euclidian topology. Given
S ∈ S, we call M -deformation over S a proper and smooth morphism X →
S whose fibers are compact complex manifolds diffeomorphic to M . As C∞-
object, such a deformation is a bundle over S with fiber M and structural
group Diff+(M) (diffeomorphisms of M that preserve its orientation). It is
called reduced if the structural group is reduced to Diff0(M). In the same
way, a morphism of reduced M -deformations X and X ′ over an analytic
morphism f : S → S′ is a cartesian diagram

X X ′

S S′

�

f
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such that X and f∗X ′ are isomorphic as Diff0(M)-bundles over S.
The Teichmüller stack T (M) is the stack over the site S whose objects

are reduced M -deformations and morphisms are morphisms of reduced M -
deformations. The natural morphism T (M) → S sends a reduced M -
deformation onto its base and a morphism of reduced M -deformation to the
corresponding morphism between their bases. Alternatively, T (M) can be
seen as a 2-functor from S to the category of groupoids such that

i) T (M)(S) is the groupoid of isomorphism classes of reduced M -
deformations over S.

ii) T (M)(f) is the pull-back morphism f∗ from T (M)(S′) to T (M)(S).

A point X0 := (M,J0) is an object of T (M)(pt) that is a complex struc-
ture on M up to biholomorphisms smoothly isotopic to the identity.

Remark 2.1. In the definition of analytic stack used in [31], we did not
impose that the diagonal is representable, see the discussion in §2.4 of [31].
However, this is indeed true in full generality, hence the definition of an
analytic stack as the stackification over S of a smooth analytic groupoid
given in [31, §2.4] is equivalent to the definition of an analytic stack as a
stack over S with representable diagonal, see [7, §2.4].

Let us switch to the atlas point of view. Roughly speaking, T (M) can
be considered as an analytic version of the quotient I(M)/Diff0(M). Here,
I(M) is the set of integrable complex operators on M compatible with its
orientation (o.c.), that is

(2.1) I(M) = {J : TM −→ TM | J2 ≡ −Id, J o.c., [T 1,0, T 1,0] ⊂ T 1,0}

for
T 1,0 = {v − iJv | v ∈ TX}.

and Diff0(M) is the group of diffeomorphisms of M which are C∞-isotopic
to the identity. It acts on the right on I(M) through

(2.2) J · f := df−1 ◦ J ◦ df

Hence the mapping

(2.3) x ∈ XJ ·f 7−→ f(x) ∈ XJ

is an isomorphism (note the order: f sends J · f to J).
In [31], a finite-dimensional atlas T of (a connected component of) T (M)

is described under the hypothesis that the dimension of the automorphism
group of the complex manifolds encoded in T (M) is bounded. Basically,
it is given by a (at most countable) disjoint union of Kuranishi spaces4.
The construction of the Kuranishi space of a compact complex manifold is
recalled in Section 3.1. The morphism from T to T (M) is given by the
choice of a family of complex manifolds above T by Yoneda’s Lemma. Here
we take the Kuranishi families, see §3.1. Then, to finish the construction, we
need to compute the fiber product T ×T (M)T and check both projections to
T are smooth and surjective, forming in this way an analytic groupoid that
encodes completely T (M). This is the crux of [31]. In this paper, we will

4Indeed, for technical reasons, a fatting process is used to ensure that all components
of T have the same dimension.
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not make use of this global atlas since we analyse the local models, hence
we will skip its precise construction.

Two points have to be emphasized here. Firstly, as a stack, T (M) also
encodes the isotropy groups of the action. Recall that the isotropy group at
X0 is the group

(2.4) Aut1(X0) := Aut(X0) ∩Diff0(M).

which may be different from Aut0(X0), the connected component of the
identity of the automorphism group Aut(X0), see [33] and [12]. Secondly,
since Diff0(M) acts on the (infinite-dimensional) analytic space I(M) pre-
serving its connected components and its irreducible components, we may
speak in this way of connected components and irreducible components of
T (M). Indeed Kuranishi’s Theorem tells us that the set I(M) is locally
the product of a finite-dimensional local analytic section K0 to the action
with an infinite-dimensional manifold, cf. Section 3.2. Hence, locally, the ir-
reducible components of I(M) correspond to those of the finite-dimensional
space K0.

We finish this part with some terminology. By Teichmüller space, we mean
the topological space obtained by endowing the quotient of (2.1) by (2.2)
with the quotient topology. It is of course different from the Teichmüller
stack T (M), although related as follows. Given T → T (M) an atlas and
T1 ⇒ T the associated groupoid, the Teichmüller space is homeomorphic to
the quotient of T by the the equivalence relation induced by T1. We also
introduce the notion of open, resp. Zariski open, resp. analytic substack of
T → T (M), that plays an important role in the sequel. It is obtained as
the stack induced from T → T (M) by an open, resp. Zariski open subset,
resp. analytic subspace of T . In other words, an analytic stack A → A is
an open, resp. Zariski open, resp. analytic substack of T 7→ T (M) if there
exists an open, resp. Zariski open subset B, resp. analytic subspace B of T
such that A → A is isomorphic to the analytic groupoid B ×T (M) B ⇒ B.

Remark 2.2. Such an analytic substack A → A is said to be proper or strict
if B can be chosen so that its is an analytic subspace of positive codimension
in the reduction of T .

Note also that we admit analytic subspaces B with a countable number
of connected components, cf. Example 13.4.

3. The Kuranishi stacks

In the first two subsections, we review the construction of the Kuran-
ishi family first from classical deformation theory point of view, then from
Kuranishi-Douady’s point of view.

We then review the construction of the Kuranishi stack(s) introduced in
[31]. They play a fundamental role in the local theory. Especially we prove
in Subsection 3.4 that they enjoy the universal property the Kuranishi space
does not fulfill.

It is worth pointing out that the classical point of view (which presents
Kuranishi family from a formal/algebraic point of view leaving aside the
analytic details of the construction) is not enough for our purposes. This is
indeed an infinitesimal point of view and even if it gives complete equations
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for the Kuranishi space, it fails in describing the properties of the structures
close to the base complex structure. Kuranishi-Douady’s point of view allows
to pass from the infinitesimal point of view to a local one.

3.1. The Kuranishi family. The Kuranishi family π : K0 → K0 of X0 is
a semi-universal deformation of X0. It comes with a choice of a marking,
that is of an isomorphism i between X0 and the fiber π−1(0) over the base
point 0 of K0. The semi-universal property means that

i) Every marked deformation X → B of X0 is locally isomorphic to the
pull-back of the Kuranishi family by a pointed holomorphic map f de-
fined in a small neighborhood of the base point of B with values in a
neighborhood of 0 in K0.

ii) Neither the mapping f nor its germ at the base point are unique; but
its differential at the base point is.

Two such semi-universal deformations of X0 are isomorphic up to restric-
tion to a smaller neighborhood of their base points. Hence the germ of
deformation (K0, π

−1(0)) → (K0, 0) is unique. This explains why we talk of
the Kuranishi family, even if, in many cases, we work with a representative
of the germ rather than with the germ itself.

The Zariski tangent space to the Kuranishi space K0 at 0 identifies natu-
rally with H1(X0,Θ0), the first cohomology group with values in the sheaf
Θ0 of germs of holomorphic tangent vector fields of X0. Indeed, K0 is locally
isomorphic to an analytic subspace of H1(X0,Θ0) whose equations coincide
at order 2 with the vanishing of the Schouten bracket.

The groups Aut(X0), Aut
0(X0) and Aut1(X0) act on this tangent space.

However, this infinitesimal action cannot always be integrated in an action
of the automorphism groups of X0 onto K0, see [15]. Still there exists an
action of each 1-parameter subgroup and all these actions can be encoded in
an analytic groupoid and thus in a stack. To do this, we need to know more
about the complex properties of the structures encoded in a neighborhood
of 0 in K0.

3.2. Kuranishi-Douady’s presentation. Let V be an open neighborhood
of J0 in I(M). Complex structures close to J0 can be encoded as (0, 1)-forms
ω with values in T 1,0 which satisfy the equation

(3.1) ∂̄ω +
1

2
[ω, ω] = 0

Choose an hermitian metric and let ∂̄∗ be the L2-adjoint of ∂̄ with respect
to this metric. Let U be a neighborhood of 0 in the space of global smooth
sections of (T 0,1)∗ ⊗ T 1,0. Set

(3.2) K0 := {ω ∈ U | ∂̄ω +
1

2
[ω, ω] = ∂̄∗ω = 0}

Let W an open neighborhood of 0 in the vector space of vector fields L2-
orthogonal to the vector space of holomorphic vector fields H0(X0,Θ0). In
Douady’s setting [16], Kuranishi’s Theorem states the existence of a local
isomorphism between I(M) at J0 and the product of K0 with W such that
every plaque {pt}×W is sent through the inverse of this isomorphism into a
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single local Diff0(M)-orbit. To be more precise, up to restricting U , V and
W , the Kuranishi mapping

(3.3) (ξ, J) ∈ W ×K0 7−→ J · e(ξ) ∈ V

is an isomorphism of infinite-dimensional analytic spaces. As usual, we use
the exponential map associated to the chosen metric in order to define the
map e which gives a local chart of Diff0(M) at Id. And · denotes the natural
right action (2.2) of Diff0(M) onto I(M).

Remark 3.1. In the sequel, we will always work with an open set V of
I(M) which is a product through (3.3). Especially, in all statements, the
expression “Reducing V if necessary” or “For V small enough” must be
understood as taking a smaller V but that still satisfies (3.3) for a smaller
K0.

3.3. Automorphisms and jumping points. Let us now analyze how au-
tomorphisms of X0 are related to the local geography of the Teichmüller
stack and determine a first obstruction for T (M) to be locally isomorphic
to an analytic space or to an orbifold.

We begin with a construction in a slightly more general setting. Let
f be an element of Diff0(M) such that J0 · f belongs to V , e.g. f is an
automorphism of X0. Composing the inverse of (3.3) with the projection
onto K0 gives a retraction map Ξ : V → K0. Then, define

(3.4) Uf = {J ∈ K0 | J · f ∈ V }

This is an open set since V is open. And it contains J0. Now

(3.5) Holf : J ∈ Uf ⊂ K0 7−→ Ξ(J · f) ∈ K0

is a well defined analytic map that must be thought of as the action of f
onto K0. Note however that composition does not work in general, that is
Holf◦g may be different from Holg ◦ Holf . In particular, there is no well

defined action of Aut0(X0) onto K0, see [15] for a counterexample.
Let (Ft)t∈[0,1] be a continuous path in Diff0(M) joining f to the identity.

Assume that J0 · Ft belongs to V for all t ∈ [0, 1], e.g. f ∈ Aut0(X0) and
(Ft) is any continuous path in Aut0(X0) joining f to the identity. We call
compatible such a path. Then, UFt and HolFt are well defined for all t and
all UFt contain J0.

Lemma 3.2. The intersection ∩t∈[0,1]UFt contains an open neigborhood of
J0.

Proof. For every t ∈ [0, 1], choose some relatively compact open set Vt ⋐ UFt.
By continuity, there exists an open interval It containing t such that t′ ∈ It
means Vt ⊂ UFt′

. By compacity, there exist t1, . . . , tk in [0, 1] such that

[0, 1] = It1 ∪ . . . ∪ Itk

Hence,

∀t ∈ [0, 1], ∩1≤i≤kVti ⊂ UFt

and we are done, since the lefthand term is a non-empty open set containing
J0 as a finite intersection of such open sets. �
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Thanks to Lemma 3.2, we may define the open set

(3.6) Ωf :=
⋃

(Ft)t∈[0,1]

Int
(

⋂

t∈[0,1]

UFt

)

where the union is taken on all compatible paths (Ft)t∈[0,1] in Diff0(M).
By definition, J ∈ Ωf if and only if there exists a compatible path (Ft)

in Diff0(M) such that J · Ft ∈ V for all t ∈ [0, 1].
Define now the function

(3.7) t ∈ K0 7−→ h0(t) := dim(Aut(Xt)) ∈ N

It is a well known fact that (3.7) may not be constant - the best we can say
is that it is upper semicontinuous for the Zariski topology of K0, see [19]
and footnote 1. When it is constant and K0 is reduced, a classical Theorem
of Wavrik [46] asserts the Kuranishi space is universal, i.e. f is unique in
the setting of Subsection 3.1. But we also have

Lemma 3.3. Assume that (3.7) is constant and K0 is reduced. Then Holf
is equal to the identity of K0 for any f ∈ Aut0(X0).

We will come back to this in Section 7 when defining and studying normal
points.

Proof. Let f ∈ Aut0(X0) and let J ∈ Ωf . We assume that J is different

from J0 and we let (Ft)t∈[0,1] be a compatible path in Aut0(X0) with J ·Ft in
V for all t. By definition, HolFt(J) is well defined for all t ∈ [0, 1], drawing
a continuous path in K0 between J and Holf (J) all of whose points encode
the same manifold XJ up to biholomorphism C∞-isotopic to the identity.
Assume this path is non-constant. Then we can find distinct points of K0

encoding XJ through a biholomorphism arbitrary close to the identity in
Diff0(M)-topology. Since (3.7) is constant, this would contradict Theorem
1 of [28]. Hence the path has to be constant so that Holf (J) = J for all
J ∈ Ωf . Since K0 is reduced, this is enough to conclude that Holf is the
identity on Ωf , thus on Uf by analyticity. But Uf must then be equal to
K0. �

In the general case, that is when (3.7) is not constant, the line of argu-
ments used in the proof of Lemma 3.3 can be expanded to show that K0

acquires a stratified foliated structure as defined and analyzed in [30, §3].
Firstly one decomposes K0 into strata (K0)a with function (3.7) bounded
above by a. Then each difference Sa := (K0)a \ (K0)a−1 admits a holomor-
phic foliation with non singular leaves. The highest Sa contains at least
the base point J0 and its foliation is a foliation by points. The other Sa

admits positive-dimensional leaves. The leaves correspond to the connected
components in K0 of the following equivalence relation: J ≡ J ′ if and only
if both operators belong to the same Diff0(M)-orbit.

In other words, when the function (3.7) is not constant, some positive-
dimensional connected submanifolds of K0 encode the same complex man-
ifold up to biholomorphism C∞-isomorphic to the identity. Hence the Te-
ichmüller space is not homeomorphic to K0. Indeed, it is the leaf space of
this stratified foliated structure and is usually non-Hausdorff. We thus set
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Definition 3.4. We say that X0 is a jumping point of T (M) if (3.7) is not
locally constant.

Jumping points are the first obstruction for T (M) to be locally isomor-
phic to an analytic space or an orbifold and correspond to points where the
Teichmüller space has very bad properties. However, as recalled above, from
the one hand they form a strict analytic substack of T (M); and from the
other hand, they correspond to points with non trivial foliated structure.
Describing them geometrically boils down to describing the foliated struc-
ture of K0. The first draft is done in [30] but there is still much to do. One
of the most challenging question is the following.

Question 3.5. When (3.7) is non constant, does the foliated structure al-
ways admit a separatrix?

By separatrix, we mean a positive-dimensional leaf that contains 0 in its
closure. The existence of a separatrix at a jumping point implies that there
exists a jumping family based at that point, see Example 11.5 and Section
12.

Remark 3.6. Given an automorphism f of X0, observe that Holf respects

the foliation of K0. Moreover, for f in Aut0(X0) close to the identity, then
Holf fixes each leaf of the foliation of K0. However, a general element of

Aut0(X0) may send a leaf to a different leaf. This is due to the fact that
the restriction to V may disconnect the Aut0(X0)-orbits in I(M).

3.4. The Kuranishi stacks. The Kuranishi stacks encode the maps (3.5)
in an analytic groupoid. The first step to do this consists in proving that
there is an isomorphism

(3.8) (ξ, g) ∈ W ×Aut0(X0) 7−→ g ◦ e(ξ) ∈ D0

with values in a neighborhood D0 of Aut0(X0) in Diff0(M), see [31, Lemma
4.2].

Let now Diff0(M,K0) denote the set of C∞ diffeomorphisms from M to
a fiber of the Kuranishi family K0 → K0. This is an infinite-dimensional
analytic space5, see [16]. Here by (J, F ) ∈ Diff0(M,K0), we mean that we
consider F as a diffeomorphism from M to the complex manifold XJ .

Definition 3.7. Given (J, F ) an element of Diff0(M,K0), we say it is
(V,D0)-admissible if there exists a finite sequence (Ji, Fi) (for 0 ≤ i ≤ p) of
Diff0(M,K0) such that

i) J0 = J and Ji+1 = Ji ·Fi is inK0 for all 0 ≤ i ≤ p, adding the convention
Jp+1 := J · F .

ii) F = F0 ◦ . . . ◦ Fp.

iii) Each Fi belongs to D0 as well as F−1
i .

iv) Ji belongs to ΩFi
for all 0 ≤ i ≤ p and to ΩF−1

i−1
for all 1 ≤ i ≤ p+ 1.

5Strictly speaking, we have to pass to Sobolev L2
l -structures for a big l to have an

analytic space, and Diff0(M,K0) is the subset of C∞ points of this analytic set. In the
sequel, we automatically make this slight abuse of terminology, cf. Convention 3.2 in [31].
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Remark 3.8. It could seem more natural to speak of (K0,D0)-admissible,
but, by Remark 3.1, changing V is equivalent to changing K0 when D0 is
fixed. We keep this terminology to be coherent with that of [31]. It should
be pointed however that the previous definition is a bit more restrictive than
that of [31]. We shall see that the additional point iv) plays a crucial role
in the proof of Lemma 5.2.

Notice that, given (J, F ) and (J · F,F ′) both (V,D0)-admissible, then
(J, F ◦ F ′) is also (V,D0)-admissible, as well as (J · F,F−1). We set then

(3.9) A0 = {(J, F ) ∈ Diff0(M,K0) | (J, F ) is (V,D0)-admissible}

This set encodes identifications between structures in K0 that are given by
composing diffeomorphisms in the neighborhood D0.
We also consider the two maps from A0 to K0

(3.10) s(J, F ) = J and t(J, F ) = J · F

and the composition and inverse maps

(3.11) m((J, F ), (J · F,F ′)) = (J, F ◦ F ′), i(J, F ) = (J · F,F−1)

With these structure maps, the groupoid A0 ⇒ K0 is an analytic groupoid
[31, Prop. 4.6] whose stackification over S is called the Kuranishi stack of
X0. We denote it by A0. Note that it depends indeed of the particular
choice of V .

As a category, its objects are still reduced M -deformations over bases
belonging to S. However, the allowed complex structures are those encoded
in V ; and the allowed families are those obtained by gluing pull-back families
of K0 → K0 with respect to (V,D0)-admissible diffeomorphisms. In the same
way, morphisms are those induced by (V,D0)-admissible diffeomorphisms.
Hence, not only the complex fibers of the families have to be isomorphic to
those of K0, but gluings and morphisms of families are restricted.

Of course, the same construction can be carried out for the automorphism
groups Aut1(X0), resp. Aut(X0), with the following modifications. In (3.8),
Aut0(X0) is replaced with Aut1(X0), resp. Aut(X0), defining a neighbor-
hood D1 of Aut1(X0) in Diff0(M), resp. D of Aut(X0) in Diff+(M). This
allows to speak of (V,D1)-admissible, resp. (V,D)-admissible diffeomor-
phisms. But in the A and A1 cases, the sets ΩFi

, resp. ΩF−1
i−1

, in point iv

must be replaced with UFi
, resp. UF−1

i−1
in the definition of admissibility,

since Aut(X0) and Aut1(X0) may contain elements that are not connected
to the identity. Then, replacing D0 with D1, resp. D in (3.9) we obtain the
analytic groupoid A1 ⇒ K0, resp. A ⇒ K0. Its stackification over S gives a
stack A1, resp. A . The previous description of A0 as a category applies to
A1, resp. A with the obvious changes. We also call them Kuranishi stacks.

Before analyzing more thoroughly these Kuranishi stacks, we would like
to say a little more about automorphisms and K0. Given f ∈ Aut(X0),
define Holf as in (3.5) and set

(3.12) σf : J ∈ Uf ⊂ K0 7−→ (J, f ◦ e(χ(J)) ∈ A
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where χ is an analytic mapping from Uf ⊂ K0 to W with χ(0) = 0 defined
by

(3.13) Holf (J) = Ξ(J · f) = (J · f) · e(χ(J))

The map σf is a local analytic section of the source map s : A → K0 defined
on Uf . It satisfies

(3.14) t ◦ σf = Holf

Moreover, when f is an element of Aut0(X0), it has values in A0, when
restricted to Ωf .

Finally, we prove that A0 contains the connected component of the iden-
tity of the automorphism group of every fiber.

Lemma 3.9. Given any J ∈ K0 and any f ∈ Aut0(XJ ), then (J, f) belongs
to A0.

Proof. Let J ∈ K0 and let f ∈ Aut0(XJ). Assume that f is sufficiently close
to the identity to belong to D0. Then, using (3.8), we find g ∈ Aut0(X0)
such that J belongs to Ug and

(J, f) = σg(J)

This proves that (J, f) belongs to A0 as soon as f is small enough. Since
any element in Aut0(XJ) is a finite composition of small elements, this is
still true for any f ∈ Aut0(XJ ). �

Connexity is crucial here. Lemma 3.9 does not hold true for Aut1(XJ ).

3.5. Universality of the Kuranishi stacks. Recall that Kuranishi’s The-
orem asserts the existence of a semi-universal deformation for any compact
complex manifold. This is however not a universal deformation when the
dimension of the automorphism group varies in the fibers of the Kuranishi
family, i.e. in the setting of section 3.1, the germ of mapping f is not unique.
Replacing the Kuranishi space with the Kuranishi stack allows to recover a
universality property.

To do that, we need to germify the Kuranishi stacks. We replace our base
category S with the base category G of germs of analytic spaces. We turn
G into a site by considering the trivial coverings. Hence each object of G
has a unique covering and there is no non trivial descent data.

We then germify the groupoids. Starting with A ⇒ K0, resp. A0 ⇒ K0

and A1 ⇒ K0, and using s and t as defined in (3.10), we germify K0 at 0, A,
resp. A0 and A1, at the fiber (s× t)−1(0) and germify consequently all the
structure maps. We thus obtain the groupoids (A, (s × t)−1(0)) ⇒ (K0, 0),
resp. (A0, (s × t)−1(0)) ⇒ (K0, 0) and (A1, (s× t)−1(0)) ⇒ (K0, 0).

Finally, we stackify (A, (s× t)−1(0)) ⇒ (K0, 0), resp. (A0, (s× t)−1(0)) ⇒
(K0, 0) and (A1, (s× t)−1(0)) ⇒ (K0, 0), over G. We denote the correspond-
ing stacks by (A , 0), resp. (A0, 0) and (A1, 0).

The objects of (A , 0) over a germ of analytic space (S, 0) are germs of M -
deformations p : X → S with fiber at the point 0 of S isomorphic to X0. We
denote them by (X , p−1(0)) → (S, 0). The morphisms over some analytic
mapping f : S → S′ are germs of morphisms between M deformations
(X , p−1(0)) → (S, 0) and (X ′, p′−1(0)) → (S′, 0′) over f . Note that f(0) = 0′.
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Remark 3.10. It is crucial to notice that we deal with germs of unmarked

deformations. There is obviously a distinguished point (since we deal with
germs), but there is no marking of the distinguished fiber.

The following theorem shows that (A , 0) contains indeed all such germs of
M -deformations and of morphisms between M -deformations. It is folklore
although we never saw a paper stating this in a precise way.

Theorem 3.11. The stack (A , 0) is the stack M over G whose objects are
the germs of M -deformations of X0 and whose morphisms are the germs of
morphisms between M -deformations.

Proof. Since the site G does not contain any non-trivial covering, there is
no gluings of families, and the torsors associated to (A , 0) are just given
by the pull-backs of the germ of Kuranishi family (K0, π

−1(0)) → (K0, 0).
Kuranishi’s Theorem implies that the natural inclusion of (A , 0) in the stack
M is essentially surjective.

Morphisms over the identity of some germ (S, 0) of analytic space are
thus given by morphisms F between two germs of families (f∗K0, π

−1(0)) →
(B, 0) and (g∗K0, π

−1(0)) → (B, 0) for f and g germs of analytic mappings
from (B, 0) to (K0, 0). Hence F restricted to the central fiber X0 ≃ π−1(0)
is an automorphism of the central fiber that is an element of Aut(X0). But
(s × t)−1(0) is isomorphic to Aut(X0) so such a morphism F is induced by
an analytic mapping from (B, 0) to (A, (s× t)−1(0)) that we still denote by
F which satisfies s ◦ F = f and t ◦ F = g. This shows that the natural
inclusion of (A , 0) in the stack M is fully faithful. �

This must be thought of as the good property of universality. Indeed,
the failure of universality in Kuranishi’s theorem comes from the existence
of automorphisms of the Kuranishi family fixing the central fiber but not
all the fibers. Imposing a marking is an artificial and incomplete solution
to this problem because it only kills automorphisms inducing a non-trivial
automorphism on the central fiber. Now, the stack (A , 0) is universal for
germs of M -deformations of X0, because, thanks to Theorem 3.5, any such
germ (X ,X0) → (B, 0) is induced by an analytic map from its base to (A , 0),
yielding a diagram

(3.15)

(X ,X0) (K0, π
−1(0))

(B, 0) (K0, 0)

F

π

f

Moreover the full map (f, F ) is unique up to unique isomorphism of family
encoded in (A , 0). So thinking of (A , 0) as the quotient of the Kuranishi
space by the automorphisms of the Kuranishi family, not only the map f but
also the full map (f, F ) is unique; and this occurs with no extra condition.

In the same way, we have

Corollary 3.12. The stack (A1, 0) is the stack over G whose objects are
the germs of reduced M -deformations and whose morphisms are the germs
of morphisms between reduced M -deformations.
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Here C∞-markings of the M -deformations, that is the choice of a C∞

diffeomorphism from M to the central fiber, can be used to characterize
reduced families. Morphisms are required to induce on M a diffeomorphism
isotopic to the identity through the markings. Here again, we may rephrase
this Corollary as: the stack (A1, 0) is universal for germs of reduced M -
deformations of X0.

We also have

Corollary 3.13. The stack (A0, 0) is the stack over G whose objects are the
germs of 0-reduced M -deformations and whose morphisms are the germs of
morphisms between 0-reduced M -deformations.

In other words, the stack (A0, 0) is universal for germs of 0-reduced M -
deformations ofX0. A 0-reducedM -deformation is just a marked family. We
use a different terminology because morphisms are different. A morphism
of marked families is required to induce on X0 the identity through the
markings, whereas a morphism of 0-reduced M -deformation is required to
induce on X0 an element of Aut0(X0) through the markings.

With this difference in mind, it is interesting to compare Corollary 3.13
with the already cited classical statement of universality of [46], see also [28].
When the dimension of the automorphism group is constant on the fibers
of the Kuranishi family and the Kuranishi space is reduced, every element
of Aut0(X0) extends as an automorphism of the Kuranishi family induc-
ing the identity on K0. Imposing a marking of the families prevents from
reparametrizing with an element of Aut(X0)/Aut

0(X0), yielding unicity of
the pull-back morphism f and universality in the classical sense. However,
universality in the stack sense of Corollary 3.13 is

i) more general because it does not need extra hypotheses.
ii) more natural because the good condition to impose on the central fiber

is to authorize reparametrizations by an element of Aut0(X0), and not
to prevent any reparametrization as the classical marking does.

iii) more precise because it gives unicity of the full mapping (f, F ) of (3.15),
that is it keeps track of the automorphisms of the Kuranishi family, even
if they induce the identity on the base.

4. The Z-Teichmüller stack

Motivated by [12], we introduce now the Z-Teichmüller stack as a new
stack intermediary between the Teichmüller stack and the moduli stack. It
will play an important role when analyzing exceptional points. All that
has been said before on the Teichmüller stack can be easily adapted to the
Z-Teichmüller stack.

4.1. Definition and basic facts. Let DiffZ(M) be the subgroup of Diff+(M)
of diffeomorphisms that induce the identity on the singular cohomology
groups H∗(M,Z). Recall that the C∞-type of a M -deformation, resp. a re-
duced M -deformation, is a bundle over some base S with fiber M and struc-
tural group Diff+(M), resp. Diff0(M). In the same way, a M -deformation is

called Z-reduced if the structural group is reduced to DiffZ(M). And a mor-
phism of Z-reduced M -deformations X and X ′ over an analytic morphism
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f : S → S′ is a cartesian diagram

X X ′

S S′

�

f

such that X and f∗X ′ are isomorphic as DiffZ(M)-bundles over S.
The Z-Teichmüller stack T Z(M) is the stack over the siteS whose objects

are Z-reduced M -deformations and morphisms are morphisms of Z-reduced
M -deformations. The natural morphism T Z(M) → S sends a Z-reduced
M -deformation onto its base and a morphism of Z-reduced M -deformation
to the corresponding morphism between their bases. By a direct adaptation
of [31], it is an analytic stack under the hypothesis that the h0-function is
bounded on the set I(M). Indeed, the analytic atlas T of the Teichmüller
stack constructed in [31] under the same hypothesis is also an analytic atlas
of T Z(M). The difference between the two cases occur when computing the
fiber product T×T Z(M)T but the projections are still smooth and surjective.

A pointX0 := (M,J0) is an object of T Z(M)(pt) that is a complex structure
on M up to biholomorphisms inducing the identity in cohomology with Z-
coefficients6.

From the natural inclusions Diff0(M) ⊂ DiffZ(M) ⊂ Diff+(M), we deduce
the natural inclusions

(4.1) T (M) →֒ T Z(M) →֒ M (M)

meaning that an object, resp. a morphism of T (M) is also an object, resp.
a morphism of T Z(M) and that an object, resp. a morphism of T Z(M) is
also an object, resp. a morphism of M (M). The isotropy group of X0 as a
point of T Z(M) is the group

(4.2) AutZ(X0) := Aut(X0) ∩DiffZ(M).

which contains both Aut0(X0) and Aut1(X0) and is contained in Aut(X0).
Note that all inclusions may be strict [12], showing in particular that the
first inclusion map of (4.1) may also be strict.

4.2. The Z-Kuranishi stack. The construction of §3.4 can be carried out
for the automorphism groups AutZ(X0) with the following modifications. In
(3.8), Aut0(X0) is replaced with AutZ(X0) defining a neighborhood DZ of
AutZ(X0) in DiffZ(M). This allows to speak of (V,DZ)-admissible diffeomor-
phisms. The sets ΩFi

, resp. Ω
F−1
i−1

, in point iv must be replaced with UFi
,

resp. UF−1
i−1

in the definition of admissibility, since AutZ(X0) may contain

elements that are not connected to the identity. Then, replacing D0 with
DZ in (3.9) we obtain the analytic groupoid AZ ⇒ K0. Its stackification
over S gives a stack AZ that we call the Z-Kuranishi stack of X0.

We may now deduce another Corollary to Theorem 3.11 that refers to
Z-reduced M -deformations. As in §9.3, we germify the analytic groupoid
AZ ⇒ K0 and denote its stackification over G by (AZ, 0). We then have

6Of course, there are natural variants of the Z-Teichmüller stack by considering other
cohomologies or homologies such as singular cohomology with coefficients in Q.
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Corollary 4.1. The stack (AZ, 0) is the stack over G whose objects are the
germs of Z-reduced M -deformations and whose morphisms are the germs of
morphisms between Z-reduced M -deformations.

Here C∞-markings of the M -deformations, that is the choice of a C∞

diffeomorphism from M to the central fiber, can be used to characterize Z-
reduced families. Morphisms are required to induce on M a diffeomorphism
inducing the identity in cohomology through the markings. Here again, we
may rephrase this Corollary as: the stack (AZ, 0) is universal for germs of
Z-reduced M -deformations of X0.

5. Local structure of the Teichmüller stacks

A neighborhood of X0 in T (M) consists of M -deformations all of whose
fibers are close to X0, that is can be encoded by structures J living in a
neighborhood V of J0 in I(M). As in [31], we shall denote it by T (M,V ).
The corresponding neighborhood of T Z(M) is denoted by T Z(M,V ). From
now on, we assume that V is open, connected and small enough to come
equipped with a Kuranishi mapping (3.3).

5.1. Atlas. The main difficulty to construct an atlas in [31] was to describe
all the morphisms between the different Kuranishi spaces involved to com-
pute the fiber product. Here, in the local case, we just need to use one
Kuranishi space and family as atlas and it is straightforward to give the
associated groupoid for T (M,V ). Just consider

(5.1) TV := {(J, f) ∈ Diff0(M,K0) | J · f ∈ K0}

and the groupoid TV ⇒ K0 with structure maps as in (3.10) and (3.11).
And consider

(5.2) T Z
V := {(J, f) ∈ DiffZ(M,K0) | J · f ∈ K0}

and T Z
V ⇒ K0 for a neighborhood of X0 in T Z(M).

Observe that (5.1), resp. (5.2) is very close to the groupoid A1 ⇒ K0 of
the Kuranishi stack A1, resp. of AZ ⇒ K0. Indeed the points of T (M,V ),
resp. T Z(M,V ) are exactly the same than those of A1, resp. AZ, but A1,
resp. AZ, have less morphisms, hence also less descent data and thus less
objects. To understand how to pass from A1 to T (M,V ), resp. from AZ to
T Z(M,V ), we need to understand and encode the ”missing” morphisms.

5.2. Target Germification. As in the case of the Kuranishi stacks, we
would like to germify V and consider only complex structures belonging to
the germ of some point J0 in V . This process is different from the germifi-
cation process of section 3.5 which was about germifying the base category
and thus the base of M -deformations. Here we still want to consider M -
deformations over any analytic bases, but need to germify the set of pos-
sible fibers. Hence we need a target germification process, as opposed to
the source germification process used in Section 3.5. To avoid cumbersome
notations and an unreasonable use of resp., we only describe the process for
T (M,V ) and let the reader add a Z at each step in the case of T Z(M,V ).
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To do that, we look at sequences of stacks T (M,Vn) for (Vn) an inclusion
decreasing sequence of neighborhoods of a fixed point J0 with V0 = V .
Corresponding to a nesting sequence

(5.3) . . . ⊂ Vn ⊂ . . . ⊂ V ⊂ I

we obtain the sequence

(5.4) . . . T (M,Vn) . . . T (M,V )

We consider sequences of M -deformations over the same base (Xn → B)
such that Xn is an object of T (M,Vn) for some decreasing sequence (5.3).
We identify two such sequences (X ′

n → B) and (Xn → B) if the families
X ′

n → B and Xn → B are isomorphic as objects of T (M,V ) for every large
n. Here are some examples of such sequences

i) Start with a M -deformation X → D over the disk with central fiber
isomorphic to X0. Then consider the pull-back sequence (λ∗

nX → D)
where (λn) is a sequence of homotheties with ratio decreasing from 1 to
0.

ii) Start with a fiber bundle E → B with fiber X0 and structural group
Aut1(X0) and a M -deformation π : X → B × D which coincides with
the bundle E over B×{0}. Then pick up some sequence (xn) in the disk
which converges to 0. Then consider the sequence of families (π−1(B×
{xn}) → B).

Morphisms from (X ′
n → B) to (Xn → B) are sequences (fn) with fn a family

morphism over B from X ′
n to Xn for every n. Once again, we identify two

such sequences (fn) and (gn) if there exists some integer k such that fn = gn
as morphisms of T (M,V ) for n ≥ k.

We call the resulting category the target germification of T (M) at J0 and
denote it by (T (M), J0). Observe that this is not a stack but rather a
projective limit of stacks.

5.3. The natural morphism from Kur to Teich. We want to analyse
the structure of the analytic space TV defined in (5.1) and compare it with
A1.

We already observed in Section 5.1 that there is a natural inclusion of
groupoids of A1 into TV . It comes from the fact that TV encodes every
morphism between fibers of the Kuranishi family, whereas A1 encodes some

morphisms between fibers of the Kuranishi family. This inclusion is just
the description at the level of atlases of the natural inclusion of A1 into
T (M,V ): A1-objects, resp. A1-morphisms, inject in T (M,V )-objects,
resp. T (M,V )-morphisms. So our final goal here is to give the structure of
this inclusion.

There exists also a natural inclusion of A0 into T (M,V ). We first relate
the morphisms encoded in TV to those encoded in A0. Set

Definition 5.1. Let (J, f) ∈ TV and let (J, g) ∈ TV . Then they are s-
homotopic if there exists a compatible path (Ft) in Diff0(M) such that t 7→
(J, Ft) joins (J, f) to (J, g) in TV .

In other words, (J, f) to (J, g) are s-homotopic if they belong to the same
connected component of the s-fiber of TV ⇒ K0 at J .
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Lemma 5.2. Let (J, f) ∈ TV and let (J, g) ∈ TV . Then these two elements
are s-homotopic if and only if (J · f, f−1 ◦ g) belongs to A0.

Proof. Assume (J ·f, f−1 ◦g) belongs to A0, that is (J ·f, f−1 ◦g) is (V,D0)-
admissible. Then we may decompose it as

f−1 ◦ g = h1 ◦ h2 ◦ . . . ◦ hp

with each hi ∈ D0; and

Ji+1 = Ji · hi for i = 1, · · · , p − 1

belongs to K0 with J1 := J · f . We claim that (Jp, Id) and (Jp, hp) stay
in the same connected component of TV . Indeed, it follows from point v)
of Definition 3.7 that Jp belongs to Ωhp

. Hence there exists a compatible
path (Ht) joining hp to the identity and (Jp,Ht) is a continuous path in TV
joining (Jp, Id) and (Jp, hp). Since this path has fixed first coordinate, we
may compose on the left by f ◦ h1 ◦ h2 ◦ . . . ◦ hp−1 and obtain a continuous
path between (J, g ◦ hp−1) and (J, g). Repeating the process, we connect
(J, f) to (J, g).

Conversely, let (J, f) and (J, g) be s-homotopic. Then, there exists an
isotopy (J, ft) joining these two points in TV . But then we may find by
compacity t0 = 0 < t1 < . . . < tk = 1 such that

(Ji, hi) := (J · fti , f
−1
ti

◦ fti+1)

satisfies that hi and h−1
i are sufficiently small to belong to an open neigh-

borhood of the identity in D0 that maps every J · ftj and J0 inside V . As a
consequence, we have J · fti in Ωhi

and in Ω
h−1
i−1

. Hence,

(J0, h0 ◦ . . . ◦ hk) = (J · f, f−1 ◦ g)

is (V,D0)-admissible as needed. �

We are now in position to state and prove our first main result.

Theorem 5.3. The natural inclusion of A0 into T (M,V ), resp. of A1 into
T (M,V ), is an étale morphism of analytic stacks.

Let us make a few comments before proving Theorem 5.3. First of all,
the statement may be a bit misleading for readers used to the classical
notion of étale morphism of analytic space. Given a discrete group G acting
holomorphically onto an analytic space X, then the morphism X → [X/G],
with [X/G] the quotient stack, is étale even if it has dense orbits or infinite
stabilizers.

Then, by étale morphism of analytic stacks, we mean that, given any
B ∈ S and any morphism u from B to T (M,V ), the fiber product

(5.5)

B ×u A0 A0

B T (M,V )

f1

f2

�
inclusion

u

resp.

B ×u A1 A1

B T (M,V )

f1

f2

�
inclusion

u

satisfies

i) B ×u A0, resp. B ×u A1, is a C-analytic space.
ii) The morphism f1 is an étale morphism between C-analytic spaces.
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In other words, point i) means that the natural inclusion is a representable
morphism. Hence it may enjoy any property preserved by arbitrary base
change and local at target that a classical morphisms between analytic spaces
may enjoy. Then point ii) means that, amongst all these properties, we
prove that the natural inclusion is étale. We note that this corresponds to
the ”strong” notion of étale in the literature on algebraic stacks, e.g. in
the local structure theorem of [2], the constructed étale morphism is not
representable in general so a weaker notion of étale morphisms of algebraic
stacks is used.

Last but not least, Theorem 5.3 must be understood geometrically as
follows. A family X → B with all fibers belonging to V can be decomposed
as local pull-backs of K0 glued together through a cocycle of morphisms
(uij) in TV . It is an object of A1 if and only we may find an equivalent
cocycle living in A1. This is completely similar to the process of reduction
of the structural group of a fiber bundle. Theorem 5.3 says that, given such
a family, there exists at most a discrete set of non-equivalent reductions.
Assume X0 is rigid with Kuranishi space being a reduced point. Then, any
reduced M -family is indeed a locally trivial holomorphic bundle with fiber
X0 and structural group Aut1(X0). There is no difference with families that
are objects of A1, however objects of A0 are bundles with fiber X0 and
structural group Aut0(X0) this time. So, in this particular case, Theorem
5.3 really describes the set of non-equivalent reductions of the structural
group of such a bundle from Aut1(X0) to Aut0(X0). And this set can be
easily determined by passing to the associated principal bundles and making
use of the following observation. Given a principal Aut1(X0)-bundle E over
some base B, let Aut0(X0) act on the fibers of E. The quotient E′ has fibers
Aut1(X0)/Aut

0(X0) and is trivializable if and only if E admits a Aut0(X0)-
reduction. Hence the set we are looking for is the set of trivializations of
E′ and identifies with the set of holomorphic maps from B to the discrete
Aut1(X0)/Aut

0(X0) set. The proof given below in the general case follows
the same strategy.

We give another geometric interpretation of Theorem 5.3 in Section 9.3.

Proof. By Yoneda’s lemma, a morphism u : B → T (M,V ) corresponds to
a family X → B. The fiber product B ×u A0 encodes the isomorphisms of
T (M,V )

(5.6)
X X ′

B

α

between families X → X ′ over B (with X ′ in A0) modulo isomorphisms β
over B

(5.7)

X ′

X

X ′′

β

α

α′
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belonging to A0.
Assume B connected. Decompose B as a union of connected open sets

B1∪ . . .∪Bk in such a way that the family X , resp. X ′, is locally isomorphic
above Bi to u∗iK0 for some ui : Bi → K0, resp. to (u′i)

∗K0 for some u′i :
Bi → K0. These local models are glued through a cocycle uij : Bi∩Bj → TV ,
resp. u′ij : Bi ∩Bj → A0 ⊂ TV , satisfying s(uij) = ui and t(uij) = uj , resp.

s(u′ij) = u′i and t(u′ij) = u′j, to obtain a family isomorphic to X , resp. X ′.

In these models, up to passing to a finer covering, an isomorphism (5.6)
corresponds to a collection Fi : Bi → TV fulfilling

i) s ◦ Fi = ui and t ◦ Fi = u′i
ii) m(uij , Fj) = m(Fi, u

′
ij)

Then X ′′ corresponds to a cocycle u′′i : Bi → K0 and α′ to a collection
F ′
i : Bi → TV satisfying similar relations.

Let β be α′ ◦ α−1. This is a morphism of T (M,V ) which is given in our
localisation by the collection

(5.8) Gi := m(i(Fi), F
′
i ) : Bi −→ TV

We want to know when β is a morphism of A0, that is when Gi has image
in A0 for all i.

Since the Bi are connected, the image of each map Fi, F
′
i is included in a

single connected component of the space Si of s-sections of Bi ×ui
TV above

Bi. By Lemma 5.2, Fi and F ′
i land in the same connected component of Si

if and only if Gi lands in A0.
Choose a point bi in each Bi. Then α and α′ are equivalent through

(5.7) if and only if (bi, Fi(bi)) and (bi, F
′
i (bi)) belong to the same connected

component of Si for all i.
Now, assume that (b1, F1(b1)) and (b1, F

′
1(b1)) belong to the same con-

nected component of S1. Given i 6= 1 and taking c ∈ B1∩Bi, it follows from
the compatibility relations that

(5.9) Fi(c) = m(ui1,m(F1, u
′
1i))(c)

and

(5.10) F ′
i (c) = m(ui1,m(F ′

1, u
′′
1i))(c)

But u′1i and u′′1i are mappings with values in A0, hence, applying once again
Lemma 5.2, we deduce that m(F1, u

′
1i)(c) and m(F ′

1, u
′′
1i)(c) belong to the

same connected component of S1, say S, and finally Fi(c) and F ′
i (c) to

the same connected component of Si since both lie in the image of S by
m(ui1,−). And so do Fi(bi) and F ′

i (bi) for all i by connectedness of B.
As a consequence, α and α′ are equivalent through (5.7) if and only if

(bi, Fi(bi)) and (bi, F
′
i (bi)) belong to the same connected component of Si

for some i.
Therefore, the fiber product B ×u A0 identifies with a disjoint union of

copies of B. On the points of B ×u A0
7, this identification is given by the

map

(5.11) (b, F (b)) ∈ (B ×u A0) 7−→ (b, ♯(Fi(b0)) ∈ B × ♯S0

7that is, for objects above some point b ∈ B.
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Here S0 is the s-fiber of TV above ui(b0), the set ♯S0 is the set of connected
components of S0 and the ♯ application maps an element of S0 to the con-
nected component of S0 which contains it; the mapping Fi is defined as
above as a local expression for α satisfying (5.6), the point b0 and the index
i are fixed with b0 belonging to Bi. It follows from what preceeds that the
quantity Fi(b0) depends only on the class of α modulo (5.7), showing that
(5.11) is an isomorphism onto its image. Its image is B×E0, for E0 a subset
of ♯S0 which can be a strict subset because some connected components of
S0 may not compatible with any cocycle of the family X . Indeed, it may be
empty, corresponding to a family X that is not isomorphic to any family of
A0, i.e. corresponding to B ×u A0 empty. Finally, when it is not empty, f1
can be rewritten as the natural projection map

(5.12) B × {1, . . . , g(X )} −→ B

for g(X ) a number N∗∪{+∞} that depends on X , as the notation suggests,
and is the number of connected components of S0 that can be attained
through (5.11). This proves that the inclusion of A0 in T (M,V ) is an étale
morphism.

Let us deal now with the A1 case. We thus consider diagrams (5.6) and
(5.7) with X ′ and β in A1. We define ui, u

′
i, u

′′
i , Fi, F

′
i and Gi as before.

We want to know when Gi has image in A1 for all i. Using (5.9) and (5.10),
we obtain that Gi is in A1 for all i if and only if G1 is in A1.

Then, by connexity of B1, this occurs if and only if G1(b1) belongs to A1

for some fixed b1 ∈ B1. Indeed, letting b be another point of B1, we have
that G1(b1) and G1(b) belong to the same connected component of S1, hence
are related through an element of A0 by Lemma 5.2. Since the composition
of an element of A1 with an element of A0 belongs to A1, we deduce that
G1(b) is also in A1 for all b ∈ B1.

This is equivalent to F1(b1) andm(F ′
1(b1), h) are s-homotopic for some h ∈

A1 with s(h) = t(F1(b1)). Say that F1(b1) and F ′
1(b1) are (s, 1)-homotopic

when this is true. In other words, we define on S0 the following equivalence
relation: (J, f) and (J, g) are (s, 1)-homotopic (where J = u1(b1)) if and
only if (J · f, f−1 ◦ g) belongs to A1. It is is straightforward to check that it
only depends on the connected component of (J, f) and (J, g) in S0, that is
the (s, 1)-homotopy descends as an equivalence relation on ♯S0.

Thus, one eventually finds that the fiber product B×u A1 identifies with
the disjoint union of an at most countable number of copies of B, say g1(X ),
through the map

(5.13) (b, F (b)) ∈ (B ×u A1) 7−→ (b, ♯1Fi(b0)) ∈ B × ♯1S0

Here we use the same notations and conventions as in (5.11), ♯1S0 is the set
of (s, 1)-homotopy classes of ♯S0, and the ♯1 application maps an element of
TV to the element of ♯1 which contains it. Finally f1 can be rewritten as the
natural projection map

(5.14) B × {1, . . . , g1(X )} −→ B

for g1(X ) the number of ♯Aut1(X0)-orbits of connected components of TV
that can be attained through (5.13). �
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Of course, a similar statement holds for the Z-Teichmüller stack. We have
indeed

Corollary 5.4. In the following commutative diagram of natural inclusions,

(5.15)

A0 A1 T (M,V )

A0 AZ T Z(M,V )

every arrow is an étale morphism of analytic stacks.

Proof. The top line is given by Theorem 5.3 and the bottom line is proven
in the same way. Then, take the fibered product of (5.15) with some u :
B → T Z(M,V ) obtaining

(5.16)

B ×u A0 B ×u A1 B ×u T (M,V )

B ×u A0 B ×u AZ B

that is a diagram of analytic spaces with all horizontal lines being étale.
Thus the vertical ones are also étale and we are done. �

Since being étale is a local at base property, we also have

Corollary 5.5. The natural inclusion of T (M) in T Z(M) is étale analytic.

6. The main conjecture

6.1. Exceptional and Z-exceptional points. In view of Theorem 5.3 and
Corollary 5.4, it is natural to single out the following case.

Definition 6.1. We say that X0 is an exceptional point of the Teichmüller

stack T (M) or simply that X0 is exceptional if there is no neighborhood V
of X0 such that the étale morphism A1 → T (M,V ) is an isomorphism.

Analogously, we say that X0 is an exceptional point of the Z-Teichmüller

stack T Z(M), or simply that X0 is Z-exceptional if there is no neighborhood
V of X0 such that the étale morphism AZ → T Z(M,V ) is an isomorphism.

The idea behind this definition is of course that these étale morphisms
should be isomorphisms at a generic point for a sufficiently small V . The
situation is however much more complicated. It turns out that it strongly
depends on the existence of a Kähler metric on the manifold X0.

6.2. Conjecture on exceptional points. We now state and discuss the
main conjecture on exceptional points that will occupy ourselves in Sections
8 to 10.

Conjecture 6.2. (Main conjecture on exceptional points).

I. Let X0 be Kähler. Then X0 is neither exceptional in T (M) nor Z-
exceptional in T Z(M).

II. There exist some exceptional and Z-exceptional (non-Kähler) points.
They may even be dense in a connected component of T (M) or T Z(M).
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III. Every exceptional, resp. Z-exceptional point, is vanishing or wander-
ing.

As we already did in the introduction §1, we emphasize that classical
deformation theory from an analytic point of view is rather insensible to
Kählerianity and that the dichotomy in Conjecture 6.2 is only seen on the
Teichmüller and Z-Teichmüller stacks, not on the moduli stack. Especially,
only in the context of Kähler manifolds acted on by Diff0(M) or DiffZ(M)
can we use results on the compacity of cycle spaces.

Point I of Conjecture 6.2 is the most optimistic. Basic reasons to believe
it include the already cited compacity results in the Kähler setting such as
Lieberman’s Theorem recalled in §9; the fact that submanifolds of Kähler
manifolds represent non-trivial cohomology classes rigidifying Aut1(X0) and
AutZ(X0); and the difficulties in finding an example of an exceptional point
even for non-Kähler manifolds. But this is far from giving a strong evi-
dence for I. It also supposes that the Diff0(M) and DiffZ(M)-orbits of I(M)
have a very simple topology with no holonomy phenomenon. We shall
prove in Section 10 a weaker result: exceptional Kähler points, resp. Z-
exceptional Kähler points, if exist, form a strict analytic substack of T (M),
resp. T Z(M), see Theorem 10.1.

Point II of Conjecture 6.2 seems more plausible although not easier to
prove. Basic reasons to believe it boil down to the fact that all the tech-
niques used to prove Theorem 10.1 break down completely in the non-Kähler
setting. Also we give in §8.4 an example of Z-exceptional points with a prop-
erty of local density, see Theorem 8.17. We are unable however to show the
existence of exceptional points.

Point III of Conjecture 6.2 is more technical but explains the difference
of behaviour between the Kähler and the non-Kähler case stated in points
I and II. It makes reference to the classification of exceptional points into
exceptional, vanishing and wandering points introduced in §8.2. It implies
ppint I since vanishing and wandering points do not exist in the Kähler
context, see Corollary 9.9. Its general meaning is the following. Vanishing,
resp. wandering points, encompass non compactness of a component of
cycles, resp. non finiteness of the number of components.

Indeed, Conjecture 6.2 sheds some light on the dichotomy between Kähler
and non-Kähler points, pushes forward it to the extreme form of a 0 − 1
conjecture. We hope it will serve as a challenging problem and a source of
motivation for studying these questions.

Before looking with more care at exceptional points, we will focus on the
points where the Teichmüller stack is locally simpler.

7. Structure of the Teichmüller stack of normal points

Section 6 introduces the notion of exceptional points. At such a point, the
local Teichmüller stack includes morphisms that are not close to automor-
phisms of the central fiber, adding complexity. But jumping points are also
bad points, where the Teichmüller space is usually locally non-Hausdorff at
X0. Roughly speaking, normal points are points of T (M) that are neither
jumping nor exceptional.
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7.1. Normal points. We start with the following Lemma

Lemma 7.1. Assume (3.7) is locally constant at X0. If V is small enough,
every automorphism of Aut0(X0) extends as an automorphism of the whole
Kuranishi family.

Proof. Assume K0 reduced. Recall that the Lie algebra of Aut0(X0) is the
cohomology group H0(X0,Θ0). Since (3.7) is locally constant at 0, the
projection

(7.1)
⋃

t∈K0

H0(Xt,Θt) −→ K0

is a locally trivial fiber bundle for V and K0 small enough. Hence we may
extend every element of H0(X0,Θ0) as a holomorphic vector field tangent to
the fibers of the Kuranishi family. Taking the exponential and composing,
this means that every element of Aut0(X0) extends as an automorphism of
the whole Kuranishi family as wanted.

If K0 is not reduced, then the previous argument shows that every auto-
morphism of Aut0(X0) extends as an automorphism above Kred

0 , the reduc-
tion of K0. Now, given f ∈ Aut0(X0) and G an extension of f

(7.2)

K red
0 K red

0

Kred
0 Kred

0

G

g

then g is defined on K0 through

(7.3) g(J) := J ·GJ

Then, since K0 → K0 is a smooth morphism, K0 is locally isomorphic to
K0 × Cn. On such an open subset of K0 × Cn, we define G as

(7.4) (J, z) 7−→ (g(J), GJ (z))

and we are done. �

Notice that, when K0 is reduced, the proof of Lemma 7.1 shows that
every automorphism of Aut0(X0) extends as an automorphism of the nearby
fibers of the Kuranishi space of X0. Indeed the extension at J is given by
the function f ◦ e(χ(J)) appearing in (3.12), which is an automorphism of
XJ by Lemma 3.3. As a consequence the source and target morphisms of
A0 ⇒ K0 are equal. If K0 is not reduced, then the extensions descend as
the identity on the reduction of K0 but not always as the identity of K0.

This motivates the following definition.

Definition 7.2. A point X0 of the Teichmüller stack is a normal point if

i) choosing V small enough, every automorphism of Aut0(X0) extends as
an automorphism of the whole Kuranishi family which descends as the
identity on K0.

ii) It does not belong to the closure of the set of exceptional points.
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Replacing exceptional with Z-exceptional in Definition 7.2 gives the no-
tion of Z-normal points.

As a consequence of point i) in Definition 7.2, the source and target maps
of A0 ⇒ K0 can be assumed to be equal at a normal point. Indeed, it is
exactly the analytic space and morphism

(7.5) N :=
⋃

t∈K0

Aut0(Xt) −→ K0

constructed by Namba8 in [38] when K0 is reduced. This can be proven as
follows. By Lemma 3.9, there is a set theoretic inclusion of N into A0. The
equality s = t yields the reverse inclusion. Taking account that the topology
in N is that of uniform convergence, this bijection is indeed a homeomor-
phism. Finally, both A0 and N being smooth over K0 reduced - for N ,
this is true because (3.7) is constant - with same fibers, this homemorphism
can be turned into an analytic isomorphism.

Recall also that point i) in Definition 7.2 is stronger than (3.7) being
locally constant in the non-reduced case.

Example 7.3. Consider the case of compact complex tori. Then Aut0(X0)
is not trivial, since it contains the translations. So neither T (M,V ) nor
A1 is an orbifold, since their isotropy groups are not finite. However, if
we forget about the stack structure, the Teichmüller space is naturally a
complex manifold. Indeed, roughly speaking, the stack is obtained from
this complex manifold by attaching a group of translations to each point.
This is an example of a stack represented by an analytic groupoid with s
and t equal. More precisely, (7.5) is the universal family of tori, see [31],
Example 13.1.

At a normal point, resp. a Z-normal point, the local Teichmüller stack
and the Kuranishi stack A1, resp. the local Z-Teichmüller stack and AZ,
coincide. Lemma 7.1 and (7.5) are however not enough to describe both of
them, since Aut1(X0), resp. Aut

Z(X0), may have several connected compo-
nents.

7.2. Kuranishi stack as an orbifold. Before analyzing the Teichmüller
stack of normal points, we investigate the important case when the Kuranishi
stack(s) is (are) an orbifold. Here by an orbifold, we mean a stack given as
the global quotient of an analytic space by an holomorphic action of a finite
group with a point fixed by the whole group. We include non-effective
actions. We have

Theorem 7.4. The following two statements are equivalent

i) There exists some open neighborhood V ′ ⊂ V of X0 such that the Ku-
ranishi stack A restricted to V ′ is an orbifold

ii) Aut(X0) is finite

Remark 7.5. In order to endow the Kuranishi stack A with a structure of an
orbifold, we need to start with an open set V stable under the action of the

8To be precise, the Namba space is the union of the full groups Aut(Xt), hence (7.5)
is an open subset of it.
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automorphisms. This explains the restriction to some V ′ in the statement.
In the proof V ′ is constructed as such a stable open set.

Proof. Since the isotropy group of X0 is Aut(X0), the condition is obviously
necessary. So let us assume that Aut(X0) is finite. We start with an ar-
bitrary atlas A ⇒ K0. We assume that the Aut(X0) version of (3.8) is
valid.

We show that we may choose V ′ ⊂ V so that the corresponding atlas A′ ⇒

K0 ∩ V ′ of A is Morita equivalent to the translation groupoid Aut(X0) ×
K0 ∩ V ′ ⇒ K0 × V ′.

The proof of Theorem 7.4 consists in the following three lemmas.

Lemma 7.6. For all f ∈ Aut(X0), the map σf : Uf ⊂ K0 → A constructed
in (3.12) is the unique (up to restriction) extension of f .

By extension of f , we mean a section F of s defined in a neighborhood of
0 and such that F (0) = f .

Proof of Lemma 7.6. The map σf is obviously an extension of f as desired.
Let now G be another extension of f . Then, for all J ∈ K0 close to 0, we

have a decomposition

(7.6) G(J) = f ◦ e(η(J))

using (3.8). Here the factor in Aut(X0) is constant equal to f since Aut(X0)
is discrete.

We have

(7.7) J ·G(J) = Ξ(J ·G(J)) = Ξ(J · f) = Holf (J)

so the mapping η also satisfies (3.13). But since (3.3) is an isomorphism,
(3.13) is uniquely verified and η = χ. Thus G = σf on a neighborhood of
J0 in K0. �

As a consequence, we have

Lemma 7.7. For all f ∈ Aut(X0), and g ∈ Aut(X0), we have σg◦f =
m(σg, σf ) on a neighborhood of J0.

Proof of Lemma 7.7. Define

(7.8) m(σg, σf ) : J 7−→ m(σg(J), σf (J · σg(J)))

This is an extension of g ◦ f , and thus by Lemma 7.6 is equal to σg◦f on a
neighborhood of J0. �

Let U be the intersection of all Uf for f in the finite group Aut(X0). Then
all Holf are defined on U with values in K0. Redefine K0 as the intersection
of all Holf (U) for f in the finite group Aut(X0). Observe that

(7.9) Holg(∩f (Holf (U))) = (∩f (Holf◦g(U))) = ∩f (Holf (U))

because the intersection of the Holf (U) is included in U and because of
Lemma 7.7. Then all Holf map bijectively K0 to K0. Associated to this
new K0 and to (3.8) is some V ′ ⊂ V . Set

(7.10) E xt = {σf : K0 → A | f ∈ Aut(X0)}

We have
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Lemma 7.8. (E xt, ◦) is a group isomorphic to Aut(X0).

Proof of Lemma 7.8. By Lemma 7.7, m(σg, σf ) is equal to σg◦f on a neigh-
borhood of J0, hence on K0 by analyticity.

The same arguments used in Lemma 7.7 show that if g1 ◦ . . . ◦ gk = Id,
then the same relation holds for the σgi ’s. �

The space K0 is invariant by the action of the group (E xt, ◦), which
describes all the morphisms of the Kuranishi stack. We may thus take as
atlas for A the translation groupoid E xt ×K0 ⇒ K0, or, equivalently the
translation groupoid Aut(X0)×K0 ⇒ K0. �

Replacing A with AZ, resp. A1, resp. A0 and Aut(X0) with AutZ(X0),
resp. Aut1(X0), resp. Aut

0(X0) yields the following immediate corollaries.

Corollary 7.9. The following two statements are equivalent

i) There exists some open neighborhood V ′ ⊂ V of X0 such that the Ku-
ranishi stack A1 restricted to V ′ is an orbifold

ii) Aut1(X0) is finite

then,

Corollary 7.10. The following two statements are equivalent

i) There exists some open neighborhood V ′ ⊂ V of X0 such that the Ku-
ranishi stack AZ restricted to V ′ is an orbifold

ii) AutZ(X0) is finite

and finally,

Corollary 7.11. The following two statements are equivalent

i) There exists some open neighborhood V ′ ⊂ V of X0 such that the Ku-
ranishi stack A0 restricted to V ′ is an orbifold

ii) There exists some open neighborhood V ′ ⊂ V of X0 such that the Ku-
ranishi stack A0 restricted to V ′ is an analytic space

iii) Aut0(X0) is reduced to the identity.

Proof. Just notice that Aut0(X0) is finite if and only if it is reduced to the
identity. �

7.3. The étale Teichmüller stack of normal points. We are now in
position to analyse the structure of the Teichmüller stack restricted to the
set of normal points. First note the following result.

Proposition 7.12. The subset N ⊂ I of normal points is an open set of I.

Proof. Let J0 be a normal point of I. Then A0 ⇒ K0 have equal source
and target morphisms. Taking K0 smaller if necessary, we may assume that
K0 does not meet the closure of exceptional points and that K0 is complete
at any point, see [30]. Let now J1 belong to K0. Set X1 = (M,J1). Since
(3.7) is locally constant, Proposition 2 of [28] applies and the germ of K0 at
J1 is universal for families above a reduced base, hence the reduction of K0

at J1 in K0 and the reduction of the Kuranishi space K1 of X1 are locally
isomorphic. It follows from completeness thatK1 injects in K0 at X1. Hence
the Kuranishi stack A0(X1) ⇒ K1 of X1 injects in A0 ⇒ K0 at X1: any
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morphism of A0(X1) is an extension of an automorphism of X1, so belong
to A0 by Lemma 3.9 taking K1 smaller if necessary. As a consequence its
source and target morphisms are equal and X1 is a normal point. �

Let X0 be a normal point. Since the source and target maps of A0 ⇒ K0

are equal, the multiplication of the groupoid induces a fibered action of A0

onto A1 that preserves the source and target maps of A1 ⇒ K0. Given
(J, f) ∈ A0 and (J, g) ∈ A1, we set

(7.11) (J, f) · (J, g) := m((J, f), (J, g)) = (J, f ◦ g)

We have

Lemma 7.13. Assume X0 is normal. Then, the quotient space A1/A0 is
an analytic space and the morphism s, resp. t : A1 → K0, descends as an
étale morphism from A1/A0 to K0.

Proof. Let (J, f) belong to A1. For (J, f ′) close enough to (J, f), the dif-
feomorphism f ′ ◦ f−1 belongs to Aut0(XJ) hence to A0 by Lemma 3.9 and
(J, f ′) equals (J, f) in the quotient space. Choose a local s-, resp. t-section
σ from a neighborhood of J in K0 to a neighborhood of (J, f) ∈ A1 with
σ(J) = (J, f). Such local sections exist since s, resp. t is a smooth mor-
phism. Then the restriction of s, resp. t to this section realizes a local
isomorphism between A1/A0 and K0.

We are left with proving that A1/A0 is Hausdorff. Let (Jn, fn) converge to
(J, f) in A1 and (J ′

n, gn) converge to (J ′, g). Assume they are A0-equivalent.
By definition, we thus have Jn = J ′

n and gn ◦f
−1
n is an element of Aut0(XJn)

for all n. Since K0 is Hausdorff, passing to the limit gives J = J ′. More-
over all gn ◦ f

−1
n are holomorphic extensions at Jn of some automorphism of

Aut0(X0) by Lemma 7.1, hence the limit g ◦ f−1 still belongs to Aut0(X0).
Hence a convergent sequence in A1/A0 has a unique limit, showing Haus-
dorffness. �

Hence we may define an étale quotient groupoid A1/A0 ⇒ K0. Its stack-
ification over the analytic site describes classes of reduced (M,V )-families
up to A0-equivalence.

This stack can be defined over the full open set N of normal points. In
this context, a reduced (M,N )-family is A0-equivalent to a trivial family if
it can be decomposed as local pull-back families glued by a cocycle in A0,
cf. the proof of Theorem 5.3; and an isomorphism of a reduced (M,N )-
family is A0-equivalent to the identity, if it is given by local A0-sections
once decomposed as local pull-back families. We set

Definition 7.14. The stack over the analytic site of A0-equivalence classes
of reduced (M,N )-families is called the normal Teichmüller stack and de-
noted by N T (M).

and

Definition 7.15. We call Aut1(X0) mapping class group the group

(7.12) Map1(X0) := Aut1(X0)/Aut
0(X0)

We are in position to give some properties of N T (M)
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Theorem 7.16. The normal Teichmüller stack N T (M) satisfies the fol-
lowing properties

i) It is an analytic étale stack with atlas an (at most) countable union of
Kuranishi spaces.

ii) There is a natural morphism from T (M,N ) to N T (M). Moreover,
these two stacks are associated to the same topological quotient space.

iii) Let X0 be a normal point. The isotropy group of N T (M) at X0 is the
discrete group Map1(X0).

iv) Assume Map1(X0) is finite. Then, there exists some open neighborhood
V ′ ⊂ V of X0 such that, reshaping K0 to V ′, the group Map1(X0) acts
holomorphically on K0 fixing J0 and N T (M) is locally isomorphic at
X0 to the orbifold [K0/Map1(X0)].

v) Especially, if every normal point belongs to Fujiki class (C ), then the
stack N T (M) is an orbifold at every point.

Remark 7.17. The natural morphism of point ii) is not representable since
the isotropy groups of T (M) do not inject in those of N T (M).

Hence, an open substack of the Teichmüller stack behaves as the quotient
of an analytic space by a discrete equivalence relation; and as an orbifold
around a point in Fujiki class (C ), that is bimeromorphic to a Kähler man-
ifold, so in particular around any Kähler or projective point.

This étale normal Teichmüller stack is closer to the moduli space side
than to the family side of the Teichmüller stack. It forgets the family auto-
morphisms that induce the identity on the base but these automorphisms do
not induce any identification of points in I(M) so are not important when
analyzing the structure of the set of Diff0(M)-orbits in I(M).

We may reformulate Theorem 7.16 by saying that the restriction of the
topological Teichmüller space N/Diff0(M) to the set of normal points ac-
quires complex orbifold charts at the points with finite Map1(X0) group.

Before giving the proof of this result, we give some examples.

Example 7.18. We consider once again the case of complex tori, com-
pare with Example 7.3. All points are normal and passing from the Te-
ichmüller stack to the normal Teichmüller stack consists of forgetting about
the translation group and replacing the universal family over the upper half
plane H with H. Hence the normal Teichmüller stack is the standard Te-
ichmüller space H and the surjective morphism sends a family of complex
tori π : X → B to the morphism

(7.13) b ∈ B 7−→ τ(b) ∈ H with π−1(b) ≃ Eτ(b)

Example 7.19. We consider now the case of K3 surfaces. The function
h0 is constant equal to zero and the Kuranishi spaces of K3 can be glued
together to form a 20-dimensional complex manifold called the moduli space
of marked K3 surfaces. This is at the same time the Teichmüller stack and
the normal Teichmüller stack. As for tori, all points are normal. However,
this space is non-Hausdorff because a sequence of Diff0(M)-orbits may ac-
cumulate onto two disjoint orbits. Non-separated pairs of points encode
however the same manifold. In other words, they are in the same orbit of
the mapping class group Diff+(M)/Diff0(M). See [22, §7.2] for more details
about all this.
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Example 7.20. We consider finally the case of (primary) Hopf surfaces.
We concentrate on a single connected component of the Teichmüller stack,
cf. the discussion in [31]. These surfaces Xg are quotient of C2 \ {0} by the
group generated by a contracting biholomorphism g of C2 fixing 0. Here h0

takes the values 2, 3 and 4. Since the function h0 is upper semi-continuous,
normal points correspond to the smallest value, that is 2. Hopf surfaces with
h0 equal to 2 are those with g either non-linearizable and conjugated to

(7.14) (z, w) 7−→ (λz + wp, λpw)

for λ ∈ D∗ and p > 0 or linearizable with non-resonant eigenvalues, i.e.
the two eigenvalues are not of the form (λ, λp) for some p > 0, see [47] for
more details about classification and properties of Hopf surfaces. As a con-
sequence, a normal point Xg is completely determined by the determinant
and the trace of the linear part glin of g and (a connected component of)
the normal Teichmüller stack is the bounded domain D∗ × D in C2. Given
a family of Hopf surfaces π : X → B, we associate to it the morphism

(7.15) b ∈ B 7−→

(

det glin(b),
1

2
Tr glin(b)

)

∈ D∗ × D

with π−1(b) ≃ Xg(b). Note that the Teichmüller stack has a much more
complicated structure, far from being a manifold and with non-Hausdorff
Teichmüller space, that is analyzed in [17], see also [32], and that we recall
and make use of in Example 13.4.

Proof. Start with the atlas of T (M,N ) constructed in [31]. Since h0 is
contant along N , observe that it is given as an (at most) countable union
of Kuranishi spaces, there is no need to make use of the fattening process of
[31]. Let us denote the corresponding symmetry groupoid with T1 ⇒ T0. It
can be chosen as follows. Cover N with a(n) (at most) countable union of
Kuranishi charts Ξi : Vi → Ki. Then set

T0 =
⊔

Ki

and

T1 = {(J, f) ∈ Diff0(M,⊔Ki) | J · f ∈ ⊔Ki}

where Ki → Ki are the Kuranishi families (compare with (5.1)). We may
decompose it as

(7.16)
⊔

T1,j :=
⊔

{(J, f) ∈ Diff0(M,Kj) | J · f ∈ ⊔Ki}

Now observe that A0,j act fiberwise on T1,j through (7.11); and that Lemma
7.13 generalizes immediately to this context. We may thus define a fiber-
wise ⊔A0,i-action (7.11) on T1 decomposed as in (7.16), obtaining an étale
quotient groupoid, say N1 ⇒ T0. Its stackification over S is the normal
Teichmüller stack proving i).

By construction, there is a natural quotient map from each component
of T1 to a component of N1 preserving the structure maps, hence yielding
a groupoid homomorphism from T1 ⇒ T0 to N1 ⇒ T0. It induces a natu-
ral morphism from T (M) to N T (M). Since the morphism T1 → N1 is
surjective and commutes with the source and target morphisms, a couple
of points of T0 is source and target of a morphism of T1 if and only if it is
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source and target of a morphism of N1. This proves that the two stacks are
associated to the same topological quotient space.

Still by construction, the isotropy group of a point X0 is given by the
Aut1(X0)-mapping class group of X0. Assume now that it is finite. Since
X0 is normal, it is not exceptional and the Kuranishi stack A1 and the
local Teichmüller stack T (M,V ) coincides. Choose now automorphisms
f1, . . . , fk of Aut1(X0) so that their classes in Map1(X0) generate Map1(X0).
Observe that the fi’s may not fulfill the Map1(X0)-relations their classes
do; but the Holfi ’s do and the group generated by the Holfi ’s is isomorphic

to Map1(X0). We may thus argue as in the proof of Theorem 7.4, and
redefine a smaller open set V and a smaller K0 such that every Holfi is an
isomorphism of K0. Therefore, A1/A0 ⇒ K0 is Morita equivalent to the
translation groupoid Map1(X0) × K0 ⇒ K0. The point X0 is an orbifold
point, proving iv).

If X0 is bimeromorphic to a Kähler manifold, then Map1(X0) is finite by
[18] and we may apply iv). �

Remark 7.21. In other words, the action of Diff0(M) restricted to the set
of normal points is a bonafide foliation and the normal Teichmüller stack is
nothing else than its étale holonomy groupoid, cf. [34] and [31, §6].

All the previous considerations and results apply to the Z-normal points.
Proposition 7.12 is still true with normal replaced with Z-normal and Lemma
7.13 applies with AZ instead of A1. We may thus define the stack of Z-
normal points as the stackification of the étale groupoid AZ/A0 ⇒ K0.
This is the Z-normal Teichmüller stack N T Z(M). Calling AutZ(X0) map-
ping class group and denoting by MapZ(X0) the quotient of AutZ(X0) by
Aut0(X0), we have

Corollary 7.22. The Z-normal Teichmüller stack N T Z(M) satisfies all
the properties listed in Theorem 7.16 with the following obvious changes
in the statements: N T (M) is replaced with N T Z(M), normal with Z-
normal, T (M) with T Z(M), and Map1(X0) with MapZ(X0).

In Examples 7.18, 7.19 and 7.20, points are normal if and only if they are
Z-normal and there is no difference between N T Z(M) and N T (M). This
is often the case.

8. Exceptional points

We now switch to the analysis of exceptional and Z-exceptional points.
By definition, there exist morphisms belonging to the Teichmüller stack but
not to the Kuranishi stack at an exceptional point. We first analyze which
type of morphisms they are both from the point of view of sequences of
isomorphisms in Section 8.1 and from the point of view of cycle spaces in
Section 8.2. Finally we give an example of a Z-exceptional point in Section
8.4. It should be noted that neither K3 surfaces, Hirzebruch surfaces, nor
Hopf surfaces exhibit exceptional points. In fact, for a long time, we did not
know any example until we finally manage to construct the one presented in
8.4. It is however only Z-exceptional, not exceptional. By Proposition 8.12,
the converse is not possible.
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8.1. Sequences of isomorphic structures in the Kuranishi space.
Let (fn) be a morphism of (T (M), J0), that is a sequence of morphisms
from (X ′

n → B) to (Xn → B) as explained above in Section 5.2. Since
TVn ⇒ K0 ∩ Vn is an atlas for T (M,Vn), each fn is obtained by gluing a
cocycle of morphisms in TVn over an open cover of B. Such morphisms are
local morphisms of the Kuranishi family. We are not interested in morphisms
which act on the base B as the identity. For such morphisms restrict to
automorphisms of the fibers, especially of the central fiber, and are thus
already encoded in A1, at least for n big enough. Now the existence of a
morphism fn acting non-trivially on the base is subject to the existence of
two isomorphic distinct fibers of the Kuranishi family, that is to the existence
of two distinct points in K0 encoding the same complex manifold up to
isomorphism. In the same way, the existence of sequences of morphisms
(fn) acting non-trivially on the base is subject to the existence of sequences
(xn) and (yn) of points in K0 such that

i) Both sequences (xn) and (yn) converge to the base point of K0.
ii) For every n, the fibers of the Kuranishi family above xn and yn are

isomorphic.

In particular, there exists a sequence (φn) of Diff0(M) such that

(8.1) ∀n, xn · φn = yn

We assume that, for all n ≥ 0, the points xn and yn belongs to Vn and the
morphism φn to TVn , where (Vn) is a nested sequence as in (5.3). We also
set V = V0.

Now, we are looking for missing morphisms in the Kuranishi stacks. In
other words, we are looking for such sequences (xn) and (yn) with the addi-
tional property that (xn, φn) does not belong to A1, that is (xn, φn) is not
(Vn,D1)-admissible.

In the sequel, we assume that TV is reduced, replacing it with its reduction
if needed. Assume that the sequence (φn) belongs to a fixed irreducible
component C0 of TV . We shall see that only special components, that we
call exceptional (see Definition 8.5), may contain morphisms that are not
in the Kuranishi stack A1. To do that, we need to better understand the
different types of TV -components.

Let A be a connected component of Aut1(X0). Then A belongs to an
irreducible component C0 of TV . We have

Lemma 8.1. The component C0 is unique, that is there does not exist an-
other irreducible component of TV that contains A.

Proof. Let C1 be an irreducible component of TV that contains A. Then it
contains all the extensions of the automorphisms of Aut1(X0). More pre-
cisely it contains all the morphisms of TV that are in a sufficiently small
neighborhood of A. But this is also the case of C0, so the irreducible com-
ponents C0 and C1 intersects on an open set, hence are equal. �

We may thus define

Definition 8.2. We call A1-component the irreducible component of TV
that contains A.
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Remark 8.3. Notice from the proof that the s-image of an A1-component
covers a neighborhood of an irreducible component of K0. Also, if the
intersection of a A1-component with Aut1(X0) is not connected but has a
finite number of connected components, restricting it to Vn for n big enough
it becomes connected. In other words, if the A1-component contains two
connected components of the intersection, its restriction to Vn for n large
splits into two disjoint A1-components.

However A1-components do not contain missing morphisms. Indeed,

Lemma 8.4. Let (φn) be a sequence (8.1). Assume it is contained in a
A1-component. Then for n big enough, the restriction of the A1-component
to Vn only contains (Vn,D1)-admissible morphisms.

Proof. All extensions of automorphisms of A are (Vn,D1)-admissible for n
big enough by (3.9) (in fact by the Aut1(X0) version of (3.9)). Since an
A1-component contains all the morphisms of TV that are in a sufficiently
small neighborhood of A, we are done. �

There exists another type of irreducible component of TV , namely

Definition 8.5. An irreducible component C0 of TV is called exceptional if

i) For n large, its restriction to Vn does not intersect Aut1(X0),
ii) It contains a sequence (8.1).

In other words, (J0, J0) does not belong to the (s× t)-image of an excep-
tional component restricted to Vn for large n, but belongs to its closure.

We have

Lemma 8.6. If TV contains an exceptional component, then X0 is an ex-
ceptional point of the Teichmüller stack.

Proof. As discussed above, if TV contains an exceptional component, then
the associated sequence (8.1) is a sequence of TV but not of A1 and X0 is
exceptional. �

The converse to Lemma 8.6 is not true in general. If the number of irre-
ducible components of TV is infinite, there may exist wandering sequences
(8.1), that is sequences (8.1) such that every irreducible component of TV
contains at most a finite number of terms of the sequence and is not excep-
tional.

To have a better understanding of the situation, we make use of cycle
spaces.

8.2. Morphisms of the Teichmüller stack and cycle spaces. We con-
sider the Barlet space of (relative) n-cycles of K red

0 × K red
0 for K red

0 the
reduction of the Kuranishi family. Hence a cycle is a finite sum of compact
analytic subspaces of some Xt ×Xs, for Xt and Xs fibers of the Kuranishi
family. We only consider in this space irreducible components

i) that only contains singular cycles with both projection maps onto Xt

and Xs of degree one; we call them completely singular components

ii) that contains at least the graph of a biholomorphism between two fibers
which induces the identity in cohomology with coefficients in Z ; we call
them regular components.
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We denote by C the union of completely singular and regular components.
In the Barlet space of n-cycles of X0 ×X0, we also consider only the union
of completely singular and regular components, that we denote by C0.

Assume TV is reduced. Every irreducible component of TV injects in an
irreducible component of C . Just send (J, f) to its graph as a cycle of
K0×K0. Indeed TV encodes the regular cycles of C . So examining C gives
more information about TV . Especially, a sequence (8.1), where each φn

is an isomorphism between the fiber π−1(xn) and the fiber π−1(yn) of the
Kuranishi family, defines a sequence (γn) of C . Then, several cases may
occur

i) up to passing to a subsequence, (γn) converges to the graph of an au-
tomorphism g of Aut1(X0).

ii) up to passing to a subsequence, (γn) converges to a singular cycle in C0.
iii) up to passing to a subsequence, (γn) lives in a single component of C

but does not converge to a cycle in C0.
iv) every irreducible component of C contains at most a finite number of

terms of (γn).

If X0 is Kähler, it is well known that only cases i) and ii) can occur. It is
important however to keep in mind that we also consider the general case.
Here is a classical example of case iii).

Example 8.7. Let B be the subset of matrices of type

(8.2)

(

λ1 1
0 λ2

)

with λi ∈ D∗ for i = 1, 2

We associate to B the family of Hopf surfaces

(8.3) X :=
(

C2 \ {(0, 0)} ×B
)

/Z

where p ∈ Z acts on (v,A) through

(8.4) p · (Z,A) := (ApZ,A)

Two Hopf surfaces XA and XA′ , corresponding to A and A′ of type (8.2),
are biholomorphic if and only if the matrices A and A′ are conjugated, thus
if and only if they have the same eigenvalues. In particular, denoting by Ǎ
the matrix obtained from A by inverting its eigenvalues, i.e.

(8.5) A =

(

λ1 1
0 λ2

)

Ǎ =

(

λ2 1
0 λ1

)

then XA and XǍ are biholomorphic. Moreover, denoting by B∗ the subset
of B formed by matrices with distinct eigenvalues, the isomorphism of C2 \
{(0, 0)} ×B∗ given by

(8.6) (Z,A) 7−→

((

(λ1 − λ2)
−1 1− (λ2 − λ1)

−2

1 (λ1 − λ2)
−1

)

Z, Ǎ

)

descends as an isomorphism of the family X ∗ → B∗ obtained by restricting
X → B to B∗.

The graphs of biholomorphisms between XA andXǍ given by (8.6) do not
converge as λ1−λ2 tends to zero. Indeed, these graphs lift as the restriction
to C2 \ {0} × C2 \ {0} of complex linear planes in C4. As λ1 − λ2 tends to
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zero, they converge to {0} × C2 in C4. But this graph is not contained in
C2 \ {0} × C2 \ {0}.

Going back to our four cases, we see that case i) corresponds to a con-
verging sequence in a A1-component. Case ii) may occur in a A1-component
or in an exceptional component. To distinguish the two cases, we set

Definition 8.8. A singular cycle of C0 is called exceptional if it is the limit
of a sequence of regular cycles (γn) of C which are graphs of a sequence
(8.1) lying in an exceptional component.

Case iii) may also occur in a A1-component or in an exceptional compo-
nent. To distinguish the two cases, we set

Definition 8.9. A sequence (8.1) satisfying iii) and lying in an exceptional
component is called a vanishing sequence.

Finally, case iv) is covered by the following definition.

Definition 8.10. A sequence (8.1) such that every irreducible component
of C contains at most a finite number of graphs of terms of (8.1) is called a
wandering sequence.

We may sum up the previous discussion by the following converse to
Lemma 8.6.

Proposition 8.11. A point X0 of the Teichmüller stack is exceptional if
and only if one of the following statements is fulfilled:

i) There exists an exceptional cycle in C0.
ii) There exists a vanishing sequence in TV .
iii) There exists a wandering sequence in TV .

In the case X0 is Kähler, thanks to classical finiteness properties of the
cycle spaces recalled in Section 9.1, we will be able to show much more
precise statements about exceptional points in Sections 9 and 10.

We note that it is in no way an exceptional property for C0 to contain a
connected component of singular cycles. For example, if Aut1(X0) is reduced
to zero, then the cycles X0× pt+ pt×X0 form such a component. But they
usually do not correspond to exceptional cycles.

8.3. The case of Z-exceptional points. The contents of §8.1 and §8.2
can be easily adapted to the case of Z-Teichmüller stack and Z-exceptional
points. We feel free to use the corresponding definitions and results in this
context with the obvious changes of notations. The reader should not be
affected.

Besides, we note the following interesting comparison Proposition.

Proposition 8.12. Let X0 be an exceptional point of T (M). Then X0 is
also a Z-exceptional point of T Z(M).

Proposition 8.12 can be equivalently stated as: a Z-normal point is nor-
mal. The example described in §8.4 shows that the converse is false.

Proof. Let X0 be an exceptional point of T (M). Let (φn) be an associated
non-convergent sequence of Diff0(M) satisfying (8.1). Assume by contradic-
tion that X0 is not a Z-exceptional point of T Z(M). Then, up to passing to
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a subsequence, (φn) must belong to an AZ-component which is not an A1-
component. But this means that, for n big enough, φn belongs to DiffZ(M)
and not to Diff0(M). Contradiction. �

8.4. An example of a Z-exceptional point. In this Section, we give an
explicit example of a 3-fold which is a Z-exceptional point of its Teichmüller
stack. We start with a Blanchard manifold [6] as revisited in [40] and [9].

Let a ≥ 1 be an integer and set W := O(a) ⊕ O(a) → P1. Choose two
holomorphic sections σi (i = 0, 1) of O(a) with no common zeros. Then the
sections of W defined by

(8.7) (σ0, σ1), (iσ0,−iσ1), (−σ1, σ0), (−iσ1,−iσ0)

trivialize W as a R4-bundle. In each fiber of W , these four sections generates
an integer lattice. We denote by Γ(t) the lattice above t ∈ P1. The group
Z4 therefore acts on W by translations along these lattices. The resulting
quotient 3-fold π : X → P1 is a deformation of complex 2-tori above the
projective line, with lattice Γ(t) above t.

Given a holomorphic section τ of W , we define an automorphism φτ of X
by translating in each fiber along τ . We thus define a map

(8.8) τ ∈ H0(P1,W ) 7−→ φτ ∈ Aut0(X )

Let G be the additive subgroup of H0(P1,W ) generated by the four sections
(8.7). We have

Lemma 8.13. The map (8.8) induces a monomorphism from H0(P1,W )/G
to Aut0(X ).

Proof. We have
φσ ◦ φτ = φτ ◦ φσ = φσ+τ

hence (8.8) is a group morphism. Its kernel is given by the linear combina-
tions over Z of the four sections (8.7) so is equal to G. �

Choose now a + 1 distinct points in the base P1. We denote them
by t0, . . . , ta. We assume that there is no automorphism of X permuting
non-trivially the ti-fibers. This is achieved for a generic choice of points
since moving slightly the points ti yields that any pair of ti-fibers are non-
isomorphic. We fix one point Pi in each ti-fiber. We call X̂ the manifold
obtained from X by blowing up these a+ 1 points. Define

(8.9) Σ := {τ ∈ H0(P1,W ) | τ(ti) ∈ Γ(ti) for i = 0, . . . , a}

We prove

Lemma 8.14. The map (8.8) induces an isomorphism

(8.10) [τ ] ∈ Σ/G 7−→ φ̂τ ∈ AutZ(X̂ )

and we have

(8.11) AutZ(X̂ ) ≃ Z4a and Aut1(X̂ ) = {Id}.

Proof. An automorphism φ̂ of X̂ corresponds to an automorphism φ of X
that permutes the points Pi. Now, an automorphism of X lifts to an auto-
morphism of W so sends fibers to fibers, and especially ti-fibers to ti-fibers.
Since we assume that there is no automorphism of X permuting non-trivially
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the ti-fibers, then both φ and φ̂ induce the identity on the base and fix the
points Pi. Now, φ inducing the identity in cohomology with coefficients in
Z means that it induces a translation in every fiber hence lies in the image
of (8.8). Since it fixes the points Pi, it is the identity in every ti-fiber, hence

lies in the image of Σ. So we have an epimorphism τ ∈ Σ 7→ φ̂τ ∈ AutZ(X̂ )

where φ̂τ is the automorphism of X̂ corresponding to φτ . As above in Lemma
8.13, its kernel is given by the linear combinations over Z of the four sections
(8.7) so is equal to G. This proves that (8.10) is an isomorphism.

The space H0(P1,W ) has dimension 2a + 2, each section being given by
a pair of elements of C[X] of degree a + 1. To belong to Σ, every polyno-
mial must satisfy a + 1 equations. More precisely, given any (a + 1)-uple
(Q0, . . . , Qa) with each Qi belonging to Γ(ti), there exists a unique section
of W passing through Qi at ti. It is given as a pair of Lagrange interpolation
polynomials. Hence Σ identifies with the product Γ(t0) × . . . × Γ(ta) so is
isomorphic to Z4a+4. The action of G is equivalent to a transitive action on
Γ(t0) and Σ/G identifies with the product Γ(t1)× . . .×Γ(ta) so is isomorphic

to Z4a. The same occurs therefore for AutZ(X̂ ).

Finally, we note that the universal covering Ŵ of X̂ is W blown up at

each vertex of the lattices Pi + Γ(ti). Hence any non-trivial element φ̂ of

AutZ(X̂ ) lifts to an automorphism of Ŵ that permutes non-trivially the
blown-up points. Such an automorphism is not C∞-isotopic to the identity
yielding that φ̂ is not C∞-isotopic to the identity. This achieves the proof
of (8.11). �

Choose a point P in X̂ . Denote by X̂P the blow up of X̂ at P . Let
s = π(P ) and define

(8.12) Σ′
s = {τ ∈ Σ | τ(s) ∈ Γ(s)}

As an immediate corollary, we obtain the following important result.

Theorem 8.15. The 3-fold X̂P satisfies

(8.13) AutZ(X̂P ) ≃ Σ′
s/G and Aut1(X̂P ) = {Id}

In particular,

i) We have

(8.14) MapZ(X̂P ) ≃ AutZ(X̂P ) ≃ Z4a

and

(8.15) Map1(X̂P ) ≃ Aut1(X̂P ) = {Id}

for s = ta.
ii) We have

(8.16) MapZ(X̂Q) ≃ Map1(X̂Q) ≃ AutZ(X̂Q) = Aut1(X̂Q) = {Id}

for π(Q) a generic small deformation of s in P1.

Proof. The proof follows from that of Lemma 8.14. An element of AutZ(X̂P )
is given by a section τ of Σ such that φτ is the identity on the s-fiber, that
is τ belongs to Σ′

s. This defines an epimorphism from Σ′
s to AutZ(X̂P ). As

in the previous cases, the kernel is G proving the first equality of (8.13).
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The second one is obtained as in the proof of Lemma 8.14 by arguing that
a non-trivial element of AutZ(X̂P ) lifts to an automorphism of the universal
covering that permutes non-trivially blown-up points, so is not C∞-isotopic
to the identity. This also proves (8.15). If s = ta, we have Σ′

s = Σ since
every φτ with τ ∈ Σ induces the identity in the ta-fiber and (8.14) is a direct
application of Lemma 8.14. Finally, define the set

(8.17) Γ′
s := {τ(s) ∈ π−1(s) | τ ∈ Σ \G}

We claim that, at a generic point, Γ′
s does not intersect Γ(s), so Σ′

s is
reduced to G yielding (8.16). Indeed, choose 4a sections τi (i = 1, . . . , 4a)
which generates Σ as a Z-module together with the four sections (8.7). In
particular Σ/G identifies with the group generated by the τi. It is enough
to prove that no non-trivial linear combination over Z of the τi(s) belong to
Γ(s) for a generic s. Assume by contradiction that, for every s in a small
disk of P1 disjoint from the set of points ti, we can find some i with τi(s)
belonging to Γ(s). By continuity, we may assume that this is the same i for
all s, restricting our disk if necessary. But still by continuity this implies
that τi coincides over a disk with an element of G, that is, is an element of
G. Contradiction. �

Let us put some more context around Theorem 8.15. In [33], we gave
examples of non-Kähler 3-folds with non trivial finite Aut1(X0)-mapping
class group. Examples of surfaces, including projective ones, having this
property or having non trivial finite AutZ(X0)-mapping class group were
given in [12], see also [36] for AutZ(X0). We ask in the last section of
[33] for examples with non trivial infinite Aut1(X0)-mapping class group,
noting that, by Lieberman’s result [29], see also §9.1, they must be non-
Kähler. At that time, we were already motivated by questions about the
geography of the Teichmüller stack and were looking for points with non-
trivial holonomy group, that is points with non trivial Aut1(X0)-mapping
class group that admits arbitrary small deformations with trivial Aut1(X0)-
mapping class group, see [33, §2] and §13.3 for the notion of holonomy group
in this context. The 3-folds of [33] enjoy this property but they only have
finite holonomy group.

The manifolds X̂ and X̂P for P on the ta-fiber are examples with infinite
discrete AutZ automorphism group, more precisely with h0 equal to zero
but with infinite AutZ(X0)-mapping class group. Moreover, it follows from

Theorem 8.15 that an arbitrary small deformation of X̂P has no non-trivial
automorphisms inducing the identity in cohomology with coefficients in Z

so that such a point has infinite Z-holonomy group. Notice in particular
that this is not an orbifold point of the Z-Teichmüller stack although it
has no non-zero global holomorphic vector fields. Once again, there is no
such Kähler points. This shows that these non-Kähler X̂P have a more
complicated local Z-Teichmüller stack than Kähler points. More precisely,

Corollary 8.16. The Z-Teichmüller stacks of both S2 × (S1)4 at a point X

and of S2 × (S1)4♯P3♯ . . . ♯P3 at a point X̂P satisfying (8.14) are not locally
isomorphic to the Z-Teichmüller stack of any Kähler manifold.
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Proof. The sections (8.7) trivialize W over the reals, hence the smooth model

of X is S2× (S1)4 and that of X̂P is obtained from it by doing the connected

sum with P3 for every blown-up point. Then, the stabilizer of X and of X̂P

are infinite discrete by Lemma 8.14 and Theorem 8.15, whereas the stabilizer
of a Kähler point has a finite number of connected component by Lieberman,
proving the statement. �

But we have more.

Theorem 8.17. Let P ∈ X̂ such that s = π(P ) is generic. Then, the 3-fold

X̂P is an exceptional point of its Z-Teichmüller stack.

Proof. Let P ∈ X̂ such that s = π(P ) is different from ta and such that Γ′
s

does not intersect Γ(s). We have already shown in the proof of Theorem
8.15 that a generic s satisfies Γ′

s ∩ Γ(s) = ∅. Choose a section τ in Σ \ G.
Choose also a real linear map that sends the four sections (8.7) evaluated at
s to the canonical basis of R4. Moving slightly s if necessary, we may assume
that the image of the vector τ(s) through this linear map has coordinates Z-
linearly independent and Z-linearly independent with 1, otherwise, arguing
as above, τ would be in G. Then, the classical Kronecker’s Theorem asserts
that it generates a dense subgroup in the torus R4/Z4. In other words, given
any point Q in the s-fiber, the translates of Q by the Z-multiples of τ(s) form
a dense orbit of the s-fiber. Choose R in the s-fiber such that R−P is not a
Z-multiple of τ(s). Note that R can be chosen arbitrarily close to the initial

point P . Consider the trivial deformation family X̂ × π−1(s) → π−1(s). It
has a tautological section that sends a point M in the s-fiber to (M,M),

the first M being considered as living in the 3-fold X̂ . Blow up this section.
This gives a family Y → π−1(s) whose fiber above a point M is X̂M . The
section τ defines an automorphism of the trivial family

(8.18)

X̂ × π−1(s) X̂ × π−1(s)

π−1(s) π−1(s)

φτ×τ(s)

τ(s)

where τ(s) means translation by τ(s) in the torus π−1(s). It prserves the
tautological section, hence induces a family automorphism

(8.19)

Y Y

π−1(s) π−1(s)

φτ×τ(s)

τ(s)

Especially, this shows that all the fibers above the points of the τ(s)-transla-
tion orbit of R are isomorphic through a map inducing the identity in co-
homology. By density, we may in particular extract from this a sequence
of points (Rn) in π−1(s) that converges to P together with a family (φn)
of diffeomorphisms inducing the identity in cohomology with φn inducing a
biholomorphism between the Rn-fiber and the Rn+1-fiber. Note that each

φn is a translation along the fibers of X̂ → P1 by some section σn in Σ \G
and that ‖σn‖ tends to infinity in H0(P1,W ) as n goes to infinity. Look at
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the corresponding sequence of graphs. Even if it converges, its limit cannot
belong to the closure of the AutZ-component of X̂P since this group is re-
duced to the identity by Theorem 8.15. Hence, X̂P is a Z-exceptional point
of its Teichmüller stack. �

Remark 8.18. As already mentioned, it follows from Theorem 8.15 that none
of these points are exceptional. This shows in particular that the converse
to Proposition 8.12 is false. But it also left wide open the existence part of
Conjecture 6.2, point II.

Corollary 8.19. The Z-exceptional points of Theorem 8.17 are wandering
points.

Proof. This comes from the fact that φn is induced by φ̂rnτ for some section

rnτ with rn going to infinity. Now, φ̂pτ and φ̂qτ for p 6= q induce distinct
actions on the lattice of exceptional divisors of the s-fiber of the universal
covering ŴP of X̂P , hence induce distinct actions on H2(ŴP ,Z). It follows

that φ̂pτ and φ̂qτ are not isotopic for p 6= q and that the graphs of φ̂rnτ run
through an infinite number of connected components of the cycle space C
yielding wanderingness. �

Remark 8.20. It follows from the proof of Theorem 8.17 that, given any
P ∈ π−1(s), the set of points of π−1(s) above which the fiber of the family

Y → π−1(s) is isomorphic to X̂P through a biholomorphism inducing the
identity in cohomology is a countable dense subset of the base π−1(s). This
is a weak version of the situation discussed in [31], Remark 11.8 and Problem
11.9.

It is interesting to have a closer look at the repartition of these Z-exceptio-
nal points.

Corollary 8.21. The subset

(8.20) E
X̂
:= {P ∈ X̂ | X̂P is Z-exceptional}

satisfies the following properties

i) It is dense in X̂ .
ii) If P belongs to E

X̂
, then every point of the fiber π−1(π(P )) belongs to

E
X̂
.

Proof. Point i) is a direct consequence of Theorem 8.17. We have shown that
for a dense subset of points s in P1, every point above s is Z-exceptional.
Hence E

X̂
contains an union of π-fibers whose projection is dense in P1,

hence is dense. To prove ii), consider, as a slight variation of the construction

used in the proof of Theorem 8.17, the family Z → X̂ obtained by blowing
up the trivial family X̂ × X̂ → X̂ along the section P ∈ X̂ 7→ (P,P ) ∈ X̂ .

The fiber at P ∈ X̂ is X̂P .
Let P ∈ E

X̂
. Then, there exists an exceptional sequence (Qn, Rn, φn) in

X̂ × X̂ × DiffZ(M) with φn inducing a biholomorphism between X̂Qn and

X̂Rn . A direct adaptation of Theorem 8.15 shows that φn is given by a
translation in the π-fibers along elements of Σ with the factor of translation
at π(P ) going to infinity. Thus, Qn et Rn must belong to the same π-
fiber as P and, letting P ′ belong to the same π-fiber as P , the sequence
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(P ′ − P +Qn, P
′ − P + Rn, φn) is also exceptional, showing that P ′ is also

Z-exceptional.
�

Remark 8.22. We do not know if the density property of Z-exceptional points
in the family Z used in the proof of Theorem 8.21 is true for the Kuranishi
family of one ot these points. If yes, this would give a local positive answer
to part II of Conjecture 6.2 for Z-exceptional points.

9. Finiteness properties of the local Teichmüller stack in the

Kähler setting

9.1. Consequences of Lieberman’s compacity result. In this section,
we recall and apply a basic result on cycle spaces in the Kähler case, which
is due to Lieberman [29]. We state the relative version, which is adapted to
our purposes.

Proposition 9.1. Let πi : Xi → Bi be smooth morphisms with compact
Kähler fibers over reduced analytic spaces Bi for i = 0, 1. Let Z → E be a
continuous family of relative cycles of X0×X1 → B0×B1. Assume that the
projection of Z is included in a compact of B0 ×B1. Assume moreover that
all cycles of Z are smooth, i.e are graphs of a biholomorphism from some
fiber (X0)t onto some fiber (X1)t′ . Assume finally that they are graphs of
biholomorphisms that induce the identity in cohomology with coefficients in
Z. Then,

i) E has compact closure in the space of cycles of X0×X1 → B0×B1 hence
only meets a finite number of irreducible components of this space.

ii) Let C be such a component. Then C contains a Zariski open subset C0 all
of whose members are graphs of a biholomorphism inducing the identity
in cohomology with coefficients in Z between a fiber of X0 and a fiber of
X1.

Proof. i) Let (ωi
t)t∈Bi

be a continuous family of Kähler forms on the πi-
fibers (i = 0, 1). Let M be the smooth model of X0 and let (J i

t )t∈Bi
be a

continuous family of integrable almost complex operators on M such that
(Xi)t = (M,J i

t ). For every e ∈ E, call fe : M → M the biholomorphism
from some fiber (X0)t onto some fiber (X1)t′ corresponding to the cycle Ze.
We compute the volume of these cycles using the ωt. We have

Vol(Ze) =

∫

M

(

ω0
t + f∗

eω
1
t′

)n
=

∫

M

(

ω0
t + ω1

t′

)n

since fe induces the identity in cohomology hence f∗
eω

1
t′ and ω1

t′ differs from
an exact form. Since the projection of Z is included in a compact of B0×B1,
we obtain that the volume of the Ze is uniformly bounded. It follows from
[29, Theorem 1] that E has compact closure in the cycle space of X0 × X1.
Hence E only meets a finite number of irreducible components of this cycle
space.

ii) Consider the family of cycles C̃ ⊂ X0 ×X1 → C. Since this map is proper
and surjective, it is smooth on a Zariski open subset. Since some fibers
are non singular, the generic fiber is non singular. The cycles above E are
submanifolds of some (X0)t×(X1)t′ with projections pri being bijective onto
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both factors. Hence, on a Zariski open subset of C, every cycle enjoys such
properties. So is the graph of a biholomorphism between a fiber of X0 and a
fiber of X1. Finally all these graphs are smoothly isotopic hence induce the
identity in cohomology with coefficients in Z since at least one of them has
this property. �

Remark 9.2. There exist relative versions of Lieberman’s result in the class
(C ). However, they do not apply to smooth morphisms with class (C ) fibers
but to morphisms that are equivalent to Kähler morphisms in some sense,
see see [18, Def. 2.3] or [5, Def 4.1.9]. For that reason, they are not suited
to our purposes and we stick to the Kähler setting.

Setting X0 = (M,J0), considering the DiffZ(M)-orbit O of J0 in I(M)
and viewing K0 as a local transverse section, we obtain a first interesting
Corollary.

Corollary 9.3. If V is small enough then K0 intersects O only at J0.

Proof. We assume that V is small enough so that K0 only contains Kähler
points, cf. footnote 2. We also assume that K0 is reduced, replacing it with
its reduction if necessary. Take X1 = K0 and X0 = X0 seen as a family
over the point {J0}. Let E′ be the subset of K0 corresponding to complex
structures J in the orbit O. Now, O intersects transversely K0 at J0 by
(3.3) but also at any intersection point. Since DiffZ(M) has a countable
topology, this intersection contains at most a countable number of points.
Since we are only interested in what happens close to J0, we may replace
E′ with its intersection with a compact neighborhood of J0 in K0. Then for
each J ∈ E′, choose some element fJ of DiffZ(M) mapping J0 onto it. Set
E = {J0} × E′ and let Z be the cycles corresponding to the graphs of the
fJ . Apply Proposition 9.1. We conclude that E meets a finite number of
irreducible components of the cycle space of X0 × K0, say C1,..., Cp.

Still by Proposition 9.1, it follows that a Zariski open subset of each Ci
only contains graph of biholomorphisms between X0 and some XJ with
J ∈ E′. Hence each of these components only contains cycles in a fixed
product X0×XJ and E′ is a finite subset. Reducing V if necessary, we may
assume that E′ is just {J0} as wanted. �

Remark 9.4. Recall that we work with the DiffZ(M)-orbit and not with the
Diff+(M)-orbit. Corollary 9.3 does not say that, in the Kähler setting, there
is no infinite sequence of points in K0 converging to J0 and all encoding
X0. It just says that, if it happens, only a finite number of the involved
biholomorphisms with X0 induce the identity in cohomology.

As for the intersection of the DiffZ(M)-orbit of an arbitrary J ∈ K0 with
K0, we have

Corollary 9.5. Let J ∈ K0. If K0 is small enough, then K0 intersects the
DiffZ(M)-orbit of J into a finite number of leaves of the foliation of K0.

Proof. This is completely analogous to the proof of Corollary 9.3. Take
X1 = K0 and X0 = XJ and apply Proposition 9.1. This proves that the
set of graphs of biholomorphisms between XJ and another fiber of K0 is
the union of the Zariski open subsets of regular cycles of a finite number of
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irreducible components of the cycle space of relative cycles of XJ ×K0. By
definition (see Subsection 3.2), they project exactly onto a finite number of
leaves of the foliation of K0. �

Remark 9.6. Reducing K0 as a neighborhood of J , we may assume that
this intersection consists of a single leaf. However, since some leaves may
accumulate onto J0, we may be end with a neighborhood that does no more
contain J0. Since we do not want to lose our base point, we cannot replace
finite number by single in the statement of Corollary 9.5.

We now analyse further the structure of C and C0 as defined in §8.2 and
compare them with T Z

V from the one hand and with AutZ(X0) from the
other hand. As before, we assume that K0 is reduced, replacing it with its
reduction if necessary.

Let us begin with C0. By Proposition 9.1 applied to X0 = X1 = X0, it has
only a finite number of irreducible components and it is compact. Moreover,
if a component contains a non singular cycle, it must be the graph of an
automorphism and a Zariski open subset of it contains such graphs, hence
it contains a connected component of AutZ(X0) as Zariski open set. So the
picture to have in mind is the following.

i) AutZ(X0) consists of a finite number of connected components. It
always includes Aut0(X0) and the components of Aut1(X0). All the
connected components are connected components of Aut(X0) and
are all isomorphic to Aut0(X0).

ii) Either these connected component are all compact and each of them
forms an irreducible component of C0; or they admit an analytic
compactification in C0 by adding an analytic space of strictly lower
dimension of singular cycles, each compactified connected compo-
nent of AutZ(X0) becoming a compact irreducible component of C0.

iii) There may exist in C0 a finite number of additional irreducible com-
ponents which contain only singular cycles.

Notice that two such irreducible components may intersect. For example,
two distinct connected components of AutZ(X0) may intersect once com-
pactified in C0.

As for C , applying Proposition 9.1 to X0 = X1 = K0 yields that it has only
a finite number of irreducible components and that its restriction above any
compact subset of K0 ×K0 is compact. Moreover, if a component contains
a non singular cycle, it must be the graph of a biholomorphism between two
fibers of the Kuranishi family and a Zariski open subset of it contains such
graphs, hence it contains an irreducible component of (the reduction of) T Z

V

as Zariski open set. And if an irreducible component contains a graph of an
automorphism of AutZ(X0), then it must contain an irreducible component
of the closure of AutZ(X0) in C0. So the picture to have in mind is the
following.

i) The reduction of T Z
V consists of a finite number of irreducible com-

ponents. Each of them either contains a connected component of
AutZ(X0) or does not contain any automorphism of X0.

ii) Each of these irreducible components injects as a Zariski open subset
of an irreducible component of C .
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iii) There may exist in C a finite number of additional irreducible com-
ponents which contain only singular cycles.

Notice that two such irreducible components may intersect, that is, two
distinct connected components of T Z

V may intersect once compactified in C .
Consider now a sequence (8.1). We may state our second Corollary.

Corollary 9.7. Assume X0 is Kähler. Then,

i) Up to passing to a subsequence, we may assume that the graphs of the
φn belong to a fixed irreducible component C of C and converges to a
cycle γ.

ii) The cycle γ belongs to C.
iii) The cycle γ and thus the component C are exceptional if and only if γ

does not belong to the closure of an AZ-component of C0.
iv) Let C0 be the connected component of the intersection C ∩C0 containing

γ. The cycle γ and thus the component C are exceptional if and only if
every irreducible component of C0 consist only of singular cycles.

Proof. Since there are only finitely many components in C , we may assume,
up to passing to a subsequence, that the graphs of the φn belong to a fixed
irreducible component C. The component C restricted to any compact neigh-
borhood of (J0, J0) in K0×K0 is compact, hence the sequence converges, up
to passing to another subsequence, and the limit cycle γ belongs to C. This
proves i) and ii). If γ is also obtained as a limit of graphs of elements of
AutZ(X0), then the distance between φn and AutZ(X0) tends to zero when
n goes to infinity. Hence, for n big enough, (xn, φn) is (V,D1)-admissible
and so is analytically isotopic to an element of AutZ(X0). Therefore C con-
tains a Zariski open subset formed by the graphs of a connected component
of AutZ(X0) and their extensions, so is an AZ-component. Conversely, if γ
does not belong to the closure of an AZ-component, the Zariski open subset
of regular cycles of C does not intersect AutZ(X0). This proves iii). Then iii)
implies that C0 contains only singular cycles, since an irreducible component
of C0 which is not completely singular is the closure of an AZ-component.
Conversely, if C0 is completely singular, then γ is not in the closure of an AZ-
component, otherwise, arguing as above, the corresponding AZ-component
would belong to C0. Hence, by iii), C is exceptional. �

Let C ′ be the union of irreducible components of C containing a sequence
(8.1).

Corollary 9.8. Assume X0 is Kähler. Then,

i) The number of irreducible components of the reduction of T Z
V is finite.

ii) If V is a sufficiently small neighborhood of J0 in I(M), then there ex-
ists a natural bijection between the set of irreducible components of the
reduction of T Z

V and that of C ′. In particular, every component of C ′

is either an AZ-component or an exceptional one.
iii) If V is a sufficiently small neighborhood of J0 in I(M), then the inter-

section of an irreducible component of C ′ with C0 is connected.
iv) If V is a sufficiently small neighborhood of J0 in I(M), and V ′ ⊂ V

contains also J0, then the natural inclusion of TV ′ in T Z
V is a bijection

between the corresponding sets of irreducible components.
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Proof. Assume T Z
V is reduced. Since every irreducible component of T Z

V in-
jects in an irreducible component of C and C has only a finite number of
components by Kählerianity, this proves i). By finiteness, for a sufficiently
small neighborhood V of J0, the point J0 is adherent to the s-image and
the t-image of every such component. Hence they contain a sequence (8.1).
So the irreducible components of T Z

V are in fact in 1:1 correspondence with
the irreducible components of C ′, proving ii). By compacity of the compo-
nents of C0 and finiteness of their number, the intersection of an irreducible
component C with C0 has at most a finite number of connected components.
Taking V smaller if needed, the irreducible component C disconnects as a
finite union of irreducible components of C ′ each of them intersecting C0

in a single connected component. Finally iv) follows from ii) and from the
finiteness of components. When restriction to a smaller V ′ ⊂ V , the num-
ber of components of both TV ′ and C ′ decrease. By finiteness, for a small
enough V , this number stays constant when restricting to smaller V ′ ⊂ V
and only counts the components that contain a sequence (8.1). �

As a consequence of Corollary 9.8, we do not need to consider the full
target germification in the Kähler case. It is enough to look at T (M,V ) for
a fixed small enough V since restricting to smaller neighborhoods of 0 will
not change the number of components of TV .

Moreover, we have

Corollary 9.9. Assume X0 is Kähler. Then,

i) There is no wandering sequence (8.1) with each φn belonging to a dif-
ferent component of TV .

ii) There is no vanishing cycle.

and

Corollary 9.10. Assume X0 is Kähler. Then, the following statements are
equivalent

i) X0 is exceptional.
ii) There exists an exceptional component.
iii) There exists an exceptional cycle.

Proof of Corollaries 9.9 and 9.10. This is essentially a reformulation of what
preceeds. Corollary 9.9 is a direct consequences of point i) of Corollary 9.7.
Corollary 9.10 follows then from Proposition 8.11. �

In the sequel, we assume that V is small enough so that

i) It only contains Kähler structures.
ii) Items ii), iii) and iv) of Corollary 9.8 are valid.

Remark 9.11. Let C0 be an exceptional component of C0. Then, although
every cycle of C0 is singular, not every cycle of C0 is exceptional. First of all,
we must remove the possibly non-empty intersection of C0 with the closure
of the components of AutZ(X0). But in the remaining Zariski open set U of
C0, the exceptional cycles are those lying in the intersection with the finite
union of irreducible components of C ′. This intersection forms an analytic
subspace of U that can be strict.
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Remark 9.12. A singular cycle of C0 is either the graph of a bimeromorphic
mapping of X0 or the sum of two cycles γ1 + γ2, such that γi maps bimero-
morphically onto X0 through the i-th projection of X0 × X0 to X0. This
may include the case X0 × {∗}+ {∗} ×X0.

9.2. The morphism A1 into T (M,V ) in the Kähler setting. The fol-
lowing result is a refinement of Theorem 5.3 in the Kähler case.

Theorem 9.13. Assume that X0 is Kähler. Then, the natural inclusion of
A0 into T (M,V ), resp. of A1 into T (M,V ), as well as that of A0, resp.
AZ into T Z(M,V ), are finite and étale morphisms of analytic stacks.

Proof. Just combine Theorem 5.3 and Corollary 9.7, noting that the cardi-
nal of the fiber at X0 of these étale morphisms is less than the number of
connected components of T Z

V . �

Let us compute the fibers of the inclusion of A0 into T (M,V ), resp. of
A1 into T (M,V ) for X0 Kähler. Observe that this means computing g(X ),
resp. g1(X ), for X a family XJ → {J} for J ∈ K0. For J = J0, it follows
from Corollary 9.3 that there is no point J in K0 such that XJ is Diff0(M)-
biholomorphic to X0. Hence, we just have to consider isomorphisms of the
family X , that is automorphisms of X0. We deduce from that the equalities

(9.1) g(X ) = Card ♯Aut1(X0) = Card (Aut1(X0)/Aut
0(X0))

and

(9.2) g1(X ) = Card (Aut1(X0)/Aut
1(X0)) = 1

Both computations (9.1) and (9.2) remain the same for X → B a A1-family9

with connected base and at least one fiber biholomorphic to X0. Indeed, let
b ∈ B such that the b-fiber is isomorphic to X0. Then, the family X → B
is locally isomorphic at b to u∗K0 for u a holomorphic map defined on a
neighborhood of b ∈ B with values in K0. Every isomorphism of the family
induces an automorphism of the b-fiber, that is of X0. Using this point b as
b0 in (5.11) and (5.13), and noting that, given any J ∈ K0, there exists a
morphism starting from J in any connected component of A1, we are done.

We go back to the case of X being a family XJ → {J} for J ∈ K0. This
time, we assume that J is not J0. The intersection of the Diff0(M)-orbit of
J with K0 may be positive dimensional, but it consists of a finite number
of leaves of the foliation of K0 by Corollary 9.5. Each leaf corresponds to a
connected subset of TV . Now, since the maps Holf defined in (3.5) preserves

the foliation of K0, there is an action of ♯Aut1(X0) on the finite set of leaves
corresponding to J . Then g(X ) is given by the number of ♯Aut0(X0)-orbits
of leaves and g1(X ) by the number of ♯Aut1(X0)-orbits of leaves (recall
Remark 3.6).

Let us say that a point J ∈ K0 is generic if the finite set of leaves corre-
sponding to J has the same cardinal than ♯TV . Equivalently, it is generic if
every connected component of TV contains a morphism with source J . Then
g(X ) is given by the number of ♯Aut0(X0)-orbits in ♯TV and g1(X ) by the

9that is a family isomorphic to a family obtained by gluing local pull-backs of the
Kuranishi family K0 → K0 through a cocycle of morphisms belonging to A1.
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number of ♯Aut1(X0)-orbits in ♯TV , that is are maximal. This remains true
for a family over a connected base with all fibers generic.

We recollect the previous computations in the following proposition. Of
course similar calculations hold for AZ-families.

Proposition 9.14. Assume X0 is Kähler. Let X → B be a A1-family over
a connected base. Then,

i) Assume that at least one fiber of X is biholomorphic to X0. Then (9.1)
and (9.2) hold.

ii) Assume that all the fibers are generic. Then g(X ) is given by the number
of ♯Aut0(X0)-orbits in ♯TV and g1(X ) by the number of ♯Aut1(X0)-
orbits in ♯TV , that is are maximal.

9.3. Universality of the Kuranishi stacks revisited. By definition, the
Teichmüller stack T (M) is universal for reduced M -deformations, that is
any such family is obtained through an analytic mapping from the base of
the family to T (M) and this mapping is unique up to unique isomorphism.
The same is true for T (M,V ) and V -families, for T Z(M) and Z-reduced
M -deformations, for T Z(M,V ) and Z-reduced V -families. This is one of
the main interests in using the stack formalism.

By germifying as in Section 3.5, we may consider the germ of T , resp.
of T Z(M), at a point J ∈ I(M). Then (T (M), J), resp. (T Z(M), J),
is universal for germs of reduced, resp. Z-reduced, M -deformations of XJ

(compare with Corollary 3.12).
Theorem 9.13 allows us to go beyond statements on germs and to prove

similar results for the Kuranishi stack of a Kähler, non-exceptional point.
In return, this gives a geometric interpretation of these results.

Proposition 9.15. Assume X0 Kähler. Then, the Kuranishi stack A1 is
universal for reduced, V -families if and only if the base point X0 is not
exceptional.

The previous statement still holds true replacing A1 with AZ, reduced with
Z-reduced, Aut1(X0) with AutZ(X0).

Now, Proposition 9.15 tells us that an exceptional point is a point whose
Kuranishi stack lacks of universality. Firstly, this lack of universality is a
lack of completeness. It is possible that some reduced, V -families do not
belong to A1. Secondly, it is a lack of unicity. Indeed, given X → B
a family belonging to A1, the number g1(X ) gives exactly the number of
different ways for obtaining X from A1. It is interesting however to observe
from Proposition 9.14 that g1(X ) is equal to one for all A1-families with
a fiber biholomorphic to X0. Hence we automatically have universality for
this restricted type of families.

Proof. Since the Teichmüller stack T (M,V ) enjoys both universal proper-
ties of Proposition 9.15, so does A1 when X0 is Kähler and not exceptional.

If X0 is exceptional, then some fibers of the morphism A1 → T (M,V )
contain several points. In other words, the uniqueness property of univer-
sality is not true for some families XJ → {J}.

The proof in the AZ case follows exactly the same line of arguments. �
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We go back to statements about germs. Given J ∈ K0, the germ of
Kuranishi stack (A1, J) is universal for germs of reduced, M -deformations
of XJ if and only if the isotropy group at J is Aut1(XJ ). Let us make precise
that, in this statement, (A1, J) is the Kuranishi stack of X0 but germified
at XJ , for J ∈ K0. It is not the Kuranishi stack of XJ .

This comes from the fact that, since K0 → K0 is complete at any point
J ∈ K0, the only requirement to have universality of (A1, J) is to have all
the morphisms of germs of reduced M -deformations of XJ , that is that the
isotropy group at J of A1 is Aut1(XJ ) (compare with the proof of Corollary
3.12).

Let us now deal with the A0-case. Here there is no condition for the
universality property at each point. To be more precise, assume X0 Kähler.
If V is small enough, then, for all J ∈ K0, the germ of Kuranishi stack
(A0, J) is universal for germs of 0-reduced, M -deformations of XJ .

To prove this, we argue as above, and we obtain that, given J ∈ K0,
the germ of Kuranishi stack (A0, J) is universal for germs of 0-reduced, M -
deformations of XJ if and only if the isotropy group at J is Aut0(XJ ). But
Lemma 3.9 shows that this is always the case.

9.4. The Teichmüller stack as an orbifold. As second application of
Theorem 9.13, we deal with the orbifold case.

Theorem 9.16. Assume X0 Kähler. Then, the following statements are
equivalent

i) The exists some open set V of I(M) such that T (M,V ) is an orbifold.
ii) The exists some open set V of I(M) such that A1 is an orbifold and

X0 is not exceptional.
iii) Aut1(X0) is finite and X0 is not exceptional.
iv) Aut0(X0) is trivial and X0 is not exceptional.

Remark 7.5 applies also here for the choice of V . We also have

Corollary 9.17. Assume X0 Kähler. Then, the following statements are
equivalent

i) The exists some open set V of I(M) such that T Z(M,V ) is an orbifold.
ii) The exists some open set V of I(M) such that AZ is an orbifold and

X0 is not Z-exceptional.
iii) AutZ(X0) is finite and X0 is not Z-exceptional.
iv) Aut0(X0) is trivial and X0 is not Z-exceptional.

Proof. We only prove Theorem 9.16. Assume ii). Then, T (M,V ) is iso-
morphic to A1, so is an orbifold and i) is proved. Assume i). Then a finite
group acts on K0 stabilizing J0 and TV encodes the orbits of this action. As
a consequence, the leaves of the foliation of K0 are 0-dimensional, hence, by
Theorem 2 of [30], the dimension of the automorphism group of the fibers of
the Kuranishi family is constant. Combining Proposition 9.14 and Remark
3.6, this implies that this group has the same cardinal as ♯TV . Now, if X0

is exceptional, the finite group ♯TV is not the stabilizer of the base struc-
ture X0, since the exceptional components do not yield automorphisms at
0. So X0 is not exceptional, and ii) follows.This proves that i) and ii) are
equivalent. Then, ii) and iii) are equivalent by Corollary 3.12. Finally, iii)
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and iv) are equivalent because of the fact that Aut0(X0) has finite index in
Aut1(X0) in the Kähler case. �

10. Distribution of exceptional points

Our next task is to understand how the exceptional points are distributed,
that is in which sense they are rare. Let VK be the open set of Kähler points
of I(M) (recall footnote 2). We shall prove

Theorem 10.1. The closure of exceptional points of the Teichmüller stack
T (M,VK) of Kähler structures form a strict analytic substack E (M) of
T (M,VK).

The same is true for Z-exceptional points that form a strict analytic sub-
stack E Z(M) of T Z(M,VK).

and its immediate Corollary

Corollary 10.2. Normal Kähler points fill a Zariski open substack of the
Teichmüller stack T (M,VK) of Kähler structures.

Z-normal Kähler points fill a Zariski open substack of the Z-Teichmüller
stack T Z(M,VK) of Kähler structures.

Theorem 10.1 and Corollary 10.2 form the best results we are able to
prove in relation with main Conjecture 6.2, point I.

Note that the closure of exceptional points, resp. the set of normal points,
form a strict analytic subspace, resp. a Zariski open set of any atlas of
T (M,VK). Since any Kuranishi space K0 of a point in VK is a local atlas
of T (M,VK), this means that the closure of exceptional points, resp. the
set of normal points, form a strict analytic subspace, resp. a Zariski open
set of any K0.

Remark 10.3. The closure of exceptional points, resp. Z-exceptional points,
also form a strict analytic subspace of VK .

Remark 10.4. In particular, the set of normal points is dense in the Kähler
Teichmüller space VK/Diff0(M) and contains an open set. However, due to
the non-Hausdorff topology this space may have, this may be a misleading
statement. For example, if M is S2 × S2, then the (Kähler) Teichmüller
space of M , as a set, is Z, a point a ∈ Z encoding the Hirzebruch surface
F2a

10. Now, the topology to put on Z has for (non trivial) open sets {0},
{0, 1}, {−1, 0} and so on, cf. [31], Examples 5.14 and 12.6. Hence 0 is an
open and dense subset of the Teichmüller space.

Proof. We only prove the result for exceptional points. The proof can be
easily modified to treat the case of Z-exceptional points.

The atlas (5.1) being an atlas of a neighborhood of X0 in the Teichmüller
stack, it contains all the information we need to decide which points close
to X0 are exceptional.

Indeed, pick a point XJ in K0. Assume it is exceptional. By our assump-
tions on V 11, every irreducible component of C contains a cycle of X0×X0,

10The surfaces F2a and F−2a are isomorphic, but not through a biholomorphism isotopic
to the identity.

11see the end of Section 9.1.



GEOGRAPHY OF THE TEICHMÜLLER STACK 51

hence the set CJ of cycles of XJ × XJ which are limits of cycles of C is
included in C ′, the subset of components containing a sequence (8.1), since
the other components are formed by (V,D1)-admissible morphisms and their
degenerations. As a consequence, J is exceptional if and only if there exists
a component of C ′ whose subset of cycles above J is non-empty and contains
a connected component with only singular cycles by Corollary 9.7. Let S be
the analytic set of singular cycles of C ′. Let p denote the projection of C ′

to K0 ×K0. This is a proper map, since we are in the Kähler setting. We
thus have that the set of exceptional points is equal to

(10.1) E =
⋃

C∈Irr C ′

{J ∈ K0 | p
−1(J, J) ∩ C 6= ∅ and (p−1(J, J) ∩ C)0 ⊂ S}

where Irr denotes the set of irreducible components and 0 means that some
connected component of p−1(J, J)∩C is included in S. We notice that, by our
assumptions on V , the intersection p−1(J0, J0) ∩ C is connected. However,
we cannot ensure that this is still true for any point J . Let Ec be the closure
of (10.1).

We claim that Ec is an analytic subspace of K0. To see that, we first
embed E in K0×K0 through the diagonal embedding of K0. We still call E
the image. Let C be a component of C ′ and let EC denote the C-component of
(10.1). Let (J1, J1) be a point of K0×K0. Let W be an open neighborhood
of (J1, J1) in K0×K0. If p

−1(J1, J1)∩C is empty, then p−1(W )∩C is empty
for W small enough. So let us assume that p−1(J1, J1)∩C is not empty. We
decompose p−1(J1, J1)∩ C into connected components (p−1(J1, J1) ∩ C)i for
i between 0 and k. Let Ai be open neighborhoods of (p−1(J1, J1) ∩ C)i in C
such that the union of all Ai is exactly p−1(W )∩C. We assume that (J1, J1)
is generic in the sense that the intersection Ai ∩ p−1(J, J) is still connected
for (J, J) ∈ W if non empty. Notice that the restriction of p to some Ai is
still a proper map. We may decompose EC ∩W as follows.

(10.2)

EC ∩W =
⋃

0≤i≤k

{(J, J) ∈ W | p−1(J, J) ∩Ai 6= ∅

and p−1(J, J) ∩Ai ⊂ S}

=
⋃

0≤i≤k

∆ ∩ (p(Ai) \ p(Ai \ S))

where ∆ is the diagonal of K0×K0. Hence (10.2) is a constructible set so its
closure in W is an analytic set of ∆∩W ∩C. But its closure is just Ec

C ∩W .
So we obtain a chart of analytic subspace for Ec at every generic point.
Assume now that (J1, J1) is not generic. Then we may perform exactly
the same construction but the resulting constructible set (10.2) may forget
some exceptional points. Now, let a be a positive integer. The set of points
(J, J) of W where p−1(J, J) ∩ Ai has exactly a connected components is
constructible, see [41], Lemma 37.28.6 in an algebraic context. So is its pull-
back by p in Ai. Looking at its connected components, we may decompose
Ai into a finite set of constructible sets Aij on which p has connected fibers.
Then we obtain the correct decomposition

(10.3) EC ∩W =
⋃

i,j

∆ ∩ (p(Aij) \ p(Aij \ S))
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making of E ∩W a constructible set and of Ec ∩W an analytic one.
We claim that Ec is a strict analytic subspace of K0

12. Assume the contrary.
Then there exists an irreducible component C of C ′ such that Ec

C is a union of
irreducible components of ∆. For simplicity, let us assume that K0 and thus
∆ are irreducible. By Corollary 9.7, for each J ∈ K0, there exists a connected
component of C∩p−1(J, J) that contains only singular cycles. Now C contains
a Zariski open subset of graphs of biholomorphisms between fibers of the
Kuranishi family. Hence, p(C) is an analytic set ofK0×K0 strictly containing
∆ and p(C) has dimension strictly greater than n, the dimension of K0. It
follows that, at a generic point J ofK0, the intersection of p(C) with {J}×K0

is positive-dimensional. We may thus find a Zariski open subset of K0, say
U , such that, for any J ∈ U , the intersection C ∩ p−1({J} ×K0) contains a
Zariski open subset of graphs of biholomorphisms. In other words, for those
J in U , there exists a path of biholomorphisms between XJ and some XJ ′

t

with J ′
t distinct from J . Hence K0 has a non trivial foliated structure in

the sense of [30]. But this implies that the dimension of Aut0(X0) jumps
at 0, that is is not constant in a neighborhood of 0 in K0. Since K0 → K0

is complete at every point J of K0, denoting its Kuranishi space KJ , then
the closure of the set of exceptional points in KJ is also the full KJ . Hence
the same argument tells that the dimension of the automorphism group also
jumps at J in K0. But it cannot jump at every point of K0. Contradiction.
The set Ec is a strict analytic subspace of K0.

So we may define a strict analytic substack of T (M,V ) as the stackifica-
tion of the full subgroupoid of TV ⇒ K0 above E

c ⊂ K0. Since the notion of
exceptional point is an intrinsic notion, this substack is just a neighborhood
of X0 of an analytic substack of T (M,VK). �

Remark 10.5. If the intersection of an exceptional component of X0 and CJ

is non-empty but contains regular cycles, then the corresponding morphisms
form a component of Aut1(XJ ) which is not induced by Aut1(X0). Inversely,
the intersection of an A1-component at X0 with CJ may be exceptional at J .
Finally an A1-component at X0 may not intersect CJ since it only contains
morphisms that send J to points that are distinct from J and not adherent
to it.

11. Variations on exceptionality

In this Section, we explore variants of exceptional points. To avoid re-
dundancies, we only deal with exceptionality but this material can be im-
mediatly adapted to Z-exceptionality.

11.1. Relative exceptionality. The notion of exceptional points and cy-
cles introduced in Definitions 6.1 and 8.8 is an intrinsic notion, in the sense
that it depends only on the complex manifold X0. In this Section, we elab-
orate on a relative version, which depends on a family with fiber X0.

Definition 11.1. Let X → B be a reducedM -deformation over B a reduced
analytic space with fiberX0 above 0 ∈ K0. ThenX0 is X -exceptional if there
exists a singular cycle γ of the cycle space C0 such that

12As above in Section 9.1, we replace K0 with its reduction if necessary, so strict means
that Ec is not a whole irreducible component of K0.
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i) The cycle γ does not belong to the closure of a connected component
of Aut1(X0).

ii) The cycle γ belongs to an irreducible component of CX whose generic
member is non singular.

The cycle γ is called X -exceptional.

Here CX denotes the the union of completely singular and regular com-
ponents13 of the Barlet space of relative cycles of X × X .

A direct rephrasing of Corollary 9.7 shows that a Kähler manifold X0 is
exceptional if and only if it is K red

0 -exceptional. However, in the non-Kähler
case, the notion of exceptional point is more general. Notice also that X0

is X -exceptional if and only if there exists a sequence (8.1) with (xn) and
(yn) sequences of B converging to 0 and the graphs of φn belonging to CX

such that the limit cycle γ is singular and does not belong to the closure of
a connected component of Aut1(X0).

Now, the notion of X -exceptionality depends strongly on X . When X is
not the reduction of the Kuranishi family, it may have nothing to do with
exceptionality. A simple example is given by a trivial family X0 × B → B.
Then X0 is never X0 ×B-exceptional.

Consider a cartesian diagram

(11.1)

X ′ X

B′ B

�

f

Then

Lemma 11.2. Let b′ ∈ B′ and set b = f(b′). Assume that X ′
b′ , that is the

fiber of X ′ → B′ over b′, is X ′-exceptional. Then Xb, the fiber of X → B
over b, is X -exceptional.

Proof. Just consider a X ′-exceptional cycle γ above b′ and its direct image
f∗γ above b and observe that points i) and ii) of Definition 11.1 are preserved
through direct images. �

As an immediate consequence of Lemma 11.2, if X → B is complete at 0
and X0 Kähler, then X0 is X -exceptional if and only X0 is exceptional. To
prove the statement, just apply Lemma 11.2 to the following two cartesian
diagrams of germs of families

(11.2)

(X ,X0) (K0,X0)

(B, 0) (K0, 0)

� and

(K0,X0) (X ,X0)

(K0, 0) (B, 0)

�

The left diagram, resp. right diagram, is given by completeness of the Ku-
ranishi family, resp. of X → B. More generally, X -exceptionality implies
exceptionality since the left diagram in (11.2) is always verified.

As in the case of exceptional points, we have

13in the sense of §8.2.
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Proposition 11.3. Let X → B be a reduced M -deformation with Kähler
fibers and reduced base B. Then, the closure of X -exceptional points is a
strict analytic subspace of B.

Proof. A straightforward adaptation of the proof of Theorem 10.1 shows that
the closure of X -exceptional points is an analytic subspace of B. We have to
prove it is strict. Assume the contrary. Then at least a complete irreducible
component of B contains an open and dense subset of X -exceptional points.
For simplicity, assume B irreducible. Let C be an X -exceptional component
at some point b ∈ B and let p the natural projection map from C to B ×B.
Since there are only a finite number of components in CX , we may assume
that C is also exceptional for all the points in a neighborhood of b. The
component C intersects p−1(x, x) in a completely singular component Cx for
all x in this neighborhood. Arguing as in the proof of Theorem 10.1, this
implies that p(C) is an analytic subspace of B × B strictly containing the
diagonal. Hence, at every point x of B it intersects {x} × B in a positive-
dimensional subspace. And the cycles above x of this intersection include
graphs of biholomorphisms above a Zariski open subset. That means that
one can find a path (bt) in B ending at x such that all Xbt are biholomorphic
to Xb for t 6= 1. Either Xb is isomorphic to Xx or not. In the first case,
we may find by Fischer-Grauert a continuous family of biholomorphisms
(ft)t∈[0,1] with ft sending Xbt isomorphically to Xx and f1 equal to the
identity. Given any sequence (8.1) between fibers of X , we may thus compose
the mappings φn with suitable ft to obtain a sequence of automorphisms of
Xx whose graphs converge to the same limit cycle as the graphs of the φn.
Contradiction with the fact that there exists a X -exceptional cycle. Hence
Xb is not biholomorphic toXx through a biholomorphism C∞-isotopic to the
identity. But that means that the restriction of X to the path b is a jumping
family with central fiber Xx and generic one Xb. This forces the h

0 function
to jump at x. Since it is the case for every x ∈ B, we see that h0 jumps at
every point of B, contradicting its property of upper semi-continuity. �

Such a result is of course completely false for exceptional points. Letting
f : B → K0 lands in the subspace of exceptional points, then every point of
f∗K0 → B is exceptional.

11.2. Exceptional pairs. Let X0 and X ′
0 be two compact complex man-

ifolds diffeomorphic to M . Let K0, resp. K ′
0, the Kuranishi space of X0,

resp. X ′
0. As a second variation on the theme of exceptionality, we define

Definition 11.4. We say that {X0,X
′
0} is an exceptional pair of T (M) if

i) X0 and X ′
0 are not biholomorphic

ii) There exists a sequence (8.1) with (xn), resp. (yn), sequence ofK0, resp.
K ′

0, converging to X0, resp. X
′
0, such that the graphs of φn converge to

a singular cycle γ in the cycle space of X0 ×X ′
0.

The cycle γ is called exceptional.

Let us make a few comments on Definition 11.4. Firstly, since X0 and X ′
0

are not biholomorphic, there is no need to add that γ is not the limit of a
sequence of biholomorphisms between X0 and X ′

0. Secondly, as the notion
of exceptional points, Definition 11.4 does not depend on {X0,X

′
0} up to
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biholomorphisms smoothly isotopic to the identity of the pair; so the notion
of exceptional pairs is intrinsic and this justifies that we speak of exceptional
pairs of T (M). Thirdly, as in the case of relative exceptionality, we do not
include in the notion of exceptional pairs the analogues of wandering and
vanishing sequences. This is mainly because we focus on the Kähler case
where such phenomena do not appear.

Example 11.5. Let X → B be a jumping family, that is there is a point
0 ∈ B such that

i) For all b ∈ B different from 0, the fiber Xb is biholomorphic to a fixed
complex manifold, say X1.

ii) The 0-fiber X0 is not biholomorphic to X1.

Then the pair {X0,X1} is an exceptional pair. Just take as (xn) the image
through a map f : B → K0 such that f∗K0 is locally isomorphic to X of
a sequence of points in B \ {0} converging to 0; and for (yn) the constant
sequence X0.

Start with (X0,X
′
0) and their Kuranishi spaces (K0,K

′
0). As usual, we

assume both Kuranishi spaces reduced, replacing them with their reduction
if necessary. We consider the space of relative cycles of K0×K ′

0 → K0×K ′
0.

Let C pair be the union of the irreducible components of this relative cycle
space that contains at least the graph of a biholomorphism between some
fiber of K0 and some fiber of K ′

0 which is smoothly isotopic to the identity.
Let S denote the subset of singular cycles of C pair and let p denote the
natural projection of C pair to K0 ×K ′

0.
The set of exceptional couples in K0 ×K ′

0 is thus equal to

(11.3) P := {(J, J ′) ∈ K0 ×K ′
0 | p

−1(J, J ′) 6= ∅ and p−1(J, J ′) ⊂ S}

Analogously to Theorem 10.1, we have

Proposition 11.6. The closure of the subset of exceptional couples is a
strict analytic substack of T (M,VK)× T (M,VK).

Proof. We deduce from (11.3) that P is a constructible set in K0 × K ′
0,

hence its closure is an analytic set. Assume now that the closure contains
a full component of K0 × K ′

0. Then a full component of C pair consists of
singular cycles since a dense subset of K0 ×K ′

0 consists of non-isomorphic
couples. This is in contradiction with its definition. �

However, notice that the projection onto K0, resp. K ′
0, may contain a

full component of K0, resp. K
′
0.

Example 11.7. Let X0 be the product of projective lines P1 × P1 and let
X ′

0 be the second Hirzebruch surface. Then K0 is a point since P1 × P1 is
rigid; and K ′

0 is (the germ of) a unit disk with 0 encoding F2 and t 6= 0
encoding P1 × P1 (this is a jumping family in the sense of Example 11.5).

The set of exceptional pairs is the pair formed by the unique point of K0

and 0. This is a strict analytic subset of the disk but not of the point.

11.3. Non-Hausdorff points. As a consequence of what preceeds, we ob-
tain that the set of non-Hausdorff Kähler points is included in a strict ana-
lytic substack.
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To be more precise, first recall that the topological Teichmüller space -
that is the quotient I(M)/Diff0(M) endowed with the quotient topology
- is also given as the geometric quotient of the Teichmüller stack, that is,
given an atlas T0 → T (M) and given the associated groupoid T1 ⇒ T0, the
quotient space of T0 by the equivalence relation generated by the morphisms
encoded in T1. By extension we define

Definition 11.8. We say that X0 and X1 are non-Hausdorff points in

T (M), or form a non-Hausdorff pair of T (M) if they correspond to non-
separated points [J0] and [J1] of I(M)/Diff0(M).

Using the local atlases (5.1), if a pair {[J0], [J1]} of I(M)/Diff0(M) is a
pair of non-separated points of I(M)/Diff0(M) then, setting X0 := (M,J0),
X1 := (M,J1), and letting K0, resp. K1, be the Kuranishi space of X0,
resp. K1, we may find a sequence (8.1) with (xn) in K0 converging to X0

and (yn) in K1 converging to X1. In other words, two non-separated points
of I(M)/Diff0(M) define an exceptional pair of T (M).

As an immediate consequence to Proposition 11.6, we thus have

Corollary 11.9. The set of couples of non-Hausdorff Kähler points in
T (M) is contained in the set of exceptional couples of T (M,VK), hence
contained in a strict analytic substack of T (M,VK)× T (M,VK).

As an example, P1 × P1 and F2 are non-Hausdorff points of T (S2 × S2),
cf. Example 11.7, as well as the the pair {X0,X1} in a jumping family, cf.
Example 11.5.

12. Pathologies of the Teichmüller stack

As explained in the Introduction §1, making use of a Teichmüller stack
rather than a Teichmüller space allows to pass easily from the point of view
of moduli space to the point of view of families. They are two faces of the
same mathematical object.

As a consequence, we want to explore in this Section the pathologies of the
Teichmüller stack as pathologies of families and to relate them to pathologies
of space. We notice that we already investigated a topological pathology in
Section 11.3. But here we would like to search for analytic pathologies. As
in §11, to avoid redundancies, we only deal with exceptionality but all can
be immediatly adapted to Z-exceptionality.

12.1. Analytically non-separated, ambiguous and undistinguishable
points. Let us begin with some definitions.

Definition 12.1. Two distinct points X0 and X1 of the Teichmüller stack
T (M) are analytically non-separated if there exist two reduced M -defor-
mations Xi → B of Xi (for i = 0, 1) above a reduced positive dimensional
base B such that X0 and X1 are isomorphic above B \ {0}.

Taking sequences in B \ {0} that converge to 0, we immediatly obtain
that {X0,X1} is an exceptional pair; and a non-Hausdorff pair. However
Definition 12.1 is stronger. Observe that
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i) Any couple (X0,X1) formed by the base point, resp. the generic point,
of a jumping family (cf. Examples 11.7 and 11.5) are analytically non-
separated.

ii) We can always assume that B is a disk.

We pass now to the notions of analytic ambiguity and undistinguishability.
In the following definitions, given X0 and X1, we set Xi = (M,Ji) and let
Vi be an open neighborhood of Ji in I (M). Finally, V ∗

i denotes Vi minus
the Diff0(M)-orbit of Ji.

Definition 12.2. Two distinct points X0 and X1 of the Teichmüller stack
T (M) are formally ambiguous if, for any choice of a small enough neigh-
borhood V0, resp. V1, there exists a neighborhood V1, resp. V0, such that
T (M,V ∗

0 ) is equivalent to T (M,V ∗
1 ), that is there exists a fully faithful

and essentially surjective morphism from T (M,V ∗
0 ) to T (M,V ∗

1 ).

They are analytically ambiguous if

i) they are formally ambiguous and the corresponding equivalence between
T (M,V ∗

0 ) and T (M,V ∗
1 ) sends a reduced V ∗

0 -family to an isomorphic

reduced V ∗
1 -family.

ii) There exists non-isomorphic non-isotrivial reduced Vi-deformations Xi →
B (for i = 0, 1) over a positive-dimensional connected base B whose re-
strictions over B∗14 are images through the equivalence of point i), hence
isomorphic.

Remark 12.3. Because of hypothesis ii), X0 and X1 are not rigid. By a rigid

manifold, we mean a compact complex manifold such that any sufficiently
small deformation of it is Diff0(M)-biholomorphic15 to it.

In other words, X0 and X1 are formally ambiguous iff they have arbitrary
small isomorphic punctured neighborhoods in T (M). To understand the
difference with analytically ambiguous, notice that two compact surfaces of
genus g > 1 are always formally ambiguous, but never analytically ambigu-
ous. Indeed, the Teichmüller stack of compact surfaces of fixed genus g > 1
is a bounded domain in C3g−3; in particular, it is a manifold, every auto-
morphism group Aut1(X0) is the identity and two distinct points are not
biholomorphic through a biholomorphism smoothly isotopic to the identity.
Thus, a punctured neighborhood of some X in this Teichmüller stack is iso-
morphic to a punctured neighborhood of 0 in C3g−3 proving the first point.
However, given X0 and X1 distinct, and disjoint neighborhoods V0 and V1

with T (M,V ∗
0 ) equivalent to T (M,V ∗

1 ) as a category, every complex struc-
ture encoded in V ∗

0 is distinct from any complex structure encoded in V ∗
1 ,

hence the previous morphism cannot send a family to an isomorphic family.
Definition 12.2 is coined to ensure the following lemma.

Lemma 12.4. Ambiguous Kähler points are analytically non-separated.

Proof. Consider the non-isomorphic non-isotrivial reduced Vi-deformations
Xi → B given by Definition 12.2. Note that B∗ is not empty otherwise the
deformations Xi would be isotrivial. We can thus restrict both families to

14 We assume that B∗ for X0 and B∗ for X1 are equal.
15that is biholomorphic through a biholomorphism smoothly isotopic to the identity.
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non-trivial ones over a disk. We denote them by Xi → D for simplicity. Since
Xi is Kähler, we may assume that 0 is the only point of D encoding Xi up to
biholomorphisms smoothly isotopic to the identity, cf. the proof of Corollary
9.3. So, in the associated V ∗

i -family X ∗
i → D∗, the base is in fact D\{0}. By

Definition 12.2, to X → D we may associate a deformation of X1 over the
disk such that the two families are isomorphic outside 0. This isomorphism
doesnot extend over D since the central fibers are not biholomorphic. This
is exactly saying that X0 and X1 are analytically non-separated. �

Remark 12.5. Notice however that the line of arguments of the proof of
Lemma 12.4 does not work if we only assume that X0 and X1 fulfill point i)
of Definition 12.2 and are non-rigid instead of being analytically ambiguous.
Indeed, under this milder assumption, we may find a non-trivial deformation
of X0 over the disk and associate to its restriction over D∗ = D \ {0} a V ∗

1 -
family over the punctured disk. But there is no reason it extends to a
deformation of X1 over the disk.

Analogously to Definition 12.2, we have

Definition 12.6. Two distinct points X0 and X1 of the Teichmüller stack
T (M) are formally undistinguishable if, for any choice of a small enough
neighborhood V0, resp. V1, there exists a neighborhood V1, resp. V0, such
that T (M,V0) is equivalent to T (M,V1). We ask these equivalences to send
X0 to X1.

They are analytically undistinguishable if

i) they are non rigid16,
ii) formally undistinguishable and the corresponding equivalence between

T (M,V0) and T (M,V1) sends a reduced V ∗
0 -deformation of X0 to an

isomorphic reduced V ∗
1 -deformation of X1.

That is, X0 and X1 have arbitray small isomorphic neighborhoods in
T (M) and there is no way to distinguish them by looking locally at the
Teichmüller stack if they satisfy Definition 12.6. Any two compact surfaces
of genus g > 1 are indeed formally undistinguishable. We give now examples
of analytically undistinguishable points.

Example 12.7. A first example of analytically undistinguishable points is
given by F2a and F−2a in the Teichmüller stack of S2 × S2. Indeed the flip
(x, y) 7→ (y, x) of S2×S2 defines an automorphism of P1×P1 that exchanges
F2a and F−2a.

Example 12.8. Inseparable points in the Teichmüller space of K3 surfaces
are indeed isomorphic with same periods, see Proposition 2.1 of Chapter 7
in [22]. So they are analytically undistinguishable.

Formally unidstinguishable points are of course formally ambiguous (com-
pare Definitions 12.2 and 12.6). The relationship between analytically non-
separated, ambiguous and undistinguishable is more subtle and goes as fol-
lows.

Lemma 12.9. Let X0 and X1 be two points of T (M).

16in the sense of Remark 12.3.
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i) Assume that X0 and X1 are analytically undistinguishable points. Then
they are analytically ambiguous.

ii) Assume that X0 and X1 are Kähler analytically undistinguishable points.
Then they are analytically non-separated.

Proof. We first prove i). Assume that X0 and X1 are analytically undis-
tinguishable points. Then X0 is in particular non rigid, hence there exists
a deformation X0 → B of X0 with two non-isomorphic fibers. Its image
X1 → B through the equivalence of Definition 12.6 is thus non-isotrivial.
Since X0 and X1 are not isomorphic, the families X0 and X1 satisfy point
ii) of Definition 12.2 and we are done.

Now ii) follows immediatly from i) and from Lemma 12.4. �

In view of Lemma 12.9, it is natural to ask for examples of analytically
ambiguous but distinguishable points. Here is a potential one.

Example 12.10. Consider the case of Hyperkähler manifolds. It is quite
different from that of K3 surfaces, treated in Example 12.8. Inseparable
points of the Teichmüller space of Hyperkähler structures on a fixed differ-
entiable type are not always isomorphic, cf. [14] and [39]. Hence they are
not analytically undistinguishable. However, the global Torelli Theorem of
[43] implies that they are analytically ambiguous in case they are isolated.
We do not know however if such examples exist.

Undistinguishable points enjoy several interesting properties. We have

Lemma 12.11. If X0 and X1 are formally undistinguishable, then their
Kuranishi spaces K0 and K1 are isomorphic as germs of analytic spaces.

Proof. Consider the equivalence F between T (M,V0) and T (M,V1). It
sends every cartesian diagram

(12.1)

(X ,X0) (K0,X0)

(B, 0) (K0, 0)

�

to the cartesian diagram

(12.2)

(F (X ),X1) (F (K0),X1)

(B, 0) (K0, 0)

�

Since F is essentially surjective, every family of T (M,V1) is isomorphic to a
family in the image of F and (12.2) expresses that the image of the Kuranishi
family K0 → K0 of X0 is complete for X1. This implies that the dimension
of the Zariski tangent space of K0 at 0 is greater than the dimension of that
of K1.

Similarly, still because F is essentially surjective, there exists a reduced
deformation X1 of X1 over K1 such that F (X1) is isomorphic to K1 hence
semi-universal for K1. Given any reduced deformation X → B of X0 then



60 LAURENT MEERSSEMAN

semi-universality yields

(12.3)

(F (X ),X1) (F (X1),X1)

(B, 0) (K1, 0)

�

It is the image through F of a family morphism X → X1 over B → K1

because F is fully faithful. But this implies that X1 → K1 is complete for
X0. In particular, the dimension of the Zariski tangent space of K1 at 0 is
greater than the dimension of that of K0. So they are equal and X1 → K1 is
indeed semi-universal for X0. As a consequence K0 and K1 are isomorphic
as germs of analytic spaces at the base point. �

Let us deal now with rigid manifolds, still in the sense of Remark 12.3.
Notice that the Kuranishi space of a rigid manifold is a point, but not always
a reduced one, cf. [3].

Lemma 12.12. Let X0 and X1 be rigid complex manifolds. Then,

i) X0 and X1 are formally ambiguous.
ii) X0 and X1 are formally undistinguishable if and only if they have iso-

morphic Aut1 group and isomorphic Kuranishi spaces.
iii) X0 and X1 are analytically separated.

Proof. If X0 and X1 are rigid, given any reduced M -deformations Xi → B of
Xi (for i = 0, 1), there exists an open neighborhood V of 0 in B above which
the restriction of Xi is isomorphic to Xi × V . Thus both families cannot be
isomorphic above B \ {0} and X0 and X1 are analytically separated. This
proves iii).

Two rigid manifolds are formally ambiguous, since the corresponding
neighborhoods V ∗

i are empty. This proves i).
To satisfy 12.6, the existence of an isomorphism between small neighbor-

hoods of X0 and X1 is needed. It must send X0 to X1 thus they must have
same isotropy groups, that is same Aut1 groups. Moreover, Lemma 12.11,
they have isomorphic Kuranishi spaces.

Conversely, the Teichmüller stack is locally isomorphic at a rigid point to
the stack quotient of a n-uple point (its Kuranishi space) by its Aut1 group.
Hence, if X0 and X1 have same Aut1 groups and same Kuranishi spaces,
they have isomorphic neighborhoods. This proves ii). �

We now show that all the previous analytic pathologies on families concern
only a strict analytic substack of T (M,VK).

Proposition 12.13. Let X0 and X1 be distinct Kähler points of the Te-
ichmüller stack. Assume that

i) X0 and X1 are analytically undistinguishable,
or ii) X0 and X1 are analytically non-separated.

Then X0 and X1 are non-Hausdorff points and form an exceptional pair.
In particular, the set of analytically undistinguishable, or non-separated

Kähler pairs is included in a strict analytic substack of T (M,VK)×T (M,VK).
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Proof. We already observed after Definition 12.1 that analytically non-sepa-
rated points are non-Hausdorff. Thus this also true for analytically undis-
tinguishable points thanks to Lemma 12.9.

Finally, making use of Proposition 11.6 proves the last sentence. �

The case of ambiguous points is unclear due to Remark 12.5.
We sum up some of the properties in the following table.

Analytically Teichmüller Families Examples

non-separated
isomorphic
punctured slices

existence of
isomorphic lo-
cal punctured
deformations

jumping fami-
lies

ambiguous
isomorphic
punctured
neighborhoods

duality between
local punctured
deformations

see Example
12.10

undistinguishable
isomorphic
neighborhoods

duality between
local deforma-
tions

Hirzebruch
surfaces Fa and
F−a

Table 1. Pathologies for X0 and X1 distinct and Kähler

12.2. The local isomorphism property. Following [30], we say that a
compact complex manifold X0 has the local isomorphism property if any
two pointwise isomorphic deformations of X0 are locally isomorphic at the
base point 0.

In [30], we claim that X0 has the local isomorphism property for defor-
mations over a reduced base if and only if the function (3.7) is constant on
the fibers Xt of the Kuranishi family K0 → K0.

This is however not true and counterexamples exist on K3 surfaces as
explained in [24]. This comes from the fact that the number of chambers
in the positive cone of a K3 surface may jump above at the base point of
a deformation, see the main Lemma of [8] or [4]. Start with a K3 surface
X0 whose positive cone is subdivided into several chambers. Choose a (−2)-
curve C onX0 such that the Hodge isometry ofH2(X0,C) given by reflection
around the hyperplane normal to the class of C, say σ, is non-effective, that
is does not respect the Kähler chamber. Consider a deformation X → B
of X0 whose generic fiber does not admit such a subdivision of its positive
cone. Apply the Hodge isometry σ fiberwise to the punctured family, giving
another family isomorphic to the first one above the punctured base B∗.
Then it can be checked that this new family extends as a deformation X ′ →
B of X0. Now X and X ′ are not locally isomorphic at 0, since a local
isomorphism would induce an automorphism on the central fiber X0 acting
on H2(X0,C) as the non-effective Hodge isometry σ we start with.

Notice that in such counterexamples, we may assume the families to be
reduced families (the construction process is local) but the two families are
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not pointwise isomorphic as reduced families. Indeed the central fiber of
X and X ′ are common, hence identified through the identity, whereas the
other fibers are identified through a biholomorphism acting as the reflection
σ on the local system of second cohomology groups. They are inseparable
points of the Teichmüller space, cf. Example 12.8.

Definition 12.14. We say that a compact complex manifold X0 has the lo-
cal Diff0(M)-isomorphism property if any two pointwise Diff0(M)-isomorphic
reduced deformations of X0 are locally Diff0(M)-isomorphic at the base
point 0.

We do not know of an example of a compact complex manifold X0 not
having the Diff0(M)-local isomorphism property and such that (3.7) is con-
stant. However, we shall prove

Theorem 12.15. Let X0 be Kähler. Assume that X0 has not the Diff0(M)-
local isomorphism property over reduced bases. Then, either the h0-function
(3.7) is not locally constant, or X0 is an exceptional point.

and its immediate corollary

Corollary 12.16. The subset of points of T (M,VK) not having the Diff0(M)-
local isomorphism property over reduced bases is included in a strict analytic
substack of T (M,VK).

Of course, assuming part I of Conjecture 6.2, then Theorem 12.15 implies
that a Kähler point with locally constant h0-function has the Diff0(M)-local
isomorphism property over reduced bases.

Proof of Corollary 12.16. Apply Theorem 12.15. The conclusion follows
then from the fact that the h0-function is upper semi-continuous for the
Zariski topology on K0. �

Proof of Theorem 12.15. Let X0 be Kähler and not having the Diff0(M)-
local isomorphism property over reduced bases. By [30, p.513–514], X0 has
not the Diff0(M)-local isomorphism property over disks. So let X → D and
X ′ → D be two pointwise Diff0(M)-isomorphic but not locally Diff0(M)-
isomorphic reduced deformations of X0. Let f : D → K0, resp. g : D → K0

be holomorphic mappings such that f∗K0 is isomorphic to X , resp. g∗K0 is
isomorphic to X ′. As usual, K0 → K0 is the Kuranishi family of X0 and the
existence of f and g comes from its semi-universality property, cf. Section
3.1. Fix a sequence (tn) of D

∗ converging to zero. Set

(12.4) ∀n ∈ N, xn = f(tn) and yn = g(tn)

Thus (xn) and (yn) are sequences of points in K0 converging to 0. Since X
and X ′ are pointwise Diff0(M)-isomorphic, we may choose a sequence (φn)
in Diff0(M) satisfying (8.1). Up to passing to a subsequence, we may assume
that the graphs of the φn all belong to the same irreducible component of
C and converge in this cycle space to a γ0.

Assume now that (3.7) is constant and that X0 is not exceptional. Then
γ0 is singular, otherwise its extension would induce a local isomorphism
between the two families X and X ′. Indeed, assume that γ0 is the graph
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of an automorphism H of X0, and still denote by H its extension as an
isomorphism of the Kuranishi family:

(12.5)

(K0,X0) (K0,X0)

(K0, 0) (K0, 0)

H

�

h

then H−1 ◦ φn tends to the identity uniformly in every chart and in every
L2
k-norm. In particular, since (3.7) is constant, this implies that H−1 ◦ φn

fixes xn for n big enough, see [28]. Hence h induces a local isomorphism of
K0 making the following diagram commutative

(12.6)

(D, 0) (K0, 0)

(K0, 0)

f

g h

because it satisfies this diagram on the convergent sequence (tn) of the disk.
Finally (12.5) lifts as a commutative diagram of local isomorphisms of the
corresponding families as stated. So γ0 is singular.

Since X0 is not exceptional, the singular cycle γ0 belongs to an Aut1(X0)-
component of C0, hence is the limit of graphs of automorphisms (Hn) of X0.
We need the following lemma.

Lemma 12.17. Assume (3.7) is constant and X0 is not exceptional. Then,
there exists an open neighborhood U of 0 in K0 such that any element of
Aut1(X0) admits an extension as an isomorphism of the Kuranishi family
above U .

Proof of Lemma 12.17. We already proved this result for Aut0(X0) in Lemma
7.1. Since X0 is Kähler, Aut1(X0) has a finite number of connected compo-
nents, say p. Fix one element gi in each component. Reducing U if necessary,
we may assume that the gi admit a holomorphic extension above U . Now
any element of Aut1(X0) is a composition gi ◦ f with f ∈ Aut0(X0), hence
admits an extension over U . �

Then, reducing K0 if necessary, we have a commutative diagram (12.5)
for every (Hn, hn), and all of them are defined above the whole K0. Arguing
as above, we see that, for n big enough, the sequence (hn) stabilizes to some
mapping h which satisfies (12.6), as well as the sequence (Hn). Hence γ0
is the graph of Hn for n big enough so is not singular. Contradiction that
proves the Theorem. �

12.3. Double and split points. In Section 12.1, we deal with distinct
points of the Teichmüller stack admitting isomorphic neighborhoods (or
punctured neighborhoods or slices in the milder versions). Here distinct
points cannot be recognized by looking at their neighborhoods.

In this section, we deal with a phenomenon which is in a sense opposite:
a single point of the Teichmüller stack admitting non-isomorphic neighbor-
hoods or slices. Here a single point does not determine its neighborhood.

Analogously to Definition 12.1, we set
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Definition 12.18. A point X0 of the Teichmüller stack T (M) is a double

point if there exist two reduced M -deformations Xi → B of X0 (for i =
0, 1) above a reduced positive dimensional base B such that X0 and X1 are
isomorphic above B \ {0} but non-isomorphic over B.

We note that a double point X0 has not the local Diff0(M)-isomorphism
property. Analogously to Definitions 12.2, we set

Definition 12.19. A point X0 of the Teichmüller stack T (M) is split if, for
any choice of a small enough neighborhood V0 of X0, there exists a neigh-
borhood V1 of X0 and an equivalence between T (M,V ∗

0 ) and T (M,V ∗
1 )

such that

i) It sends every reduced V ∗
0 -deformation of X0 to an isomorphic reduced

V ∗
1 -deformation of X0.

ii) There exists non-isomorphic non-isotrivial reduced Vi-deformations Xi →
B (for i = 0, 1) over a positive-dimensional connected base B whose re-
strictions over B∗ (cf. footnote 14) are images through the equivalence
of point i), hence isomorphic.

We note that Definition 12.19 is similar to the notion of analytic am-
biguity. Formally split is obviously automatically satisfied so we drop the
adjective analytic in Definition 12.19.

Also, note that there is no analogue to undistinguishable points. Indeed,
the natural definition would be that of a point X0 such that for any choice
of a small enough neighborhood V0 of X0, there exists a neighborhood V1 of
X0 and an equivalence between T (M,V0) and T (M,V1) such that

i) It sends every reduced V ∗
0 -deformation of X0 to an isomorphic reduced

V ∗
1 -deformation of X0.

ii) There exists a V0-deformation which is not isomorphic to its image.

Now, arguing as in Lemma 12.11, we would have the equivalence sending
the Kuranishi family to itself. Hence it would send every reduced family to
an isomorphic one, contradicting item ii).

Example 12.20. We claim that the Hirzebruch surface F2 is split. Recall
that its Kuranishi space is a jumping family with generic point P1 × P1.
Hence, for V0 small enough, the objects of T (M,V0) are reduced families
with every fiber isomorphic either to F2 or to P1 × P1; and the objects of
T (M,V ∗

0 ) are reduced families with every fiber isomorphic to P1 ×P1, that
is locally trivial P1 × P1-bundles by Fischer-Grauert Theorem.

Consider the stack morphism induced by the map z 7→ z2 of the unit disk.
It sends the pull-back of the Kuranishi family by some mapping f : B → D

to the pull-back of the Kuranishi family by z ∈ B 7→ (f(z)2) ∈ D. It
is an equivalence on V ∗

0 , that is on locally trivial P1 × P1-bundles so F2 is
split. Nevertheless, it is not essentially surjective on V0 since it maps reduced
deformations of F2 to reduced deformations of F2 with Kodaira-Spencer map
zero at the base point. Thus, no family in the image is isomorphic to the
Kuranishi family.

Once again, all these pathologies only occur on a strict analytic substack
of T (M,VK).
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Theorem 12.21. Let X0 be a point of T (M,VK). Then,

i) We have

(12.7)
X0 split =⇒ X0 double

=⇒ X0 is exceptional or (3.7) is not constant.

ii) In particular, the subset of split, resp. double points of T (M,VK) is
included in a strict analytic substack of T (M,VK).

Proof. The first implication are obvious from the definitions. Then we al-
ready noticed that a double point has not the local Diff0(M)-isomorphism
property. Hence we may apply Theorem 12.15 and Corollary 12.16. �

We sum up some of the properties in the following table, to be compared
with table 12.1.

Teichmüller Families Examples

double
isomorphic
punctured slices

existence of
isomorphic lo-
cal punctured
deformations

Base point of a
jumping family

split
isomorphic
punctured
neighborhoods

duality between
local punctured
deformations

Hirzebruch sur-
face F2

Table 2. Pathologies for X0 Kähler

13. Cartography of the Teichmüller stack of Kähler

structures

In this final section, we gather all the previous results to describe the
geography of the Teichmüller stack, that is to give a geometric picture of
the different strata of points (normal, exceptional, ...) in the Teichmüller
stack. We first deal with the set of Kähler points for which this cartography
is much more precise. Then we deal with the general case. At the end, we
discuss the notion of holonomy points and their repartition and add a few
remarks on the geography of bad points in T (M) vs. in GIT quotients.

13.1. Kähler points.

Theorem 13.1 (Structure Theorem for Kähler points). Let M be a con-
nected, compact, oriented C∞ manifold admitting complex Kähler structures.
Then the Teichmüller stack of Kähler points T (M,VK) admits the following
structure:

i) Jumping points form a strict analytic substack J . At a generic jumping
point X0, we have that T (M,VK) is locally isomorphic to the Kuranishi
stack, hence locally homeomorphic to the quotient of the Kuranishi space
by an equivalence relation induced by Aut1(X0). It is however far from
being a manifold or an orbifold: the equivalence classes are analytic
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submanifolds of K0 but that of X0 is the base point, whereas others are
positive dimensional, hence it is not locally Hausdorff.

ii) If non-empty - see Conjecture 6.2, I -, the closure of exceptional points
form another strict analytic substack E . At an exceptional point, we
have that the Kuranishi stack only admits a finite étale projection onto
T (M,VK). At a generic exceptional point, T (M,VK) is locally homeo-
morphic to a finite quotient of its Kuranishi space, but is not an orbifold.

iii) These two analytic substacks may intersect. Generic points refered to
in points i) and ii) are points which are not in the intersection J ∩ E .
Points in the intersection combine the two pathologies: T (M,VK) is
neither locally Hausdorff nor isomorphic to the Kuranishi stack.

iv) The complementary Zariski open substack O contains the open sub-
stack of normal Kähler points T (M,NK). At a normal point, we have
that T (M,NK) is locally isomorphic to the Kuranishi stack and locally
homeomorphic to an orbifold. Moreover, there exists a global analytic
morphism from T (M,NK) to a finite étale analytic stack with same
topological quotient.

v) The left points of O are points whose Kuranishi space is not reduced and
admitting an automorphism of Aut0(X0) with no extension as a local
isomorphism of the Kuranishi family inducing the identity on the base.

The previous cartography also holds for the Z-Teichmüller stack of Kähler
points T Z(M,VK) with the obvious changes in the statements.

Some additional remarks complete the statement of Theorem 13.1. They
also hold in the case of the Z-Teichmüller stack of Kähler points T Z(M,VK)
with the obvious changes in the statements.

a) Recall that the analytic substacks of jumping points, resp. closure of
exceptional points, are given locally by analytic subsets of Kuranishi
spaces that glue when identifying two distinct Kuranishi spaces via a
local isomorphism. Hence these abstract statements on stacks can be seen
locally as classical statements about the geometry of Kuranishi spaces.
However, this point of view, though more concrete and geometric, gets
rid of the global behaviour, which is the crux of [31] and of this paper.

b) The construction and the nature of a local moduli space in the classical
sense (i.e. a set with some structure such that every isomorphism class
of complex structures on M close to X0 is encoded in a unique point of
it) can be deduced from Theorem 13.1. It is always a quotient of the
Kuranishi space. If X0 is normal Kähler, it is a finite quotient fixing the
base point, hence a complex orbifold; indeed it is the quotient of K0 by
Map1(X0). If X0 is exceptional Kähler and not jumping, or in the closure
of exceptional points but not jumping it is also a finite quotient of K0

but not given by a proper group action so it is not a complex orbifold.
If it is jumping non exceptional point, it is given as the leaf space of the
foliation of K0 described in [30], see point e). Finally if it is jumping and
in the closure of exceptional points, it is a finite quotient of the leaf space
of this foliation.

c) Points where T (M,VK) is locally isomorphic to the Kuranishi stack are
points where the action of Diff0(M) onto VK is proper. The neighborhood
of such a point only depends on two data, both encoding in X0: the
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Kuranishi space K0 and the extension of Aut1(X0) to the Kuranishi
family.

d) Recall that, by Theorem 12.21, split and double points are jumping or
exceptional points. Hence, the worst pathologies of the Teichmüller stack
occur in these two substacks.

e) The foliation of K0 of [30] is given as follows. First decompose K0 into
strata

(K0)a := {J ∈ K0 | h
0(J) ≤ a}

Each non-empty (K0)a is a Zariski open set of K0 and the differences
(K0)a+1 \ (K0)a are analytic subsets of K0. Then each stratum admits
a holomorphic regular foliation17 whose dimension is given on (K0)a by
the difference between a and the minimal value of h0 on K0.

Proof. Theorem 13.1 gathers results proved in the previous sections. Point
i) is a mixing of the well known upper semi continuity property of h0 for
the Zariski topology, of the foliated structure of the Kuranishi space proved
in [30] and of Corollary 9.3. Point ii) is a rephrasing of Corollary 9.10 and
Theorem 9.13 and point iii) follows from the two previous ones. Point iv)
is an adaptation of Theorem 7.16, taking into the finiteness properties in
the Kähler setting. Point v) is a rephrasing of the gap between normal and
non-exceptional and non-jumping points when K0 is not reduced. �

Example 13.2. Take M = S2×S2 corresponding to the complex structures
of Hirzebruch surfaces F2a for a ∈ Z, cf. Remark 10.4. We note that T (M)
is not an analytic stack but an inductive limit of analytic stacks, see [30].
Now, all points are Kähler. There is no exceptional points, but a normal
point, F0, that is P1 × P1, and all others points are jumping points. The
fact that normal points fill a Zariski open substack can be seen by looking
at the Kuranishi space of F2a which always contains a Zariski open subset
of points corresponding to P1 × P1.

13.2. The general case.

Theorem 13.3 (Structure Theorem – the general case). Let M be a con-
nected, compact, oriented C∞ manifold admitting complex structures. Then
the Teichmüller stack T (M) admits the following structure:

i) Jumping points form a strict analytic substack J . At a generic jump-
ing point X0, we have that T (M) is locally isomorphic to the Kuranishi
stack, hence locally homeomorphic to the quotient of the Kuranishi space
by an equivalence relation induced by Aut1(X0). It is however far from
being a manifold or an orbifold: the equivalence classes are analytic sub-
manifolds of K0 but that of X0 is a the base point or at worst a sequence
of points accumulating onto it, whereas others are positive dimensional,
hence it is not locally Hausdorff.

ii) The closure of exceptional points form a substack E of special impor-
tance. At an exceptional point, we have that the Kuranishi stack only
admits an étale projection onto T (M,VK). At a generic exceptional

17 The leaves are complex manifolds but the transversals may be singular, see the
discussion in [30].
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point, T (M,VK) is locally homeomorphic to an at most discrete quo-
tient of its Kuranishi space, but is not a group quotient. Exceptional
points divides into points with an exceptional cycle, vanishing points
and wandering points18.

iii) These two substacks may intersect. Generic points refered to in points
i) and ii) are points which are not in the intersection J ∩ E . Points
in the intersection combine the two pathologies: T (M,VK) is neither
locally Hausdorff nor isomorphic to the Kuranishi stack.

iv) The complementary open substack O contains the open substack of nor-
mal Kähler points T (M,NK). At a normal point, we have that T (M)
is locally isomorphic to the Kuranishi stack and locally homeomorphic
to the quotient of K0 by the action of the discrete group Map1(X0) that
fixes the base point. Moreover, there exists a global analytic morphism
from T (M,NK) to a étale analytic stack with same topological quotient.

v) The left points of O are points whose Kuranishi space is not reduced and
admitting an automorphism of Aut0(X0) with no extension as a local
isomorphism of the Kuranishi family inducing the identity on the base.

The previous cartography also holds for the Z-Teichmüller stack T Z(M)
with the obvious changes in the statements.

We state Theorem 13.3 in parallel to Theorem 13.1. It is important to
notice that points i) and iii) are identical in both Theorems whereas the
statements in the other two points are much weaker in the general case.
Indeed,

a) In point ii), the closure of exceptional points is just a substack, a priori not
an analytic substack. In other words, it is given locally by (closed) sub-
sets of Kuranishi spaces that glue when identifying two distinct Kuranishi
spaces via a local isomorphism, but not by analytic subsets. Conjecture
6.2, II asserts that nothing more precise can be said. Also exceptional
points are a priori of three types, following Proposition 8.11, compare
with Corollary 9.10. Part III of Conjecture 6.2 asserts that every ex-
ceptional point is wandering but at this stage we cannot prove anything
precise about the geography of each type of exceptional point.

b) Similarly, in point iv), the Zariski open substack of Theorem 13.1 is
simply an open substack in Theorem 13.3. And the finite quotient is
replaced with a discrete one.

c) Here again, the construction and the nature of a local moduli space in
the classical sense can be deduced from Theorem 13.3 and this gives a
good idea of what we lost in the statement of the general case. The
local moduli space is always a quotient of the Kuranishi space. If X0 is
normal, it is an at most discrete quotient by Map1(X0) fixing the base
point. So it is not always a complex orbifold. If X0 is exceptional and
not jumping, or in the closure of exceptional points but not jumping it
is also a discrete quotient of K0 but not given by a proper group action.
If it is jumping non exceptional point, it is given as the leaf space of
the foliation of K0 described in [30]. Finally if it is jumping and in the

18see however part III of Conjecture 6.2
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closure of exceptional points, it is a discrete quotient of the leaf space of
this foliation.

d) As in Theorem 13.1, points where T (M) is locally isomorphic to the Ku-
ranishi stack are points where the action of Diff0(M) onto VK is proper.
The neighborhood of such a point only depends on two data, both en-
coding in X0: the Kuranishi space K0 and the extension of Aut1(X0) to
the Kuranishi family.

e) Recall that, by Theorem 12.21, split and double points are jumping or
exceptional points. Hence, the worst pathologies of the Teichmüller stack
occur in these two substacks.

Proof. This is completely similar to the proof of Theorem 13.1. Point i) is a
mixing of the well known upper semi continuity property of h0 for the Zariski
topology, of the foliated structure of the Kuranishi space proved in [30] and
of Corollary 9.5. Point ii) is a rephrasing of Proposition 8.11 and Theorem
5.3 and point iii) follows from the two previous ones. Point iv) is essentially
Theorem 7.16 and point v) just makes explicit the gap between normal and
non-exceptional and non-jumping points when K0 is not reduced. �

Example 13.4. We go back to Hopf surfaces. We already saw in Example
7.20 that the function h0 varies from 2 to 4 and that (a connected component
of) the normal Teichmüller stack identifies with the bounded domain D∗×D

of C2. For the Teichmüller stack, we make use of the results of C. Fromenteau
[17].

Let M be the product GLc
2(C)×C, where the superscript c stands for con-

tracting, that is GLc
2(C) only contains invertible matrices with eigenvalues

of modulus strictly less than one. Denoting by λ1 and λ2 the eigenvalues of
a matrix, we define, for each n ∈ N∗, the n-resonances detection function

(13.1) (M, t) ∈ M 7−→ Rn(M) := (λn
1 − λ2)(λ

n
2 − λ1) ∈ C

Observe that Rn is holomorphic as a symmetric function of eigenvalues. The
zero set of Rn is exactly the analytic subset of matrices with a resonance of
order n.

Let Sn be the open subset of M consisting of couples (M, t) with M non-
resonant or resonant of order n. By definition, the union of all Sn is M.
Notice that

(13.2) S := Si ∩ Sj i 6= j

is independent of the choice of i 6= j and corresponds to matrices with no
resonances. On Sn, consider the Z-action on M× C2 \ {0} generated by

(13.3)



(M, t),





z1

z2







 7−→



(M, t),M





z1

z2



+ t





zn2

zn1









This defines a reduced family Xi of Hopf surfaces above Si. When M has no
resonance of order n, the contracting biholomorphism of (13.3) is equivalent
to a linear diagonal one, and the corresponding fiber is biholomorphic to
a linear diagonal Hopf surface, regardless of the value of t. However, if
Rn(M) is zero, and t is not zero, then the contracting biholomorphism of
(13.3) cannot be linearized but is equivalent to (7.14). In particular, we can
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glue Xi and Xj above S for every i 6= j, thus producing a family of Hopf
surfaces over M. This family is complete at every point, making of M a
connected atlas of a connected component of T (S3 × S1).

The associated groupoid structure is described as follows. Let G be the
Lie group biholomorphic to GL2(C)×C as a complex manifold but with the
following product rule

(13.4) (A, t) ∗ (B, s) = (AB, t+ s detA)

Then one may define

a) a holomorphic action · of G onto M.
b) a holomorphic injection ı of M into G

such that the Lie groupoid (G ×M)/Z ⇒ M is the desired groupoid. Here
the Z-action is defined as

(13.5) (p, g,m) ∈ Z×G×M 7−→ (ı(m)pg,m)

and the source and target maps are the projections of the maps19

(13.6) (g,m) ∈ G×M 7−→ m and (g,m) 7→ m · g

Remark 13.5. In [13], a connected family of Hopf surfaces containing a copy
of every Hopf surface and complete at each point, that is a connected atlas
of a connected component of T (S1 × S3), is also constructed. However,
the associated groupoid has a more complicated structure than (13.5). The
simple form of (13.5) is used in a crucial way in [17] to compute some de
Rham cohomology groups of T (S1×S3), showing in particular the existence
of a very particular class in dimension 2 that plays the role of the Euler class
of the Z-gerbe of footnote 19.

We may now describe the geography of T (S1 × S3) by looking at the
geometry of M = GLc

2(C)× C. Recall that there is no exceptional point.

a) The function h0 equals 4 on the analytic subset {R1 = 0} ∩ {t = 0} of
couples (λId, 0).

b) It equals 3 on the countable union of analytic subsets {Rp = 0}∩{t = 0}
of couples (M, 0) with eigenvalues (λp, λ) for p > 1.

c) It is equal to 2 at every other point so the set of jumping points is
described in a) and b).

d) Every point with h0 equal to 3 or 4 is a double point but is not split.
e) The subset of normal points is equal to

(13.7) M \ ∪p≥1({Rp = 0} ∩ {t = 0})

Since Map1 is equal to the identity for all normal points, they are all
manifold points.

f) The holomorphic map

(13.8) (M, t) ∈ M 7−→ f(M) := (detM, (Tr M)/2) ∈ D∗ × D

descends as the mapping from the open substack of normal points to the
normal Teichmüller stack, which is thus identified with D∗ × D.

19 The action groupoid G ×M ⇒ M with source and target maps defined in (13.6) is
an atlas for the stack of reduced S3 × S1-deformations admitting a covering C2 \ {(0, 0)}-
deformation plus a choice of a base point in the covering family. Together with ı, this
forms a gerbe with band Z.
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Every statement in the list above is clear except for item d). It can be
proven as follows.

Proof of item d). For p ≥ 1, the family Xλ,p → D given by the quotient of
C2 \ {0} × D by the group generated by

(13.9) (z, w, t) 7−→ (λpz + twp, λw, t)

is a jumping family with base point
(

λp 0
0 λ

)

20 and jumping point
(

λp 1
0 λ

)

showing that any point with h0 equal to 3 or 4 is double. Assume now
that λId is a split point. We recall that K0 is a neighborhood U of of λId
in GLc

2(C) and K∗
0 is the corresponding punctured neighborhood U∗. The

Kuranishi family K0 → K0 is obtained as the quotient of C2 \ {0} × U by
the group Z acting on the fiber C2 \ {0} × {A} as the group generated by
A and K ∗

0 is obtained by remowing the fiber at λId. Since we assume that
it is a split point, there exists a stack isomorphism of T (M,V ∗) that sends
K ∗

0 → K∗
0 isomorphically to itself. Thus there exists an isomorphism Φ

satisfying

U∗ U∗

D∗ × D D∗ × D

Φ

f f

Id

that lifts to an isomorphism Ψ of the family K ∗
0 . Recall that two Hopf

surfaces A and B are isomorphic if and only if the matrices A and B are
conjugated. From this observation, we deduce the existence of a holomorphic
mapping

(13.10) A ∈ U∗ −→ PA ∈ GL2(C)

such that

(13.11) Φ(A) = PAAP
−1
A and Ψ([z, w], A) = ([PA(z, w)],Φ(A))

By Hartogs Theorem, Φ and PA extend holomorphically to λId, hence Ψ
also so the stack isomorphism of T (M,V ∗) extends to a stack isomorphism
of T (M,V ) sending any family to an isomorphic one. This contradicts
Definition 12.19, proving that λId is non split.

The case of
(

λp 0
0 λ

)

is similar with K∗
0 being equal to a small punctured

neighborhood of (λp, λ, 0) in C3. Indeed, we deduce from [47, Thm 2] the
following facts

i) (α, β, t) and (α′, β′, t′) encode isomorphic surfaces if and only if α = α′,
β = β′ and both t and t′ are either zero or non-zero. An isomorphism
of Kuranishi families thus induces an isomorphism

(13.12) (α, β, t) ∈ K∗
0 7−→ (α, β, tf(α, β, t)) ∈ K∗

0

with f : K∗
0 → C holomorphic and non-vanishing for t 6= 0.

ii) The lift of (13.12) to the universal covering C2\{0}×K∗
0 of the Kuranishi

family is induced by a holomorphic mapping

(13.13) F : K∗
0 −→ {(z, w) ∈ C2 7→ (az + bwp, cw) | ac 6= 0}

20We identify a contracting matrix A and the Hopf surface given as the quotient of
C2 \ {0} by the group generated by A.
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Since K∗
0 is a punctured nieghborhood of a point in C3, it follows from

Hartogs Theorem that both f and F extend holomorphically to K0 yielding
an isomorphism between the full Kuranishi families. �

13.3. Holonomy points. It is interesting to revisit Theorems 13.1 and 13.3
through the concept of holonomy points.

Definition 13.6. A point X0 of T (M) is called a holonomy point if

i) It is not exceptional.
ii) There exists f ∈ Aut1(X0) which does not admit an extension as an

isomorphism of the germ of Kuranishi family atX0 inducing the identity
on the base.

Replacing exceptional with Z-exceptional and Aut1(X0) with AutZ(X0) gives
rise to a Z-holonomy point.

Closely related is the notion of holonomy group. To define it, note the
following lemma.

Lemma 13.7. Let E1(X0) be the subset of Aut1(X0) consisting of elements
f ∈ Aut1(X0) that admits an extension as an isomorphism of the germ of
Kuranishi family at X0 inducing the identity on the base.

Then E1(X0) is a normal Lie subgroup of Aut1(X0).
Replacing Aut1(X0) with AutZ(X0), one obtains a normal Lie subgroup

EZ(X0) of Aut
Z(X0).

Proof. The composition of two extensions inducing the identity on the base,
and the inverse of such an extension, still induce the identity on the base.
Closedness is immediate. Let f ∈ E1(X0) and g ∈ Aut1(X0). Let F be
an extension of f as an isomorphism of the germ of Kuranishi family at
X0 inducing the identity on the base. Let G be an extension of g as an
isomorphism of the germ of Kuranishi family at X0. Then G induces some
map h on the germ of Kuranishi space at 0 and h has no reason to be
the identify. Now, G ◦ F ◦ G−1 is an extension of g ◦ f ◦ g−1 that induces
h ◦ Id ◦ h−1, that is the identity, on the base. �

We then define.

Definition 13.8. LetX0 be a point of the Teichmüller stack. The holonomy

group Hol(X0) of X0 is defined as the quotient group Aut1(X0)/E
1(X0).

The Z-holonomy group HolZ(X0) of X0 is defined as the quotient group
AutZ(X0)/E

Z(X0).

Thus, a (Z)-holonomy point is a point

i) that is not (Z)-exceptional,
ii) and has a non-trivial (Z)-holonomy group.

To understand why we exclude (Z)-exceptional points, recall that they cor-
respond to points where the Diff0(M)-orbits, resp. the DiffZ(M)-orbits in
K0 are not controlled by Aut1(X0), resp. Aut

Z(X0). More precisely,

Lemma 13.9. A point X0 of T (M) is not exceptional if and only if it
satisfies the following property:
For V small enough, two distinct points J1 and J2 of K0 belong to the same
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Diff0(M)-orbit if and only if there exists a local isomorphism of the Kuranishi
family K0 → K0 sending J1 to J2 and acting as an automorphism of the
central fiber X0.

The same characterization holds for X0 being not Z-exceptional if we
replace Diff0(M) with DiffZ(M).

Proof. Assume K0 satisfies the property of Lemma 13.9. Then, to any se-
quence (8.1), corresponds a sequence of local isomorphisms of the Kuranishi
family fixing the central fibers, hence a sequence of automorphisms of X0.
By Lemma 8.4, the sequence (8.1) is a sequence of morphisms of the Kuran-
ishi stack and X0 is not exceptional.

Conversely, if X0 is not exceptional, then, for V small enough, every
morphism between two points J1 and J2 of K0 is (V,D1)-admissible, hence is
the evaluation at J1 of a local isomorphism of the Kuranishi family K0 → K0

sending J1 to J2 and acting as an automorphism of the central fiber X0. �

Thus, with Definition 13.6, holonomy points are points such that non-
trivial repetitions in the Kuranishi space21 exist but can be determined by
computing the extensions of the elements of Aut1(X0) as isomorphisms of
the germ of Kuranishi family. Hence they are induced by the central fiber
and not by the geometry of the Diff0(M)-orbits in I(M).

Remark 13.10. Examples Xa,b of [33] have holonomy group Za, since an
arbitrary small deformation of them obtained by moving generically the
a-th roots of unity has no Aut1(X0)-mapping class group. In the same

way, Examples X̂P (with P in the ta-fiber) have Z-holonomy group Z4a

by Theorem 8.15. However, we do not know if these examples are (Z)-
holonomy points. To answer this question, we should decide whether they
are exceptional or not. This supposes to know all their small deformations.
Notice also that, if X̂P is not exceptional, this would be an example of a non-
exceptional point in the closure of the set of exceptional points by Theorem
8.17 and Corollary 8.21.

Then, we may characterize generic jumping points by their holonomy
group.

Proposition 13.11. Let X0 be a point of T (M). Then, X0 is a non-
exceptional jumping point if and only if it is a holonomy point with non-
discrete holonomy group Hol(X0).

Proof. Jumping points have an automorphism group whose dimension is
strictly greater than E1(X0), hence their holonomy group is non-trivial and
positive-dimensional.

Conversely, if Hol(X0) is not discrete, it is a positive dimensional Lie
group, hence taking a non-trivial element in its Lie algebra, the exponential
flow of this element induces a 1-dimensional submanifold of K0 all of whose
points correspond to the same complex structure up to Diff0(M)-action.
Hence the foliation of K0 is not trivial and the h0 function jumps. �

21that is pairs of distinct points in the Kuranishi space that encode the same complex
structure up to C∞-isotopy.
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Let us analyze what happens at normal points. Let X0 be a normal point.
Let E1 be the subset of elements f in A1 such that s(f) = t(f). Since X0

is normal, E1 contains A0. We may mimic Section 7.3 and define an étale
quotient groupoid A1/E

1 ⇒ K0. Its stackification over the analytic site
describes classes of reduced (M,V )-families up to E1-equivalence.

This stack can be defined over the full open set N of normal points. In
this context, a reduced (M,N )-family is E1-equivalent to a trivial family if
it can be decomposed as local pull-back families glued by a cocycle in E1,
cf. the proof of Theorem 5.3; and an isomorphism of a reduced (M,N )-
family is E1-equivalent to the identity, if it is given by local E1-sections once
decomposed as local pull-back families. We set

Definition 13.12. The stack over the analytic site of E1-equivalence classes
of reduced (M,N )-families is called the holonomy normal Teichmüller stack

and denoted by H T (M).

This is based on the result

Lemma 13.13. Assume X0 is normal. Then, the quotient space A1/E
1 is

an analytic space and the morphism s, resp. t : A1 → K0, descends as an
étale morphism from A1/E

1 to K0.

whose statement and proof are identical to those of Lemma 7.13. We then
have

Theorem 13.14. The normal holonomy Teichmüller stack H T (M) sat-
isfies the following properties

i) It is an analytic étale stack with atlas an (at most) countable union of
Kuranishi spaces.

ii) The isotropy group of N T (M) at X0 is the discrete group Hol(X0). It
is finite if X0 is in Fujiki class (C ).

iii) Assume that Hol(X0) is finite. Then, we may assume that it acts ef-
fectively on K0 and the normal holonomy Teichmüller stack is locally
isomorphic at X0 to the effective orbifold [K0/Hol(X0)].

iv) In particular, if X0 is a normal point with no holonomy, then the normal
holonomy Teichmüller stack is locally isomorphic to K0 at X0.

v) There is a natural étale morphism from N T (M) to H T (M). More-
over, these two stacks are associated to the same topological quotient
space.

vi) Locally at X0, the morphism from N T (M) to H T (M) makes of it a
gerbe with band E1(X0)/Aut

0(X0).

Of course all this applies to the Z-Teichmüller stack and we may thus
define a Z-normal holonomy Teichmüller stack H T Z(M) that satisfies the
properties listed in Theorem (13.14) with the obvious changes.

Remark 13.15. Theorem 13.14 has of course to be compared with Theorem
7.16. The main difference appears in item iii): assuming finiteness of the
holonomy group of X0, the local form of H T (M) is an effective orbifold
whereas, assuming finiteness of the Aut1(X0) mapping class group, the local
form of N T (M) is a possibly non-effective orbifold. The explanation is
given in item v): the Hol(X0)-action is the effective action induced by the
Map1(X0)-action.
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Hence, the normal holonomy Teichmüller stack is the closest to a geo-
metric moduli space. But it forgets about part of the automorphism group
Aut1(X0).

Proof. Point i) follows from Lemma 13.13 and the first of point ii) from the
mere definition of Hol(X0). If X0 is in Fujiki class (C ), its automorphism
group is finite, hence also its holonomy group. Point iii) can be proved
along the same lines that the corresponding statement in Theorem 7.16. An
automorphism f of Aut1(X0) acts as the identity on K0 if and only if its
extension Holf is the identity. But this means that the class of f in Hol(X0)
is the class of the identity, showing effectiveness and finishing the proof of
point iii). If X0 has no holonomy, the effective orbifold chart of point iii)
is a local isomorphism with K0, proving iv). Since Aut0(X0) is included
in E1(X0) at a normal point, there is a forgetful functor from N T (M) to
H T (M). Its fiber at X0 is given by the discrete group E1(X0)/Aut

0(X0)
which acts trivially on K0 making of N T (M) to H T (M) a gerbe with
band E1(X0)/Aut

0(X0). This proves iv) and v). �

13.4. Teichmüller stack and GIT quotients. In this last subsection,
we want to say a few words in the case of the Teichmüller stack being
isomorphic to a quotient stack [X/G] with X affine, resp. projective, and
G reductive, see [23] for an example. In such a situation, we can also form
the GIT quotient X//G, which has its own geography of stable points, resp.
unstable, semistable and stable points. We would like to compare both type
of quotients. We note that a thorough study of this question is done in [1] in
an algebraic context. Here, we content ourselves with some naive geometric
remarks. We refer to [21] for basics on GIT theory.

Let us start with X being affine. Then, the algebra of G-invariant func-
tions on X is finitely generated and the associated affine scheme X//G comes
equipped with a natural map X → X//G whose fibers are the closure of
the orbits. This good quotient is geometric if and only all orbits are closed.
The stable points, that is the points with closed orbits and finite stabilizers,
form a Zariski open subset Xs of X and the restriction of X → X//G to
Xs is a geometric quotient. Note however that Xs may be empty. Note
also that there may exist an open subset of X bigger than Xs such that the
restriction of X → X//G to it is a geometric quotient.

Proposition 13.16. Let X be an affine scheme and G a reductive group
acting rationally on it. Assume that T (M) is isomorphic to the quotient
stack [X/G]. Then X //G is not homeomorphic to the orbit space X/G,
hence to the geometric quotient of T (M) if and only if one the following
equivalent conditions are satisfied

i) There exist a double point X0 and a jumping family based at X0.
ii) There exists an injective morphism from the quotient stack [C/C∗] (with

C∗ acting multiplicatively on C) to T (M).

Moreover, the subset Xs is included in the subset of points X0 of T (M)
with finite Aut1(X0).

Proof. Since T (M) is isomorphic to [X/G], then X is an atlas of T (M),
hence comes equipped with a family of reduced M -deformations X → X
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which is complete at any point. Now, X//G is homeomorphic to the orbit
space X/G if and only if all G-orbits are closed. If this is not the case, then
the main Theorem of affine GIT asserts that there exists x ∈ X and C∗ in
G suth that the limit of g · x when g ∈ C∗ tends to zero is a point y not
belonging to the x-orbit. In other words, this gives a holomorphic mapping
from C to X such that C∗ lands in the x-orbit and 0 in the distinct y-orbit.
Pulling-back X → X through this morphism gives a jumping family. Its
base point 0 is a double point of T (M). At the same time, this morphism
descends as an injective morphism from [C/C∗] to T (M). Conversely, if
there exists a jumping family, we may assume that its base is the unit disk
D and that it is obtained by pull-back from X → X along a non-constant
map D → X with D∗ landing in a single G-orbit and 0 in a distinct one,
proving the existence of a non-closed G-orbit. Applying what we just proved,
this shows the existence of an injective morphism from [C/C∗] to T (M). If
we assume the existence of such a morphism, arguing as above, we obtain a
jumping family.

Finally, since T (M) is isomorphic to [X/G], then the stabilizer of a point
is the automorphism group Aut1(X0) of the corresponding compact complex
manifold. �

Assume from now on that X ⊂ Pn is projective and choose a linearization
of the action, that is a lift of the G-action to Cn+1. The points [z] ∈ X
such that G · z does not accumulate onto 0 in Cn+1 form a Zariski open
subset Xss of X called the set of semistable points. Then, the algebra of
G-invariant functions on the affine cone over X is finitely generated and the
projective scheme X//G associated to its projectivization comes equipped
with a natural map Xss → X//G whose fibers are the closure of the orbits.
This good quotient is geometric if and only all orbits are closed in Xss.
The stable points, that is the points with closed orbits in Xss and finite
stabilizers, form a Zariski open subset Xs of Xss and the restriction of
Xss → X//G to Xs is a geometric quotient. As in the affine case, Xs may
be empty and there may exist an open subset of X bigger than Xs such that
the restriction of Xss → X//G to it is a geometric quotient.

The main difference with the affine case is the fact that unstable orbits
must be thrown away before taking the GIT quotient. In particular, X//G
cannot be homeomorphic to the geometric quotient of T (M) in presence of
unstable points. Now, the notion of unstable/semistable points depends on
the choice of a linearization and is strongly related to the projectivity of the
quotient. Indeed, considering the affine cone X̃ ⊂ Cn+1 above X ⊂ Pn, then
the GIT quotient X//G is the projectivization of the affine GIT quotient

X̃//G minus zero. This is the projectivization of X̃ss//G where z belongs to

X̃ss if G · z does not accumulate onto 0 in Cn+1. For if z does not belong to
X̃ss, its G-orbit accumulates onto zero and it is sent to 0 in X̃//G, preventing

from projectivizing the whole quotient X̃//G.
As a consequence, unstable points are not intrinsic and have no clear

geometric meaning in the Teichmüller stack. Hence, we modify our setting
and assume from now on that T (M) is isomorphic to the quotient stack
[Xss/G]. In this new setting, Proposition 13.16 can be easily adapted.



GEOGRAPHY OF THE TEICHMÜLLER STACK 77

Proposition 13.17. Let X be a projective scheme and G a reductive group
acting rationally on it. Choose a linearization and assume that T (M) is
isomorphic to the quotient stack [Xss/G]. Then X//G is not homeomorphic
to the orbit space Xss/G, hence to the geometric quotient of T (M) if and
only if one the following equivalent conditions are satisfied

i) There exist a double point X0 and a jumping family based at X0.
ii) There exists an injective morphism from the quotient stack [C/C∗] (with

C∗ acting multiplicatively on C) to T (M).

Moreover, the subset Xs is included in the subset of points X0 of T (M)
with finite Aut1(X0).

Proof. Apply Proposition 13.16 to X̃ → X̃ //G restricted to X̃ss. �
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[4] Beauville, A. Surfaces K3. Séminaire Bourbaki (1982-1983), exp. 609, 217–229.
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