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Abstract

We study theoretically the emission and lasing properties of a single nanoshell

spaser nanoparticle, or plasmonic nanolaser, made of an active core (gain material)

and a plasmonic metal shell. Based on an analytical framework coupling together

time-dependent equations for the gain and the metal, we calculate the lasing threshold

with the help of an instability analysis. We characterize the regime under the threshold,

where the nanoshell behaves as an optical amplifier when excited by an incident probe

field. We then investigate in depth the non-linear lasing regime above the threshold,

under autonomous conditions (free lasing without external drive), by computing the

system’s dynamics both in the transient state and in the final steady state. We show

that at threshold, the lasing starts at one frequency only, usually one of the plasmon

resonances of the nanoshell; then as the gain is further raised, the emission widens

to other frequencies. This differs significantly from previous findings in the literature,

which found only one emission wavelength above threshold. We proceed to calculate
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the complete (maximal) emission spectrum of the nanolaser as well as its emission

linewidth, both of which are evidenced to be affected by unusually strong frequency

shifts (pull-out) effects. We find that the nanolaser emission is highly asymmetrical

spectrally and only occurs on one side (high-frequency) of the plasmon resonance.

Finally, we show that the spectral position of the emission line can be tuned across the

whole visible range, by changing the geometrical aspect ratio of the nanoshell.

Keywords: nanolaser, spaser, nanoparticle, gain, emission spectrum, active

medium, plasmon resonance

With the advent of nanotechnology, one key aspect of research efforts in the past 30

years has been to generate, shape and manipulate light at subwavelength scales, much below

the diffraction limit. An instrumental physical phenomenon towards this aim are surface

plasmon polaritons, which are localized excitons where the electromagnetic field is coupled

to electronic oscillations in a metal.1 If the metallic structure is at the nanoscale, then the

associated fields are also generated at that same scale, and depending on cases, they may or

may not be able to produce far-field radiation.

However, the use of metals at optical frequencies inevitably comes at the cost of signif-

icant Ohmic losses hindering the performance of plasmonic devices. One way to partially

circumvent this fundamental issue is to use a gain material (active medium), placed at a

distance close enough to the metallic structure: the gain medium can then transfer energy

to the metal radiatively and/or non-radiatively. This strategy has proved to significantly

improve properties and amplify the responses of device in various applications.2–9

When the quantity of gain provided by the active medium is in excess to losses in the

plasmonic system, one may enter a regime of nanolasing, i.e. the generation of coherent light

at the nanoscale via the stimulated amplification of plasmons. Starting with the seminal

concept of the spaser introduced in 2003,10 quickly followed by the first experimental real-

izations of lasing spasers in 2009,11,12 the field of nanolasers has since been highly active, as
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is testified by the flurry of reviews published over recent years.13–23

Amongst the variety of geometries and schemes described in the literature, plasmonic

nanolasers based on metallic nanoparticles (combining localized plasmons with gain within

a nanoparticle) are especially attractive,23 due to the ease of mass fabrication of such struc-

tures with the help of bottom-up colloidal chemistry and self-assembly techniques.24,25 One

disadvantage of particle-based designs, however, is the difficulty to geometrically pack the

necessary amount of gain to obtain the lasing.23,26 In particular, there has been an ongoing

debate about the true nature of the pioneering experiments by Noginov et al.11 (lasing vs.

random lasing, or some hybrid situation), and experimental realizations including metallic

nanoparticles actually remain scarce.23

In the wait for an improvement in the experimental situation, theoretical efforts have

nonetheless been exploring lasing when nanoparticles are coupled to gain in various ge-

ometries: spheres, core-shells, multiple core-shells, ellipsoids. . . , using more or less refined

analytical descriptions, or numerical simulation tools like the finite-element method.27–49

Most of these works were carried out assuming that the electromagnetic response for the

materials involved could be faithfully accounted for using standard electrical permittivities;

in particular for the gain medium, either a linear, Lorentzian permittivity or a non-linear

saturated version were employed. When such an assumption is made from the start, how-

ever, it results in leaving out situations where more complex temporal dynamics may deploy.

Since the latter is not uncommon in lasers, it is therefore necessary to rather make use of

a fully time-dependent description to obtain a full understanding of the lasing regime. A

few numerical studies have integrated all time and space-dependent effects using four-level

population dynamics for gain carriers locally coupled to Maxwell equations.37–40 Powerful

as these are, full-wave simulations are not always transparent in terms of understanding the

physical mechanisms at work, and a complementary model-based approach is undoubtedly

useful.

In a past work,31 we studied the situation of a metallic sphere immersed in an unbounded
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gain medium within the help of a time and space-dependent model. We proved the existence

of a lasing threshold as the onset of an instability arising under zero driving field, starting first

with the dipolar mode, and discussed how a mode cascade would subsequently occur due to a

spatial hole-burning effect similar to laser physics, triggering many higher multipolar modes

into emission. This multi-modal complication linked to the chosen geometry prevented us

from studying the complete nanolaser’s dynamics above threshold.

In the present article, we consider another geometry, closer to experiments, namely a

single nanoshell where the gain medium is placed inside the core of the nanoparticle and is

surrounded by a thin shell of metal (as shown in Fig. 1). In this case, as shall be explained, the

dipolar is the only one that can emit in the lasing regime, making the analysis easier; based

on the same model as earlier, we are then able to provide a full model-based characterization

of the nonlinear lasing state for a nanoparticle, unveiling specific novel effects which, to the

best of our knowledge, have remained unnoticed in the literature.

Finally, and before we start presenting the model, a word on vocabulary: in the following,

we shall make no distinction between the intrinsically entangled notions of “spasing” and

“lasing”. In the specific context of nanoparticle-based plasmonic lasers, these notions are

two sides of the same coin: the phenomenon of spasing focuses on the coherent excitation

of plasmons in the nanoparticle, while lasing focuses on the emission of photons in the far-

field associated with these plasmon oscillations.17,50 In this article, we shall mostly use the

latter wording, as we will be primarily concerned with the emission of light by the nanoshell

particle.

Dynamical equations for materials

To ensure that our model is able to capture spatial and temporal variations of the fields,

our first step is to formulate dynamical constitutive equations for the materials comprised in

the nanoshell, i.e., for the metal and the gain medium. This formalism has been previously
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Figure 1: A spherical nanoshell particle, with a gain medium filling the core and a metallic
shell, placed into an external medium.

described in ref 31, and the interested reader is referred to the Supplementary Information

of the present article for detailed derivations.51 We give below a summary of the important

steps.

Material equations

The electron gas in the metal is classically modelled using the free-electron equation of mo-

tion,31,51 with a collision rate γ and a plasma frequency ωp. The gain medium is described as

a continuum composed of a background host material inside which gain elements (emitters),

like dye molecules or quantum dots, are dispersed randomly. The population dynamics of

electrons levels internal to the emitters is described with the help of an effective two-level

approach, which is a phenomenological reduction capturing the essentials of more complete,

multiple-level dynamics commonly used in laser physics.51–53 We label as levels 1 and 2, re-

spectively, the lower and upper states of the resonant transition in the emitters, and call ωg

the angular frequency associated to this transition: ωg = ∆E21/ℏ, where ∆E21 is the energy

gap between levels 1 and 2. The emitters are provided with energy by some external, optical
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pumping process, the details of which are left out: it is just assumed that the emitters are

pumped with some tunable, effective pump rate W , at a frequency far from all phenomena

of interest. It is also assumed that the metal shell is thin enough, and the frequency of the

pump field high enough, that the pump wave penetrates inside the nanoparticle core. The

population dynamics of this gain medium is then obtained with the help of the optical Bloch

equations and the matrix density formalism.31,51–53

Denoting r and t as the spatial and time coordinates, the polarization Pm in the metal

and Pg in the gain medium can be written as the sum of two contributions:

Pg(r, t) = ϵ0χbEg(r, t) +Πg(r, t), (1)

Pm(r, t) = ϵ0χ∞Em(r, t) +Πm(r, t). (2)

Here, ϵ0 is the vacuum permittivity, χb is the background, passive linear susceptibility of the

host medium in which the gain elements are dispersed, and χ∞ is the background, passive

susceptibility of the ion lattice in the metal.

The additional term Πg is the polarization contribution from the dipole moments of

the emitters within the host medium, and can be explicitly related to the transition dipole

moment µ between the two electronic levels as

Πg(r, t) =
n

4π

∫ π

0

∫ 2π

0

[ρ12 + ρ∗12]µ sin θdθdφ, (3)

where n is the volumetric concentration of gain elements, ρ12 is the element of the density

matrix between levels 1 and 2, representing the gain element probability of transition, while

θ and φ are respectively the polar and the azimutal angle. The other additional term Πm is

the contribution to polarization due to the free electrons in the metal which is defined as

Πm(r, t) = need, (4)
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where ne and e are respectively the electron density and the electron charge, and d is the

displacement of the electron cloud with respect to the ionic lattice in the free-electron model.

We now assume a harmonic form e−iωt (where ω is the angular frequency) for all time-

dependent quantities. Due to the fundamental role of the gain medium in generating the

lasing effect, we shall assume that the operation frequency ω of the laser stays close to

the frequency of the gain elements transition ωg. We will work within the frame of the

rotating wave approximation,54 i.e., keeping track only of so-called ”quasi-resonant” terms in

equations, and considering slow temporal variations only with respect to the typical duration

of optical cycles ∼ 1/ω ∼ 1/ωg. Therefore, all fields and polarizations in the problem will

be taken as slowly-varying complex quantities
∼
A, from which the corresponding, real-valued

quantity A in the physical world can be computed through the usual relation

A(r, t) = Re[
∼
A(r, t)e−iωt]. (5)

Henceforth, complex quantities
∼
A (r, t) will be considered only. However, for convenience,

all tildas and the (r, t)-dependence for fields will be implicitly assumed throughout the rest

of this article and shall be dropped out of all equations.

Applying the optical Bloch equations for the gain part and the free-electron description

for the metal, one obtains the following set of differential equations for the time evolution of

the polarization inside the two materials in the nanoshell (see Supplementary Information51

for detailed steps):

dΠg

dt
−

[
i(ω − ωg)−

1

τ2

]
Πg = −iϵ0G

τ2

N

Ñ
Eg (6)

dN

dt
+
N − Ñ

τ1
= − i

2nℏ
(Πg · E∗

g −Π∗
g · Eg) (7)

dΠm

dt
− ω(ω + 2iγ)

2(γ − iω)
Πm =

ϵ0ω
2
p

2(γ − iω)
Em. (8)

In the above, N = ρ22 − ρ11 is the space and time-dependent population inversion of the
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emitters, defined as the difference of the diagonal terms of the density matrix. The time

constant τ2 is associated with the phase relaxation processes of the emitters (collisions),

while τ1 is the effective energy relaxation time, which results from the combined effect of

spontaneous emission and pumping,31,51 Ñ is the maximal, equilibrium value that the popu-

lation inversion N reaches as a balance between the applied pumping rate and spontaneous

emission,31,51 in the absence of stimulated emission (i.e., if the saturation/depletion effects

appearing in the r.h.s. of eq 7 are discarded).

Gain level

Finally, the quantity G in eq 6 is a dimensionless parameter that will play a pivotal role in

the following study:26

G =
τ2µ

2

3ℏϵ0
nÑ. (9)

We shall call G the “gain level”, indicative of the amount of total available power fed by

the operator into to the system via the emitters and the external pumping. The value of

G is tunable; but once set to some desired value, it will be assumed to remain a constant

parameter through the system’s time evolution (constant pumping, or ‘CW’ operation).

As seen from its definition, the value of G can be controlled as follows: τ2, µ depend on

the choice of specific emitters (chemical dye, or otherwise) introduced in the gain medium;

n is the already defined volume density of emitters, and is limited by the quantity one

can realistically pack into the nanoparticle’s core; and finally, the quantity Ñ is the most

flexible one to change in practice, as it directly represents the external pumping rate W .

More precisely, Ñ = Ñ(W ) is an increasing function of the pumping rate, with the extreme

situations Ñ = −1 for zero pumping (W = 0, all electrons in the lower level, purely absorbing

medium) and Ñ = 1 for very intense pumping (W → ∞, all electrons in the higher level,

complete population inversion); see Supplementary Information,51 and ref 52 for details.

In ref 31 about nanolasers made of plasmonic homogeneous spheres and in ref 26 about
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core-shell and nanoshell nanolasers, we discussed the existence of a threshold value Gth,

dependent on the physical properties of the gain elements and the system’s geometry, such

that when G exceeds Gth, the systems would transit into a lasing/spasing regime. In the

case of the nanoshell geometry, the threshold gain was defined as the point where the clas-

sical formula for the quasi-static polarizability of the particle becomes singular. We shall

demonstrate that this intuitive definition still holds true in the following, more elaborate

model.

The system of equations 6–8 is applicable to a variety of situations that demand dynamical

constitutive equations for both the metal and the gain medium. Its solutions encompass, in

principle, all possible transient states both above and below the emission threshold, as well

as steady states.

Steady-state permittivities

Before moving to the case of nanoshells, let us quickly review such steady-state solutions

obtained in the case of infinite media subject to uniform electric fields. From equation 8,

one can retrieve the standard Lorentz-Drude formula for the permittivity of the metal (see

Supplementary Information51):

ϵm = ϵ∞ − ϵ0ωp
2

ω(ω + 2iγ)
, (10)

with ϵ∞ = ϵ0(1 + χ∞).

For the gain medium modeled by equation 6 along with equation 7, one finds the steady-

state permittivity:51

ϵg = ϵb +
[2(ω − ωg)− i∆]ϵ0G∆

4(ω − ωg)2 +∆2

[
1 +

|Eg|2

Esat
2

] , (11)
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where we defined ϵb = ϵ0(1 + χb), ∆ = 2/τ2, and

Esat =
ℏ
µ

√
3

τ1τ2
. (12)

Equation 11 stands as a non-linear permittivity for the gain medium, dependent on the

modulus of the electric field |Eg| inside it. This is classically known as a “gain saturation”

effect due to the depletion term Πg ·E∗
g−Π∗

g ·Eg in eq 7: when the field in the gain medium

becomes large enough, the upper state of the resonant transition of the emitters becomes

depleted, causing N to decrease and saturate at some value lower than the maximum value

Ñ allowed by the pump. The typical magnitude of the field where this becomes significant

is Esat. In the “small-signal” regime where fields keep small enough with |Eg|2 ≪ Esat
2, the

depletion term in eq 7 is negligible, and N quickly converges to its maximum, unsaturated

value Ñ ; so that the above permittivity becomes a linear one:

ϵg = ϵb +
ϵ0G∆

2(ω − ωg) + i∆
, (13)

which is no other than the widely used Lorentzian curve used for unsaturated gain media,

centered at ω = ωg, with an emission linewidth ∆.

In the context of nanolasers, however, we will show that these steady-state permittivities

for metal and gain have to be used with care above the threshold of lasing, especially in

situations of free lasing (i.e., without any external drive) where the nanolaser is free to

choose its frequency of emission.

Nanoshell model

Nanoshell description

We now proceed to specify the geometry of the nanoshell shown in Figure 1, of external

radius rext = a, internal radius rint = ρa and aspect ratio ρ = rint/rext. The core is filled with
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the gain medium described in the previous section (eq 6–7), and is surrounded by a shell

made with the metal described by eq 8. The whole nanoparticle is bathing in an external

medium (i.e., a solvent) which is assumed to be a passive dielectric with a real, positive

permittivity ϵe.

We place ourselves in the quasi-static limit, where the nanoparticle’s size is much smaller

than the impinging wavelength. The exciting probe field can be approximated as spatially

uniform and written as E0e
−iωt, where E0 does not depend on spatial position. Within the

same approximation, we can introduce the time and space-dependent potentials ϕg,m,e and

ψg,m, respectively located in the gain core (g), metal shell (m) and external medium (e), from

which the fields and polarizations are derived as Eg,m,e = −∇ϕg,m,e and Πg,m = −∇ψg,m.

They must satisfy the Laplace equations:

∇2ϕg,m,e = 0 (14)

∇2ψg,m = 0 (15)

While using the quasi-static approximation is perfectly admissible with small, passive

nanoparticles, it is a much more delicate affair in the context of active, lasing nanoparticles.

Indeed, for the fields to derive from potentials, they should be curl-free (irrotational), i.e.

∇×Eg,m,e = ∇×Πg,m = 0. But as can be seen from eq 6 where the righ-hand side contains

an N · Eg term, the spatial pattern of the inversion population N can constitute a source

of rotationality for the fields. This is discussed in detail in a previous work,55 where it

was shown that if the inversion population stays spatially uniform in the gain medium, i.e.

∇N = 0, all fields remain irrotational in time (provided the size of the particle is small

enough).

In all situations where the fields stay within the small-signal regime discussed above

(|Eg|2 ≪ Esat
2), since N(r, t) = Ñ always, the latter condition ∇N = 0 will be satisfied.

This will be applicable to all geometrical arrangements of nanolasers below their lasing
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threshold, since their response is proportional to the intensity of the exciting probe field:26,31

provided the latter is not exceedingly intense, which we will assume further down, all fields

remain small. (For cases where the probe field is very intense and the system falls out of the

small-signal regime even below the lasing threshold, the reader is referred to ref 56.)

On the contrary, if the system is placed above the lasing threshold, the fields grow

considerably, and the uniformity of N is not guaranteed due to spatial hole burning effects.

In ref 31, we studied in depth how spatial burning occurs in the case of a nanolaser made of

a homogeneous plasmonic sphere placed in an unbounded gain medium: irrespective of how

small the particle is, in the lasing regime, N inevitably becomes non-uniform and breaks

the irrotational hypothesis; and, the quasi-static, dipolar mode of the particle in fact always

excites a cascade of higher (non quasi-static) multipolar modes. Intuitively, this is because

in that geometry, when the dipolar mode is initially active within the sphere, it produces a

dipole field Eg (which is non-uniform by nature) in the external gain medium. Therefore,

the r.h.s. of eq 7 is non-uniform, which in turn brings on a non-uniform evolution of N : the

inversion population is then “burnt” according to the spatial pattern cut out by the laser

field. The same spatial hole-burning scenario holds, for the same reasons, in a core-shell

nanolaser, with the plasmonic metal inside the core and the gain medium in the shell.

Depending on their geometry, the presence of spatial hole burning even in small nanolasers

is an important fact that is most often overlooked in the literature: many works incorrectly

study core-shell nanoparticles in the lasing regime, taking only the dipolar mode into account

due to size considerations; thus missing out on the physics of the multipolar mode cascade

that will inevitably take place.

However, in the nanoshell geometry which we will exclusively consider in the present

study, the situation is distincly different, because the gain medium is now inside the core:

when the dipole (quasi-static) mode of the nanoparticle is first activated, it creates a uniform

field Eg inside the core, hence the depletion in the r.h.s. of eq 7 is uniform as well, which

entails thatN will then keep uniform throughout its time evolution. This brings a substantial
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simplification, as irrotationality is preserved and a potential-based approach is here legitimate

to describe the whole dynamics of the system, both below and above the lasing threshold.

In a nanoshell geometry, the quasi-static dipolar mode remains alone, without any higher

modes being excited.57

We use spherical coordinates centered on the nanoparticle, aligning the z-axis along the

direction of the probe field (i.e., E0 = E0ẑ), and assume azimuthal symmetry around z.

Then, equations 14 and 15 produce solutions that can be expressed as a superposition of

Legendre polynomials. Taking into account that the potentials should be regular at r = 0

and that for r ≫ 1, the electric field has to reconnect to the probe field E0, the following

expressions for ϕg,m,e and ψg,m are obtained:

ϕg(r, θ, t) = p0r cos θ, (16)

ϕm(r, θ, t) = p1r cos θ + a3ρ3p2
cos θ

r2
, (17)

ϕe(r, θ, t) = −E0r cos θ + a3p3
cos θ

r2
, (18)

ψg(r, θ, t) = q0r cos θ, (19)

ψm(r, θ, t) = q1r cos θ + a3ρ3q2
cos θ

r2
. (20)

Equations 16 and 19 state that the field and polarization inside the core (gain medium) are

uniform; equations 18 states that the external field is the sum of the probe field and the

single-mode, dipolar field generated by the nanoparticle; equations 17 and 20 state that the

field and polarization in the metallic shell, are the sum of a constant field and a dipolar

field. The coefficients p0, p1, p2, and p3 are the amplitudes of the constant and dipolar

modes of the electrical fields in the various domains of the system, while q0, q1 and q2 are

the corresponding mode amplitudes for the polarizations. It is possible to link the values of

the qi and pi variables through the imposition of the appropriate boundary conditions at the

various interfaces of the nanoshell (see “Methods” section).

In particular, we note that p0 is the amplitude of the uniform field inside the gain-medium
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core: p0 = Eg; while p3 is the amplitude of the dipolar field scattered by the nanoparticle in

the external medium. It is proportional to the the total dipole moment P of the nanoparticle

through

P = 4πϵea
3p3. (21)

Geometry matrix and governing equations

To obtain the governing set of equations for the nanoshell’s dynamics, we next introduce the

above dipolar description of eq 16–20 into the previously described material equations 6–8.

With the help of intermediate steps described in the “Methods” section, we find that this

governing set can be written in the following matrix form:

dq

dt
= A(N) · q+ b, (22)

dN

dt
+
N − Ñ

τ1
=

1

nℏ
Im {q0p∗0} . (23)

This set of equations fully describes the time-dependent electrodynamical behavior of the

nanoshell, in a self-contained fashion. The vector q collects the electromagnetic mode com-

ponents:

q(t) =
[
q0, q1, q2

]T
, (24)

and the complete physical definition of the system is contained within the matrix A and

vector b (see “Methods” section for complete expressions). Solving Equation 22, one obtains

the value of all polarizations components qi(t), and then all related field components pi(t),

inside and outside the nanoshell, as a function of time. Solving the (coupled) equation 23,

one obtains the simultaneous evolution of the population inversion N(t) in the gain region.

It is useful to describe the physical contents of matrix A, which is central to our model.

We shall call A the “geometry matrix”, as its components encode all the information about

the nanoshell geometry of the system (see “Methods”). As emphasized by the notationA(N),
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A also explicitly depends on the population inversion N = N(q, t), which in general is time-

dependent, and, most importantly, depends non-linearly on the electromagnetic modes qi.

Therefore, the system 22–23 is a non-linear one in q in the most general case. Furthermore,

the A(N) matrix features the level of gain G brought to the system via pumping, as defined

in eq 9, whose value will be critical to determine the various regimes of response of the

nanoshell. Finally, A(N) depends on the frequency ω.

The vector b(N,E0) depends on N as well, but moreover specifically carries the infor-

mation on the excitation by the probe field E0; in the absence of a probe field (E0 = 0), one

has b = 0.

In the next sections, we will study the dynamical behaviour of the nanoshell laser, as

dictated by eq 22–23, both below and above the lasing threshold. We start off by evidencing

the existence of such a threshold in our formalism.

Lasing threshold

Classically, we define the lasing threshold as the minimal quantity of gain G = Gth to be

provided to the system, in order to observe the rise of a self-oscillation of the nanoshell,31,41

i.e., the rise of non-zero fields inside and outside the particle in the absence of an exciting

probe field. We thus take E0 = 0 and b = 0.

Right at the onset of the self-oscillation, fields are small and therefore the “small-signal”

approximation is valid: one can neglect the r.h.s. of eq 23. After a transient of duration

∼ τ1, N will reach the stationary value N = Ñ , which is independent of all variables qi.

Then, the geometry matrix becomes a constant matrix A(Ñ), meaning that eq 22 is now a

linear differential equation with generic solutions

q(t) =
n=3∑
n=1

q̂ne
κnt, (25)

where κn are the eigenvalues of A(Ñ) and q̂n are associated eigenvectors.
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Above the threshold, the solution should be exponentially growing (i.e., at least one

eigenvalue has a positive real part) as a result of the self-oscillation instability. Below the

threshold, the solution should be on the contrary exponentially decaying (i.e., all eigenvalues

have a strictly negative real part), as no field should emerge in the absence of external

excitation (no self-oscillation). We refer the reader to ref 31 for a similar analysis carried

out in the case of a metal sphere immersed in a gain medium.

The lasing threshold is thus characterized by the tipping point where one null eigenvalue

appears in the spectrum of A. The lasing condition therefore simply writes:

det[A(Ñ)] = 0. (26)

As this condition implies that both the real and imaginary part of det[A(Ñ)] be cancelled

simultaneously, it determines both the threshold gain value, G = Gth, and the lasing fre-

quency of the nanoshell at the threshold, ω = ωth. After some cumbersome calculations

(see51 for details), condition 26 can be rewritten under the simple form:

(ϵg + 2ϵm)(ϵm + 2ϵe) + 2ρ3(ϵg − ϵm)(ϵm − ϵe) = 0, (27)

which needs to be solved to find the couple (ωth, Gth).

We note that this condition is the same that we proposed in ref 26, where a more intuitive

argument was followed. It is useful to briefly remind of this argument, which proceeded from

considering the classical formula for the quasi-static polarizability α for a nanoshell particle:58

α

4πa3
=

(ϵg + 2ϵm) (ϵm − ϵe) + ρ3 (ϵg − ϵm) (ϵe + 2ϵm)

(ϵg + 2ϵm) (2ϵe + ϵm) + 2ρ3 (ϵg − ϵm) (ϵm − ϵe)
. (28)

This polarizability allows to calculate the value of the nanoshell’s total dipolar moment P
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when it is excited by a probe field E0, as

P = ϵeαE0. (29)

The self-oscillation of the nanolaser is then defined as the situation when this dipolar moment

remains finite (P ≠ 0) even if the probe field is made to vanish (E0 → 0). This is possible

only if the polarizability α becomes singular at the lasing threshold, or in other words, if its

denominator cancels out, which is exactly the same as condition 27.

On a rigorous standpoint, the use of the classical expression 28 for polarizability re-

mains unsubstantiated at this stage, but it will be justified fully in the next section “Below

threshold”.

It furthermore appears from the above argument on polarizability that the lasing fre-

quency at threshold ωth is in fact no other than one of the natural plasmon resonance

frequencies ωres of the nanoshell, which are usually also found by cancelling the denominator

of α, i.e.,

ωth = ωres. (30)

Two important remarks are in order at this point. Firstly, these natural plasmon reso-

nance frequencies are those of the nanoparticle in the presence of gain inside the core, with

the gain level set at G = Gth. Therefore, the actual values found for ωres, and hence ωth, will

depend on the level of gain and on the positioning of the centerline frequency ωg of the gain

emission spectrum, through the presence of ϵg(ω) in the denominator of 28. The optimal

situation allowing the lowest lasing threshold is obtained when the gain provides its peak

value to one of the resonances, i.e. it has been chosen to be centered exactly on the same

frequency. In this case, comparing to eq 30, one has an additional equality:

ωg = ωres = ωth (optimal gain). (31)
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In the rest of this paper, we will always assume such optimal gain positioning. In this case,

it can be shown that ωres and ωth are independent of the gain level, and are the same as the

resonant frequencies of the nanoshell with zero gain (found by solving eq 27 with ϵg = ϵb).

Note, however, that the resonant frequencies still depend on the nanoshell’s aspect ratio ρ, so

that the gain centerline should be adjusted each time ρ is modified, to remain optimal. Effects

linked to gain detuning (non-optimal positioning) with respect to the nanoshell resonances

are left for future work.

Secondly, nanoshells exhibit two plasmonic resonances, one symmetric (lower frequency)

and one anti-symmetric (higher frequency).1 In principle, both resonances can be brought to

lasing. In this work, we arbitrarily choose to focus on provoking the lasing of the symmetric

resonance only, by centering the gain spectrum on the lowest frequency solution of eq 27.

For nanoshells with aspect ratios ρ around 0.6, which we will be mostly concerned with, the

symmetric resonance is the one necessitating the lowest gain level Gth to cross the lasing

threshold. Again, a more general approach of the lasing properties of both resonances, with

proper comparisons of their lasing thresholds and intensities etc., is left for future work.

Let us now illustrate our findings about the lasing threshold on a realistic example:

we consider a nanoshell of external radius a = 10 nm, internal radius 6 nm, and aspect

ratio ρ = 0.6. The shell is assumed to be made of silver, with the following parameters:

ℏωp = 9.6 eV, ℏγ = 0.0228 eV and ϵ∞/ϵ0 = 5.3. The core is made of silica (ϵb/ϵ0 = 2.1316),

doped with gain elements for which we set µ = 10 D, ℏ∆ = 2ℏ/τ2 = 0.15 eV (close to

experimental linewidths observed for dyes), corresponding to τ2 ≃ 0.06 ps, and τ1 = 5 τ2.

We assume that the pump rate is much faster than spontaneous emission in the emitters

(strong pumping), so that we take Ñ = 1. Finally, the external medium is taken to be water

(ϵe/ϵ0 = 1.7689).

Solving eq 27 for the threshold conditions with the above numerical values, we find

ℏωth = ℏωres ≃ 2.813 eV and Gth ≃ 0.135. (And we take ωg = ωth as per the optimal

gain condition.) Figure 2 shows the evolution of the eigenvalues of A when G is increased
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for values below, at and above the threshold: it can be seen that the crossing of the lasing

threshold is manifested by the appearance of a positive real part in one eigenvalue.
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Figure 2: (a-c): Plots of the real part of the eigenvalue κ3 in the spectrum of the geometry
matrix A, respectively below, at, and above threshold. The real part of the eigenvalue
is always strictly negative below threshold (G < Gth), exactly null at threshold for ℏω =
ℏωth ≃ 2.813 eV and G = Gth ≃ 0.135, and then strictly positive over a range of frequencies
for G > Gth. Other eigenvalues (not shown) always keep a negative real part. (d-e): Real
and imaginary parts of the determinant det(A), respectively below, at and above threshold.
The situation shown in (e), where both parts cancel simultaneously defines the value for the
frequency of lasing at threshold ωth = ωres and the gain value at threshold Gth, according
to eq 26. Vertical lines in all plots are guides for the eye showing the position of ωth.
Parameters values are (see main text for explanations): a = 10 nm, ρ = 0.6, ℏωp = 9.6 eV,
ℏγ = 0.0228 eV, ϵ∞/ϵ0 = 5.3, ϵb/ϵ0 = 2.1316, ϵe/ϵ0 = 1.7689, µ = 10 D, ℏ∆ = 2ℏ/τ2 =

0.15 eV, τ1 = 5 τ2, Ñ = 1.

Figure 3 shows changes in the gain and frequency at threshold when the aspect ratio ρ of

the nanoshell is varied from 0.4 to 0.8. Under optimal gain positioning, both ωth and Gth are

functions of ρ only.26 As is known about the symmetric resonance of plasmonic nanoshells,

when ρ is increased (thinner shells), the resonance frequency ωres redshifts, and so does

the lasing frequency at threshold since they are equal according to eq 30. Simultaneously,

the gain Gth required to cross the lasing threshold decreases, since the quantity of metal

becomes less and less; lasing becomes easier as the Ohmic losses that need to be overcome
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are progressively reduced.
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Figure 3: Lasing threshold conditions for a gain-doped silver nanoshell, as a function of
the aspect ratio ρ. (a) Threshold gain value Gth; (b) Lasing frequency at threshold ωth.
Colors on the nanoparticle drawings correspond to the lasing frequency at threshold for
ρ = 0.4, 0.6, 0.8. Parameters other than ρ are the same as in Fig. 2.

Below the lasing threshold

We now consider the behaviour with time of the gain-doped nanoshell below the lasing

threshold, i.e., G < Gth.

We place ourselves in the small-signal regime, where gain saturation is negligible and

fields remain small with respect to Esat, which guarantees that the r.h.s. of eq 23 can be

approximated to zero. We assume that the nanoshell is excited with an incoming probe field

E0, taken as a harmonic plane wave with a definite frequency ω and constant magnitude.
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Time-dependent analysis

For simplicity, let us start with considering a situation where the population inversion at the

initial time t0 is N(t0) = Ñ : according to eq 23, N does not evolve through time, i.e., N(t) =

Ñ = const. Then, A(N) = A is a constant matrix in time and the differential system 22 is

linear. The complete evolution of the system over time is given by the sum of exponentials

of eq 25 (usually called “homogeneous” solution), plus a constant term stemming from b

(usually called “particular” solution):

q(t) =
n=3∑
n=1

q̂ne
κnt + qpart. (32)

The obvious particular solution is the constant vector:

qpart = −A−1b. (33)

Since below threshold, all eigenvalues κi of the matrixA have a strictly negative real part, the

homogeneous part of the solution 32 represents an exponentially-decaying transient response.

After it has vanished out, only the constant part qpart remains, which must represent the

steady-state response of the nanoshell. This steady state is linearly related to b and therefore

proportional to E0. eq 33 can be easily solved numerically, from which all steady-state values

for the pi are found using eq 44–47, completing the solution by providing the value of all

fields and polarizations in all domains of space.

Now, let us assume that the initial value of the population inversion N(t0) ̸= Ñ , which

is the general case: then N(t) will have a dynamics of its own, evolving in accordance to 23

over a typical duration ∼ τ1, until it reaches its final value N = Ñ . The transient evolution

of the nanoshell is then modified slightly with respect to the previous case where we had

N(t) = Ñ . But it can be proved that, because now N(t) ≤ Ñ at all times, the transient

will still be quickly vanishing. Therefore, the final steady state remains unaffected and still
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given by eq 33.
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Figure 4: Numerical solutions for the time evolution of the nanoshell’s response below thresh-
old, calculated at a fixed frequency ℏω = 2.811 eV, first with G = 0 (no gain) for t ≤ 2 ps,
and then G = 0.25Gth for t > 10 ps. (a) Population inversion N(t) versus time. Real
and imaginary part of the dielectric polarization modes (b) q0; (c) q1; (d) q2 versus time.
Parameters are the same as in Fig. 2.

Figure 4 illustrates this latter case of the time evolution of the nanoshell below threshold,

22



with N = N(t). We consider again the earlier example of a silver nanoshell with a gain-

doped silica core (parameters are the same as in Fig. 2). In this case, Gth ≃ 0.1349 and

ℏωth = ℏωres ≃ 2.8122 eV, as obtained from the previous Section. We show the time evolution

of the system computed from a numerical integration of eq 22–23, for a fixed frequency

ℏω = 2.811 eV. At t = 0, the probe field E0 is shone on the nanoparticle, which is assumed

to initially have zero fields (qi = 0) and no population inversion (N = 0). To start with, we

assume Ñ = 0 so that the gain value is set at G = 0. The probe field magnitude is chosen

very small to ensure that the systems stays well into the small-signal regime: E0 = 10−8Esat.

We see that after a short decaying transient due to eq 25, all values for the field mode

amplitudes converge to their final values. This gives the stady-state response of the bare

nanoparticle in the absence of gain, without any effect of the gain elements in the core. Then

at t = 2 ps, conditions are changed: the gain value is set to G = 0.25Gth (sub-threshold

level), and Ñ is set to 1. It can be observed that N(t) increases quickly from 0 to reach

its final value N = Ñ = 1, while all other variables undergo a decaying transient evolution

as explained above, converging to a new final value: this is now the steady state of the

nanoparticle in the presence of gain. We note that all final values obtained in the presence

of gain (for t ≳ 3 ps) are larger in absolute value than the ones without gain (t ≲ 2 ps). This

means that the response of the nanoparticle is amplified with the help of gain, as compared

to the situation without gain.

Summarizing, our conclusions on the response of the gain-doped nanoshell below the

lasing threshold are the following: (a) In the presence of an excitation of amplitude E0, and

in the small-regime signal, the response of the nanoshell is linear, proportional to E0 and

synchronized with it, i.e., oscillating with the same frequency ω; (b) If there is no external

excitation (E0 = 0), the steady state of the nanoshell is null, i.e., there is no self-oscillation

(as expected). These facts are often taken as granted in the literature on active nanoparticles

below threshold. Our point here, however, is to lay out the proper mathematical justification

supporting them, as they will soon be challenged when we switch to studying the situation
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above the lasing threshold.

Steady-state polarizability

The steady-state response of the nanoshell under external excitation can in fact be expressed

in a much more familiar way, if one expresses the particle’s external scattered field p3 by

solving eq 44–47. After some calculations (see SupplementaryInformation51 for details), one

finds that p3 is proportional to E0:

p3 =
1

4πa3
αE0. (34)

where the polarizability α has the same classical expression as shown in eq 28. In other

words, this proves that under the threshold, the steady-state response of the nanoshell is

simply given by the usual formula for polarizability, with the permittivites ϵm and ϵg given

by their steady-state values from eq 10 and 13. By legitimating the use of the classical

quasi-static polarizability, this also legitimates in retrospect the intuitive argument that the

lasing threshold can be understood as the vanishing of the denominator of α in eq 28, as was

done in the previous section.

It is interesting to plot the evolution of the polarizability α(ω) of the nanoshell for

increasing values of the gain levels G under the threshold, see Figure 5. It can be seen that

below threshold, the effect of gain when it is increased, is simply to enhance the natural

plasmon response of the nanoshell and improve its resonance quality.

This intuitive approach of describing gain-doped nanoparticles below threshold based on

their quasi-static polarizability, is actually valid across other geometries beyond nanoshells

(as long as a steady state with well-defined permittivities ϵm and ϵg exists in the final state,

which is the generically true). Some of us had already demonstrated this fact in the case

of a homogeneous, plasmonic sphere immersed in a gain medium;31 calculations by us (not

shown) also prove that this is true for core-shell nanoparticles with a metal core and gain
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Figure 5: Enhancement of the nanoshell polarizability α = α′ + iα′′ for increasing values
of the gain in the core. Parameters are the same as in Fig. 2. (a) G = 0 (no gain); (b)
G = 0.35Gth; (c) G = 0.75Gth.

shell. This justifies in hindsight all calculations that were made in ref 26 about gain-enhanced

nanoparticles, based on this assumption. Note also that situations where nanoparticles are

too large to be describable only with the quasi-static polarizability (i.e., multipolar modes

are required) are studied in detail in ref 55.

Finally, we note that Equation 34 is valid both in the small-signal regime that we studied,

but also in the large-signal regime, when |Eg| is comparable to Esat. In the latter case,

one needs to call upon the saturated permittivity 11 for the gain medium, making the

polarizability α = α(Eg) nonlinear; Reference
56 has a complete analysis of the behavior of a

metallic nanoparticle with gain in this situation.

Therefore, below the lasing threshold, we conclude that, after a short-lived transient,

the nanoshell simply acts as an “optical amplifier”, whereby the natural plasmon of the

nanoshell can be significantly amplified and improved thanks to the assistance of optical

gain. As this amplification regime was already studied in depth in a previous work,26 based

on the simpler quasi-static polarizability approach, for various metals, geometries and aspect

ratios, we need not delve into it further, and readily move to studying the lasing regime of

the nanoshell when gain is raised above the threshold.
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Above the lasing threshold

We now turn to describing the situation of the nanoshell when it is pumped above its lasing

threshold, i.e., when G > Gth.

Time dynamics of the laser emission

As explained in the “Lasing threshold” section, at threshold, an autonomous self-oscillation

instability sets in, whereby fields become can become non-zero and start growing even in the

absence of any exciting external probe field. The existence of such a sustained, autonomous

self-oscillation state is indeed a central concept for lasers in general, and it is therefore crucial

that its properties are fully studied and understood in the present case of lasing nanoshells.

This is why, contrary to the previous section, we will here be concerned only with the free

lasing state of the nanoshell, i.e., when the probe field is zero (E0 = 0), discarding any

situations of external forcing. (Such situations will be briefly discussed in the conclusion of

this article.)

Looking back at Fig. 2, we observe that when the gain level G is that at threshold exactly,

only the frequency ωth = ωres is unstable, but when G is increased above threshold, a wider

and wider range of frequencies becomes unstable (i.e., there is a wider range where one

eigenvalue of the matrix A has a positive real part). For example, when G = 1.01Gth, the

unstable range lies approximately between 2.6 and 3 eV. Therefore, we expect the lasing

instability to grow over a finite range of frequencies.

To check this, and compare to the situation below threshold, we choose the same fre-

quency as in Fig. 4 (ℏω = 2.811 eV < ℏωth), and numerically solve the governing equa-

tions 22–23 for G = 1.01Gth. Results are shown in Figure 6. (Computational details on how

these results were obtained numerically can be found in the Supplementary Information.51)

We see that the variables q1, q2, q3 first follow an exponential growth (led by the positive

eigenvalue in A); then this growth saturates and a stable long-term state is finally reached.
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Figure 6: Time dynamics of field and polarization amplitudes above the lasing threshold, for
a gain value G = 1.01Gth and a frequency ℏω = 2.811 eV < ℏωth. A t = 0, the gain is G = 0,
then it is set to G = 1.01Gth at t = 10 ps. Displayed are the real and imaginary part of: (a)
q0(t); (b) q1(t); (c) q2(t); (d) p3(t), normalized to ϵ0Esat for polarizations and Esat for fields.
Diverging envelopes correspond to the initial exponential growth computed from eq 25 when
N = Ñ . Once gain saturation effects take place, the signal growth saturates and separates
from the exponential envelopes, finally reaching a stable oscillatory state. Parameters are
the same as in Fig. 2.
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We observe that this final state is oscillatory, with all magnitudes |qi(t)| reaching a constant

value; oscillations are purely sinusoidal with the same constant frequency Ω for all variables

qi(t). The value of the frequency is obtained from a Fourier transform of the signals, see

Fig. 7: ℏΩ ≃ −1.2 × 10−3 eV. As before, from the qi(t), the field components pi(t) in all

regions of space can be computed through the boundary conditions 44–47. Because these

conditions are algebraic and linear, we find that all fields pi(t) follow the same temporal

evolution as the qi(t), namely, an initial exponential growth and a saturation into a final

oscillatory state with the same frequency Ω: Figure 6-(d) displays the evolution of p3(t),

which corresponds to the external field emitted by the nanoshell.
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Figure 7: Fourier analysis of q0(t) in the final oscillatory state shown in Fig. 6, yielding a
single oscillation frequency ℏΩ ≈ −0.0012 eV. Similar analyses conducted on q1(t), q2(t), or
p3(t), results in the same value for Ω.

Thus, the nanoshell is able to maintain a stable emitted field |p3| ≠ 0, proving that it

is indeed acting a nanolaser above the lasing threshold; and it is capable of doing so in an

autonomous way, i.e., it reaches a free lasing state without any external excitation. Figure 8

shows the intensity of emission radiated by the nanoshell in the lasing state Iem(t) = |p3(t)|2

at the same gain level and frequency (G = 1.01Gth and ℏω = 2.811 eV), normalized to the

saturation intensity Isat = |Esat|2. The emitted intensity can be seen to pick up gradually and

then reach a constant steady-state value, at the same time as the qi and pi reach their final
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Figure 8: Time dynamics of the population inversion and emitted intensity of the nanoshell
above the lasing threshold, for a gain value G = 1.01Gth and a frequency ℏω = 2.811 eV <
ℏωth (same conditions as in Fig. 6). A t = 0, the gain is G = 0, then it is set to G =
1.01Gth at t = 2 ps. Immediately, N rises due to pumping, up to its maximal allowed value
N = Ñ = 1. Then N remains constant while the lasing instability slowly grows. Once the
emitted intensity Iem picks up, saturation terms come into play and decrease the value of N ,
until a steady state is finally reached for both quantities.

oscillatory state. We also plot the evolution of the population inversion N(t): initially, all

fields are small and therefore, N quickly comes close to Ñ . But as the emitted intensity Iem

increases, alongside with all fields inside the nanoshell, the saturation term Im{q0p∗0} /(nℏ)

in eq 23 becomes significant, leading to a decrease in the value of N(t) (corresponding

to a depletion in the higher level of the two-level emitters due to stimulated emission).

This decrease, in turn, limits the increase in the nanoshell’s emitted intensity. Finally, an

equilibrium is found and N(t) stabilizes to a steady-state value where losses are exactly

compensated by the pumping, as happens in a conventional laser. As expected (also from

conventional lasers), this equilibrium is non-linear in nature due to the form of the saturation

term Im{q0p∗0} /(nℏ). Let us now explore other frequencies in the unstable range. Fig. 9

shows results for two other situations, for a frequency ω = ωth = ωres and for a frequency

ℏω = 2.813 eV > ℏωth (always keeping G = 1.01Gth as before). For both frequencies, all

polarization and field modes qi(t) and pi(t) are found to follow the same generic trends as just

before, i.e., an exponential growth saturating into a final state. (For conciseness, only the
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Figure 9: Time dynamics of the emitted field p3(t), emitted intensity Iem(t) = |p3(t)|2 and
population inversion N(t) above the lasing threshold (G = 1.01Gth) for two different fre-
quencies: (a) and (b) ℏω = ℏωth = 2.812 eV; (c) and (d) ℏω = 2.813 eV > ℏωth. Parameters
are the same as in Fig. 2.
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external field p3(t) has been plotted in the Figure.) For ℏω = ℏωth = ℏωres = 2.8122 eV, no

oscillations are observed, i.e., the final state has steady values with Ω(ωth) = 0, see Fig. 9-(a)

and (b). For ℏω = 2.813 eV > ℏωth, as shown in Fig. 9-(c), the final state is found to be

oscillatory again with a frequency ℏΩ ≃ +8× 10−4 eV (obtained by Fourier transform, not

shown).

We thus observe that the value of Ω depends on the frequency, i.e. Ω ≡ Ω(ω), with

Ω → 0 when ω = ωth, and a sign change when ω > ωth or ω < ωth (resp. Ω > 0 or Ω < 0).

In light of these findings, we can conclude that in the final lasing state above threshold,

the variables in the system take on the following generic form:

qi(t) = qssi e
iΩt, (35)

pi(t) = pssi e
iΩt, (36)

N = N ss, (37)

Iem = Issem = |pss3 |2, (38)

where all quantities with the superscript ‘ss’ for “steady state” are constants and the fre-

quency Ω depends on ω. From 35, we deduce that the vector q = [q0, q1, q2]
T defining the

electromagnetic state of the system, as introduced in eq 62, has the following form in the

final state:

q(t) = QeiΩt, (39)

where Q is the constant vector [qss0 , q
ss
1 , q

ss
2 ]

T.

Steady-state lasing with a shifted frequency

To interpret properly the meaning of the final oscillatory state for q as expressed in eq 39,

one needs to remember that all time-dependent variables were defined as slowly-varying

enveloppes upon a e−iωt carrier wave [see eq 5]. Therefore, the complete time dependence of
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electrical fields and polarizations is proportional to q(t)e−iωt, which, using eq 39, writes as

q(t)e−iωt = Qe−i(ω−Ω)t = Qe−iωemt, (40)

where we have defined a new frequency ωem corresponding to the frequency ω shifted by an

amount Ω:

ωem ≡ ω − Ω. (41)

The last equality in eq 40 is of high physical significance: it demonstrates that in the

final lasing state, all fields and polarizations, including the electrical field emitted by the

nanoshell, are purely sinusoidal with a frequency ωem (we recall that Q is a constant). Hence

the nanolaser really emits at the shifted frequency ωem = ω − Ω, not at the frequency ω of

the carrier wave. Furthermore, this lasing state is a true steady state in the sense that all

physical quantities (fields, polarizations intensities, and population inversion) are constant

in time at frequency ωem, due to the constant value of Q.

We conclude that the oscillations seen in the final state of the variables qi(t) and pi(t)

were apparent ones, when observed relatively to the carrier wave of frequency ω; but once all

time dependences are taken into account, the physical final state of the nanoshell is indeed

one of constant steady-state lasing with frequency ωem.

It is important to clarify that the initial frequency ω has no physical meaning intrinsically:

it is just the frequency around which the rotating wave approximation has been taken to

write the differential system of eq 6–8. Since there is no externally imposed probe field

associated to this frequency ω and we consider situations where the nanoshell is left to freely

oscillate above the lasing threshold (self-oscillation), the resulting frequency of emission has

no particular reason to be the same as the arbitrary ω. Here, ω shall simply be considered

as a mathematical parameter in the differential system, which can be varied continuously so

as to scan the full range of emission of the nanoparticle; the actual physical frequency of the

nanolaser emission corresponding to each chosen ω can be calculated as ωem = ω−Ω, where
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Ω(ω) is found as part of the solution of the differential equations.

Maximal emission spectrum of the nanolaser

With the help of the results obtained in the previous Section, we are now in a position to

build the spectrum of emission of the nanoshell laser above its lasing threshold.

The procedure to calculate the spectrum of emission, is to compute the whole set of

emission frequencies ωem = ω − Ω of the nanoshell, by scanning the value of the parameter

ω over the unstable range and finding the value of Ω(ω) as explained above; then, for each

these value found for ωem, one calculates the value of the steady-state intensity of emission

Iem(ωem) = |pss3 |2 according to eq 38, by picking the final value pss3 as obtained from the

corresponding numerical solution.

We emphasize that the intensity Iem(ωem) obtained for any ωem frequency is here calcu-

lated by taking each of them separately from all others, i.e., without considering the effect of

simultaneous emission in other ωem frequencies. In other words, we are assuming that each

frequency is able to lase independently from others, and is free to use all of the available

gain brought by external pumping at will, without competition from other frequencies. To

which extent this assumption may hold true will be considered in the “Discussion” section;

what can be said for certain at this stage is that under this independency assumption, all

ωem frequencies in the spectrum are able to lase up to their full capacity–while all frequen-

cies outside this spectrum cannot lase at all (since they are not unstable by self-oscillation).

Therefore, the spectrum that we calculate here really represents the maximal spectrum of

emission of the nanolaser, in the sense of the widest possible that can be expected, with

maximal possible intensities for all unstable frequencies.

In Figure 10-(a)–(c), we plot this maximal spectrum of emission Iem(ωem) as obtained

from the procedure exposed above, for a nanoshell with aspect ratio ρ = 0.6 and for three

increasing gain levels: G = 1.25Gth, G = 1.50Gth, and G = 1.75Gth. One observes that
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Figure 10: Emission spectrum of the nanoshell Iem as a function of the emission frequency
ℏωem in the lasing steady state, for increasing gain levels: (a) G = 1.25Gth; (b) G = 1.5Gth;
(c) G = 1.75Gth. (d) Emission linewidth ∆ℏωem and peak intensity Imax as a function of
gain. Vertical dashed lines mark the points corresponding to the spectra shown in (a), (b),
and (c). The linewidth is taken as the full width measured at the base of the emission
spectrum. Parameters are the same as in Fig. 2.

the emission lines are relatively thin, and asymmetric in shape, with the intensity peak

located at the lower-frequency edge [note that this holds under the condition of optimal gain

positioning, see eq 31]. We also find that this sharp, lower-frequency edge of the emission

line (with the associated intensity peak) corresponds precisely to the lasing frequency at

threshold ωth = ωres.

We therefore come to the following striking conclusion: due to the frequency displacement

Ω, the resulting spectrum of emission is one-sided with respect to the plasmon resonance,
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i.e., the emission is strictly restricted to frequencies such that

ωem ≥ ωres. (42)

The numerical reason for this is because the values we compute for Ω(ω) are always such

that Ω ≤ ω−ωres; which means that, in accordance with eq 41, we always have ωem−ωres ≥ 0

for emission frequencies.

Finally, without much surprise, as the gain level is increased from Figure 10-(a) to (c),

we see that the intensity of the nanolaser emission increases significantly, and that the range

of emission widens as well. However, all in all, the aspect ratio of the emission band remains

globally similar, meaning that the quality of the nanolaser emission does not depend much

on the level of gain provided to the system.

Figure 10-(d) shows the evolution of the maximum (peak) lasing intensity in the spectrum,

Imax, and the linewidth of the emission, ∆ℏωem, as functions of the gain level G normalized

to the gain threshold Gth. As expected, the emission appears when G/Gth = 1. From that

point onward, both the maximum emission intensity and the width monotonously increase.

We observe in particular that the increase of Imax vs. G/Gth is strictly linear. It is interesting

to consider the typical values obtained for the nanolaser linewidth: the observed values for

∆ℏωem are of the order of a few 10−2 eV, which correspond to a linewidth of a few nanometers;

for example, for G = 1.5Gth, we have ∆ℏωem ≃ 0.05 eV, which gives a linewidth of around

8 nm. (Let us recall, as explained earlier, that this linewidth should be considered as the

widest possible to be expected from the nanolaser, see the “Discussion” section.)

One well-known feature of nanoshells is that the position of their plasmonic resonances

can be easily tuned by changing the thickness of the metallic shell (i.e., by changing the

nanoparticle’s aspect ratio ρ): how does this reflect in the emission spectrum of the nanolaser?

Figure 11 shows the evolution of the maximal emission spectrum as a function of ρ, when the

shell size is modified, keeping the external radius of the nanoparticle constant (a = 10 nm).
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Figure 11: Emission spectra Iem(ωem) of lasing nanoshells for varying aspect ratios ρ, with
a gain level set at G = 1.2Gth, and normalized to Isat. Nanoshell drawings bear the actual
colors corresponding to the emission spectrum. All parameters beside ρ are the same as in
Fig. 2.

One can see that the spectra are indeed strongly dependent on ρ and cover most of the vis-

ible region, from green (ρ = 0.8) to violet (ρ = 0.4). Hence, the specific nanoshell geometry

indeed makes a versatile choice for applications.

We also note that the peak intensity of the emission increases strongly as ρ is increased

(from violet to green). This is because larger ρ values correspond to thinner metallic shells,

and therefore to smaller associated Ohmic losses responsible for dampening the emission. If

we compare absolute gain levels, taking into account the values found earlier for Gth (see

Fig. 3), for the violet emission (ρ = 0.4), we have an absolute gain value G = 1.2Gth ≃ 0.35,

while for the green emission (ρ = 0.8), we have G = 1.2Gth ≃ 0.11. In other words, a

green-lasing nanoshell is much more efficient than a violet one, as it delivers an emission

seven times more intense with a quantity of gain more than three times smaller.
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Summary

We studied the emission and lasing properties of a nanoshell particle made of an externally

pumped, active core and a plasmonic shell, with the help of a set of space and time-dependent

governing equations. These coupled equations are, on one hand, the Drude equation of

motion for the free electrons within the metallic part, and the other hand, the optical Bloch

equations, accounting for population changes occurring between the two electronic levels

in the gain material part. In the nanoshell geometry specifically, the dipolar mode is the

only one to be excited and emitting, including in the lasing regime. Therefore, we used a

quasi-static description for fields based on an expansion in spherical harmonics, keeping only

dipolar terms. The set of governing equations was then projected onto these dipolar terms

and put under matrix form to allow for numerical solving.

With the help of a linear instability analysis of the governing equations, we first demon-

strated the existence, then calculated the value, of the gain threshold value Gth above which

the nanoshell hosts a self-oscillation instability (i.e., the emission of a lasing field in the

absence of any exciting probe field). Below this threshold, no instability exists and the

nanoparticle can only react to an external excitation.

We then studied the situation prevailing when the gain level is lower than the threshold

(G < Gth). When submitted to a probe field, the nanoparticle produces transient fields which

rapidly decay to a steady-state response, which is linearly proportional to the amplitude of

the exciting probe field E0. One may then use the standard quasi-static formula for the

polarizability of a nanoshell, eq 28, to calculate the dipolar moment of the particle relative

to E0, with the help of the gain-dependent permittivity of eq 13 or 11. In this regime, the

nanoshell acts as a plasmonic amplifier, i.e., it synchronizes and responds linearly to the

external field, and its response becomes more and more intense and sharp as more gain G is

provided.

Next, we studied in depth the lasing regime above the threshold (G > Gth). We exclu-

sively considered autonomous situations, where the nanoshell oscillates freely in the absence
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of any externally-imposed field. The self-oscillation of the nanoshell initially grows expo-

nentially, according to the results of the linear instability analysis made previously. After

a while, stimulated emission due to the lasing process starts exceeding the capacity of the

pump, effectively reducing the population inversion (saturation effect) and limiting the in-

tensity growth. This brings the particle to a final state of steady-state emission.

This final lasing state is characterized by the following salient features:

(i) The determination of the actual values of the emission wavelengths ωem within the

spectrum requires extra care, since the nanolaser is free to choose its lasing frequency. The

actual wavelength of emission ωem is given as ωem = ω − Ω(ω), where Ω(ω) is a frequency

shift (frequency-pulling effect) from the rotating-wave frequency ω. The shift Ω is computed

by Fourier analysis from the numerical steady-state solution.

(ii) For a given nanoshell, the range (spectrum) of emission wavelengths ωem depends

on the applied gain G. When G is increased, and the threshold is crossed, the lasing start

at a single frequency ωth = ωres, where ωres is one of the nanoparticle’s plasmon resonance

frequencies. Then, as G is further increased above threshold, the emission range ∆ℏωem

widens. We calculated the corresponding maximal (widest possible) spectrum of emission

of the nanolaser and find typical linewidths in the range 5–10 nm. Simultaneously, we find

that the peak lasing intensity Imax increases linearly as the level of gain G is increased.

(iii) Due to the action of the frequency shift Ω moving unstable frequencies around,

we observe that the final (maximal) spectrum of emission of the nanolaser is one-sided with

respect to the plasmon resonance frequency ωres, that is, the lasing occurs only for frequencies

ωem ≥ ωres.

(iv) The color of the nanolaser emission can be tuned in a versatile way across the visible

range by choosing nanoshells of various aspect ratios ρ. Nanoshells with thinner metallic

shells (emitting on the low-energy end of the visible) are more efficient, i.e., much more

intense with less required gain, than those with thicker shells (emitting on the high-energy

end of the visible).
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Discussion

The results summarized just above now require some thorough discussion to assess their

physical significance and validity.

Regarding our results on the determination of the lasing threshold and the amplification

regime below this threshold: they globally confirm earlier similar findings in the literature,

justifying in particular the common use made of the standard polarizability formula and of

steady-state permittivities for the gain material (whether linear or saturated).

Let us now turn to the lasing regime, above threshold. It is the first time, to our knowl-

edge, that the nonlinear lasing steady state of a nanoshell, alongside with the dynamics

leading to it, has been fully characterized. It is also the first time that the maximal spec-

trum of emission of a lasing nanoshell has been calculated.

Several earlier works have studied the nanoshell geometry in the lasing regime, mostly

focusing on driven situations where the nanoshell is under the action of a probe field. Authors

of Refs.41,42 in particular have briefly considered the autonomous (free) situation, writing

equations closely similar to our set of eq 6–8. They looked for the steady-state regime of

lasing using the steady-state expression of the permittivity ϵg(ω) in the gain region, including

saturation effects, eq 11, and concluded that autonomous lasing can only occur at one single

frequency ω = ωres, equal to one of the plasmonic resonance frequencies of the nanoshell, for

all gain levels above the threshold. Our findings show that this line of reasoning is incomplete.

We also find that lasing at one single frequency occurs only when the gain level is set right

at the threshold value, but then the spectrum of emission widens as G is increased above the

threshold, with a finite linewidth ∆ℏωem. The reason why this fact was overlooked is because

the use of a steady-state permittivity ϵg(ω) in the lasing regime is incorrect; steady-state

permittivies follow from cancelling all time derivatives in eq 6–8, or equivalently, in eq 22–23.

However, we have found that the final state of lasing is a steady state with a shifted frequency

with respect to the frequency ω used in the rotating-wave approximation. This means that,

when expressed in terms of a carrier wave at frequency ω, field amplitudes show an extra
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oscillation at frequency Ω, and therefore the aforementioned time derivatives are non-zero

(except for the equation on N). The only frequency where there is no extra oscillation

(i.e., where Ω = 0 and time derivatives do cancel) is ωem = ωres = ωth, as seen in Fig. 9-

(a). Therefore, the conclusions about the free lasing regime of nanoshells as written in refs

41,42 do only apply to that specific frequency but miss out on the rest of the spectrum. We

emphazise, however, that the authors of ref 41 have correctly predicted the linear dependence

of the peak intensity Imax versus the gain level G/Gth seen in Fig. 10-(d), because that peak

intensity indeed occurs at the specific frequency ωem = ωres (under conditions of optimal

gain positioning). Beyond these considerations on the free lasing regime, to what extent the

existence of other emission frequencies ωem ̸= ωres should also modify conclusions drawn in

refs 41,42 about the driven (forced) regime of oscillation, is an open question at this stage.

One striking and novel result of our study is that the emission of the nanolaser is strongly

asymmetrical, since it only occurs on the high-frequency side of the nanoshell’s natural plas-

mon resonance (ωem ≥ ωres). This is due to the effect of the frequency shift Ω (also known as

a frequency pull-out) which translates and “folds” the initially symmetric unstable range of

Fig. 2 to that one side only of the plasmon resonance. (Note that we did not find numerically

any situation where this pull-out effect would result in a spectrum located on the opposite,

lower frequency-side of ωres.) We are not aware, to the best of our knowledge, of any similar

claim made explicitly in the existing literature on nanolasers, either theoretically or exper-

imentally. Let us underline that it is uncertain whether this phenomenon would extend to

other geometries than nanoshells, and that in any case, exhibiting this effect experimen-

tally would be challenging, since most experiments are made on collections of individual

nanolasers: any statistical dispersion in the structural properties of the nanoresonators will

certainly smear out the asymmetry of the emission line. We note, however, the existence of

sharply asymmetric emission spectra on the high- or low-frequency side for example in refs

39,59.

Finally, a discussion is due on the actual spectrum of emission to be expected from the
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nanoshell laser. In our study, we have calculated this spectrum under the assumption of in-

dependent emission of the various frequencies ωem composing it, meaning that all frequencies

are allowed to consume energy from the two-level system as if they were alone. They would

therefore all grow to their maximal capacity, which is why we called our calculated spectrum

“maximal”, i.e. the widest one with all frequencies emitting to the highest possible intensity.

However, this independency hypothesis is clearly incorrect because all ωem-frequencies in

fact draw energy from the same reservoir of excited electrons represented by the population

inversion N . Whatever is consumed by one frequency (making N decrease), is not available

to another one, and thus these “modes” are truly competing for the same energy resource.

This is because the dispersion in the ωem-frequencies originates in the finite width of the

gain curve feeding the nanolaser, as illustrated by the Lorentzian curve of eq 13, which is

well-known in the literature on classical (macroscopic) lasers as a situation is known of ho-

mogeneous broadening. In such a situation, it is established that the numerous laser modes

inside the initially unstable range of the spectrum will indeed compete, and only the mode

with the fastest growing rate will ultimately survive—usually the first mode to reach the

threshold (see for example Chap. 8 in ref 60 or Chap. 11 in ref 61). This winning mode

will then sharpen by several orders of magnitude, as it remains alone in the cavity and may

consume all the available gain inside it at will, until reaching some final limit of acuteness

which will be discussed below. Therefore, the actual width of emission of a homogeneously

broadened laser is set by the ultimate width of this surviving mode only, not by the initial

width of the gain curve or anything of that order.

If we were to apply this line of thought in our case, this would mean that only the

frequency at ωem = ωres (where the intensity is maximal) will eventually survive in the final

lasing state of the nanolaser, eliminating all other ωem frequencies, resulting in a width of

emission possibly much thinner than the spectra presented in Figs. 10 and 11. In the present

stage, it is unclear to what extent, if any, this scenario should apply here. Several qualitative

facts should indeed be taken into consideration. Firstly, the classical scenario applies well
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to situations with spectrally well-defined cavity modes, much thinner than the unstable gain

curve, whereas we are here in presence of several frequencies acting within a rather wide

mode (the dipolar plasmon resonance) inside an unstable range. Secondly, the curve of

the growth rates for unstable frequencies, given by Re(κ3) in Fig. 2, is very flat around its

maximum: therefore, it may be that the contrast between the central frequency ωth = ωres

and neighbouring ones is not significant enough for the former to dominate the competition.

Thirdly, in the classical homogeneously broadened laser scenario, the final surviving mode

controls the final width of emission because it is able to become much thinner than the

homogeneously broadened gain transition. The well-known Schawlow-Townes formula60,61

actually expresses the theoretical value ∆ωem of the limiting linewidth of the surviving mode,

in the most ideal, case as

∆ωem ∼ ℏωem
∆ωcav

2

Pout

. (43)

where ωem is the central emission frequency of the mode, ∆ωcav is the width of the passive

resonant cavity mode at the origin of the surviving mode, and Pout the power output of the

laser. In the case of a classical laser, we may typically have ∆ωcav ≃ 1 MHz ≃ 10−8 eV

and Pout ≃ 1 mW, which results in ∆ωem ≃ 10−4 Hz ≃ 10−18 eV. This theoretical value is

far from reached in practice due to all types of imperfections. Nonetheless, let us evaluate

what could be expected in the case of a nanolaser, assuming this formula retains some

physical relevance (at least in spirit). For a lasing nanoshell, as seen on Fig. 5-(a), we

now have ∆ωcav ≃ 10−2 eV ≃ 106 MHz, while we may take Pout ≃ 10−4 mW,41 yielding

∆ωem ≃ 1012 Hz ≃ 10−2 eV. This last value not only is immensely larger than the equivalent

for a classical laser, but in fact, also lies in the same range as the spectral widths already

exhibited in Figs. 10 and 11 (typically a few 10−2 eV). This would suggest that, should the

classical scenario for homogeneously broadened transitions apply, the single surviving mode

would barely sharpen; and therefore, the final emission width of the nanoshell could possibly

not change much, if at all, in comparison to the maximal spectral width as we calculated it.

To definitely conclude on this point, the only way to calculate the actual final width of
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emission of the lasing nanoshell would be to compute the growth dynamics of the whole

set of unstable frequencies in the spectrum, taken all together (not independently), fully

accounting for their competitive effect on the population inversion N . This is a challenging

task that we leave for future work.

Nonetheless, we shall close this discussion by emphasizing that the (maximal) emission

widths found in this work, which are in the range 5–10 nm (see Fig. 10), are as such already

comparable to the typical values measured experimentally on actual nanolasers.11,13–15,18,20–23,59

Conclusions

To conclude, in this paper, we have unveiled a study of the properties of emission of a

nanolaser in the nanoshell geometry, with gain in the core, and metal in the shell, both

under and above the lasing threshold. For the first time, the free lasing regime was carefully

studied, both in the dynamical transient regime and in the non-linear steady state, showing

that strong frequency shifts effects (pull-out) shape up the spectrum of emission of the

particle. These novel theoretical results add to the knowledge on one of the most promising

geometries for nanolasers, in the hope to bring real-world applications within this thriving

field one step closer.

Methods

We here present some of the intermediate technical steps required to obtain the final set of

governing equations in matrix form, as shown in eq 22–23.

From the dipolar description of the nanoshell displayed in eq 16–20, one first needs to

compute the amplitudes p0,1,2,3 by enforcing continuity of the tangential electrical field and

normal displacement at the boundaries r = a and r = ρa. This procedure yields the following

expressions relating p0,1,2,3 to q0,1,2:
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p3 =
−ϵ∞p1 + 2ϵ∞ρ

3p2 − q1 + 2ρ3q2 − ϵeE0

2ϵe
(44)

p2 =
(ϵb − ϵ∞) (p3 − E0) + q0 − q1 + 2q2

−2ϵ∞ − ϵb + ρ3 (ϵb − ϵ∞)
(45)

p1 =p3 − ρ3p2 − E0 (46)

p0 =p1 + p2. (47)

Detailed calculations to obtain these relations can be found in the Supplementary Informa-

tion.51 Equations 44 to 47 allow to calculate the time-dependent values of all electrical field

components pi(t) from the knowledge of the polarization mode components qi(t). The latter

are known from the resolution of the governing set of equations of the system, eq 22–23.

We can now substitute equations 16–20 and 44–47 into the dynamical equations 6–8.

Through this procedure, we produce a system of equations determining the time evolution

of the mode amplitudes q0,1,2 pertaining to the polarizations in the nanoparticle:

dq0
dt

− Ωgq0 = ΓgNp0 ; (48)

dq1
dt

− Ωmq1 = Γmp1 ; (49)

dq2
dt

− Ωmq2 = Γmp2 ; (50)

and the equation for the evolution of the population inversion N :

dN

dt
+
N − Ñ

τ1
=

1

nℏ
Im {q0p∗0} . (51)
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In the set of equations 49–50, we have defined the shorthand notations:

Ωg = i(ω − ωg)−
1

τ2
(52)

Γg = −iϵ0G
Ñτ2

(53)

Ωm =
ω(ω + 2iγ)

2(γ − iω)
(54)

Γm =
ϵ0ω

2
p

2(γ − iω)
. (55)

Since relations 44–47 make a linear system, we can write p0, p1, p2 and p3 as linear combi-

nations of q0, q1, q2 and E0, namely:

p0 =p00q0 + p01q1 + p02q2 + p03E0, (56)

p1 =p10q0 + p11q1 + p12q2 + p13E0, (57)

p2 =p20q0 + p21q1 + p22q2 + p23E0, (58)

p3 =p30q0 + p31q1 + p32q2 + p33E0. (59)

The above coefficients pij are real constants, whose analytical expressions involve combi-

nations of the four parameters ρ, ϵb, ϵ∞ and ϵe only. (Full expressions are given in the

Supplementary Information.51)

We can then use these coefficients pij to define the following matrix A(N):

A(N) =


ΓgNp00 + Ωg ΓgNp01 ΓgNp02

Γmp10 Ωm + Γmp11 Γmp12

Γmp20 Γmp21 Ωm + Γmp22

 (60)

and the vector b(N,E0):

b(N,E0) = E0

[
ΓgNp03,Γmp13,Γmp23

]T
. (61)
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Collecting the mode amplitudes qi into a vector q

q =
[
q0, q1, q2

]T
, (62)

the system of equations 49–51 can be rewritten in the following matrix form:

dq

dt
= A(N) · q+ b, (63)

dN

dt
+
N − Ñ

τ1
=

1

nℏ
Im {q0p∗0} , (64)

This gives the governing set of equations for the nanoshell’s dynamics, as shown in eq 22–23.

We can see that the matrix A(N) encodes all the information about the nanoshell geome-

try of the system, via the coefficients pij. For other geometries like a homogeneous nanolaser

sphere, or a core-shell one, the matrix A would admit different components from those of

eq 60, but the global formalism of eq 22–23 will remain unchanged (as long as fields keep ir-

rotational). Importantly, A also explicitly depends on the population inversion N = N(q, t),

which in general is time-dependent, and, most importantly, depends non-linearly on the qi

via eq 23 and relations 44–47. The A matrix also depends on the frequency ω and on the

level of gain through the factor Γg ∝ G.

The vector b(N,E0) depends on N as well and on the excitation by the probe field E0.

Supporting information

Complete model calculations and results; one additional figure pertaining to the “Above

threshold” section (PDF).
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(37) Cuerda, J.; Garćıa-Vidal, F.; Bravo-Abad, J. Spatio-temporal Modeling of Lasing Ac-

tion in Core-Shell Metallic Nanoparticles. ACS Photonics 2016, 3, 1952 – 1960.

50



(38) Szenes, A.; Vass, D.; Bánhelyi, B.; Csete, M. Active individual nanoresonators opti-

mized for lasing and spasing operation. Nanomaterials 2021, 11 .

(39) Vass, D.; Szenes, A.; Nagy, P. Z.; Bánhelyi, B.; Csete, M. Lasing and spasing with

active individual core-shell plasmonic nanoresonators. 2024; https://arxiv.org/abs/

2404.12714.

(40) Purohit, A.; Mishra, A. K. A comparative study of coherent and incoherent drives in a

four-level quantum dot-based spaser. Journal of Optics (United Kingdom) 2024, 26 .

(41) Baranov, D.; Andrianov, E.; Vinogradov, A.; Lisyansky, A. Exactly solvable toy model

for surface plasmon amplification by stimulated emission of radiation. Optics express

2013, 21, 10779–91.

(42) Arnold, N.; Piglmayer, K.; Kildishev, A. V.; Klar, T. A. Spasers with retardation and

gain saturation: Electrodynamic description of fields and optical cross-sections. Optical

Materials Express 2015, 5, 2546 – 2577.

(43) Andrianov, E.; Baranov, D.; Pukhov, A.; Dorofeenko, A.; Vinogradov, A.; Lisyansky, A.

Loss compensation by spasers in plasmonic systems. Optics Express 2013, 21, 13467 –

13478.

(44) Khurgin, J. B.; Sun, G. Injection pumped single mode surface plasmon generators:

Threshold, linewidth, and coherence. Optics Express 2012, 20, 15309 – 15325.

(45) Andrianov, E.; Pukhov, A.; Dorofeenko, A.; Vinogradov, A.; Lisyansky, A. Spaser

operation below threshold: Autonomous vs. driven spasers. Optics Express 2015, 23,

21983 – 21993.

(46) Parfenyev, V.; Vergeles, S. Intensity-dependent frequency shift in surface plasmon am-

plification by stimulated emission of radiation. Physical Review A - Atomic, Molecular,

and Optical Physics 2012, 86 .

51



(47) Parfenyev, V. M.; Vergeles, S. S. Quantum theory of a spaser-based nanolaser. Optics

Express 2014, 22, 13671 – 13679.

(48) Andrianov, E.; Pukhov, A.; Dorofeenko, A.; Vinogradov, A.; Lisyansky, A. Forced

synchronization of spaser by an external optical wave. Optics Express 2011, 19, 24849

– 24857.

(49) Bordo, V. Cooperative effects in spherical spasers: Ab initio analytical model. Physical

Review B 2017, 95 .

(50) Ning, C.-Z. Spaser or plasmonic nanolaser?-Reminiscences of discussions and arguments

with Mark Stockman. Nanophotonics 2021, 10, 3619 – 3622.

(51) Supplementary Material available online at: (url to be inserted here by Journal staff).

(52) Chipouline, A.; Sugavanam, S.; Fedotov, V.; Nikolaenko, A. Analytical model for active

metamaterials with quantum ingredients. Journal of Optics (United Kingdom) 2012,

14 .

(53) Chubchev, E.; Andrianov, E.; Pukhov, A.; Vinogradov, A.; Lisyansky, A. On correctness

of the two-level model for description of active medium in quantum plasmonics. Journal

of Physics B: Atomic, Molecular and Optical Physics 2017, 50 .

(54) Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Atom—Photon Interactions:Basic

Processes and Interactions ; John Wiley & Sons, Ltd, 1998; Chapter 5, pp 353–405.

(55) Recalde, N.; Bustamante, D.; Infusino, M.; Veltri, A. Dynamic Multi-Mode Mie Model

for Gain-Assisted Metal Nano-Spheres. Materials 2023, 16 .

(56) Cerdán, L.; Manjavacas, A. Analysis of the Limits of the Optical Response of a Metallic

Nanoparticle with Gain. The Journal of Physical Chemistry C 2023, 127, 2371–2378.

(57) Let us mention that there may be other sources of inhomogeneity for N than the

depletion term in eq. 7. For example, it is imaginable that the nanolaser is deliberately

52



kick-started into a non-uniform initial configuration of N ; but this seems far-fetched.

Another option originates in the Purcell effect due to the distance-dependent coupling

of the emitters with the metal in the nanoshell, which would introduce variations in the

emission properties of the gain medium into the radial direction. We leave this effect

outside the scope of this work, as its accurate description in the case of nanocavities is

still a matter of research, and it is difficult to evaluate its significance in our case. The

reader is referred to Ref.62 and Ref.63 for more details on this point.

(58) Bohren, C. F.; Huffman, D. R. Absorption and Scattering of Light by Small Particles ;

WILEY-VCH Verlag GmbH & Co. KGaA, 1998.

(59) Lu, Y.-J.; Wang, C.-Y.; Kim, J.; Chen, H.-Y.; Lu, M.-Y.; Chen, Y.-C.; Chang, W.-H.;

Chen, L.-J.; Stockman, M. I.; Shih, C.-K.; Gwo, S. All-color plasmonic nanolasers with

ultralow thresholds: Autotuning mechanism for single-mode lasing. Nano Letters 2014,

14, 4381 – 4388.

(60) Verdeyen, J. T. Laser Electronics (3rd edition); Prentice Hall, 1995.

(61) Siegman, A. E. Lasers ; University Science Books, 1986.

(62) Zambrana-Puyalto, X.; Bonod, N. Purcell factor of spherical Mie resonators. Phys. Rev.

B 2015, 91, 195422.

(63) Romeira, B.; Fiore, A. Purcell Effect in the Stimulated and Spontaneous Emission Rates

of Nanoscale Semiconductor Lasers. IEEE Journal of Quantum Electronics 2018, 54,

1–12.

53


