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In order to increase the aerodynamic performances of their engines, aircraft engine man-ufacturers try to minimize the clearance 
between rotating and stationary parts in axial and centrifugal compressors. Consequently, the probability of contact increases, leading 
to undesirable phenomena caused by forced excitation of the natural modes or by modal interaction. Due to the complexity of these 
phenomena, many numerical studies have been conducted to gain a better understanding of the physics associated with them, look-ing 
primarily at their respective influence on potential unstable behaviors. However, the influence of other physical phenomena, such as 
friction and wear, remains poorly under-stood. The aim of this work is to show some effects associated with friction and wear on the 
dynamic behavior resulting from blade-to-casing interaction. The numerical study reported here is based on a simplified finite element 
model of a rotating bladed disk and a flexible casing. The contact algorithm uses an explicit time marching scheme with the Lagrange 
multipliers method. Friction and wear are formulated using, respectively, Cou-lomb’s and Archard’s laws. The rotational speed is set to 
critical speed giving rise to modal interaction between a backward mode of the casing and a counter-rotating mode of the bladed disk 
with one nodal diameter (ND). Contact is initiated by a dynamic exci-tation of the stator. In the presence of friction, the system 
becomes unstable when a side-band of the excitation frequency coincides with 1ND mode of the bladed disk. The introduction of wear 
leads to a vibration reduction, while the abradable material is removed by the wear process. The number of wear lobes produced on the 
casing is related to the ratio between the vibration frequency of the blades and the rotating speed. The ratio obtained by means of the 
FE model corroborates experimental observations.

Keywords: blade–casing contact, abradable coating, wear, spectral analysis, traveling waves

Introduction

In helicopter and aircraft engines, the contact between blade
tips and surrounding casings is now commonly accepted as a part
of normal engine operation. In order to mitigate the severity of
contact, abradable coatings are thermally sprayed on the engine
casings. Nevertheless, in some specific conditions the contact may
lead to high dynamic excitations or even to unstable vibrations on
both structures. Naturally, mastering blade-to-casing interactions
is a priority for turbomachinery manufacturers. The compressor
designers must predict the vibration behavior of the system taking
into account the predominant physical phenomena. In this context,
numerical and experimental investigations have been devoted to
understanding the physical phenomena associated with contact
and their respective influence on possible unstable behaviors [1].
Recent experimental research shows the significant dynamic
response of a centrifugal compressor and its surrounding casing
produced by a coincidence between the harmonics of the rotating
speed and the natural modes of both structures [2]. The resulting
spectral content of response is characterized by some sidebands
aside the main excited frequency which may lead to the excitation
of other frequency modes.

During contact, the processes of friction and wear influence the
dynamic behavior of structures [2–4], thus making it necessary to
establish the mathematical formulation of an elastodynamic con-
tact problem with friction and wear, for subsequent application to
a case of blade-to-casing interaction. Unilateral contact with

friction is usually modeled through Coulomb’s friction law,
whereas wear can be introduced using the various approaches
addressed by the literature as follows. Str€omberg [5] and Salles
et al. [6] modeled wear using Archard’s law [7], while Williams
[8] and Batailly et al. [4] proposed a plastic behavior law for the
abradable coating. Within the scope of this paper, we will be using
an Archard’s law formulation because it provides an effective rep-
resentation of the wearing problem, while remaining rather simple
to integrate with the simulations. For interpretation of the refe-
rences to color in this paper, the reader is referred to the web ver-
sion of this article.

Dynamical Model

A finite element model of a bladed disk featuring contact
against a flexible casing [9] has been implemented. The bladed
disk model has six blades modeled by two Euler–Bernoulli beams
per blade with six degrees-of-freedom per node. The disk is also
modeled by Euler–Bernoulli beams that couple the blades, with
two degrees-of-freedom per node: radial displacement and rota-
tion along the axis of the rotational speed.

The casing is modeled by a continuous elastic ring [10] contain-
ing two degrees-of-freedom at every point, i.e., radial displace-
ment us(h, t) and tangential displacement ws(h, t) at the middle
plane. Figure 1 shows the dynamical model used here. h is an
angular coordinate around the casing. Ring displacements are
expressed through the use of Ritz functions, in accordance with
the procedure described by Love [11]

wsðh; tÞ ¼
Xktot

nd¼1

And ðtÞcos ðnd hÞ þ Bnd ðtÞ sin ðnd hÞ (1)

1
Corresponding author.

1



where ktot is the number of NDs (or modes) taken into account.
The ring is assumed to be inextensible, which implies that radial
displacement is related to the tangential displacement [12]

us h; tð Þ ¼
@ws h; tð Þ

@h
(2)

The ring thus features 2ktot degrees-of-freedom. Note that the con-
dition (2) bans the modal shape of the casing with zero nodal di-
ameter (0ND). The mass and stiffness matrices of the ring are
derived by applying the Lagrange equations.

Furthermore, the mass and stiffness matrices of the bladed
disk are obtained through a conventional finite element formula-
tion. In this manner, solving the contact problem, with the inclu-
sion of both the friction and wear phenomena, consists of
solving the equations of motion of the bladed disk–casing
system

M€u þ D _u þKuþ Fc ¼ Fext (3)

Prediction Step. The predicted2 displacement vector unþ1,p

without taking into account contact forces is given by known val-
ues at previous times n and n� 1

unþ1;p ¼
M

Dt2
þ

D

2Dt

� ��1

Fextn þ 2
M

Dt2
�K

� �

un

�

þ
D

2Dt
�

M

Dt2

� �

un�1

�

(4)

The initial distance between the two structures g must be
updated using the predicted values, in order to verify Signorini’s
conditions relative to the unilateral contact. Wear is taken into
account by applying a law similar to Archard’s law [7] and then
following the method described by Salles et al. [16–18] wherein
wear is characterized by loss of matter and depends on normal
contact pressure, tangential velocity, and wear rate—cf. Eq. (12).
In this approach, wear is a variable which increases the initial gap
between the two structures. The distance function g uMN ;w

M
� �

is
dependent on relative normal displacement variables as well as
wearing depth

g uMN ;w
M

� �

¼ uMN � wM � gM (5)

where uMN ; w
M, and gM are, respectively, the relative normal dis-

placement, wearing depth, and initial gap calculated on a set of
contact points xM.

The contact occurs if gðuMN ;w
MÞ fails to satisfy the nonpenetra-

tion condition predicted during step nþ 1

g uMN ;w
M

� �

nþ1;p � 0 (6)

Fig. 1 Schematic of two sectors of the bladed disk with the elastic ring (casing)

2The subscript p is used to declare the prediction step.

where u is the displacement vector, M is the mass matrix, K is the
stiffness matrix, D is the structural damping matrix, Fext is the
external forces vector, and Fc is the contact forces vector which is
obtained through the Lagrange multipliers method [13] as
described below.

Contact Treatment

An explicit time step finite difference method is used to solve
Eq. (3). The stability of an explicit scheme is provided for a time

increment Dt smaller than a critical time increment Dtstab. Follow-
ing a convergence study, the time increment was set at a value 3
orders of magnitude smaller than the smallest characteristic period
of the system. The (nonlinear) contact problem is solved by a suc-
cession of prediction/correction steps. These steps can be detailed
as follows [14,15].
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The normal displacement vector in step nþ 1 is computed in the
prediction step. Wear is calculated after the correction step—see
Eq. (12)—since the normal contact force needs to be known first.
The wearing depth vector value is introduced during step n in
order to verify the nonpenetration conditions, expressed as
follows:

uMNnþ1;p � wM
n � gM � 0 (7)

Correction Step. If according to the predicted values, the blade
penetrates into the casing, a correction is applied to enforce the
nonpenetration condition (8) as well as the force equilibrium con-
dition (9)

g uMN ;w
M

� �

nþ1
¼ g uMN ;w

M
� �

nþ1;p þ
tCNnþ1;p � du

M
nþ1 (8)

M

Dt2
þ

D

2Dt

� �

unþ1 þ duMnþ1

� 	

¼ Fextn þ Fcnþ1

þ 2
M

Dt2
�K

� �

un

þ
D

2Dt
�

M

Dt2

� �

un�1 (9)

where duMnþ1 is the correction sought to validate both conditions,
and CN is the linearized vector yielding the normal force direction
along with the displacement corrections direction. Fcnþ1 is the
vector of forces arising from the contact and may be expressed,
leaving index nþ 1 for clarity, according to the Lagrange multi-
pliers method by

Fc ¼ FcN þ FcT ¼ �½CN þ CT�kN ¼ �CNTkN (10)

where CT is the linearized vector yielding the friction force direc-
tion, and kN is the Lagrange multiplier. CT is derived by using
Coulomb’s law during its sliding phase (permanent sliding). Thus,
CT depends on the coefficient of friction l.

The system of equations resulting in kNnþ1 and du
M
nþ1 still needs

to be solved.
Finally, the Lagrange multipliers kNnþ1 and the correction vec-

tor duMnþ1 are obtained as follows:

kNnþ1 ¼ CN
T
nþ1;p

M

Dt2
þ

D

2Dt

� ��1

CNTnþ1;p

" #�1

gnþ1;p

duMnþ1 ¼ �
M

Dt2
þ

D

2Dt

� ��1

CNTnþ1;pkNnþ1

8

>>>><

>>>>:

(11)

At each time step n, the expressions for gnþ1;p; CNnþ1;p, and
CNTnþ1;p are calculated on the basis of predicted values and with
the accuracy required to ensure convergence.

Once the contact force calculation has been performed, we are
able to calculate the wearing depth vector obtained by using the
discretized Archard’s law

_wM
nþ1 ¼ kwPNnþ1k _u

M
Tnþ1k (12)

Fig. 2 Campbell diagram in stationary frame. Modal coinci-
dence corresponds to the relation2x

nd

s 52x
nd

r 1nd Xc .

Fig. 3 Dynamic response of the casing (top) and the bladed disk (bottom) for l5 0.1
and kw50
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Fig. 4 STFT of the radial displacement of the casing and the tangential displacement of a blade tip for l5 0.1 and
kw50: (a) casing and (b) bladed disk

Fig. 5 Two-dimensional DFT diagram of the first family of
modes of both structures at t< 2.78 s for l5 0.1 and kw5 0: (a)
casing and (b) bladed disk

Fig. 6 Two-dimensional DFT diagram of the first family of
modes of both structures at t> 2.78 s for l5 0.1 and kw5 0: (a)
casing and (b) bladed disk
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where kw is the Archard’s law wear coefficient, and PN is the nor-
mal contact pressure.

Objectives

The main purpose of this paper is to study the dynamic behav-
ior in a situation of blade-to-casing contact. A preliminary simula-
tion including friction shows the dynamic behavior of structures.
The results will be analyzed and compared to those of the same
model including wear. The values of friction coefficient and Arch-
ard’s wear coefficient have been chosen after a preliminary study
presented in Ref. [9].

Contact is initiated by exciting a mode with 1ND on the stator
with a stationary wave at fexct ¼ x1

s ¼ 1417Hz. The amplitude
generated (1.5 lm) is sufficient to cover the clearance between the
two structures (1 lm). The simulations were run for a rotational
speed which follows a ramp passing through the critical speed for
a modal interaction between a backward mode of the casing and a
counter-rotating mode of the bladed disk with 1ND. The Camp-
bell diagram of Fig. 2 highlights the critical velocity (at
10,415 rpm) for which a traveling wave speed coincidence (modal
interaction) occurs [15,19] between the modes with 1ND of the
two structures. In this case, modal interaction is said to occur

when the natural frequency of the bladed disk coincides with the
natural frequency of the casing, as expressed within the same
frame [19]

�xnd
s ¼ �xnd

r þ nd Xc (13)

with nd as the number of NDs, xr as the natural frequency of the
bladed disk mode with nd nodal diameters, xs as the natural fre-
quency of the casing mode with nd nodal diameters, and Xc as the
critical rotating speed.

Dynamic Behavior With Friction

A contact simulation with l¼ 0.1 and without wear (kw¼ 0) is
considered and will be compared to the simulations including
wear in a second step.

Time Analysis. The time history of the dynamic response (see
Fig. 3) shows transient event, characterized by a simultaneous
increase in amplitude on both structures occurring about 2.78 s af-
ter the beginning of the simulation. This transient event will be
called burst of vibration or shorter “burst” in this paper. The radial
displacement of the casing reaches 600lm, while the tangential

Fig. 7 Extraction of 1ND from STFT: (a) casing and (b) bladed
disk

Fig. 8 Extraction of 2ND from STFT: (a) casing and (b) bladed
disk

5



displacement of a particular blade tip exceeds 10,000lm.
Remember that the amplitude produced by the excitation on the
elastic ring is 1.5 lm. In the figures, the speed ramp and the value
of the critical speed are also provided. One can see that the burst
of vibration starts before the critical speed corresponding to the
modal coincidence.

After t� 2.78 s, the influence of the excitation is neglected (at
X� 4350 rpm). In order to confirm this assumption, another simu-
lation (not presented here) was run by switching off the external
excitation after t¼ 3 s. The results obtained are identical to those
presented here. This clearly highlights the presence of a self-
sustained vibration. Note that the dynamic response has an offset
of �0.02m, which corresponds to a static deflection in the oppo-
site direction to the rotation of the blades.

Frequency Analysis. The frequency content of simulated
responses is analyzed with three spectral analysis tools. A short-
time Fourier transform—or STFT—provides the spectrum of

signals [20]. To aid the interpretation, several elements have been
superposed over the spectrograms: the eigenfrequencies of the re-
spective free structures, the rotating speed harmonics with the
highest amplitudes, and frequencies associated with main rays
produced by modulations in the rotational speed.

The second tool is based on a two-dimensional discrete Fourier
transform—2D DFT—which determines the spatial decomposi-
tion sorted by NDs for each spectrum frequency. An analysis of
the complete spatial spectrum reveals the modal decomposition in
forward (fw) participation and backward (bw) participation for a
given diameter [2,9].

Finally, a combination of these two spectral analysis tools is
used to better understand the ND or spatial content during the
time the frequencies are present in the spectrum. This tool gives
the frequency evolution versus time of a spatial filtered signal
(STFT filtered on diameters).

The frequency analysis will be carried out over the range of ini-
tial bending modes [0–4000] Hz.

Table 1 Spatial and frequency content of the responses of both structures. Dotted lines denoted a frequency close to x
1
s

(�����), their sidebands (�����), and a frequency which coincides with x
2
s
(�����)

Casing Bladed disk

Spatial filtering t¼ [0–2.78] s t¼ [2.78–10] s t¼ [0–2.78] s t¼ [2.78–10] s

1ND fexct ¼ x1
s ����� x1

s62 n1d X x1
s62 n1d X (�����)

x1
s610 n

1
d X

x1
s614 n

1
d X

2ND 12 X x2
s 4 X x2

s þ 2 n2d X (�����)
8 X

2 fexct 2x1
s64 n1d X

2 fexct6 12 X 2x1
s68 n1d X

3ND fexct ����� x1
s66 n1d X �

fexct6 12 X �����

4ND 12 X � �
2 fexct x2

s � 11X
2 fexct6 12 X x2

s þ 12X

5ND fexct � �
fexct6 12 X �����

Fig. 9 Dynamic response of the casing (top) and the bladed disk (bottom) with a fast
speed ramp for l5 0.1 and kw 5 1310212 Pa21
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Frequency Versus Time Evolution. The time-frequency analysis
(see Fig. 4) was applied to the tangential displacement of the
blade tip and the radial displacement of the casing. The structure’s
responses show two different behaviors before and after t� 2.78 s.
Before t� 2.78 s, the spectrogram displayed in Fig. 4(a) shows
mainly the stator response to the external excitation introduced to
initiate contact, at the frequency fexct ¼ x1

s . We can also see the
excitation frequency modulation by 12 times the rotational speed
at fexct6 12 X. It should be noticed that the number 12 is inter-
preted as two times the number of blades (Na), although this is
not yet established as a generality in the paper. Frequency modu-
lation by the rotating speed will be called sideband [9,21] in the
remainder of this paper.

At the same time, the bladed disk spectrum illustrated in
Fig. 4(b) is characterized by the frequency x1

s þ 2 n1d X (or
x1

s þ n1d Xþ X). This latter could be interpreted as a first-order
sideband of the excitation frequency seen on the rotating frame.
Moreover, the sidebands x1

s þ 6 n1d X and x1
s � 2 n1d X are also

present in the spectrogram. These sidebands are spaced by 4 X

from x1
s þ 2 n1d X. The expression of this modulation becomes

x1
s þ 2 n1d X64X. This formula corroborates the observed beat

period in the time response at the bottom of Fig. 3, where
observed pulses are spaced by a characteristic period of 1=4X.

After t� 2.78 s when the amplitudes increase, three frequencies
have the highest levels on the casing response given in Fig. 4(a).
The first one (x1

s ) is identified in time by a black-dotted line
(�����) superposed on the spectrogram. The second one is
close to the casing mode with 2ND. Finally, the third frequency
(x1

s þ 12X) is identified by a green-dotted line (�����). Note
that we keep the nomenclature of the natural frequencies to name
the components of the spectrum, even if the frequencies of these
components fluctuate near the natural frequencies. For example,
the frequency of the component that fluctuates around 1700Hz is
denoted x1

s . So, the third main component of the bladed disk spec-
trum could be seen as a 12 X order sideband of x1

s .
At the same time (t> 2.78 s), on the bladed disk side—Fig. 4(b)—

the frequency response is dominated by the components x1
s þ

2 n1d X (�����) and x2
s þ 2 n2d X (�����). The dotted lines

displayed in Fig. 4(b) and denoted by xi
s þ 2 nid X were obtained

from the identification of the main frequency on the stator spec-
trum (Fig. 4(a)) added to 2 nid X (i¼ 1, 2). In other words, the
spectrum of the two structures is related by the factor 2 nid .

Fig. 10 STFT of the radial displacement of the casing and the
tangential displacement of a blade tip with a fast speed ramp
for l5 0.1 and kw5 13 10212Pa21: (a) casing and (b) bladed
disk

Fig. 11 Two-dimensional DFT diagram of the first family of
modes of both structures during the burst. Simulation com-
puted with a fast speed ramp for l5 0.1 and kw 5 1310212 Pa21:
(a) casing and (b) bladed disk.

7



Frequency Versus Spatial Content. The next step of this fre-
quency analysis is performed with a 2D DFT applied to a set of
sensors equally spaced on both structures [2,9]. At t< 2.78 s, the
frequency–ND diagram shown in Fig. 5(a) indicates that a station-
ary wave with 1ND at fexct¼ 1417Hz is indeed present, while the
bladed disk response is dominated by a backward wave with 1ND
at x1

s þ 2 n1d X. By looking at the full spatial spectrum, the dia-
gram can reveal the NDs mainly responding together with the
amplitudes of the associated forward and backward components.
In this case, the frequency of the bladed disk and the stator is not
related in the usual way—Eq. (13). Nevertheless, the first family
mode of the bladed disk with 1ND seems to be excited by fre-
quency x1

s þ 2 n1d X (see black dashed–dotted circle on Fig. 4(b)).
This could be interpreted as a coincidence between a component
of the casing vibration as perceived from the rotating frame and a
bladed disk mode with the same number of NDs

x1
s þ 2 n1d X ¼ x1

r (14)

However, as said before, the component x1
s þ 2 n1d X may be

interpreted as a sideband of the casing response seen on the rotat-
ing frame, which implies a frequency and spatial coincidence
between this sideband and a bladed disk mode with 1ND

x1
s þ n1d X

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
þ n1d X ¼ x1

r

casingmode observed

from the rotating frame

After this coincidence, the amplitudes of vibration of both
structures increase and their spatial contents change. In Fig. 6(a),
a 2ND backward mode is observed on the casing, along with a
1ND backward traveling wave with a lower amplitude compared
to the previous mode. On the bladed disk, a 1ND backward mode
(whose frequency follows the x1

s þ 2 n1d X relationship) produces
the highest amplitude, as shown in Fig. 6(b).

In this case and viewing the factors discussed before, we cannot
establish the presence of a modal interaction between the two
structures. However, as said above, the burst seems to be initiated
by a frequency and spatial coincidence between a sideband of the
casing, as perceived on the rotating frame and a natural frequency
of the bladed disk.

Frequency and Spatial Content Evolution Versus Time. The
proposed approach is supplemented by a “before and after” analy-
sis of the evolution of the spatial and frequency content during the
two structures’ response times. The STFTs filtered on NDs dis-
played in Figs. 7 and 8 make it possible to identify the spatial con-
tent of all the components found in the spectrograms. Table 1
summarizes the results of these analyses.

The ND filtering on the casing is obtained directly by plotting
the STFTs of the And coefficients—see Eq. (2). Figure 7(a) con-
firms that the frequency superposed by a black-dotted line
(�����) on the casing spectrogram (Fig. 7(a)) has a spatial
content of 1ND. The STFT of the coefficient A2 given in Fig. 8(a)
shows the 2NDs excitation during the burst, the harmonic 12 of
the rotating speed (12 X), the second harmonic of excitation fre-
quency (2 fexct), and its sidebands (2 fexct6 12 X).

Following this analysis for all the And coefficients of the stator, one
could easily identify the spatial content present in the casing spectrum.

The same analysis was performed using the tangential displace-
ments of the blade tips. The spatial content is dominated by 1ND
contribution at the frequency x1

s þ 2 n1d X (�����) as con-
firmed by the STFT filtered on diameter one (see Fig. 7(b)). Side-
bands x1

s � 2 n1d X; x
1
s610 n

1
d X and x1

s614 n
1
d X are also found

in the same spectrogram. The response of frequency x2
s þ 2 n2d X

(�����) has a spatial content with 2NDs, as depicted in
Fig. 8(b). On the same figure, one can observe the sidebands
2x1

s64X and 2x1
s68X of the second harmonic of excitation fre-

quency and the fourth harmonic (4 X) and eighth harmonic (8 X)
of the rotational speed.

This analysis makes it possible to clearly relate the spatial and
frequency contents of both structures. At t< 2.78 s, the excitation
frequency and its sidebands fexct6 12 X are visible on the filtered
diagrams when the odd diameters are kept. On the other hand, the
harmonic 12 of the rotating speed (12 X), the second harmonic of
excitation frequency (2 fexct), and its sidebands (2 fexct6 12 X)
appear on the even index of the spatial spectrum.

On the bladed disk, the sidebands x1
s62X� ð2 pþ 1Þ and 2

fexct6 2 X� (2p) are given, respectively, by odd NDs with p� {0,
1, 2, 3} and even NDs with p � {1, 2}. Harmonic four (4 X) and
eight (8 X) of the rotating speed are observed for even diameters.

The spectral analysis highlighted the presence of many side-
bands and harmonics of the rotating speed, which can be
explained by the contact nonlinearity between rotating and sta-
tionary parts [9]. When these terms coincide with the natural

Fig. 12 Wear pattern analysis of the abradable coating for a
simulation with a fast speed ramp for l5 0.1 and
kw 5 1310212 Pa21: (a) time history of wear patterns and (b)
wear map at the beginning of the burst
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frequencies of the structures, the amplitudes increase and may
lead to a burst of vibration.

The impact of rotational acceleration has been tested but no
influence has been observed in this case. This is no longer verified
when wear is introduced.

Dynamic Behavior With Friction and Wear

This section focuses on the influence of wear on the dynamic
behavior in a situation of blade-to-casing contact. The simulations
were carried out with a friction coefficient l¼ 0.1 and an Arch-
ard’s wear coefficient kw ¼ 1� 10�12 Pa�1. The introduction of
wear reveals two behaviors depending on the slope of the speed
ramp (the speed range is the same for all the simulations). The
first case, referred to as “fast speed ramp,” uses a speed ramp with
a rise time of t¼ 1 s. The second case, referred to as “slow speed
ramp,” uses a rise time of t¼ 10 s.

Fast Speed Ramp. In this case, the dynamic response of the
system shown in Fig. 9 is characterized by a simultaneous
increase in amplitude on both structures for t¼ [0.32–0.75] s,
which corresponds to the speed range X¼ [5000–11,700] rpm.
Here again, it is important to note that the burst is initiated below
the critical theoretical speed Xc. Vibrations disappear after
t¼ 0.75 s, when the abradable material is removed by the wear
process as shown below; hence, the clearance between the casing
and blade tips is increased.

The spectrogram of the radial displacement of the casing high-
lights the main frequencies present in the previous simulation
without wear. The black-dotted line (�����) in the casing
spectrogram of Fig. 10(a) tracks a frequency component about
1500 Hz which corresponds to a spatial content with 1ND. Before
and after the burst, this frequency coincides with the excitation
frequency fexct, whereas during the burst it has a higher value
which decreases with time. This seems to be accompanied by a 12
X (or 2 NaX) sideband, which is also present in the spectrum. Its
frequency follows the relation fexctþ 12 X and was indicated by a
green-dotted line (�����).

The 2D DFT diagram computed during the burst (see
Fig. 11(a)) makes it possible to confirm the nature of the response
which is a 1ND backward wave (�����).

The spectrogram of the tangential displacement of the bladed
disk—Fig. 10(b)—shows a frequency component following the
relation x1

s þ 2 n1d X (�����). Around 3500Hz, one can also
see the second-order harmonic of this frequency. As in the case
presented in the simulation without wear, the coincidence between
the component following the relation x1

s þ 2 n1d X and the natural
frequency of the bladed disk with 1ND (x1

r ) seems to initiate the
burst of vibration on both structures. The 2D DFT diagram of the
bladed disk computed during the burst (Fig. 11(b)) is dominated
by a 1ND forward mode. Note that on both structures, the two
waves have the same number of NDs and travel in the same direc-
tion with the particularity that the propagation speeds are related
by a 2 X instead of X as in the classical relation (13).

At the end of the burst, the absence of response on the bladed
disk spectrum indicates that the contact is lost, this is confirmed
by the analysis of the gap between the two structures (not pre-
sented here). Finally, it is important to note that the spectrograms
presented in this section (Fig. 10) are less rich, in terms of spectral
content, than those described in the simulation without wear (see
Fig. 4).

The abradable material removed by the wear process stops the
contact between the blade tips and the casing. STFT applied to the
wear profile displayed in Fig. 12(a) indicates an increase in the in-
tensity of wear at the beginning of the burst. At this time, the max-
imum wear depth is reached with 20 worn lobes (see the
corresponding wear profile of the abradable coating pictured in
Fig. 12(b)). As in Ref. [2], this number corresponds to the ratio
between the first family mode of the bladed disk with 1ND and
the rotational speed X

nblobes ¼
x1

r

X
¼ 20 (15)

The previous equation could be considered as a particular case of
Eq. (13), where the natural casing frequency is a static shape
(xs¼ 0), and the number of ND is equal to the number of lobes
(nd¼ nblobes). The same behavior was found with only one over-
long blade in contact with the casing [3,4,22]. In our case, all the
blades are in contact. This can be verified by looking at the spaced
lines every 6–7 units on the time history of the wear profile

Fig. 13 Dynamic response of the bladed disk (top) and the casing (bottom) with a
slow speed ramp for l50.1 and kw 51310212 Pa21
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(Fig. 12(a)), which may be interpreted as the spatial modulation
of the pattern with 20 lobes by the number of blades (Na¼ 6).

Slow Speed Ramp. In this section, we will compare the previ-
ous results to the results obtained with a slow speed ramp. The
influence of the slope of the speed ramp is clearly demonstrated
by comparing Figs. 9 and 13. The dynamic response of the system
with a fast speed ramp exhibits an increase in amplitude after
t� 2.78 s. Conversely, with a slow speed ramp, the amplitudes of
both structures remain 2 order of magnitudes lower than the previ-
ous case, and in the case of the bladed disk, it decreases with
time.

The casing spectrum given in Fig. 14(a) exposes the same main
frequency (fexct), sidebands (fexct6 12 X), and rotational speed
harmonic (12 X) with respect to the simulation without wear
before the burst. In contrast, the frequency response of the bladed
disk is characterized by the sidebands x1

s62 n
1
d X; x

1
s66 n

1
d X, the

second-order sidebands of the excitation frequency 2x1
s62 n1d X,

and 2x1
s66 n

1
d X. The fourth harmonic (4 X) and eighth harmonic

(8 X) of the rotational speed are also found. The amplitude of
these terms will gradually decrease over time. When the slow

ramp is introduced, the abradable coating is consumed ten times
faster since the bladed disk achieved ten times more revolutions
than the simulation with the fast speed ramp. The gap is therefore
higher when it reaches the time when Eq. (14) is verified. It is
believed that the updated gap is then sufficient to prevent the
burst.

The wear map shown in Fig. 15 indicates that contact occurs in
two diametrically opposite locations. This map corresponds to a
two-lobe wear profile [9].

Conclusion

A blade-to-casing simulation with a simplified finite element
model of a rotating bladed disk and a flexible casing was pre-
sented in this paper. A mathematical formulation of an elastody-
namic contact with friction (Coulomb’s law) and wear (Archard’s
law) was derived for this application. Contact was initiated by a
dynamic excitation of the stator. The first simulation analyzed
showed the dynamic behavior of the system when the friction is
taken into account. The amplitudes of vibration of both structures
increased when the condition x1

s þ 2 n1d X ¼ x1
r was fulfilled.

This may be interpreted as the coincidence between the frequency
of a mode with 1ND on the rotor (x1

r ) and a sideband of the fre-
quency of a mode with 1ND on the stator (x1

s ), which is equal to
x1

s þ 2X when seen in the rotating frame.
The introduction of wear into the system changed the dynamic

behavior of both structures by adding a speed sensitivity. Two dif-
ferent behaviors depending on the slope of the speed ramp were
found. With a fast speed ramp, the displacement amplitudes of the
two structures increased to very high values until the removal of
the abradable coating stopped the process. At the beginning of the
burst, the abradable material was worn in a specific pattern. The
number of lobes corresponded to the ratio between the mode fre-
quency and the rotating speed. The introduction of a slow speed
ramp prevented the burst of vibration on both structures because
the abradable coating was consumed faster, the bladed disk
achieving more revolutions. In that particular case, all of the
abradable material was completely worn before it had reached the
critical speed.
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Nomenclature

CN ¼ linearized vector yielding the normal force direction
CT ¼ linearized vector yielding the tangential force direction
D ¼ structural damping matrix

DTF ¼ discrete Fourier transform
Fc ¼ contact forces vector

Fext ¼ external forces vector
g ¼ distance function
g ¼ initial gap vector
K ¼ stiffness matrix
kw ¼ Archard’s law wear coefficient
M ¼ mass matrix
nd ¼ number of nodal diameters

ND ¼ nodal diameter
PN ¼ normal contact pressure

STFT ¼ short-time Fourier transform
u ¼ displacement vector
us ¼ radial displacement at the middle plane of the elastic

ring
w ¼ wearing depth vector
ws ¼ tangential displacement at the middle plane of the elastic

ring
h ¼ angular coordinate around the elastic ring
kN ¼ Lagrange multiplier
l ¼ coefficient of friction
X ¼ bladed disk speed
Xc ¼ critical modal interaction speed
xnd

r ¼ natural frequency of the bladed disk mode with nd nodal
diameters

xnd
s ¼ natural frequency of the casing mode with nd nodal

diameters

References
[1] Jacquet-Richardet, G., Torkhani, M., Cartraud, P., Thouverez, F., Baranger, T.

N., Herran, M., Gibert, C., Baguet, S., Almeida, P., and Peletan, L., 2013,

“Rotor to Stator Contacts in Turbomachines. Review and Application,” Mech.

Syst. Signal Process., 40(2), pp. 401–420.
[2] Almeida, P., Gibert, C., Thouverez, F., Leblanc, X., and Ousty, J.-P., 2014,

“Experimental Analysis of Dynamic Interaction Between a Centrifugal Com-

pressor and Its Casing,” ASME J. Turbomach., 137(3), p. 031008.

[3] Millecamps, A., Brunel, J.-F., Dufrenoy, P., Garcin, F., and Nucci, M., 2009,

“Influence of Thermal Effects During Blade-Casing Contact Experiments,”

ASME Paper No. DETC2009-86842.

[4] Batailly, A., Legrand, M., Millecamps, A., and Garcin, F., 2012, “Numerical-

Experimental Comparison in the Simulation of Rotor/Stator Interaction

Through Blade-Tip/Abradable Coating Contact,” ASME J. Eng. Gas Turbines

Power, 134(8), p. 082504.
[5] Str€omberg, N., 1999, “Finite Element Treatment of Two-Dimensional Thermo-

elastic Wear Problems,” Comput. Methods Appl. Mech. Eng., 177(3–4),
pp. 441–455.

[6] Salles, L., Blanc, L., Thouverez, F., Gouskov, A., and Jean, P., 2012, “Dual

Time Stepping Algorithms With the High Order Harmonic Balance Method for

Contact Interfaces With Fretting-Wear,” ASME J. Eng. Gas Turbines Power,

134(3), p. 032503.
[7] Archard, J. F., 1953, “Contact and Rubbing of Flat Surfaces,” J. Appl. Phys.,

24(8), pp. 981–988.
[8] Williams, R., 2011, “Simulation of Blade Casing Interaction Phenomena in Gas

Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching

Method,” ASME Paper No. GT2011-45495.

[9] Almeida, P., Gibert, C., Thouverez, F., and Ousty, J.-P., 2014, “On Some Physi-

cal Phenomena Involved in Blade-Casing Contact,” 9th International Confer-

ence on Structural Dynamics, Porto, Portugal, June 30–July 2, pp. 2063–2071.

[10] Lesaffre, N., Sinou, J.-J., and Thouverez, F., 2007, “Contact Analysis of a Flex-

ible Bladed-Rotor,” Eur. J. Mech.-A/Solids, 26(3), pp. 541–557.
[11] Love, A. E. H., 1906, A Treatise on the Mathematical Theory of Elasticity,

Cambridge University Press, New York.

[12] Lesaffre, N., 2007, “Stabilit�e et analyse non-lin�eaire du contact rotor-stator,”

Ph.D. thesis, Ecole Centrale de Lyon, Lyon, France.

[13] Carpenter, N. J., Taylor, R. L., and Katona, M. G., 1991, “Lagrange Constraints

for Transient Finite Element Surface Contact,” Int. J. Numer. Methods Eng.,

32(1), pp. 103–128.
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