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Abstract: We investigate the zero-error coding for computing problem with encoder side information. 1

An encoder is provided an access to a source X and is furnished with side information g(Y). It 2

communicates with a decoder that possesses side information Y and aims to retrieve f (X, Y) with 3

zero probability of error, where f and g are assumed to be deterministic functions. In a previous work 4

we determined a condition that yields an analytic expression for the optimal rate R∗(g); it covers 5

in particular the case where PX,Y is full support. In this article we review this result and study the 6

side information design problem, which consists in finding the best trade-offs between the quality 7

of the encoder’s side information g(Y) and R∗(g). We construct two greedy algorithms that give 8

an achievable set of points in the side information design problem, based on partition refining and 9

coarsening. One of them runs in polynomial time. 10

Keywords: zero-error information theory; source coding; graph theory 11

1. Introduction 12

1.1. Zero-error coding for computing 13

Encoder Decoder(
g(Yt)

)
t≤n Yn

(
f (Xt, Yt)

)
t≤nXn �

R

Figure 1. Zero-error coding for computing with side information at the encoder.

The problem of Figure 1 is a zero-error setting that relates to Orlitsky and Roche’s 14

coding for computing problem from [1]. This coding problem appears in video compression 15

[2,3], where Xn models a set of images known at the encoder. The decoder does not always 16

want to retrieve each whole image. Instead, the decoder receives, for each image Xt, t ≤ n, a 17

request Yt to retrieve information f (Xt, Yt). This information can for instance be a detection: 18

cat, dog, car, bike; or a scene recognition: street/city/mountain, etc... The encoder does not 19

know the decoder’s exact request but has prior information about it (e.g. type of request), 20

which is modeled by (g(Yt))t≤n. This problem also relates to the zero-error Slepian-Wolf 21

open problem, which corresponds to the special case, where g is constant and f (X, Y) = X. 22

Similar schemes to the one depicted in Figure 1 have already been studied. But they 23

differ to the one we study in two ways. First, they consider that no side information is 24

available at the encoder. Second, and more importantly, they consider different coding 25

constraints: the lossless case is studied by Orlitsky and Roche in [1], the lossy case by 26

Yamamoto in [4], and the zero-error “unrestricted inputs” case by Shayevitz in [5]. The 27

latter results can be used as bounds for our problem depicted in Figure 1 but do characterize 28

exactly its optimal rate. 29

Numerous extensions of the problem depicted in Figure 1 have been studied recently. 30

The distributed context, for instance, has an additional encoder which encodes Y before 31

transmitting it to the decoder. Achievability schemes have been proposed for this setting by 32

Version August 27, 2024 submitted to Entropy https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/entropy


Version August 27, 2024 submitted to Entropy 2 of 18

Krithivasan and Pradhan in [6] using abelian groups; by Basu et al. in [7] using hypergraphs 33

for the case with maximum distortion criterion; and by Malak and Médard in [8] using 34

hyperplane separations for the continuous lossless case. 35

Another related context is the network setting, where the function of source random 36

variables from source nodes has to be retrieved at the sink node of a given network. For 37

tree networks, the feasible rate region is characterized by Feizi and Médard in [9] for 38

networks of depth one; and by Sefidgaran and Tchamkerten in [10] under a Markov source 39

distribution hypothesis. In [11], Ravi and Dey consider a bidirectional relay with zero- 40

error “unrestricted inputs” and characterize the rate region for a specific class of functions. 41

In [12], Guang et al. study zero-error function computation on acyclic networks with 42

limited capacities, and give an inner bound based on network cut-sets. For both distributed 43

and network settings, the zero-error coding for computing problem with encoder side 44

information remains open. 45

In a previous work [13], we determined a condition that we called “pairwise shared 46

side information” such that, if satisfied, the optimal rate R∗(g) has a single-letter expression. 47

This covers many cases of interest, in particular the case where PX,Y is full-support for 48

any functions f , g. For the sake of completeness, we review this result. Moreover, we 49

propose an alternative and more interpretable expression for this pairwise shared side 50

information. More precisely, we show that the instances where the “pairwise shared side 51

information” condition is satisfied, correspond to the worst possible optimal rates in an 52

auxiliary zero-error Slepian-Wolf problem. 53

1.2. Encoder’s side information design 54

In the zero-error coding for computing problem with encoder side information, it 55

can be observed that a “coarse” encoder side information (e.g. if g constant) yields a high 56

optimal rate R∗(g), whereas a “fine” encoder side information (e.g. g = Id) yields a low 57

optimal rate R∗(g). The side information design problem consists in determining the best 58

trade-offs between the optimal rate R∗(g) and the quality of the encoder’s side information, 59

which is measured by its entropy H(g(Y)). This expression describes the optimal rate of 60

a zero-error code that transmits the quantized version of Y via the g function. The best 61

trade-offs correspond to the Pareto front of the achievable set, i.e. whose corner-points 62

cannot be obtained by a time sharing between other coding strategies. In short, we aim at 63

determining the Pareto front of the convex hull of the achievable pairs
(

H(g(Y)), R∗(g)
)
. 64

In this article, we propose a greedy algorithm that gives an achievable set of points in 65

the side information design problem, when PX,Y is full support. Studying our problem with 66

the latter hypothesis is interesting because, unlike the case of the Slepian-Wolf problem, 67

it does not necessarily correspond to a worst-case scenario. Recall indeed, that, when 68

PX,Y is full-support, the Slepian-Wolf encoder does not benefit from the side-information 69

available at the decoder and needs to send X. In our problem instead, if the retrieval 70

function f (X, Y) = Y, since the decoder already has access to Y, no information needs to be 71

sent by the encoder and the optimal rate is 0. Finally, the proposed algorithm relies on our 72

results with “pairwise shared side information” that give the optimal rate for all function 73

g, and performs a greedy partition coarsening when choosing the next achievable point. 74

Moreover, it runs in polynomial time. 75

The paper is organised as follows. In Section 2, we present formally the zero-error 76

coding for computing problem and the encoder’s side information design problem. In 77

Section 3, we give our theoretic results on the zero-error coding for computing problem, 78

including the “pairwise shared side information” condition. In Section 4 we present our 79

greedy algorithms for the encoder’s side information design problem. 80

2. Formal presentation of the problem 81

We denote sequences by xn = (x1, ..., xn). The set of probability distributions over X 82

is denoted by ∆(X ). The distribution of X is denoted by PX ∈ ∆(X ), its support is denoted 83

by supp PX. Given the sequence length n ∈ N?, we denote by ∆n(X ) ⊂ ∆(X ) the set of 84
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empirical distributions of sequences from X n. We denote by {0, 1}∗ the set of binary words. 85

The collection of subsets of a set Y is denoted by P(Y). 86

Definition 1. The zero-error source coding problem of Figure 1 is described by: 87

- Four finite sets U , X , Y , Z and a source distribution PX,Y ∈ ∆(X ×Y); 88

- For all n ∈ N?, (Xn, Yn) is the random sequence of n copies of (X, Y), drawn in an i.i.d. 89

fashion using PX,Y. 90

- Two deterministic functions

f : X ×Y → U , (1)

g : Y → Z . (2)

- An encoder that knows Xn and
(

g(Yt)
)

t≤n sends binary strings over a noiseless channel to a 91

decoder that knows Yn, and that wants to retrieve
(

f (Xt, Yt)
)

t≤n without error. 92

A coding scheme in this setting is described by: 93

- A time horizon n ∈ N?, and an encoding function φe : X n ×Zn → {0, 1}∗ such that Im φe 94

is prefix-free; 95

- A decoding function φd : Yn × {0, 1}∗ → Un; 96

- The rate is the average length of the codeword per source symbol, 97

i.e. R .
= 1

nE
[
` ◦ φe

(
Xn, (g(Yt))t≤n

)]
, where ` denotes the codeword length function; 98

- n, φe, φd must satisfy the zero-error property:

P
(

φd

(
Yn, φe

(
Xn, (g(Yt))t≤n

))
6=
(

f (Xt, Yt)
)

t≤n

)
= 0. (3)

The minimal rate under the zero-error constraint is defined by:

R∗(g) .
= inf

n,φe ,φd
zero-error

1
n
E
[
` ◦ φe

(
Xn, (g(Yt))t≤n

)]
. (4)

The definition of the Pareto front that we give below is adapted to the encoder’s 99

side information design problem, and allows to describe the best trade-off between the 100

quality of the encoder side information and the rate to compute the function f (X, Y) at 101

the decoder. In other works, the definition of a Pareto front may differ, depending on the 102

minimization/maximization problem considered, and on the number of variables to be 103

optimized. 104

Definition 2 (Pareto front). Let S ⊂ R2
+ be a set, the Pareto front of S is defined by

Par(S) .
=
{

x ∈ S
∣∣∣ ∀x′ ∈ S \ {x}, x′1 > x1 or x′2 > x2

}
. (5)

Definition 3. The side information design problem in Figure 1 consists in determining the Pareto
front of the achievable pairs (H(g(Y)), R∗(g)):

F .
= Par

(
Conv

{(
H(g(Y)), R∗(g)

) ∣∣∣ g : Y → Z
})

, (6)

where Conv denotes the convex hull. 105

In our zero-error setup, all alphabets are finite. Therefore, the Pareto front of the 106

convex hull in (6) is computed on a finite set of points, which correspond to the best 107

trade-offs for the encoder’s side information. 108
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3. Theoretic results 109

Determining the optimal rate in the zero-error coding for computing problem, with or 110

without encoder side information, is an open problem. In a previous contribution [13] we 111

determined a condition that, when satisfied, yields an analytic expression for the optimal 112

rate. Interestingly, this condition is general as it does not depend on the function f to be 113

retrieved at the decoder. 114

3.1. General case 115

We first build the characteristic graph G[n], which is a probabilistic graph that captures 116

the zero-error encoding constraints on a given number n of source uses. It differs from the 117

graphs used in [5], as we do not need a cartesian representation of these graphs to study the 118

optimal rates. Furthermore, it has a vertex for each possible realization of
(
Xn,

(
g(Yt)

)
t≤n

)
119

known at the encoder, instead of X n as in the zero-error Slepian-Wolf problem [14]. 120

Definition 4 (Characteristic graph G[n]). The characteristic graph G[n] is defined by: 121

- X n ×Zn as set of vertices with distribution Pn
X,g(Y), 122

- (xn, zn)(x′n, z′n) are adjacent if zn = z′n and there exists yn ∈ g−1(zn) such that:

∀t ≤ n, PX,Y(xt, yt)PX,Y(x′t, yt) > 0, (7)

and ∃t ≤ n, f (xt, yt) 6= f (x′t, yt); (8)

where g−1(zn) =
{

yn ∈ Yn
∣∣ (g(yt)

)
t≤n = zn}. 123

The characteristic graph G[n] is designed with the same core idea as in [15]: (xn, zn) 124

and (x′n, z′n) are adjacent if there exists a side information symbol yn compatible with the 125

observation of the encoder (i.e. zn = z′n and yn ∈ g−1(zn)), such that f (xn, yn) 6= f (x′n, yn). 126

In order to prevent erroneous decodings, the encoder must map adjacent pairs of sequences 127

to different codewords; hence the use of graph colorings, defined below. 128

Definition 5 (Coloring, independent subset). Let G = (V , E , PV) be a probabilistic graph. A 129

subset S ⊆ V is independent if xx′ /∈ E for all x, x′ ∈ S . Let C be a finite set (the set of colors), a 130

mapping c : V → C is a coloring if c−1(i) is an independent subset for all i ∈ C. 131

The chromatic entropy of G[n] gives the best rate of n-shot zero-error encoding func- 132

tions, as in [14]. 133

Definition 6 (Chromatic entropy Hχ). The chromatic entropy of a probabilistic graph G =
(V , E , PV) is defined by

Hχ(G) = inf
{

H
(
c(V)

) ∣∣ c is a coloring of G
}

. (9)

Theorem 7 (Optimal rate). The optimal rate writes: 134

R∗(g) = lim
n→∞

1
n

Hχ(G[n]). (10)

Proof. By construction the following holds: for all encoding function φe, φe is a coloring
of G[n] if and only if there exists a decoding function φd such that (n, φe, φd) satisfies the
zero-error property. Thus the best achievable rate writes

R∗(g) = inf
n

inf
φe coloring of G[n]

H
(

φe

(
Xn,

(
g(Yt)

)
t≤n

))
(11)

= lim
n→∞

1
n

Hχ(G[n]). (12)
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where (12) comes from Fekete’s Lemma and from the definition of Hχ. 135

A general single-letter expression for R∗(g) is missing, due to the lack of intrinsic 136

structure of G[n]. In Section 3.2, we introduce a hypothesis that gives structure to G[n] and 137

allows us to derive a single-letter expression for R∗(g). 138

3.2. Pairwise shared side information 139

Definition 8. The distribution PX,Y and the function g satisfy the “pairwise shared side informa-
tion” condition if

∀z ∈ Z , ∀x, x′ ∈ X , ∃y ∈ g−1(z), PXY(x, y)PXY(x′, y) > 0, (13)

where Im(g) is the image of the function g.This means that for all z output of g, every pair (x, x′) 140

“shares” at least one side information symbol y ∈ g−1(z). 141

Note that any full-support distribution PX,Y satisfies the “pairwise shared side infor- 142

mation” hypothesis. In Theorem 9, we give an interpretation of the “pairwise shared side 143

information” condition in terms of the optimal rate in an auxiliary zero-error Slepian-Wolf 144

problem. 145

Theorem 9. The tuple (PX,Y, g) satisfies the condition “pairwise shared side information” (13) 146

⇐⇒ R∗(g) = H(X|g(Y)) in the case f (X, Y) = X, and for all z ∈ Z , PX|g(Y)=z is 147

full-support. 148

The proof of Theorem 9 is given in Appendix A.1. 149

Definition 10 (AND, OR product). Let G1 = (V1, E1, PV1), G2 = (V2, E2, PV2) be two proba-
bilistic graphs; their AND (resp. OR) product denoted by G1 ∧ G2 (resp. G1 ∨ G2) is defined by:
V1 × V2 as set of vertices, PV1 PV2 as probability distribution on the vertices, and (v1v2), (v′1v′2) are
adjacent if

v1v′1 ∈ E1 AND v2v′2 ∈ E2, (14)

resp. (v1v′1 ∈ E1 and v1 6= v′1) OR (v2v′2 ∈ E2 and v2 6= v′2);

with the convention that all vertices are self-adjacent. We denote by G∧n
1 (resp. G∨n

1 ) the n-th AND 150

(resp. OR) power. 151

AND and OR powers significantly differ in terms of existing single-letter expression 152

for the associated asymptotic chromatic entropy. Indeed, in the zero-error Slepian-Wolf 153

problem in [14], the optimal rate limn→∞
1
n Hχ(G∧n), which relies on an AND power, does 154

not have a single-letter expression. There exists instead, closed form expressions for OR 155

powers of graphs. More precisely, as recalled in Proposition 12, limn→∞
1
n Hχ(G∨n) admits 156

a single letter expression called the Körner graph entropy, introduced in [16], and defined 157

below. This observation is key for us to derive a single letter expression for our problem. 158

More precisely, by using a convex combination of Körner graph entropies, we provide a 159

single-letter expression in Theorem 14 for the optimal rate R∗(g). 160

Definition 11 (Körner graph entropy Hκ). For all G = (V , E , PV), let Γ(G) be the collection of
independent sets of vertices in G. The Körner graph entropy of G is defined by

Hκ(G) = min
V∈W∈Γ(G)

I(W; V), (15)

where the minimum is taken over all distributions PW|V ∈ ∆(W)V , with W = Γ(G) and the 161

constraint that the random vertex V belongs to the random set W with probability one. 162
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Below, we recall that the limit of the normalized chromatic entropy of the OR product 163

of graphs admits a closed form expression given by the Körner graph entropy Hκ . Moreover, 164

the Körner graph entropy of OR products of graphs is simply the sum of the individual 165

Körner graph entropies. 166

Proposition 12 (Properties of Hκ). [14, Theorem 5] For all probabilistic graphs G and G′,

Hκ(G) = lim
n→∞

1
n

Hχ(G∨n), (16)

Hκ(G ∨ G′) = Hκ(G) + Hκ(G′). (17)

Definition 13 (Auxiliary graph G f
z ). For all z ∈ Z , we define the auxiliary graph G f

z by 167

- X as set of vertices with distribution PX|g(Y)=z, 168

- xx′ are adjacent if f (x, y) 6= f (x′, y) for some y ∈ g−1(z) ∩ supp PY|X=x ∩ supp PY|X=x′ . 169

Theorem 14 (Pairwise shared side information). If PX,Y and g satisfy (13), the optimal rate 170

writes: 171

R∗(g) = ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ). (18)

The proof is in Section A.2, the keypoint is the particular structure of G[n]: a disjoint 172

union of OR products. 173

Remark 15. The “pairwise shared side information” assumption (13) implies that the adjacency 174

condition (7) is satisfied, which makes G[n] a disjoint union of OR products. Moreover, Körner 175

graph entropies appear in the final expression for R∗(g), even if G[n] is not an n-th OR power. 176

Now consider the case where PX,Y is full-support. This is a sufficient condition to 177

have (13). The optimal rate in this setting is derived from Theorem 14, which leads to the 178

analytic expression in Theorem 16. 179

Theorem 16 (Optimal rate when PX,Y is full-support). When PX,Y is full-support, the optimal
rate writes:

R∗(g) = H
(

j(X, g(Y))
∣∣g(Y)), (19)

where the function j returns a word in U ∗, defined by

j :X ×Z → U ∗ (20)

(x, z) 7→
(

f (x, y′)
)

y′∈g−1(z).

Proof. By Theorem 14, R∗(g) = ∑z∈Z Pg(Y)(z)Hκ(G
f
z ). It can be shown that G f

z is complete 180

multipartite for all z as PX,Y is full support; and it satisfies Hκ(G
f
z ) = H

(
j(X, g(Y))

∣∣g(Y) = 181

z
)
. 182

3.3. Example 183

In this example, the “pairwise shared side information” assumption is satisfied and 184

R∗(g) is strictly less than a conditional Huffman coding of X knowing g(Y); and also 185

strictly less than the optimal rate without exploiting g(Y) at the encoder. 186

Consider the probability distribution and function outcomes depicted in Figure 2, 187

with U = {a, b, c}, X = {0, ..., 3}, Y = {0, ..., 7}, and Z = {0, 1}. Let us show that the 188

“pairwise shared side information” assumption is satisfied. The source symbols 0, 1, 2 ∈ X 189

share the side information symbol 0 (resp. 5) when g(Y) = 0 (resp. g(Y) = 1). The source 190

symbol 3 ∈ X shares the side information symbols 1, 2, 3 with the source symbols 0, 1, 2, 191
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PX,Y
Y

X

0 1 2 3 4 5 6 7

0

1

2

3

0.1 0.05 ∗ ∗
0.1 ∗ 0.05 ∗
0.1 ∗ ∗ 0.05
∗ 0.05 0.05 0.05

0.05 0.05 ∗ ∗
0.05 0.05 0.05 ∗
∗ 0.05 ∗ ∗
∗ 0.05 ∗ 0.05

g(Y) = 0 g(Y) = 1

f (·, ·) Y

X

0 1 2 3 4 5 6 7

0

1

2

3

a b ∗ ∗
a ∗ b ∗
b ∗ ∗ c

∗ c c c

b a ∗ ∗
a a b ∗
∗ b ∗ ∗
∗ c ∗ c

g(Y) = 0 g(Y) = 1

Figure 2. An example of PX,Y and g that satisfy (13); along with the outcomes f (X, Y). The elements
outside supp PX,Y are denoted by ∗.

respectively, when g(Y) = 0; and the source symbol 3 shares the side information symbol 5 192

with all other source symbols when g(Y) = 1. 193

Since the “pairwise shared side information” assumption is satisfied, we can use
Theorem 14; the optimal rate writes

R∗(g) = Pg(Y)(0)Hκ(G
f
0 ) + Pg(Y)(1)Hκ(G

f
1 ). (21)

First we need to determine the probabilistic graphs G f
0 and G f

1 . In G f
0 , the vertex 0 is 194

adjacent to 2 and 3, as f (0, 0) 6= f (2, 0) and f (0, 1) 6= f (3, 1). The vertex 1 is also adjacent to 195

2 and 3 as f (1, 0) 6= f (2, 0) and f (1, 2) 6= f (3, 2). Furthermore PX|g(Y)=0 is uniform, hence 196

G f
0 = (C4, Unif(X )) where C4 is the cycle graph with 4 vertices. 197

In G f
1 , the vertices 1, 2, 3 are pairwise adjacent as f (1, 5), f (2, 5) and f (3, 5) are pairwise 198

different; and 0 is adjacent to 1, 2 and 3 because of the different function outputs generated 199

by Y = 4 and Y = 5. Thus, G f
1 = (K4, PX|g(Y)=1) with PX|g(Y)=1 = ( 1

4 , 3
8 , 1

8 , 1
4 ) and K4 is the 200

complete graph with 4 vertices. 201

Now let us determine Hκ(G
f
0 ) and Hκ(G

f
1 ). On one hand,

Hκ(G
f
0 ) = H(V0)− max

V0∈W∈Γ(G f
0 )

H(V0|W) (22)

= 2− 1 = 1, (23)

with V0 ∼ PX|g(Y)=0 = Unif(X ); and where H(V0|W) in (22) is maximized by taking 202

W = {0, 1} when V ∈ {0, 1}, and W = {2, 3} otherwise. 203

On the other hand,

Hκ(G
f
1 ) = min

V1∈W∈Γ(G f
1 )

I(W; V1) (24)

= H(V1) ≈ 1.906, (25)

with V1 ∼ PX|g(Y)=1; where (25) follows from Γ(G f
1 ) = {{0}, ..., {3}}, as G f

1 is complete. 204

Hence R∗(g) ≈ 1.362. 205

The rate that we would obtain by transmitting X knowing g(Y) at both encoder and 206

decoder with a conditional Huffman algorithm writes: RHuff = H(X|g(Y)) ≈ 1.962. 207
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The rate that we would obtain without exploiting g(Y) at the encoder is RNo g = 208

H(X) ≈ 1.985, because of the different function outputs generated by Y = 4 and Y = 5. 209

Finally, H( f (X, Y)|Y) ≈ 0.875. 210

In this example we have

H(X) = RNo g > RHuff > R∗(g) > H( f (X, Y)|Y). (26)

This illustrates the impact of the side information at the encoder in this setting, as we can 211

observe a large gap between the optimal rate R∗(g) and RNo g. 212

4. Optimization of the encoder side information 213

4.1. Preliminary results on partitions 214

In order to optimize the function g in the encoder side information, we propose a new 215

equivalent characterization of the function g in the form of a partition of the set Y . The 216

equivalence is shown in the Proposition 17 below. 217

Proposition 17. For all g : Y → Z , the collection of subsets (g−1(z))z∈Z is a partition of Y . 218

Conversely, if A ⊂ P(Y) is a partition of Y , then there exists a mapping gA : Y → Z such 219

that ∀z ∈ Im gA, ∃Az ∈ A, Az = g−1
A (z). 220

Proof. The direct part results directly from the fact that g is a function. For the converse 221

part, we take Z such that |Z| = |A| and we define gA : Y → Z by gA(y) = z, where z ∈ Z 222

is the unique index such that y ∈ Az. The property ∀z ∈ Im gA, ∃Az ∈ A, Az = g−1
A (z) is 223

therefore satisfied. 224

225

Now, let us define coarser and finer partitions, with the corresponding notions of 226

merging and splitting. These operations on partitions are the core idea of our greedy 227

algorithms; as illustrated in Proposition 17, the partitions of Y correspond to functions 228

g : Y → Z for the encoder’s side information. Therefore, obtaining a partition from another 229

means finding another function g : Y → Z for the encoder’s side information. 230

Definition 18 (Coarser, Finer). Let A,B ⊂ P(Y) be two partitions of the finite set Y . We say
that A is coarser than B if

∀B ∈ B, ∃A ∈ A, B ⊂ A. (27)

If so, we also say that B is finer than A. 231

Example 19. Let Y = {1, 2, 3, 4}, the partition A =
{
{1}, {2, 3, 4}

}
is coarser than B = 232{

{1}, {2}, {3, 4}
}

. 233

Definition 20 (Merging, Splitting). A merging is an operation that maps a partition A = 234

{A1, ..., Ai, ..., Aj, ..., Am} to the partition A′ = {A1, ..., Ai ∪ Aj, ..., Am}. A splitting in an opera- 235

tion that maps a partitionA = {A1, ..., Ai, ..., Am} to the partitionA′ = {A1, ..., A(1)
i , A(2)

i , ..., Am}, 236

where {A(1)
i , A(2)

i } form a partition of the subset Ai. 237

We also define the set of partitions Merge(A) (resp. Split(A)), which correspond to all
partitions that can be obtained with a merging (resp. splitting) of A:

Merge(A) .
=
{

m(A)
∣∣∣m is a merging

}
; (28)

Split(A) .
=
{

s(A)
∣∣∣ s is a splitting

}
. (29)

Proposition 21. If A is coarser (resp. finer) than B, then A can be obtained from B by performing 238

a finite number of mergings (resp. splittings). 239
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4.2. Greedy algorithms based on partition coarsening and refining 240

In this Section, we assume PX,Y to be full-support. 241

With Proposition 17, we know that determining the Pareto front by a brute force 242

approach would at least require to enumerate the partitions of Y . Therefore, the complexity 243

of this approach is exponential in |Y|. In the following we describe the greedy Algorithms 244

1 and 2 that give an achievable set for the encoder’s side information design problem; one 245

of them has a polynomial complexity. Then we give an example where the Pareto front 246

coincides with the boundary of the convex hull of the achievable rate region obtained by 247

both greedy algorithms. 248

In these a argmin (resp. argmax) means any minimizer (resp. maximizer) of the 249

specified quantity; and the function gA : Y → Z is a function for the encoder’s side 250

information corresponding to the partition A, whose existence is given by Proposition 17. 251

The coarsening (resp. refining) algorithm starts by computing its first achievable
point

(
H(gA(Y)), R∗(gA)

)
with A being the finest (resp. coarsest) partition: it evaluates

R∗(gA), with gA = Id (resp. gA constant); and H(gA(Y)) = H(Y) (resp. H(gA(Y)) = 0).
Then, at each iteration, the next achievable point will be computed by using a merging
(resp. splitting) of the current partition A. The next partition will be a coarser (resp. finer)
partition chosen from Merge(A) (resp. Split(A)), following a greedy approach. Since
we want to achieve good trade-offs between H(gA(Y)) and R∗(gA), we want to decrease
H(g(Y)) (resp. R∗(gA)) as much as possible while increasing the other quantity as less as
possible. We do so by maximizing over B ∈ Merge(A) the negative ratio

R∗(gB)− R∗(gA)
H(gB(Y))− H(gA(Y))

, (30)

resp. minimizing over B ∈ Split(A) the negative ratio

R∗(gB)− R∗(gA)
H(gB(Y))− H(gA(Y))

; (31)

hence the use of slope maximization (resp. minimization) in the algorithm. At the end, the 252

set of achievable points computed by the algorithm is returned. 253

Algorithm 1 Greedy coarsening algorithm

1: A ←
{
{1}, ...{|Y|}

}
// A starts by being the finest partition of Y , i.e. gA = Id.

2: Front ← [A, ndef, ..., ndef] // Will contain the list of the |Y| partitions chosen
during the execution

3:
4: for i ∈ {1, ..., |Y| − 1} do
5: // Maximize over B merging of A the slope between

(
H(gB(Y)), R∗(gB)

)
and(

H(gA(Y)), R∗(gA)
)
.

6: A ← argmaxB∈Merge(A)
R∗(gB)−R∗(gA)

H(gB(Y))−H(gA(Y))
7: Front[i]← A
8:
9: return Front // A =

{
{1, ..., |Y|}

}
at this point

In Figure 3, we show rate pairs associated to all possible partitions of Y : a point 254

corresponds to a partition of Y , its position gives the associated rates
(

H(g(Y)), R∗(g)
)
. 255

Two points are linked if their corresponding partitions A,B satisfy A ∈ Merge(B) or 256

A ∈ Split(B). The obtained graph is the Hasse diagram for the partial order “coarser than”. 257

Note that, due to symmetries in the chosen example, several points associated to different 258

partitions may overlap. In Figure 4 (resp. Figure 5), we give an illustration of the trajectory 259

of the greedy coarsening (resp. refining) algorithm. 260
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Algorithm 2 Greedy refining algorithm

1: A ←
{
{1, ..., |Y|}

}
// A starts by being the coarsest partition of Y , i.e. gA = Id.

2: Front ← [A, ndef, ..., ndef] // Will contain the list of the |Y| partitions chosen
during the execution

3:
4: for i ∈ {1, ..., |Y| − 1} do
5: // Minimize over B splitting of A the slope between

(
H(gA(Y)), R∗(gA)

)
and(

H(gB(Y)), R∗(gB)
)
.

6: A ← argminB∈Split(A)
R∗(gB)−R∗(gA)

H(gB(Y))−H(gA(Y))
7: Front[i]← A
8:
9: return Front // A =

{
{1}, ...{|Y|}

}
at this point

Figures 3, 4, 5 are obtained with the following problem data:

PX,Y = Unif(X ×Y) f (·, ·) =


0 0 0 1
0 0 1 1
1 1 0 0
1 1 1 1

. (32)

p1

p2

p3

p4
p5

Figure 3. An illustration of the rate pairs associated to all partitions of Y . The Pareto front is
the broken line corresponding to the partitions p1 – p2 – p3 – p4 – p5; with p1 =

{
{1, 2, 3, 4}

}
,

p2 =
{
{1, 2, 4}, {3}

}
, p3 =

{
{1, 2}, {3, 4}

}
, p4 =

{
{1, 2}, {3}, {4}

}
, p5 =

{
{1}, {2}, {3}, {4}

}
.

As stated in Theorem 22, the complexity of the coarsening greedy algorithm is poly- 261

nomial, since |Merge(A)| is quadratic in |Y| and the evaluation of R∗(g) can be done in 262

polynomial time. This polynomial complexity property is not satisfied by the refining 263

greedy algorithm, as | Split(A)| is exponential in |Y|. 264
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Figure 4. An illustration of the trajectory of the coarsening greedy algorithm (blue), with the Pareto
front of the achievable rates (dashed red).

Figure 5. An illustration of the trajectory of the refining greedy algorithm (green), with the Pareto
front of the achievable rates (dashed red).

Theorem 22. The coarsening greedy algorithm runs in polynomial time in |Y|. The refining greedy 265

algorithm runs in exponential time in |Y|. 266
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Proof. The number of points evaluated by the coarsening (resp. refining) greedy algorithm 267

is O(|Y|3) (resp. O(2|Y|)): O(|Y|) mergings (resp. splittings) are made; and for each 268

of these mergings, all points from Merge(A) (resp. Split(A)) are evaluated, they are at 269

most (|Y|2 ) = O(|Y|2) (resp. O(2|Y|) in the worst case A =
{
{1, ..., |Y|}

}
). Since the 270

expression R∗(g) = H
(

j(X, g(Y))
∣∣g(Y)) from Theorem 16 allows for an evaluation of 271

R∗(g) in polynomial time in |Y|, the coarsening (resp. refining) greedy algorithm has a 272

polynomial (resp. exponential) time complexity. 273
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Appendix A 281

Appendix A.1 – Proof of Theorem 9 282

Consider the particular case f (X, Y) = X of Figure 1. The optimal rate in this particular 283

case equals the optimal rate R∗(g) in the following auxiliary problem, depicted in Figure 284

A1: (X, g(Y)) as source available at the encoder and to be retrieved by the decoder which 285

knows Y (thus expecting it to retrieve g(Y) in addition to X does not change the optimal 286

rate). 287

Encoder Decoder

Yn

Xn,
(

g(Yt)
)

t≤nXn,
(

g(Yt)
)

t≤n �
R

Figure A1. An auxiliary zero-error Slepian-Wolf problem.

Definition A1 (Characteristic graph for the zero-error Slepian-Wolf problem). Let X ,Y 288

be two finite sets and PY|X be a conditional distribution from ∆(Y)|X |. The characteristic graph 289

associated to PY|X is defined by: 290

- X as set of vertices, 291

- x, x′ ∈ X are adjacent if PY|X(y|x)PY|X(y|x′) > 0 for some y ∈ Y . 292

This auxiliary problem is a particular instance of the zero-error Slepian-Wolf problem;
its optimal rate writes H(G); where H(G) is the complementary graph entropy [17] and G
is the characteristic graph in the Slepian-Wolf problem, defined in Definition A1, for the pair(
(X, g(Y)), Y

)
. The graph G has X ×Z as set of vertices, and (x, z) is adjacent to (x′, z′) if

there exists a side information symbol y ∈ Y such that PX,Y,g(Y)(x, y, z)PX,Y,g(Y)(x′, y, z′) >
0. It can be observed that the vertices (x, z) and (x′, z′) such that z 6= z′ are not adjacent in
G. The graph G is therefore a disjoint union indexed by Z :

G =
⊔Pg(Y)

z∈Z Gz; (A1)

R∗(g) = H(G) = H
(⊔Pg(Y)

z∈Z Gz

)
; (A2)

where for all z ∈ Z , Gz is the characteristic graph defined in Definition A1 for the pair 293

(X′z, Y′z) ∼ PX,Y|g(Y)=z. 294

(⇒) Assume that g and PX,Y satisfy the “pairwise shared side information” condi-
tion. It directly follows that PX|g(Y)=z is full-support for all z ∈ Z . Let z ∈ Z , and let
(x, z), (x′, z) be any two vertices of Gz. By construction, there exists y ∈ g−1(z) such that
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PX,Y(x, y)PX,Y(x′, y) > 0; hence PX,Y,g(Y)(x, y, z)PX,Y,g(Y)(x′, y, z) > 0, and (x, z), (x′, z) are

adjacent in Gz. Each graph Gz is therefore complete, and perfect; the graph G =
⊔Pg(Y)

z∈Z Gz
is a disjoint union of perfect graphs and is therefore also perfect. We have:

R∗(g) = H
(⊔Pg(Y)

z∈Z Gz

)
(A3)

= Hκ

(⊔Pg(Y)
z∈Z Gz

)
(A4)

= ∑
z∈Z

Pg(Y)(z)Hκ(Gz) (A5)

= ∑
z∈Z

Pg(Y)(z)H(PX|g(Y)=z) (A6)

= H(X|g(Y)); (A7)

where (A3) comes from (A2); (A4) and (A5) follow from [18, Corollary 12] used on the 295

perfect graph
⊔Pg(Y)

z∈Z Gz; and (A6) holds as the independent subsets of the complete graph 296

Gz are singletons containing one of its vertices. 297

(⇐) Conversely, assume that PX|g(Y)=z is full-support for all z ∈ Z , and R∗(g) = 298

H(X|g(Y)). 299

Assume, ad absurdum, that at least one of the (Gz)z∈Z is not complete; then there exists
a coloring of that graph that maps two different vertices to the same color. Thus, there
exists z ∈ Z such that

H(Gz) < H(PX|g(Y)=z), (A8)

as PX|g(Y)=z is full-support. We have

H(X|g(Y)) = R∗(g) (A9)

= H
(⊔Pg(Y)

z∈Z Gz

)
(A10)

≤ ∑
z∈Z

Pg(Y)(z)H(Gz) (A11)

< H(X|g(Y)); (A12)

where (A10) comes from (A2), (A11) results from [17, Theorem 2], and (A12) follows 300

from (A8). We arrive at a contradiction, hence all the graphs (Gz)z∈Z are complete: 301

for all z ∈ Z and x, x′ ∈ X , there exists a side information symbol y ∈ Y such that 302

PX,Y,g(Y)(x, y, z)PX,Y,g(Y)(x′, y, z) > 0; hence y ∈ g−1(z), and satisfies PX,Y(x, y)PX,Y(x′, y) > 303

0. The condition “pairwise shared side information” is satisfied by PX,Y, g. 304

Appendix A.2 – Proof of Theorem 14 305

Let us specify the adjacency condition in G[n] under the assumption (13). Two vertices
are adjacent if they satisfy (7) and (8); however (7) is always satisfied under (13). Thus
(xn, zn)(x′n, zn) are adjacent if zn = z′n and

∃yn ∈ g−1(zn), ∃t ≤ n, f (xt, yt) 6= f (x′t, yt). (A13)

It can be observed that the condition (A13) is the adjacency condition of an OR product of
adequate graphs; more precisely,

G[n] =
⊔

zn∈Zn

∨
t≤n

G f
zt . (A14)
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Although G[n] cannot be expressed as an n-th OR power, we will show that its chromatic 306

entropy asymptotically coincide with that of an appropriate OR power: we now search for 307

an asymptotic equivalent of Hχ(G[n]). 308

Definition A2. Sn is the set of colorings of G[n] that can be written as (xn, zn) 7→ (Tzn , c̃(xn, zn)) 309

for some mapping c̃ : X n ×Zn → C̃; where Tzn denotes the type of zn. 310

In the following, we define Zn .
=
(

g(Yt)
)

t≤n. Now we need several Lemmas. Lemma 311

A3 states that the optimal coloring c(xn, zn) of G[n] has the type of zn as a prefix at a 312

negligible rate cost. Lemma A6 gives an asymptotic formula for the minimal entropy of the 313

colorings from Sn. 314

Lemma A3. The following asymptotic comparison holds:

Hχ(G[n]) = inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) + O(log n). (A15)

Definition A4 (Isomorphic probabilistic graphs). Let G1 = (V1, E1, PV1) and G2 = (V2, E2, PV2) 315

be two probabilistic graphs. We say that G1 is isomorphic to G2 (denoted by G1 ' G2) if there exists 316

an isomorphism between them, i.e. a bijection ψ : V1 → V2 such that: 317

- For all v1, v′1 ∈ V1, v1v′1 ∈ E1 ⇐⇒ ψ(v1)ψ(v′1) ∈ E2, 318

- For all v1 ∈ V1, PV1(v1) = PV2

(
ψ(v1)

)
. 319

Lemma A5. Let B be a finite set, let PB ∈ ∆(B) and let (Gb)b∈B be a family of isomorphic 320

probabilistic graphs, then Hχ

(⊔PB
b′∈B Gb′

)
= Hχ(Gb) for all b ∈ B. 321

Lemma A6. The following asymptotic comparison holds:

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) = n ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ) + o(n). (A16)

The proof of Lemma A3 is given in Appendix A.3, its keypoint is the asymptoti- 322

cally negligible entropy of the prefix TZn of the colorings of Sn. The proof of Lemma 323

A5 is given in Appendix A.5. The proof of Lemma A6 is given in Appendix A.4, and 324

relies on the decomposition G[n] =
⊔

Qn∈∆n(Z) GQn
[n] , where GQn

[n] is the subgraph induced 325

by the vertices (xn, zn) such that the type of zn is Qn. We show that GQn
[n] is a disjoint 326

union of isomorphic graphs whose chromatic entropy is given by Lemma A5 and (17): 327∣∣Hχ(G
Qn
[n] )− n ∑z∈Z Qn(z)Hκ(G

f
z )
∣∣ ≤ nεn. Finally, uniform convergence arguments enable 328

us to conclude. 329

330

Now let us combine these results together:

R∗(g) =
1
n

Hχ(G[n]) + o(1) (A17)

=
1
n

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) + o(1) (A18)

= ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ) + o(1), (A19)

where (A17) comes from Theorem 7, (A18) comes from Lemma A3, and (A19) comes from 331

Lemma A6. The proof of Theorem 14 is complete. 332
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Appendix A.3 – Proof of Lemma A3 333

Let c∗n be the coloring of G[n] with minimal entropy. Then we have:

Hχ(G[n]) = inf
c coloring of G[n]

H(c(Xn, Zn)) (A20)

≤ inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) (A21)

= inf
c:(xn ,zn)

7→(Tzn ,c̃(xn ,zn))

H(TZn , c̃(Xn, Zn)) (A22)

≤ H(TZn) + H(c∗n(Xn, Zn)) (A23)

= Hχ(G[n]) + O(log n), (A24)

where (A22) comes from Definition A2; (A23) comes from the subadditivity of the entropy, 334

and the fact that (xn, zn) 7→ (Tzn , c∗n(xn, zn)) is a coloring of G[n] that belongs to Sn; and 335

(A24) comes from H(TZn) = O(log n), as log |∆n(Z)| = O(log n). The desired equality 336

comes from the bounds Hχ(G[n]) and Hχ(G[n]) + O(log n) on (A21). 337

Appendix A.4 – Proof of Lemma A6 338

For all Qn ∈ ∆n(Z), let

GQn
[n] =

⊔
zn∈Zn

Tzn=Qn

∨
t≤n

G f
zt , (A25)

with the probability distribution induced by Pn
X,Z. This graph is formed of the connected

components of G[n] whose corresponding zn has type Qn. We need to find an equivalent

for Hχ(G
Qn
[n] ). Since GQn

[n] is a disjoint union of isomorphic graphs, we can use Lemma A5:

Hχ(G
Qn
[n] ) = Hχ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
. (A26)

On one hand,

Hχ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
≥ Hκ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
(A27)

= n ∑
z∈Z

Qn(z)Hκ(G
f
z ), (A28)

where (A27) comes from Hκ ≤ Hχ [14, Lemma 14], (A28) comes from (17). On the other
hand,

Hχ

( ∨
z∈Z

(G f
z )
∨nQn(z)

)
≤ ∑

z∈Z
Qn(z)Hχ((G

f
z )
∨n) (A29)

= n ∑
z∈Z

Qn(z)Hκ(G
f
z ) + nεn, (A30)

where εn
.
= maxz

1
n Hχ((G

f
z )
∨n)− Hκ(G

f
z ) is a quantity that does not depend on Qn and

satisfies limn→∞ εn = 0; (A29) comes from the subadditivity of Hχ. Combining equations
(A26), (A28) and (A30) yields∣∣∣∣∣Hχ(G

Qn
[n] )− n ∑

z∈Z
Qn(z)Hκ(G

f
z )

∣∣∣∣∣ ≤ nεn. (A31)
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Now, we have an equivalent for Hχ(G
Qn
[n] ).

inf
c coloring of G[n]

s.t. c∈Sn

H(c(Xn, Zn)) (A32)

= inf
c:(xn ,zn)

7→(Tzn ,c̃(xn ,zn))

H(c̃(Xn, Zn)|TZn) + H(TZn) (A33)

= inf
c:(xn ,zn)

7→(Tzn ,c̃(xn ,zn))

∑
Qn∈∆n(Z)

PTZn (Qn)H(c̃(Xn, Zn)|TZn = Qn) + O(log n) (A34)

= ∑
Qn∈∆n(Z)

PTZn (Qn) inf
cQn coloring of GQn

[n]

H(cQn(Xn, Zn)|TZn = Qn) + O(log n) (A35)

= ∑
Qn∈∆n(Z)

PTZn (Qn)Hχ(G
Qn
[n] ) + O(log n) (A36)

= ∑
Qn∈∆n(Z)

PTZn (Qn)

(
n ∑

z∈Z
Qn(z)Hκ(G

f
z )± nεn

)
+ O(log n) (A37)

= n ∑
Qn∈∆n(Z)

2−nD(Qn‖Pg(Y))+o(n)

(
∑

z∈Z
Qn(z)Hκ(G

f
z )

)
± nεn + O(log n) (A38)

= n ∑
z∈Z

Pg(Y)(z)Hκ(G
f
z ) + o(n), (A39)

where (A34) comes from H(TZn) = O(log n), as log |∆n(Z)| = O(log n); (A35) follows 339

from the fact that the entropy of c̃ can be minimized independently on each GQn
[n] ; (A36) 340

follows from the definition of GQn
[n] ; (A37) comes from (A31); (A38) comes from [19, Lemma 341

2.6] and the fact that εn does not depend on Qn. 342

Appendix A.5 – Proof of Lemma A5 343

Let (G̃i)i≤N be isomorphic probabilistic graphs and G such that G =
⊔

i G̃i. Let
c∗1 : V1 → C be the coloring of G̃1 with minimal entropy, and let c∗ be the coloring of G
defined by

c∗ : V → C (A40)

v 7→ c∗1 ◦ ψiv→1(v), (A41)

where iv is the unique integer such that v ∈ Viv , and ψiv→1 : Viv → V1 is an isomorphism
between G̃iv and G̃1. In other words c∗ applies the same coloring pattern c∗1 on each
connected component of G. We have

Hχ(G) ≤ H(c∗(V)) (A42)

= h
(

∑j≤N PiV (j)Pc∗(Vj)

)
(A43)

= h
(

∑j≤N PiV (j)Pc∗1(V1)

)
(A44)

= H(c∗1(V1)) (A45)

= Hχ(G̃1), (A46)

where h denotes the entropy of a distribution; (A44) comes from the definition of c∗; and 344

(A46) comes from the definition of c∗1 . 345
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Now let us prove the upper bound on Hχ(G̃1). Let c be a coloring of G, and let
i∗ .

= argmini H(c(Vi)) (i.e. i∗ is the index of the connected component for which the
entropy of the coloring induced by c is minimal). We have

H(c(V)) = h
(

∑j≤N PiV (j)Pc(Vj)

)
(A47)

≥ ∑j≤N PiV (j)h(Pc(Vj)
) (A48)

≥ ∑j≤N PiV (j)H(c(Vi∗)) (A49)

≥ Hχ(G̃i∗), (A50)

= Hχ(G̃1), (A51)

where (A48) follows from the concavity of h; (A49) follows from the definition of i∗; (A50)
comes from the fact that c induces a coloring of G̃i∗ ; (A51) comes from the fact that G̃1 and
G̃i∗ are isomorphic. Now, we can combine the bounds (A46) and (A51): for all coloring c of
G we have

Hχ(G) ≤ Hχ(G̃1) ≤ H(c(V)), (A52)

which yields the desired equality when taking the infimum over c. 346

References 347

1. Orlitsky, A.; Roche, J.R. Coding for computing. In Proceedings of the Proceedings of IEEE 36th Annual Foundations of Computer 348

Science. IEEE, 1995, pp. 502–511. 349

2. Duan, L.; Liu, J.; Yang, W.; Huang, T.; Gao, W. Video coding for machines: A paradigm of collaborative compression and 350

intelligent analytics. IEEE Transactions on Image Processing 2020, 29, 8680–8695. 351

3. Gao, W.; Liu, S.; Xu, X.; Rafie, M.; Zhang, Y.; Curcio, I. Recent standard development activities on video coding for machines. 352

arXiv preprint arXiv:2105.12653 2021. 353

4. Yamamoto, H. Wyner-ziv theory for a general function of the correlated sources (corresp.). IEEE Transactions on Information Theory 354

1982, 28, 803–807. 355

5. Shayevitz, O. Distributed computing and the graph entropy region. IEEE transactions on information theory 2014, 60, 3435–3449. 356

6. Krithivasan, D.; Pradhan, S.S. Distributed source coding using abelian group codes: A new achievable rate-distortion region. 357

IEEE Transactions on Information Theory 2011, 57. 358

7. Basu, S.; Seo, D.; Varshney, L.R. Hypergraph-based Coding Schemes for Two Source Coding Problems under Maximal Distortion. 359

In Proceedings of the IEEE International Symposium on Information Theory (ISIT), 2020. 360

8. Malak, D.; Médard, M. Hyper Binning for Distributed Function Coding. In Proceedings of the 2020 IEEE 21st International 361

Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2020, pp. 1–5. 362

9. Feizi, S.; Médard, M. On network functional compression. IEEE transactions on information theory 2014, 60, 5387–5401. 363

10. Sefidgaran, M.; Tchamkerten, A. Distributed function computation over a rooted directed tree. IEEE Transactions on Information 364

Theory 2016, 62, 7135–7152. 365

11. Ravi, J.; Dey, B.K. Function Computation Through a Bidirectional Relay. IEEE Transactions on Information Theory 2018, 65, 902–916. 366

12. Guang, X.; Yeung, R.W.; Yang, S.; Li, C. Improved upper bound on the network function computing capacity. IEEE Transactions 367

on Information Theory 2019, 65, 3790–3811. 368

13. Charpenay, N.; Le Treust, M.; Roumy, A. Optimal Zero-Error Coding for Computing under Pairwise Shared Side Information. In 369

Proceedings of the 2023 IEEE Information Theory Workshop (ITW). IEEE, 2023, pp. 97–101. 370

14. Alon, N.; Orlitsky, A. Source coding and graph entropies. IEEE Transactions on Information Theory 1996, 42, 1329–1339. 371

15. Witsenhausen, H. The zero-error side information problem and chromatic numbers (corresp.). IEEE Transactions on Information 372

Theory 1976, 22, 592–593. 373

16. Körner, J. Coding of an information source having ambiguous alphabet and the entropy of graphs. In Proceedings of the 6th 374

Prague conference on information theory, 1973, pp. 411–425. 375

17. Tuncel, E.; Nayak, J.; Koulgi, P.; Rose, K. On complementary graph entropy. IEEE transactions on information theory 2009, 376

55, 2537–2546. 377

18. Csiszár, I.; Körner, J.; Lovász, L.; Marton, K.; Simonyi, G. Entropy splitting for antiblocking corners and perfect graphs. 378

Combinatorica 1990, 10, 27–40. 379

19. Csiszár, I.; Körner, J. Information theory: coding theorems for discrete memoryless systems; Cambridge University Press, 2011. 380



Version August 27, 2024 submitted to Entropy 18 of 18

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 381

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 382

people or property resulting from any ideas, methods, instructions or products referred to in the content. 383


	Introduction
	Zero-error coding for computing
	Encoder's side information design

	Formal presentation of the problem
	Theoretic results
	General case
	Pairwise shared side information
	Example

	Optimization of the encoder side information
	Preliminary results on partitions
	Greedy algorithms based on partition coarsening and refining

	
	– Proof of Theorem 9
	– Proof of Theorem 14
	– Proof of Lemma A3
	– Proof of Lemma A6
	– Proof of Lemma A5

	References

