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Abstract—We investigate the mismatched distortion-rate prob-
lem formulated by Lapidoth in 1997. The single-letter character-
ization of the distortion-rate tradeoff is an open problem. When
the rate is large enough, the mismatched distortion-rate problem
is deeply related to the mechanism design problem formulated by
Jackson and Sonnenschein in 2007. Inspired by this solution, we
formulate a new converse bound that matches the achievability
bound in four special cases: 1) when the rate is large enough,
2) when the source is binary and uniform and the decoder
output is binary, 3) when the encoder distortion measure does
not depend on the source symbols, 4) when the sum of the two
distortion measures is zero. An important feature of the model
is the stochastic post-processing of the codewords. By carefully
selecting the randomness of the decoding function, it is optimal
for the encoder to correctly transmit the source.

I. INTRODUCTION

Inspired by decentralized decision problems, we investi-
gate the mismatched distortion-rate problem formulated by
Lapidoth [1], in which the encoder and the decoder optimize
distinct distortion measures d0 and d1. A single-letter char-
acterization of the optimal distortion-rate trade-off is missing.
This problem can be viewed as a Stackelberg game [2] in
which the codebook and the decoding function are known
by the encoder [3]. Recent achievability bounds have been
obtained by Kanabar and Scarlett [4], by using superposition
coding and expurgated parallel coding. In [5], the authors
pointed out interesting analogies between the mismatched
rate-distortion problem and the mismatched channel coding
problem, for which converse bounds are provided in [6], [7].

The mismatched distortion-rate problem is deeply related to
the mechanism design problem of Jackson and Sonnenschein
[8], when the rate is large enough. Before the transmission
starts, the decoder commits to a decoding function, in which
the number of codewords is unrestricted. By knowing this
decoding function, the encoder matches each source realiza-
tion to the optimal codeword, evaluated with respect to its
distortion measure d0.

Inspired by the solution of [8], we formulate a new converse
bound that matches the achievability bound inspired by [1],
in four special cases: 1) when the rate is large enough, 2)
when the source is binary and uniform and the decoder output
is binary, 3) when the encoder distortion measure does not
depend on the source symbols, 4) when the sum of the two
distortion measures is always zero.
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Fig. 1. The mismatched distortion-rate problem.

The problem under study is depicted in Fig. 1, where X ,
X0, X1, denote the finite sets of symbols of source, codeword
and decoder output. The encoder and decoder optimize two
different distortion measures

d0 : X × X1 → R, d1 : X × X1 → R, (1)

that are evaluated with respect to the source symbol x ∈ X
and to the decoder ouput symbol x1 ∈ X1.

The main difference between our model and the models
of Lapidoth [1] and of Scarlett et al. [5, Chap. 3] concerns
the distortion measures. In [1], the distortion measure d0 is
evaluated with respect to the codeword symbol x0 ∈ X0, rather
than to the decoder output symbol x1 ∈ X1, that is

d0 : X × X0 → R, d1 : X × X1 → R. (2)

In [5, Chap. 3], both distortion measures d0 and d1 are defined
with respect to the source symbol x ∈ X and to the codeword
symbol x0 ∈ X0,

d0 : X × X0 → R, d1 : X × X0 → R. (3)

As discussed on [5, pp. 240], the trivial decoder does not allow
post-processing of the codeword in order to generate the final
estimate.

We think that the trivial decoder imposes a restriction on the
model that makes the solution more complex to characterize.
The solution of Jackson and Sonnenschein [8] requires post-
processing of the codewords. In addition, this post-processing
must be stochastic. By carefully selecting the randomness of
the decoding function, it is optimal for the encoder to correctly
transmit the source.

Notations. We denote by conv(Y), the convex hull of Y .
The support of pX ∈ P(X ) is denoted by supp pX = {x ∈
X , pX(x) > 0}. We denote by 1X1|X0

∈ P(X1)|X0| the
conditional distribution where 1X1|X0

(x1|x0) = 1 if x1 = x0,
and 0 otherwise.



II. SYSTEM MODEL

A memoryless source takes values in the finite set X ,
according to the probability distribution pX ∈ P(X ). The en-
coder and decoder optimize two different distortion measures

d0 : X × X1 → R, d1 : X × X1 → R, (4)

where X1 denotes the finite set of decoder output symbols.

Definition 1 A codebook of rate R ≥ 0 and blocklength
n ∈ N? over the finite set X0 s.t. |X0| ≥ |X |, is defined by

C =
{
xn0 (1), . . . , xn0 (2nR)

}
⊆ Xn0 . (5)

The stochastic decoding function is defined by

ψ : C → Xn1 . (6)

Given a codebook C and a stochastic decoding function ψ, the
stochastic mismatched encoding function,

φ : Xn → C, (7)

satisfies for all xn ∈ Xn,

suppφ(·|xn)⊆ argmin
m∈{1,...,2nR}

∑
xn1

ψ(xn1 |m)

(
1

n

n∑
t=1

d0
(
xt, x1,t

))
.

(8)

A(C, ψ) denotes the set of mismatched encoding functions.

The codebook C and the encoding and decoding functions
φ, ψ induce the expected long-run distortion∑
xn,m,xn1

p⊗nX (xn)φ(m|xn)ψ(xn1 |m)

(
1

n

n∑
t=1

d0
(
Xt, X1,t

))
.

Definition 2 The pair (R,D1) is achievable if for all ε > 0,
there exists n̄ ∈ N?, for all n ≥ n̄, there exists a codebook C
and a decoding function ψ, such that for all φ ∈ A(C, ψ),

EC,φ,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
≤ D1 + ε. (9)

The mismatched distortion-rate function D1(R) is the infi-
mum of d1 such that (R, d1) is achievable.

In the above definition, we adopt the pessimistic tie-
breaking rule. In [1] and [5], the definition of achievable pair
(R,D1) relies on the convergence in probability. Since X and
X1 are finite sets, this is equivalent to the convergence in
expectation of (9), due to Markov’s inequality.

Lemma 1 For n ∈ N? and R ≥ 0, we denote

Dn1 (R) = inf
C,ψ

max
φ∈A(C,ψ)

EC,φ,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
. (10)

We have

D1(R) = inf
n∈N?

Dn1 (R) = lim
n→+∞

Dn1 (R). (11)

The proof of Lemma 1 is stated in App. A.

We adapt the achievability result of [1], see also [5], to this
model in which both distortion measures in (4) are evaluated
with respect to the decoder output symbol x1 ∈ X1.

Definition 3 (Achievability bound)

D?1(R) = inf
pX0

,pX1|X0

max
fXX0

∈F(pX0
,pX1|X0

,R)

EfXX0
pX1|X0

[
d1(X,X1)

]
,

(12)

where

F(pX0
, pX1|X0

,R) = argmin
fXX0

∈D(pX0
,R)

EfXX0
pX1|X0

[
d0(X,X1)

]
,

(13)

D(pX0
,R) =

{
fXX0

∈ P(X × X0), fX = pX ,

fX0 = pX0 , I(X;X0) ≤ R
}
.

(14)

The infimum in (12) may not be achieved since the function

(pX0
, pX1|X0

) 7→ max
fXX0

∈F(pX0
,pX1|X0

,R)

EfXX0
pX1|X0

[
d1(X,X1)

]
,

(15)

may not be continuous.
Now, we provide a converse bound inspired by [8].

Definition 4 (Converse bound)

D̃1(R) = min
pX1|X∈G(R)

EpX1|X

[
d1(X,X1)

]
, (16)

where G(R) is the set of distributions pX1|X that satisfy:
• Information constraint:

I(X;X1) ≤ R. (17)

• Mismatched encoding constraint: For each reporting rule of
the encoder fX′|X ∈ H that preserve the source distribution∑

x,x′,x1

pX(x)fX′|X(x′|x)pX1|X(x1|x′)d0(x, x1)

≥
∑
x,x1

pX(x)pX1|X(x1|x)d0(x, x1), (18)

H =
{
fX′|X ∈ P(X )|X |, ∀x′ ∈ X ,∑
x

pX(x)fX′|X(x′|x) = pX(x′)
}
. (19)

• Tie-breaking rule: ∀fX′|X ∈ H satisfying (18) with equality,∑
x,x′,x1

pX(x)fX′|X(x′|x)pX1|X(x1|x′)d1(x, x1)

≤
∑
x,x1

pX(x)pX1|X(x1|x)d1(x, x1). (20)

The set G(R) is compact convex since it is the intersection of
compact convex sets, thus the infimum in (16) is a minimum.

Theorem 1 The mismatched distortion-rate function satisfies

D̃1(R) ≤ D1(R) ≤ D?1(R). (21)



III. ACHIEVABILITY PROOF OF THEOREM 1

Fix pX1|X0
and define the auxiliary distortion measures

d̃0(x, x0) =
∑
x1

pX1|X0
(x1|x0)d0(x, x1), (22)

d̃1(x, x0) =
∑
x1

pX1|X0
(x1|x0)d1(x, x1). (23)

This implies that the set of distributions F̃(pX0 ,R) defined in
[5, (4.6)] coincides with F(pX0

, pX1|X0
,R) defined in (24).

F̃(pX0 ,R) = argmin
fXX0

∈D(pX0
,R)

EfXX0

[
d̃0(X,X0)

]
(24)

=F(pX0
, pX1|X0

,R). (25)

According to [5, Theorem 4.2] derived from [1],

D1(R) ≤ inf
pX0

max
fXX0

∈F̃(pX0
,R)

EfXX0

[
d̃1(X,X1)

]
, (26)

= inf
pX0

max
fXX0

∈F(pX0
,pX1|X0

,R)

EfXX0
pX1|X0

[
d1(X,X1)

]
. (27)

Equations (26) and (27) are valid for all conditional distribu-
tion pX1|X0

. Therefore D1(R) ≤ D?1(R).

IV. CONVERSE PROOF OF THEOREM 1

The main idea is to adapt the “revelation principle” of [8]:
the decoder implements pX1|X′ ◦ fX′|X when a reporting rule
fX′|X ∈ H is optimal for the encoder.

We consider a blocklength n ∈ N?, a codebook C, a
decoding function ψ, and an encoding function φ ∈ A(C, ψ)
that achieves the maximum in

max
φ′∈A(C,ψ)

EC,φ′,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
. (28)

We define the average distribution

qXX1
(x, x1) =

1

n

n∑
t=1

pXtX1,t
(x, x1), ∀(x, x1), (29)

where pXtX1,t denotes the distribution of (Xt, X1,t) induced
by p⊗nX (xn)φ(m|xn)ψ(xn1 |m). Note that qX = pXt = pX and

EC,φ,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
= EqX1|X

[
d1(X,X1)

]
. (30)

Lemma 2 The conditional distribution qX1|X ∈ G(R).

Proof. [Lemma 2] Information constraint.

IqX1|X
(X;X1)

≤ 1

n

n∑
t=1

IptXX1
(Xt;X1,t) ≤

1

n

n∑
t=1

I(Xt;X
n
1 , X

t−1) (31)

=
1

n

n∑
t=1

I(Xt;X
n
1 |Xt−1) =

1

n
I(Xn;Xn

1 ) (32)

≤ 1

n
I(Xn;Xn

0 ) ≤ R. (33)

Equation (31) comes from the convexity of I(X;X1) in qX1|X
for fixed pX , (32) comes from the i.i.d. property of the source,
(33) comes from the Markov chain Xn −
− Xn

0 −
− Xn
1 and

the codebook cardinality H(Xn
0 ) ≤ log |C| = nR.

Mismatched encoding constraint. For all fX′|X ∈ H, we
consider the encoding function

φ̃(m|xn) =
∑
x′n

f⊗nX′|X(x′n|xn)φ(m|x′n). (34)

As in (29), the encoding φ̃(m|xn) induces a sequence of
marginal distributions (p̃XtX′tX1,t

)t={1,...,n}, and an average
distribution q̃XX′X1 defined, for all (x, x′, x1), by

q̃XX′X1
(x, x′, x1) =

1

n

n∑
t=1

p̃XtX0,tX1,t
(x, x′, x1) (35)

=pX(x)fX′|X(x′|x)qX1|X(x1|x′). (36)

Equation (36) holds since (Xn, X ′n) are generated i.i.d.
according to p⊗nX f⊗nX′|X , and both marginal on X and X ′ are
equal, i.e.

∑
x pX(x)fX′|X(x′|x) = pX(x′) for all x′ ∈ X .

Therefore, φ̃(m|xn) induces the expected distortion∑
x,x′,x1

pX(x)fX′|X(x′|x)qX1|X(x1|x′)d0(x, x1) (37)

=EC,φ̃,ψ

[
1

n

n∑
t=1

d0
(
Xt, X1,t

)]
≥ EC,φ,ψ

[
1

n

n∑
t=1

d0
(
Xt, X1,t

)]
(38)

=
∑
x,x1

pX(x)qX1|X(x1|x)d0(x, x1). (39)

Equation (38) comes from the hypothesis φ ∈ A(C, ψ).
Tie-breaking rule. Let assume that fX′|X ∈ H satisfies (18)

with equality. The encoding function φ̃(m|xn) constructed in
(34) satisfies (38) with equality, thus φ̃ ∈ A(C, ψ). Moreover,∑
x,x′,x1

pX(x)fX′|X(x′|x)qX1|X(x1|x′)d1(x, x1) (40)

=EC,φ̃,ψ

[
1

n

n∑
t=1

d1
(
Xt, X1,t

)]
≤ EC,φ,ψ

[
1

n

n∑
t=1

d1
(
Xt, X1,t

)]
(41)

=
∑
x,x1

pX(x)qX1|X(x1|x)d1(x, x1). (42)

Equation (41) holds since φ achieves the maximum in (28).
This concludes the proof of Lemma 2.

Since qX1|X ∈ G(R), we have

EC,φ,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
= EqX1|X

[
d1(X,X1)

]
(43)

≥ min
pX1|X∈G(R)

EpX1|X

[
d1(X,X1)

]
= D̃1(R). (44)



Equation (44) holds for all n ∈ N?, C, ψ, and φ ∈ A(C, ψ)
that achieves the maximum in (28). We conclude that

D1(R) = inf
n∈N?

Dn1 (R) (45)

= inf
n∈N?

inf
C,ψ

max
φ∈A(C,ψ)

EC,φ,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
(46)

≥ min
pX1|X∈G(R)

EpX1|X

[
d1(X,X1)

]
= D̃1(R). (47)

V. CASES WHERE THE TWO BOUNDS MATCH

Although we do not know whether D1(R) = D̃1(R) holds
in general, we present four cases where these bounds coincide.

A. Large Information Rate
When R ≥ log2 |X |, our model is similar to the “mechanism

design problem” under study in [8], where D̃1(R) = D?1(R).

Theorem 2 If R ≥ H(X), then D̃1(R) = D1(R) = D?1(R).

Proof. [Theorem 2] The idea is to take the optimal distribution
p?X1|X ∈ G(R) for (16) and to identify X0 = X . It is optimal
for the encoder to reveal truthfully the source sequence.

We consider the distributions fXX0
= pX1X0|X

and pX0X1
= pXp

?
X1|X , and we show that fXX0

∈
F(pX0

, pX1|X0
,R) achieves the maximum in (15).

The information constraint is satisfied since I(X;X0) =
H(X) ≤ R. As a consequence, there is a one-to-one corre-
spondence between D(pX0

,R) and H. According to (18),∑
x,x0,x1

pX(x)1X0|X(x0|x)p?X1|X(x1|x0)d0(x, x1) (48)

=
∑
x,x1

pX(x)p?X1|X(x1|x)d0(x, x1) (49)

= min
f̂X′|X∈H

Ef̂X′|Xp?X1|X′

[
d0(X,X1)

]
(50)

= min
f ′XX0

∈D(pX0
,R)

Ef ′XX0
pX1|X0

[
d0(X,X1)

]
. (51)

Hence fXX0
= pX1X0|X ∈ F(pX0

, pX1|X0
,R). According to

(20), we now show that fXX0
achieves the maximum in (15).

By contradiction, suppose f ′XX0
∈ F(pX0

, pX1|X0
,R) sat-

isfies

Ef ′XX0
pX1|X0

[
d1(X,X1)

]
> EfXX0

pX1|X0

[
d1(X,X1)

]
.

By identification of X0 with X ′, the distribution f̃X′|X =
f ′X0|X belongs to H, satisfies (18) with equality and moreover

Ef̃X′|Xp?X1|X

[
d1(X,X1)

]
> Ep?

X1|X

[
d1(X,X1)

]
, (52)

which contradict p?X1|X ∈ G(R). We conclude that

D̃1(R) = Ep?
X1|X

[
d1(X,X1)

]
(53)

= max
fXX0

∈F(pX0
,pX1|X0

,R)

EfXX0
pX1|X0

[
d1(X,X1)

]
≥ D?1(R).

(54)

B. Binary Uniform Source and Binary Decoder Output

Theorem 3 Suppose that |X | = |X1| = 2 and pX = (1
2 ,

1
2 ).

Then D̃1(R) = D1(R) = D?1(R).

Proof. [Theorem 3] We consider X = X1 = {0, 1} and pX =
( 1
2 ,

1
2 ). Without loss of generality, we consider p?X1|X ∈ G(R)

optimal in (16) that satisfies Ip?
X1|X

(X;X1) = R, see Fig. with
(µ, ν) ∈ [0, 1]2. The idea is to identify X0 = X1. It is optimal
that the encoder tells the decoder which symbol to output.

•
•

•

1

0
X

1

0

X11− µ
µ

ν

1− ν
1
2

1
2

q

1− q

We define fXX0(x, x0) = pX(x)p?X1|X(x0|x) for all
(x, x0), with marginal fX0

= p?X1
= (1 − q, q). Note that

IfXX0
(X;X0) = Ip?

X1|X
(X;X1) = R.

Lemma 3 Let σX′|X be the permutation of the binary state.

D(fX0
,R) = conv

{
{pXp?X1|X} ∪ {pXσX′|Xp

?
X1|X}

}
(55)

= conv

{(
1−µ
2

µ
2

ν
2

1−ν
2

)
,

(
ν
2

1−ν
2

1−µ
2

µ
2

)}
. (56)

The proof of Lemma 3 is stated in App. B.
Since both distributions pXp?X1|X and pXσX′|Xp

?
X1|X be-

longs to the set H, by Lemma 3 we have

D(fX0
,R) ⊆ (57)

J =
{∑

x′

pXfX′|X(x′|·)p?X1|X′(·|x
′), fX′|X ∈ H

}
.

Moreover, the Markov chain X−
−X ′−
−X1 = X0 implies
that all distribution pXX0

∈ J satisfy IpXX0
(X;X0) ≥ R =

IfXX0
(X;X0) and has the same marginal distribution pX0

=
fX0 . Thus J ⊆ D(fX0 ,R).

Since p?X1|X ∈ G(R) and D(fX0
,R) = J , the distribution

fXX0 = pXp
?
X1|X belongs to F(pX0 , pX1|X0

,R) and more-
over it achieves the maximum in

max
fXX0

∈F(pX0
,pX1|X0

,R)

E
fXX0

1X1|X0

[
d1(X,X1)

]
= D̃1(R) ≥ D?1(R).

C. Distortion Measure d0 Only Depends on the Symbols X1

Following the “transparent motives” terminology of [9], we
consider that the encoder distortion measure d0 : X ×X1 → R
does not depends on the source symbol x ∈ X .

∀(x, x′) ∈ X 2, ∀x1 ∈ X1, d0(x, x1) = d0(x′, x1). (58)

Theorem 4 Suppose (58), then D̃1(R) = D1(R) = D?1(R).

Proof. [Theorem 4] When (58) is satisfied, the encoder distor-
tion E[d0(X,X1)] only depends on the marginal distribution



pX1
. Because of the tie-breaking rule, the encoder may select

the worst encoding function for E[d1(X,X1)], for a given pX1
.

We consider a distribution pX1|X ∈ G(R). Equation (58)
implies that (18) is satisfied with equality for all fX′|X ∈ H.
The tie-breaking rule (20) reformulates as∑

x,x′,x1

pX(x)fX′|X(x′|x)pX1|X(x1|x′)d1(x, x1)

≤
∑
x,x1

pX(x)pX1|X(x1|x)d1(x, x1), ∀fX′|X ∈ H. (59)

Therefore, the solution reformulates

D̃1(R) = min
pX1|X

,

I(X;X1)≤R

max
fX′|X∈H

EfX′|XpX1|X′

[
d1(X,X1)

]
(60)

= min
pX1
∈P(X1)

EpXpX1

[
d1(X,X1)

]
. (61)

Similarly, we can show that F(pXp
?
X1|X ,R) = D(p?X1

,R).

D?1(R) = min
pX1
∈P(X1)

EpXpX1

[
d1(X,X1)

]
= D̃1(R). (62)

D. Zero-Sum Distortion Measures

In this section, we consider that the distortion measures d0
and d1 satisfy the zero-sum property.

∀(x, x1) ∈ X × X1, d0(x, x1) + d1(x, x1) = 0. (63)

Theorem 5 Suppose (63), then D̃1(R) = D1(R) = D?1(R).

Proof. [Theorem 5] We consider a distribution pX1|X ∈ G(R).
Since d0(x, x1) = −d1(x, x1), the mismatched encoding
constraint (18) is equivalent to the tie-breaking rule (59). Also,

F(pX0
, pX1|X0

,R) = argmax
fXX0

∈D(pX0
,R)

EfXX0
pX1|X0

[
d1(X,X1)

]
.

(64)

Similarly to (60)-(62), both solutions reformulate as

D̃1(R) = min
pX1
∈P(X1)

EpXpX1

[
d1(X,X1)

]
= D?1(R). (65)

APPENDIX A
PROOF OF LEMMA 1

According to Def. 2, (R,D1) is achievable if for all ε > 0,

inf
n∈N?

inf
C,ψ

max
φ∈A(C,ψ)

EC,φ,ψ
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
≤ D1 + ε.

Therefore, D1(R) = infn∈N? D
n
1 (R).

Lemma 4 The sequence (n · Dn1 (R))n∈N? is subadditive.

Fekete’s Lemma [10] for subadditive sequence concludes that

inf
n∈N?

Dn1 (R) = lim
n→+∞

Dn1 (R). (66)

Proof. [Lemma 4] For all ε > 0, n ∈ N? and m ∈ N?, we
consider a pairs of codebook of rate R ≥ 0 and decoding
functions (Cn, ψn), (Cm, ψm) and a pair of encoding func-
tions φn ∈ A(Cn, ψn), φm ∈ A(Cm, ψm) that achieve the
maximum in

max
φ′n∈

A(Cn,ψn)

ECn,φ′n,ψn
[

1

n

n∑
t=1

d1
(
Xt, X1,t

)]
≤ Dn1 (R) + ε,

max
φ′m∈

A(Cm,ψm)

ECm,φ′m,ψm
[

1

m

m∑
t=1

d1
(
Xt, X1,t

)]
≤ Dm1 (R) + ε.

We construct a codebook C̃ = Cn × Cm composed of
sequences of length n+m defined by

C̃ =
{

(xn0 (1), xm0 (1)), . . . , (xn0 (1), xm0 (2mR)), . . . ,

(xn0 (2nR), xm0 (1), . . . , (xn0 (2nR), xm0 (2mR))
}
⊆ Xn+m0 .

We concatenate the encoding φ̃ = (φn, φm) and decoding
functions ψ̃ = (ψn, ψm). Since the blocks of n and m symbols
are treated independently, the concatenated encoding function
satisfies φ̃ ∈ A(C̃, ψ̃) and achieves the maximum in

max
φ̃∈A(C̃,ψ̃)

EC̃,φ̃,ψ̃

[
1

n+m

n+m∑
t=1

d1
(
Xt, X1,t

)]
(67)

=(n+m)ε+ n · Dn1 (R) +m · Dm1 (R) (68)

≥ (n+m) · Dn+m1 (R). (69)

The subadditivity property of (n · Dn1 (R))n∈N? holds for all
(m,n) since equations (67)-(69) are valid for all ε > 0,

APPENDIX B
PROOF OF LEMMA 3

Recall that we consider the distributions pX and p?X1|X ,
we identify X0 = X1 and we define fXX0

(x, x0) =
pX(x)p?X1|X(x0|x) for all (x, x0), with marginal fX0 =
p?X1

= (1− q, q), with IfXX0
(X;X0) = Ip?

X1|X
(X;X1) = R.

By convexity of the mutual information,

D(fX0
,R) = conv

{
f ′XX0

∈ P(X × X0), f ′X = pX ,

f ′X0
= fX0 , I(X;X0) = R

}
. (70)

The distributions f ′XX0
with marginal f ′X = pX = ( 1

2 ,
1
2 )

and f ′X0
= pX1

= (1 − q, q) have parameters (µ, ν) ∈ [0, 1]2

that satisfy q = 1
2 (µ+ 1− ν)⇔ ν = µ+ 1− 2q.

Suppose that q ≤ 1
2 . The function µ 7→ I(X;X0) is

strictly decreasing on the interval [0, q] and strictly increasing
on [q, 2q], and it takes values takes values Hb(q) when
µ ∈ {0, 2q} and 0 when µ = q. Thus there exists only two
values µ1 and µ2 are such that I(X;X0) = R ∈ [0, Hb(q)].
These to two values correspond to the two distributions
pXp

?
X1|X with µ1 = µ and

∑
x′ pXσX′|X(x′|·)p?X1|X′(·|x

′)

with µ2 = ν, where σX′|X denotes the binary permuta-
tion. Therefore any distribution f ′XX0

∈ D(fX0
,R) is a

convex combination of the two distributions pXp
?
X1|X and∑

x′ pXσX′|X(x′|·)p?X1|X′(·|x
′). Similar arguments lead to the

same result for q ≥ 1
2 . This concludes the proof of Lemma 3.
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