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The Earth magnetopause, when sufficiently plane and stationary at a local scale, can be7

considered as a "quasi-tangential" discontinuity, since the normal component of the magnetic8

field Bn is typically very small but not zero. Contrary to observations, the "Classic Theory of9

Discontinuities" (CTD) predicts that rotational and compressional jumps should be mutually10

exclusive in the general case Bn , 0, but allows only one exception: the tangential discontinuity11

provided that Bn is strictly zero. Here we show that Finite Larmor Radius (FLR) effects play an12

important role in the quasi-tangential case, whenever the ion Larmor radius is not fully negligible13

with respect to the magnetopause thickness. By including FLR effects, the results suggest that14

a rotational discontinuity undergoes a change comparable to the change of a Shear Alfvén into15

a Kinetic Alfvén wave when considering linear modes. For this new kind of discontinuity, the16

co-existence of rotational and compressional variations at the magnetopause does no more imply17

that this boundary is a strict tangential discontinuity, even in 1D-like regions far from X-lines18

if any. This result may lead to important consequences concerning the oldest and most basic19

questions of magnetospheric physics: how can the magnetopause be open, where and when?20

The role of FLR being established theoretically, the paper then shows that it can be proved21

experimentally. For that, we make use of MMS data and process them with the most recent22

available 4 spacecraft tools. First, we present the different processing techniques that we use to23

estimate spatial derivatives, such as grad(B) and div(P), and the magnetopause normal direction.24

We point out why this normal direction must be determined with extremely high accuracy to25

make the conclusions unambiguous. Then, the results obtained by these techniques are presented26

in a detailed case study and on a statistical basis.27

Introduction28

In space physics, there is a natural tendency of the medium to self-organize into distinct29

cells, separated by thin layers. This behavior can be observed at very different scales. Notable30

examples are planetary magnetospheres, which are bubbles in the solar wind stream and which31

are separated from it by bow shocks and magnetopauses (Parks 2019; Kivelson & Russell 1995;32

Belmont et al. 2014). The interaction of the solar wind with unmagnetized bodies such as comets33

also produces similar bubbles (Coates 1997; Bertucci 2005). The Solar System itself is a bubble34

in the flow of the local interstellar cloud, and it is separated from it by the heliopause and at least35

one shock ("termination shock") (Lallement 2001; Richardson et al. 2022). Similar cells and36

thin layers can also form spontaneously, far from any boundary condition as in the context of a37

turbulent medium (Frisch 1995; Chasapis et al. 2015).38

Among all these thin layers, the terrestrial magnetopause plays a particular role. This region39

has been explored by a large number of spacecraft since the beginning of the space era, up to the40

most recent multi-spacecraft missions as Cluster (Escoubet et al. 1997, 2001) and MMS (Burch41

& Phan 2016), allowing for a detailed description of its properties. In addition, due to a very small42
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normal component of the magnetic field with respect to the magnetopause (defined Bn = B · n43

where B is the magnetic field and n the magnetopause’s normal) it can be identified as a "quasi-44

tangential" layer. This feature is a direct consequence of the frozen-in property that prevails at45

large scales, on both sides of the boundary, almost preventing any penetration of magnetic flux46

and matter between the solar wind and the magnetospheric media (both of them being magnetised47

plasmas). By large scales here we refer to the fluid scales where an ideal Ohm’s law holds,48

as in the ideal magnetohydrodynamic (MHD) regime. However, small departures from a strict49

separation between the two plasmas do exist, at least locally and for a given time interval, and50

they are known to have important consequences for all the magnetospheric dynamics: substorms,51

auroras, etc (McPherron 1979; Tsurutani et al. 2001).52

Knowing when and where plasma injection occurs through the magnetopause has been53

one of the hottest subjects of research since decades (Haaland et al. (2021) and references54

therein, Lundin & Dubinin (1984); Gunell et al. (2012); Paschmann et al. (2018a)). The largest55

consensus presently considers the equilibrium state of the boundary, valid on the major part56

of its surface, as a tangential discontinuity, with a strictly null Bn, while plasma injection is57

allowed only around a few reconnection regions, where the gradients characterizing the layer58

present 2D features. For that purpose, many studies have been carried out to understand where59

magnetic reconnection occurs the most (Fuselier et al. 2011; Trattner et al. 2021). Moreover,60

the conditions under which the magnetopause opens due to magnetic reconnection has been61

studied theoretically (Swisdak et al. 2003) and experimentally (Gosling et al. 1982; Paschmann62

1984; Phan et al. 2000; Fuselier et al. 2011; Vines et al. 2015). The results of the present study63

may allow reconsidering this paradigm by questioning the necessity of a strictly tangential64

discontinuity for the basic equilibrium state.65

66

In the whole paper hereafter, we will call one-dimensional all geometries in which the gradients67

of all parameters are in the same direction N. In this sense, a plane magnetopause with not68

tangential gradient is said here to be 1D, while it would be considered 2D if considering real69

space instead of k space.70

1. Classic Theory of Discontinuities71

At every layer, the downstream and upstream physical quantities are linked by the fundamental72

conservation laws: mass, momentum, energy and magnetic flux (Landau & Lifshitz 1987). The73

simplest case occurs whenever the number of conservation laws is equal to the number of74

parameters characterizing the plasma state. When this condition is met, the possible downstream75

states are uniquely determined as a function of the upstream state, regardless of the (non-ideal)76

physics at play within the layer. In particular, it is possible to describe pressure variations without77

any closure equation. In this case, the jumps of all quantities are determined by a single scalar78

parameter (namely the "shock parameter" in neutral gas).79

We refer hereafter to the "Classic Theory of Discontinuities" (CTD) as for the theory80

corresponding to this condition, which is used both for neutral media and (magnetized) plasmas.81

CTD is characterized by the following simplifying assumptions: a stationary layer, 1D variations,82

and isotropic pressure on both sides. For plasmas, the additional assumption of an ideal Ohm’s83

law on both sides is considered (Belmont et al. 2019).84

In CTD the conservation laws provide a system of jump equations between the upstream and85

downstream physical quantities, namely the Rankine-Hugoniot conditions in neutral media and86

generalized Rankine-Hugoniot conditions in plasmas.87

The sets of equations used to compute the linear modes in hydrodynamics (HD) and MHD are88

similar to these jump equations system. simply because the HD and MHD models rely on the89

same conservation laws as Rankine-Hugoniot and generalized Rankine-Hugoniot respectively90
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A direct consequence is that many properties are shared by the solutions of the two types of91

systems: linear modes and discontinuities. For a neutral medium, the linear sound wave solution92

corresponds to the well-known sonic shock solution, while for a magnetized plasma, the two93

magnetosonic waves correspond to the two main types of MHD shocks: fast and slow. However,94

an additional discontinuity solution, the intermediate shock, has no linear counterpart. The95

intermediate shock presents a reversal of the tangential magnetic field through the discontinuity,96

which is not observed neither in the fast nor in the slow mode. Furthermore, a non-compressional97

solution exists in both types of systems, represented by the shear Alfvén mode for linear MHD,98

and by the "rotational discontinuity" solution for the generalized Rankine-Hugoniot system.99

Focusing on magnetized plasma physics, CTD leads to distinguish compressive and rotational100

discontinuities. An important feature of these solutions is that the compressional and rotational101

solutions are mutually exclusive: the shock solutions are purely compressional, without any102

rotation of the tangential magnetic field (this is called the "coplanarity property"), while the103

rotational discontinuity does imply such a rotation but without any variation of the magnetic field104

amplitude and without any compression of the particle density (Fig.1). This distinction persists105

whatever the fluxes along the discontinuity normal, even when the normal components un and Bn106

of the velocity and the magnetic field are arbitrarily small. The only exception is the "tangential107

discontinuity" when both normal fluxes are strictly zero. This solution would correspond, for the108

magnetopause, to the case without any connection between solar wind and magnetosphere. It109

appears as a singular case since the tangential discontinuity, with Bn = 0, is not the limit of any110

of the general solutions with Bn , 0. While the limit always implies two solutions, one purely111

rotational and the other purely compressional, the singular solution Bn = 0 only provides one112

solution where the two characters can coexist.113

In the solar wind, discontinuities are routinely observed and several authors have performed114

statistics for a long time to determine the proportion of the different kinds of discontinuities,115

mainly focusing on the tangential and rotational ones. They conclude that in most cases116

tangential discontinuities (i.e. with Bn small enough to be barely measurable) are the most117

ubiquitous (see Colburn & Sonett (1966), for a pioneering work in this domain and Neugebauer118

(2006); Paschmann et al. (2013); Liu et al. (2022), and references therein, for more recent119

contributions). In these studies, rotational discontinuities are identified only when Bn is large120

enough. However, many discontinuities present features that are typical of both rotational and121

tangential discontinuities and are classified as "either" of the two. Extending these studies in the122

range of small Bn, where all discontinuities are not necessarily "tangential discontinuities" in the123

CTD sense, requires the study of the quasi-tangential case.124

2. The Earth’s magnetopause125

Thanks to in-situ observations, the Earth’s magnetopause has a pivotal role in testing the126

discontinuity theories. Indeed, the Earth’s magnetopause boundary exhibits, over its entire127

surface, both a rotation of the magnetic field (Sonnerup & Ledley 1974) and a density128

variation (Otto 2005) since it is the junction of two media, the magnetosheath and the129

magnetosphere where the magnetic field and the density are different (Dorville et al. 2014).130

As stated above, the usual paradigm is that the magnetopause is always a tangential131

discontinuity and that it becomes "opens" only exceptionally at a few points where the132

boundary departs from one-dimensionality due to magnetic reconnection. Does it mean that it133

justifies the very radical hypothesis of a magnetopause nearly completely impermeable to mass134

and magnetic flux, with strictly null Bn and un and quasi-independent plasmas on both sides135

(apart from the normal pressure equilibrium)? From a theoretical point of view, it is clear that the136

singular limit from Bn ≃ 0 to Bn = 0 remains to be solved. From an experimental point of view,137

if the components Bn and un are known to be always very small, the observations can hardly138
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Figure 1. Cartoon showing the different variations of B between a rotational discontinuity (left) and a
compressive one (right). The top panel shows in 3D the variation of B inside the magnetopause plane; the
bottom panel shows the hodogram in this tangential plane: a circular arc for the rotational discontinuity and
a radial line for shocks.

distinguish between Bn ≃ 0 and Bn = 0 because of the uncertainties, due to the fluctuations and139

the limited accuracy in determining the normal direction (Rezeau et al. 2018; Haaland et al.140

2004; Dorville et al. 2015b).141

The results of the present paper will question the above paradigm. We will show theoretically142

and experimentally that CTD fails at the magnetopause and that rotation and compression can143

actually coexist with finite Bn and un, even in the 1D case. Such a paradigm change may be144

reminiscent of a similar improvement in the theoretical modeling of the magnetotail in the 70’s145

studies (Coppi et al. (1966); Galeev (1979); Coroniti (1980) and references therein). In that case146

the authors demonstrated that even a very weak component of the magnetic field across the147

current layer was sufficient to completely modify the stability properties of the plasmasheet, so148

that the finite value of Bn had to be taken into account, contrary to the pioneer versions of the149

tearing instability theories.150

3. The role of pressure151

In CTD the separation between the compressional and rotational properties of the152

discontinuities comes from only two equations projected on the tangential plane. These153

equations are the momentum equation and the Faraday - Ohm’s law, that read:154

ρ
du
dt
+ ∇ · Pi + ∇ · Pe = J × B (3.1)

155

∇ × E = −
∂B
∂t

156

where E = −u × B +
1
ne

J × B −
1
ne
∇ · Pe (3.2)

where B is the magnetic field and u is the flow velocity in a reference frame where the layer is157

steady.158
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Considering one-dimensional gradients along the normal direction n, neglecting the non-ideal159

terms in Ohm’s law and integrating across the layer, these two equations, projected on the160

tangential plane, give:161

ρ2un2 ut2 − Bn2 Bt2/µ0 = ρ1un1 ut1 − Bn1 Bt1/µ0 (3.3)
162

Bn2 ut2 − un2 Bt2 = Bn1 ut1 − un1 Bt1 (3.4)

Due to the divergence free equation, the values Bn1 and Bn2 are equal and will be written as163

Bn without index in the following. Similarly, ρ1un1 and ρ2un2 are equal because of the continuity164

equation and will be simply noted ρun in the following. Here, the indices n and t indicate the165

projection along the normal and in the tangential plane, respectively, while indices 1 and 2166

indicate the two sides of the discontinuity. It is important to note that, in CTD, the pressure167

divergence terms do not appear in Eq.(3.3) because of the assumption done in this theory that the168

pressure is isotropic on both sides so that their integration gives terms of the form (p2 − p1)n,169

with no component in the tangential plane.170

We see that all terms in these two equations are proportional to Bn or un, so that any non-171

ideal term, even small, can become dominant when these two quantities tend to zero (if these172

non-ideal terms do not tend to zero at the same time). As the distinction between compressional173

and rotational character fully relies on this system of equations, this evidences the necessity174

of investigating the quasi-tangential case for resolving the usual singularity of the tangential175

discontinuity. We note that the LHS and RHS of equation 3.4 can be put equal to zero by choosing176

the "De Hoffmann-Teller" tangential reference frame where the electric field is zero (Belmont177

et al. 2019). However, this choice, even if it can simplify some calculations, is not necessary178

here. Finally, the variables ut can be eliminated from the system by a simple linear combination179

of the two equations, leading to:180

(un2 − un0)Bt2 = (un1 − un0)Bt1 (3.5)

where181

un0 =
B2

n

µ0ρun
= cst (3.6)

Equation (3.5) leads to the distinction between shocks, where the tangential magnetic fields182

on both sides are collinear (but with different modules), and rotational discontinuities, where183

the terms inside the brackets must be equal to zero. Rotational discontinuities correspond to184

a propagation velocity equal to the normal Alfvén velocity, and imply un1 = un2 = un0, and185

therefore an absence of compression of the plasma.186

As previously stated, the separation between the compressional and rotational characters187

mainly derives, in CTD, from the assumption of isotropic pressures on both sides, which prevents188

the pressure divergences to have tangential components. When the isotropic hypothesis is relaxed189

(Hudson 1971), the set of conservation equations is no longer sufficient to determine a unique190

downstream state for a given upstream one. As a consequence, the global result depends on the191

non-ideal processes occurring within the layer. In addition to anisotropy effects, Finite Larmor192

Radius (FLR) effects can be expected to break the gyrotropy of the pressure tensor around B193

in the case of thin boundaries between different plasmas. This means that the main effect that194

explains departures from CTD comes from the tangential component of the divergence of the195

pressure tensor, which must be taken into account in the momentum equation. On the other hand,196

the non-ideal effects related to the generalized Ohm’s law are negligible, at least in the examples197

shown in this paper. The possible types of discontinuities in an anisotropic plasma have been198

discussed in several papers long time ago (Lynn 1967; Abraham-Shrauner 1967; Chao 1970;199

Neubauer 1970), and the present paper improves the analysis in the light of the new experimental200

possibilities given by the MMS measurements.201
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When the dynamics drives the conditions for the pressure tensor to become anisotropic (and202

a fortiori in the non-gyrotropic case) the ∇ · P term comes into play linking upstream and203

downstream quantities. Considering the "simple" anisotropic case, i.e. keeping the gyrotropy204

around B, it has been shown (Hudson 1971) that the ∇ · P term then just introduces a new205

coefficient:206

α = 1 −
p∥ − p⊥
B2/µ0

(3.7)

This coefficient has been interpreted as a change in the Alfvén velocity V ′2An = αV2
An, but it207

appears more basically as a change in Eq.(3.5):208

(un2 − α2un0)Bt2 = (un1 − α1un0)Bt1 (3.8)

This equation shows that, in this simple anisotropic case, coplanar solutions still exist (Bt2209

and Bt1 are collinear), but that whenever α2 is not equal to α1, the equivalent of the rotational210

discontinuity now implies compression:211

un2 , un1 if α2 , α1 (3.9)

Since un2 = α2un0 and un1 = α1un0. The variation of un explains why the modified rotational212

discontinuity can be "evolutionary" (Jeffrey & Taniuti 1964), the non linear steepening being213

counter-balanced at equilibrium by non-ideal effects for a thickness comparable with the214

characteristic scale of these effects.215

There is actually no additional conservation equation available that would allow the jump of216

the anisotropy coefficient α to be determined. Consequently, there is no universal result that gives217

the downstream state as a function of the upstream one, regardless of the microscopic processes218

going on within the layer. This remains valid for the full anisotropic case, with non-gyrotropy. As219

soon as the ion Larmor radius ρi and the ion inertial length di are not fully negligible with respect220

to the characteristic scale L of the layer, kinetic effects, and in particular FLR effects, which make221

the pressure tensor non-gyrotropic, must be taken into account to describe self-consistently the222

internal processes. Then, the effect of the divergence of the pressure tensor is no longer reduced223

to adding a coefficient α since its tangential component is no longer collinear with Bt. Such224

effect has been already reported and analyzed in the context of magnetic reconnection (Aunai225

et al. 2013, 2011) and in kinetic modeling of purely tangential layers (Belmont et al. 2012;226

Dorville et al. 2015a). It has been also investigated in the case of linear modes where they are227

responsible for the transition from shear Alfvén into Kinetic Alfvén Wave (Hasegawa & Uberoi228

1982; Belmont & Rezeau 1987; Cramer 2001). On the other hand, it has never been introduced229

in the context of quasi-tangential discontinuities.230

If a simple anisotropy preserving gyrotropy around B can be straight fully taken into account231

for modeling the pressure tensor and using it in fluid equations, introducing non-gyrotropy does232

not lead to a general and simple modeling for the pressure tensor. It would demand a priori233

a full kinetic description or, at least, some expansions assuming that these effects are small234

enough (see Braginskii (1965) for the pioneer work in this field and Passot & Sulem (2006) and235

references therein). Several papers have investigated the changes in rotational discontinuities236

when such non-ideal effects are introduced (Lyu & Kan 1989; Hau & Sonnerup 1991; Hau237

& Wang 2016). These theoretical papers used different analytical models based on different238

simplifying assumptions. Contrary to these papers, we will not use such kind of assumptions.239

Instead, we will just analyze the observed magnetic hodograms, and show that their shape is240

incompatible with a gyrotropic pressure.241
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4. The magnetopause normal242

When studying the magnetopause with in situ measurements, the most basic geometric243

characteristic to be determined is the normal to its surface (which may vary during the crossing).244

An accurate determination of the magnetopause normal is actually a fundamental condition for245

determining reliable estimates of the normal components of both the magnetic and the mass246

fluxes. Moreover, having a good estimation of the normal direction is also necessary to determine247

the speed of the structure and its thickness. Quantitatively speaking, to determine the normal248

component of the magnetic field sufficiently well (assuming that Bn/|B| ∼ 2%), an accuracy of249

the normal should be of the order of δθ < 1o. In the literature, a good accuracy of determination250

of the normal is considered to be of the order of 5% (Denton et al. 2018).251

Beyond determining the normal direction, some "reconstruction methods" can be used to252

provide a more global view of the large scale structure around the spacecraft. Although these253

methods have proven to provide remarkable results (De Keyser 2008; Hasegawa et al. 2005;254

Denton et al. 2020) they will not be used here (the first two studies assume the Grad-Shafranov255

equations to be valid, implying stationary MHD, and are therefore not appropriate to investigate256

the non-MHD effects such as the FLR effects).257

Over the years, several methods have been developed with the purpose to precisely determine258

the normal direction (see e.g. (Haaland et al. 2004; Shi et al. 2019)). The most common is259

the minimum variance (MVA) introduced with the first measurements of the magnetic field in260

space (Sonnerup & Cahill 1967; Sonnerup & Scheible 1998). This method, which requires single261

spacecraft measurements, provides a global normal, i.e. a single normal vector for each entire262

time series across the boundary. The tool is based on the assumption that the boundary is a263

perfectly one-dimensional and stationary layer crossing the spacecraft. Other notable examples264

are the Generic Residue Analysis (GRA) technique (Sonnerup et al. 2006), which consist in265

a generalisation of the MVA to other parameters than B, and the BV method (Dorville et al.266

2014), which combines magnetic field and velocity data. Even though these methods can give267

an accurate normal determination (Dorville et al. 2015b), they provide, like MVA, a global268

normal and thus they cannot provide the necessary basis for investigating the variations of269

the magnetopause normal within the structure and test the possible departures from mono-270

dimensionality. Let us finally recall that waves and turbulence, which are always superimposed271

to the laminar magnetopause profiles, bring strong limitations in the normal direction accuracy272

for all methods, in particular these global ones.273

In this context, multi-spacecraft missions have represented a fundamental step in increasing274

the accuracy of the normal determination, allowing to determinate the gradients of the measured275

fields. A notable example is the Minimum Directional Derivative (MDD, Shi et al. (2005))276

method. This tool generally uses the magnetic field data, but it must be kept in mind that it277

is not based on specific properties of this field. The MDD technique is a so-called "gradient278

based method" since the calculation of the normal is based on the experimental estimation of the279

dyadic tensor G = ∇B. This tensor gradient can be obtained from multispacecraft measurements280

using the reciprocal vector method (Chanteur 1998). The MDD method consists in diagonalizing281

the matrix L = G · GT , finding the normal direction as the eigenvector corresponding to282

the maximum eigenvalue. Moreover, the gradient matrix can also be used for estimating the283

dimensionality of the boundary from the ratio between the eigenvalues. A way of finding a284

quantitative determination of this dimensionality was proposed in Rezeau et al. (2018).285

For the vector B, the MDD method makes use only of the spatial derivatives ∂iB, which are286

accessible at each time step thanks to the 4-point measurements today available with multi-287

spacecraft space missions. In this sense, it is the opposite of the MVA method, which makes288

use only of the temporal variances of the B components. It therefore allows for an instantaneous289

determination of the normal at any point inside the layer, while MVA can only provide a single290
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normal for a full crossing. In addition, contrary to MVA, MDD does not make any assumption291

about the geometry of the layer (1D variations or not), and about the physical properties of the292

vector used. Indeed, it can be applied to the magnetic field data but also to any other vector since293

the property ∇ · B = 0 is not used.294

However, due to waves and turbulence, the magnetopause can present locally two-dimensional295

properties that are insignificant for the profiles we are looking for. For this reason, we will focus296

here on intervals where the magnetopause is mainly one-dimensional, discarding the crossings in297

which local 2D features are observed. The intervals considered as one-dimensional are those for298

which λmax ≫ λint. Here λmax and λint are defined as the highest and the intermediate eigenvalues299

of the matrix G. In this limit, the ordering between λint and λmin (i.e. the smaller eigenvalue) is300

not relevant in defining the intervals. Specifically, we use the parameter, D1 = (λmax − λint)/λmax,301

which enables us to quantify this mono-dimensionality of the magnetopause as a function of302

time.303

A more recent tool proposed to study the magnetopause is the hybrid method presented in304

Denton et al. (2016, 2018), in which the orientation of the magnetopause is obtained through a305

combination of the MDD and MVA methods, resulting in an improved accuracy of the normal306

direction.307

The only limitation to the MDD accuracy comes from the uncertainty of the spatial derivatives308

that it uses. In particular, the local gradient matrix is calculated through the reciprocal vector309

technique (Chanteur 1998), which assumes linear variations between the spacecraft. Because310

small-scale waves and turbulence are always superimposed on the magnetopause profiles being311

searched for, this assumption cannot be well respected without some filtering. This filtering312

actually leads to introduce part of the temporal information on the variations, but it still allows313

keeping local information inside the layer whenever one filters only the scales sufficiently smaller314

than those associated to the full crossing duration. The quality of the filtering is therefore the315

biggest challenge to complete for getting accurate results. For instance, simple gaussian filters316

done independently on the four spacecraft would provide insufficient accuracy: this can be317

observed by the fact that, when doing it, the relation ∇ · B = 0 is violated in the result. In318

the following section, it is shown how the MDD method can be included in a fitting procedure319

of the four spacecraft simultaneously and where this relation can be imposed as a constraint. We320

also show that, when no constraint is added, this procedure justifies the use of MDD with data321

that are filtered independently.322

5. A new tool323

The tool we present here, namely GF2 (Gradient matrix Fitting), has been derived from the324

MDD method. The digit 2 indicates that in the version of the tool that we use here the data325

are fitted with a 2D model (it can be shown that fitting with a 1D model is mathematically326

equivalent to the standard MDD technique used with smoothed data). Differently from the327

original method, we assume that the structure under investigation can be fitted locally (i.e. in each328

of the small sliding window used along the global crossing), by a two-dimensional model. This329

does not imply that the magnetopause is assumed globally two-dimensional. As for MDD, the330

instantaneous gradient matrix G is obtained from the data using the reciprocal vector’s technique331

(Chanteur 1998). When performing the 2D fit in each sliding window, we then impose some332

physical constraints, which could be checked only a posteriori with the classic MDD method.333

The model G f it is obtained as follows:334

G f it = e0 B′e0 + e1 B′e1 (5.1)

where we define e0 and e1 as two unit vectors in the plane perpendicular to the direction of335

invariance and B′e0 and B′e1 as the variation of the magnetic field along these two directions.336
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By performing the fit, we impose ∇ · B = 0 (as used in MVA but ignored in standard MDD). In337

the model, this can be written as:338

e0 · B′e0 + e1 · B′e1 = 0 (5.2)

In order to fit the experimental G by the model G f it, the following quantity has to be minimised339

D2 = Tr[(G f it −G).(G f it −G)T ]

= B′2e0 − 2e0.G.B′e0 + B′2e1 − 2e1.G.B′e1 + Tr(GGT )
(5.3)

We can disregard the last term, since it is independent of the fit parameters. To impose the340

physical constraints, we use Lagrange multipliers, minimizing:341

D2 =B′2e0 − 2e0.G.B′e0 + B′2e1 − 2e1.G.B′e1 + 2λ(e0 · B′e0 + e1 · B′e1)

=B′2e0 − 2e0.(G − λI).B′e0 + B′2e1 − 2e1.(G − λI).B′e1

(5.4)

By assuming in the first approximation that the direction of invariance e2 is known, we can342

choose the two vectors e0 and e1 as an arbitrary orthonormal basis for the plane of variance. For343

performing the minimisation, we have just to impose equal to zero the derivatives with respect to344

B′e0, B′e1 and λ, obtaining Equation 5.2 and:345

B′e0 = e0.(G − λI) (5.5)
346

B′e1 = e1.(G − λI) (5.6)

By introducing these two equations in Equation 5.2 we obtain:347

λ =
G00 +G11

2
, (5.7)

from which we get the values of B′e0 and B′e1. At this point, the matrix G f it is fully determined. We348

can then look for its eigenvalues and eigenvectors, as in the standard MDD method, and get the349

normal n and the tangential directions t1 (i.e. the one orthogonal to the direction of invariance)350

from this smooth fit.351

The choice of the direction of invariance has actually no major influence on the determination352

of the normal direction, neither on the estimation of the 2D effects. For large 2D effects, one353

could choose the direction of minimum variance obtained by applying directly the standard MDD354

method to the data. Nevertheless, for almost 1D cases (the most common situation), the spatial355

derivatives in the tangential directions are generally much smaller than the noise, so this result356

is not reliable. We simply choose here the constant M direction given by MVA, which is often357

considered as the direction of the X line if interpreted in the context of 2D models of magnetic358

reconnection (cf. for instance Phan et al. (2013) for a typical use of this choice and Aunai et al.359

(2016); Liu et al. (2018); Denton et al. (2018) for discussions about it).360

Finally, another useful by-product of the method can be obtained: comparing the spatial361

derivatives and the temporal ones and using a new fitting procedure, we can compute the two362

components of the velocity of the structure Vn0 and Vt1 with respect to the spacecraft. Only the363

motion along the invariant direction then remains unknown.364

5.1. Normal from ions mass flux365

This tool can be easily adapted to any other vector dataset by just changing the physical366

constraint. In particular, we chose to study the structure using the ion mass flux data. In this367

case we impose mass conservation ∇ · Γi = −∂tni (with Γi = niui). Eq.5.2 now writes368

e0 · Γ
′
e0 + e1 · Γ

′
e1 + ∂tni = 0 (5.8)
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Therefore, when using the Lagrange multipliers, Eq.5.4 changes to:369

D2 =Γ
′2
e0 − 2e0.G.Γ′e0 + Γ

′2
e1 − 2e1.G.Γ′e1 + 2λ(e0 · Γ

′
e0 + e1 · Γ

′
e1 + ∂tni)

=Γ′2e0 − 2e0.(G − λI).Γ′e0 + Γ
′2
e1 − 2e1.(G − λI).Γ′e1 + 2λ∂tni

(5.9)

By using the same algorithm as above, the constraint can now be written as:370

λ =
G00 +G11 + ∂tni

2
(5.10)

5.2. Dimensionality index371

From this procedure, we can also derive another significant result: we can obtain an indicator372

of the importance of the 2D effects in the profiles, free of the parasitic noise effects. Specifically,373

we can estimate the variation of the magnetic field along the normal by projecting the G f it matrix374

along it varn = |G f it.n|. Consequently, if we designate the variation along t1 as vart, we can375

introduce a new dimensionality index:376

DGF2 =
varn − vart

varn
(5.11)

This index can usefully be compared with the instantaneous index D1 = (λmax − λint)/λmax of377

Rezeau et al. (2018).378

6. Expected accuracy and tests of the tool379

In this section we test the accuracy of the GF2 tool. To accomplish this, we exploit a case380

crossing, which will be investigated in detail in the following section. The crossing considered381

comes from MMS data (Burch & Phan 2016), taking place at around 22:11 on 28th December382

2015. For this study we use data from the FluxGate Magnetometers (FGM, Russell et al. (2016)),383

providing the magnetic field data, the Electric Double Probe (EDP, Lindqvist et al. (2016); Ergun384

et al. (2016)), for the electric field, and Dual Ions and Electrons Spectrometer instrument (DIS,385

DES, Pollock et al. (2016)), for plasma measurements. An overview of the event is shown in Fig.386

2, where both the magnetic field and ion bulk velocity are given in Geocentric Solar Ecliptic387

(GSE) coordinates. For this event, the spacecraft are located in [7.6, -6.7, -0.8] RE in GSE388

coordinates (where RE is the Earth’s radius).389

The temporal interval in which we observe the shear in the magnetic field and the crossing390

in the particle structure is about 8 seconds, enough to allow for high resolution for both sets of391

measurements. The crossing is chosen by also analyzing the dimensionality of the magnetic field392

measurements averaged along the crossing. In particular, the dimensionality parameter defined in393

Eq. 5.11, denoted as DGF2, and the one introduced in Rezeau et al. (2018), denoted as D1, were394

considered. In this interval, indeed, we have D1,mean = 0.97±0.03 while DGF2 = 0.89±0.06, both395

highlighting that the crossing exhibits one-dimensional features throughout the time interval. We396

remind here that in burst mode, the frequency of magnetic field measurements is 132Hz while it397

is 6,67 Hz for ions. To conduct the following study, it is necessary to interpolate all measurements398

at the same times. We did it by testing two sampling frequencies: the magnetic field and the ion399

ones. The results obtained are consistent with the two methods. All figures shown in the paper400

are obtained with the sampling times of the MMS1 magnetic field. Furthermore, the crossing is401

observed quasi-simultaneously for the two quantities, with a large interval where the two kinds402

of results can be compared.403

As a first test, we compare in Fig.3 the normals obtained by GF2 and those by the standard404

MDD technique (using data smoothed in a 0.31s time-window), for both the magnetic field and405

the ion data. For reference, we also compare the result of GF2B with the MVA one.406
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Figure 2. Main features of the crossing of the 28th December 2015. From top to bottom: (a) the magnetic
field (in nT ), (b) the ion particle density (in m−3), (c) ion velocity (in km/s), (d) total current (computed
from the curlometer (Dunlop et al. 1988), in nA/m2), (e) the ion and ( f ) electron spectrograms (energies
are shown in eV). Vertical lines indicate the time interval chosen for the case study.

Vertical dashed lines indicate the time interval during which all the satellites are inside the407

boundary. We observe that the time required for the ions flux to complete the crossing (of about408

5s) is shorter than for the magnetic field (about 8s). To perform a quantitative analysis of the409

differences, we studied the angles between the different normals obtained through GF2, MDD410

and MVA, as shown in Fig. 4.a.411

The first striking result is that all these results are quite consistent. Almost all the directions are412

less than ten degrees apart from each other, with an average difference of about five degrees. The413

major exception concerns the comparison between MVA and GF2B during the last second of the414

interval where the two directions appear to be up to 35 degrees apart. This can be explained by415

the fact that the local normals are observed (by GF2B as well as by MDDB) to differ noticeably416

in this part from their averaged value and that MVA is not able to detect such a change. Looking417

in more detail, we can see a slight difference between the first part of the crossing (between418

2s and ∼6.5s), where the two normals GF2B and MDDB differ by less than 5 degrees, and the419

second part, where the angle between the normals can be up to ten degrees (probably due to a420
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Figure 3. Comparison for the normals obtained with GF2 with respect to the MDD tools. (a) shows the
magnetic field and (b) the ion mass flux, measured by the four MMS spacecraft. (c) and (d) shows the
magnetic and the ion normal, respectively. The continuous (resp. dashed) line correspond to the components
of GF2 (resp. MDD) normal. Horizontal dotted lines indicate the MVA normal obtained along the whole
interval. Vertical dashed lines correspond to the time interval boundaries for the crossing, which are different
for the magnetic field and the ion mass flux.

Figure 4. (a) Angle between the normals obtained using the state-of-the-art tools (MDD, MVA) and GF2.
The subscript B and ions indicates whenever the magnetic field or the ion flux measurements are used.
(b) Dimensionality of the structure as a function of time; here both the DGF2 (continuous line) and the D1
(dashed line) indices are shown, for both the magnetic field (blue) and ions (red) data.

smaller ratio signal/noise for the gradient matrix G). The normals derived from ion measurements421

are not much different from those derived from the magnetic field, showing that the particle and422

magnetic structures are approximately identical. In Fig. (4.b), the dimensionality of the structures423

is analyzed as a function of time, by using both the DGF2 and the D1 (Rezeau et al. (2018))424

parameters, as explained above. Even if the numerical values of the two indices are slightly425

different, they both indicate structures close to one-dimensionality in the first part, with a -small426
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Model Normal [GSE] angle with
nGF2,B [deg]

nGF2,B [0.82, -0.49, -0.29] x
nGF2,ions [0.76, -0.59, -0.26] 7.2

MVA [0.76, -0.57, -0.30] 6.1
MDD [0.83, -0.49, -0.28] 0.7

Denton [0.82, -0.49,-0.29] 0.4

Table 1. Magnetopause normal vectors obtained with the main tools presented above averaged in the time
interval and their angle with respect to the normal obtained with GF2 using the magnetic field data (in
degrees).

but significant- decrease in the second part. This increased departure from mono-dimensionality427

can explain the slight difference between the two parts when comparing the normals from428

standard MDD and GF2 techniques.429

The present test does not allow us to state that GF2 is more accurate than standard MDD430

(this will be checked in future work by comparing the two tools in a global simulation involving431

realistic turbulence) but it shows at least a good agreement between the two approaches. We will432

see in the following that this accuracy is anyway sufficient to prove the role of FLRs.433

In order to smooth the small fluctuations over the time interval and to reduce the statistical434

error associated with the determination of the normal, we can compare the directions averaged435

along the crossing time. Mean values obtained through the tools presented above are shown in436

Table 1. Here we observe that all the averaged normals differ by less than 10 degrees. Specifically,437

we observe that the normals obtained with GF2, MDD and (Denton et al. 2018) are similar, with438

a difference of less than one degree (with ours being closer to the one from Denton et al. (2018)).439

MVA normal, instead, differs around 6 degrees from all these other normals. Finally, we also440

observe that the one computed with ions flux data is the most distant. This is interpreted to be441

due to the higher uncertainty of particles measurements.442

7. Case study443

In this section, we undertake a detailed analysis of the previously mentioned crossing case by444

employing the normal obtained using the GF2 tool. Here, we focus on the time interval between445

2 s and 9 s in Fig 2. To mitigate the potential influence of non-unidimensionality effects, we chose446

to exclude the last second of the time interval studied in the preceding section for the magnetic447

field (where both DGF2 and D1 show that the structure is less one-dimensional and where we448

observe that the normal is more different from the averaged one). To carry out this analysis, we449

study the hodogram of the magnetic field in the tangential plane. Here the tangential results are450

presented in a basis (T1,T2) chosen as:451

T1 = nmean × b̂ (7.1)
452

T2 = nmean × T1 (7.2)

where b̂ = B/|B| and nmean is the directions of the averaged normal in the chosen time interval.453

Note that the choice of the reference frame (T1,T2) is just a convention. The shape of the454

hodogram remains unaffected by this choice except for the corresponding rotation in this455

tangential plane. The direction t1, which characterizes the direction of the second dimension of456

the model in GF2 and which is also in the tangential plane is generally different from T1.457
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Figure 5. Hodogram in the tangential plane of the magnetic field for a magnetopause crossing by MMS
in 28.12.2015 from 22:12:02 to 22:12:09. See text for the significance of the arrows. BT1 and BT2 are the
projections of B along the tangential directions computed as described in the text. The black line (resp.
violet) is the hodogram when the nmean (resp. n) value is used to define the reference frame.

If CTD was valid everywhere, the hodogram of the magnetic field in the tangential plane for458

a rotational discontinuity would correspond to a circular arc with constant radius while a shock459

would correspond to a radial line (as shown in Fig. 1). For this reason, the hodogram is a good tool460

to recognize the cases for which the CTD fails at describing the magnetopause. The hodogram461

for this case is shown in Fig. 5. We observe a clear "linear" (although not radial) hodogram. This462

non-radial variation of the magnetic field although not predicted by CTD, is a striking feature463

of the hodogram. It cannot be explained by a departure from the 1D assumption since we have464

measured that the crossing can be considered as one-dimensional to a good degree of accuracy.465

It is therefore due to an intrinsic property of the layer itself. Also, in Fig. 5, we present the466

hodogram derived from the local normal (un-averaged, violet line). It is clear that averaging does467

not affect the shape of the hodogram.468

To further analyze the causes of the disagreement between the hodogram of this case469

crossing and what is expected from CTD, we compare the different terms of the tangential470

momentum equation and Faraday/Ohm’s law. As discussed above, indeed, these two equations471

are responsible for the distinction between the rotational and tangential discontinuities in CTD.472

This is the object of Figure 6, where we plot the different terms of the two equations projected473



15

Figure 6. Terms of the Ohm’s law (panel 1, units of mV/m) and the momentum equation (panel 2, units of
10−15kg m/s2), projected in the normal direction n (a) and in the tangential direction t1 (b). To reduce the
noise, a running average with a time window of 0.35s is applied to the electric field measurements. Shaded
regions in panel 2.b represent the estimated uncertainties of the divergence of the pressure (red), the J × B
(blue) and the classic inertial term (green). Concerning the Ohm’s law, we included the sum U×B−J×B/nq
to facilitate the readability (blue dashed line).
N.b. The terms of the tangential Faraday/ Ohm’s law used in the text are just the derivatives of the ones in

(a) (apart from a π/2 rotation).

along the nmean and t1,mean directions obtained using the GF2 tool (averaged over the whole474

time interval). The influence of the averaging of the t1,mean direction on the results is discussed475

in Appendix A. We do not show the quantities along the direction of invariance, which are476

dominated by noise. The current and the gradient matrix for the pressure term are obtained via477

the reciprocal vector method described in Chanteur (1998).478

Concerning the Ohm’s law (Figure 6, panel 1), we see that the electric field is well counter-479

balanced by the u×B and J×B/nq terms (ideal and Hall terms). Outside the layer, on both sides,480

the ideal Ohm’s law is satisfied, as assumed in CTD (this is not visible on the figure, which is a481

zoom on the inner part of the layer, and where the Hall term is important). It has been shown in482

the literature that ∇·Pe is not always negligible in the Ohm’s law and that it can even be dominant483

close to an Electron Diffusion Regions (EDR). This has been predicted theoretically (Hesse et al.484

2011, 2014) and observed experimentally (Torbert et al. 2016; Genestreti et al. 2018), but it is not485

the case for events like this one. We observe that at approximately 3.5 seconds, the ∇ · Pe is not486

entirely negligible along the tangential direction (a similar peak can also be observed in panel 2.b487

for the term associated with the electron pressure in the momentum equation). However, during488

this time interval, this value is not dominant, this term being smaller than both the electric field489

and the J × B/nq components. Furthermore, this effect exhibits a local characteristic, as ∇ · Pe490

is only non-negligible within a small sub-interval (with respect to the magnetopause temporal491

width). It is therefore not likely to be indicative of proximity to a reconnection point.492

Concerning the momentum equation, shown in panel 2 of Figure 6, we observe that, in the493

normal direction, the J×B term is counter-balanced by the divergence of the ion pressure tensor,494
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Figure 7. Comparison of the magnetopause width (L) with the ion inertial length (di) and the ions Larmor
radius (ρL). Vertical lines highlight the considered temporal interval.

as expected. But, if the isotropic condition assumed in CTD was valid, we would expect the495

divergence of the ion pressure tensor to be zero in the tangential direction, or at least negligible496

with respect to the inertial term ρdu/dt. On the contrary, we observe that the J×B term along t1497

is of the same order of magnitude as the divergence of the ion pressure tensor, and one order of498

magnitude larger than all the other terms. Panel 2.b also shows an estimation of the error on the499

relevant terms: J × B, ∇ · Pi and the classical inertial term. It is known that measurements errors500

are difficult to estimate, especially at small scales. In order to validate our results, however, we501

sought to obtain an upper bound of the error associated with the quantities of interest. For that502

purpose, an overestimation of the uncertainty of the measurements (acquired as the maximum503

during the crossing of the errors available in FPI datasets for the pressure tensor and from the504

FGM nominal error for the magnetic field) was exploited. These values are propagated as a505

statistical (i.e. quadratic) error (by assuming that the errors on the reciprocal vectors can be506

neglected with respect to that of other physical quantities).507

From panel 2.b of Fig. 6, we see that the J × B and the ∇ · Pi terms are pointing in opposite508

directions and balancing each other. If valid in the first part of the interval, this conclusion509

cannot be safely trusted due to measurement uncertainty, but we observe that in the middle part510

(particularly between 3.5s and 6s) it is evident that the two quantities counterbalance each other511

while the classical inertia term ρdu/dt is much lower with respect to the others. This proves that512

the tangent ∇ · Pi term plays a fundamental role in the magnetopause equilibrium.513

This point can be emphasized also by analyzing the hodogram. In Fig. 5, the arrows are514

directed along the directions of the tangential plane that are physically relevant for the problem:515

i) the tangent to the hodogram (green), which indicates the total variation of Bt; ii) the radial516

direction (red), which corresponds to the plasma compression; iii) the ∇ · Pit direction (blue),517

which is the direction of the divergence of the ion pressure tensor in the tangential plane, and518

therefore corresponds to a term which is absent in CTD. The relative lengths of the arrows are519

chosen proportional to the corresponding term magnitudes. These directions are averaged in two520

sub-intervals (bold hodogram). The striking result is that the total variation is mainly determined521

by the non-classic term ∇ · Pit and not by the radial classic one. This explains the very recurrent522

(even if not reported in the literature hitherto) feature that the hodograms are almost linear but523

not radial.524
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Figure 8. Panels a and b show the evolution of the Dng,⊥ and Dng,Aunai (Aunai et al. 2013) indices,
respectively, along with their estimated uncertainties. Thin lines correspond to the real-time values while
thick lines to an averaged window of 1 s; (c) Evolution of the eigenvalues of the Pi matrix (averaged on
the four spacecraft). The dotted line indicates the magnetopause crossing. The red dotted lines in panel c
highlight the time interval studied in Fig. 9

7.1. Comparison of the width of the magnetopause to relevant physical lengths525

Finally, we compare the width of the magnetopause (L) to the two main ion-related lengths: the526

ion Larmor radius (ρL) and the ion inertial length (di). The magnetopause width is estimated using527

the normal velocity obtained from the GF2 tool. By averaging the velocity of the magnetopause528

in the normal direction, we can estimate L = Vn,mean∆t (where ∆t is the time length of the full529

crossing). These three scales are shown in Fig.7. We observe that this width is larger than the ion530

Larmor radius and the ion inertial length all across the crossing, but only two to five times larger,531

which appears sufficient to drive the observed kinetic effects.532

8. Ion pressure tensor analysis533

To further investigate the question of the ion non-gyrotropy with respect to the magnetic field534

and quantify this effect, let us now examine the properties of the ion pressure tensor and introduce535
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a new non-gyrotropy index. For that purpose, we define the matrices P∥ = p∥bb, where b = B/|B|536

and p∥ = b · Pi · b, and P⊥ = Pi − P∥. By defining p1 and p2 the maximum and intermediate537

eigenvalues of the P⊥ matrix, we define:538

Dng,⊥ =
p1 − p2

p1 + p2
(8.1)

In Fig. 8.a, this parameter is compared to the non-gyrotropy index presented in Aunai et al.539

(2013). The two indices define nongyrotropy differently, (Aunai et al. 2013)’s index defining540

nongyrotropy as the ratio of the nongyrotropic to the gyrotropic part of the tensor (instantaneous),541

while ours makes use of the 2D modeling of the data used in GF2 (averages on sliding windows).542

We note how both indices are significantly different from zero, approximately of the order of 0.1543

within the boundary, corresponding to clearly present, although not predominant, non-gyrotropic544

effects. We note a decrease in both indices outside the magnetopause, as expected, but it is worth545

noting also that, despite a continuous decrease, these indices remain relatively high in the time546

interval just preceding the crossing, in a region where magnetic field, density and pressure tensor547

are almost constant. This can be understood by noting that an ion velocity gradient is observed in548

this interval, suggesting that the non-diagonal terms of the pressure tensor could be due there to a549

kind of gyroviscous effect, the non-diagonal terms of the pressure tensor (Braginskii 1965) being550

due to FLRs (Stasiewicz 1993). One must take care that, in this interval, the pressure tensor has551

low values characterized by larger relative errors, which could partially influence this result. To552

further analyze this question, we have estimated the uncertainties on both non-gyrotropy indices.553

This estimation is derived from the nominal uncertainties of the FPI dataset. The diagonal terms554

have higher values and lower relative errors. Concerning the time interval before the crossing555

that we discuss here, the diagonal terms have errors of approximately 5%, whereas off-diagonal556

terms have an average relative error about 50% . We observe on Fig. 6 that this way of estimating557

the uncertainty well encompasses the variance of the results. It confirms that, within the crossing558

interval, all relative errors are smaller than 10 %, as considered in the Ohm’s law study (Fig. 6).559

In addition, a preliminary study appears to confirm the validity of the gyroviscous interpretation.560

Using the theoretical expressions given in Stasiewicz (1989), we can compare the variations of561

the non-diagonal terms of the pressure tensor with the spatial derivatives of the flow velocity, and562

evidence a fairly good correlation (see Appendix B).563

Fig. 8 (panel c) also shows the evolution of the eigenvalues of the Pi tensor, averaged on the564

four spacecraft. This figure shows how outside of the magnetopause the three eigenvalues tend to565

converge towards each other meaning that these media are close to isotropy. However, inside the566

magnetopause, we note a transition in the behavior of the intermediate eigenvalue, shifting from567

a value close to the minor one to being closer to the major eigenvalue. The minor eigenvalue568

exhibits a significant deviation from the other two towards the last part of the crossing.569

Focusing on the temporal interval marked by the red square in Fig. 8, this transition is further570

investigated in Fig. 9 where we show the ions’ distribution functions in the tangential plane571

(with respect to the magnetopause) for four different intervals during the crossing, highlighting572

the non-gyrotropy of the ions’ distribution function over time. VDFs (printed using a linear 2D573

interpolation on a cartesian grid in the chosen plane using the Pyspedas library) are here averaged574

in the corresponding time intervals framed with the same color as in the bottom plot where the575

eigenvalues of the ion pressure tensor are plotted again (the time length decreases as the density576

increases).577

Finally, we analyzed the non-gyrotropy with respect to a generic direction, i.e. without578

imposing that this direction is the magnetic field direction. Specifically, we have looked at a579
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Figure 9. Top: Ions’ velocity distribution functions in the tangential plane (the T1- T2 plane) averaged in
four different time periods. Velocities axes are between -220 km/s and 220 km/s. Bottom: Eigenvalues of
the pressure tensor (same interval as in the red dashed square of Fig. 8.c). The four colored boxes are used
to distinguish the four time intervals.

direction, denoted as g, around which the rotated matrix could be rewritten as follows:580 P2 0 0
0 P1 0
0 0 P1

 (8.2)

To achieve this, we employ a minimization algorithm to derive the rotation matrix M that allows581

us to put the pressure tensor data under a form as close as possible to this one. Results from this582

study are shown in Fig. 10 (here shown for MMS2). Panel a displays the variation of P1 and P2583

along the crossing, where P2 consistently exceeds P1. In addition, we imposed an upper limit on584

the temporal variation of the gyrotropic direction g, excluding points with significant temporal585

variations (indicated by the thin line). Consequently, the remaining points reflect instances where586

the direction of g can be considered as stable and reliable. The vector g itself is represented in587

panels b and c, where it is clear that the direction of gyrotropy is not close to the magnetic588

field direction: it is close to nmean × B, the component along B being smaller and varying. This589

result reminds us that at boundaries such as the magnetopause, the strong gradients can break590

the isotropy as much, and even more here, than the magnetic field, so that gyrotropy can be591

around another vector than B. A similar remark had already been made in Belmont et al. (2012)592

concerning the modeling of a tangential discontinuity.593

9. Dataset selection594

In order to expand the results on a statistical basis, we selected a dataset of 146 crossings,595

chosen from the largest one reported in Nguyen et al. (2022) and Michotte De Welle et al. (2022).596

From this database, the following conditions were required in order to carry out an accurate597

study:598

(i) MMS data are in burst mode.599
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Figure 10. (a): Evolution of parameters P1 and P2. (b) and (c): projections of the gyrotropy direction in two
planes. The ordinate is the direction of B, the abscissa is the direction of nmean × B for panel (b) and nmean
for panel (c).

(ii) The crossing duration is between 3 and 15 seconds. Too short crossings do not have a sufficient600

number of points within the structure (ion measurements are every 0.15 s). Too long crossings601

may imply non-stationary structures.602

(iii) Partial crossings are discarded. For that, we impose a density threshold less than 4 cm−3 in603

the magnetosphere and larger than 15 cm−3 in the magnetosheath.604

(iv) Only cases presenting simultaneous crossing features in particles and magnetic field are605

considered, in order to compare normals computed at the same time.606

In addition to these basic requirements, we also excluded some of the selected crossings for607

criteria that demand a more detailed analysis of the internal structure of the boundary. First,608

we excluded two-dimensional features. The quantitative determination of the dimensionality609

was done with the parameters presented in Rezeau et al. (2018) and the dimensionality index610

presented in Section 5.2, which are functions of the ratio between the eigenvalues of the gradient611

matrix. Namely, we considered only crossings with D1 > 0.9 and DGF2 > 0.8 , these two612

parameters being averaged on the crossing interval. These parameters are calculated at each time613
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Figure 11. Spatial distribution of the selected database of crossings on the x, y (top) and x, z planes
(bottom). The dashed grey lines represent the magnetopause location (Shue et al. 1997).

step but, due to waves and turbulence, attention must be paid that some of these two-dimensional614

features can be only local and insignificant for the profiles we are looking for. It is the reason615

why we use only the averaged values. The 146 selected crossings span from September 2015 to616

December 2017 (included). We can observe in Figure 11 that the crossings are evenly distributed617

in the x, y plane. Regarding the z component, there is a prevalence of cases at negative z.618

The list of crossings can be found in Supplementary Materials. For each crossing, the619

classification and the physical quantities relevant for the study (normals, dimensionality index,620

non-gyrotropy index, and the main characteristic lengths discussed above for the case crossing)621

are included.622

10. Statistical study of the magnetic hodograms623

The previous results about the role of the FLR effects at the magnetopause are now carried out624

statistically. This study aims to generalize the results obtained from the case crossing studied in625

the previous section and to estimate the role played by FLRs at the magnetopause.626

The database described above has first been used to perform a statistical study on the hodogram627

shapes, to determine how often linear hodograms are observed in magnetopause crossing. Having628

an estimation of the percentage of crossings that do not conform to CTD allows us to gauge how629

frequently the assumptions made by this theory do not accurately represent the magnetopause.630
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For this purpose, we separate the crossings in different classes, this classification being based on631

CTD distinctions and on the preceding findings:632

(i) Linear crossings, i.e. straight lines not passing through the origin as in the above case study.633

(ii) Radial crossings, including all linear crossings whose best fit line passes through the origin634

(considering uncertainty). These crossings correspond to CTD compressional discontinuities.635

(iii) Circular crossings, when the distance from the origin is constant. These cases correspond to636

CTD rotational discontinuities.637

(iv) Other crossings, whose features are not included in the previous classes. This class includes638

crossings with various features, e.g. circular hodograms not centered on the origin, crossing639

characterised by two different hodograms in two sub-intervals, etc., and crossings that do not640

have an obvious distinction between the previous classes, due to noise.641

To classify each crossing, we only focus on its central time interval, where the gradients642

are maximum. By considering larger time intervals, the hodograms’ shape becomes more643

complex because the variations out of this interval are generally unrelated to the main boundary644

jumps. Selecting only the middle part of the crossing provides simpler and more conformal645

hodograms. Even if the boundary jumps are not fully completed in this part, this will not prevent646

comparing the experimental results with CTD predictions since this theory, when valid, is647

based on conservation laws for any sub-interval of the discontinuity. When this theory fails to648

reproduce the observed properties, we can interpret those new features as coming from kinetic649

effects, therefore confirming the limitation of CTD to describe the magnetopause boundary. To650

that purpose, for each dataset we selected the crossing temporal interval following the algorithm651

used in Haaland et al. (2004, 2014) and Paschmann et al. (2018b) to estimate the spatial scale of652

the magnetopause (intervals are identified as 75% of the magnetic field BL component variation).653

The classification performed here differs from previous attempts to classify magnetopause654

hodograms, as seen in studies such as Sonnerup & Ledley (1974); Berchem & Russell (1982)655

and Panov et al. (2011). In these previous works, hodograms were categorized as C-shaped656

or S-shaped based on their form in the tangential plane. However, unlike those studies, we657

considered the central part of the crossing, rather than considering the entire temporal interval.658

Our classification of hodograms involves a two-step process:659

(1) Visual Inspection: Initially, all hodograms are visually inspected to identify the cases that660

are clearly not linear or circular, which are classified separately as ’Others’. Additionally, a661

preliminary distinction is made between crossings with circular and linear features.662

(2.a) Analysis of hodograms with possible circular features: For these crossings, we analyze663

the variation of the modulus of the magnetic field in the plane, allowing for a maximum664

possible variation of 20%. This accounts for factors such as turbulence and waves propagating665

alongside the magnetopause. Any crossings exceeding this 20% threshold are categorized as666

’Others.’667

(2.b) Analysis of hodograms with possible linear or radial features: These crossings undergo an668

initial assessment to confirm their linearity. This involves examining the width-to-length ratio669

of the crossing, with any ratio exceeding 20% classified as ’Other.’ Finally, the remaining670

crossings are classified as either radial or linear based on whether their projection passes671

through the origin.672

From this database, we found the following distribution:673

- 36.3% (53/146) of the crossings present linear features.674

- 2.7% (4/146) of the crossings present circular features (rotational discontinuity).675

- 15.8% (23/146) of the crossings present radial features (compressional discontinuity).676



23

- 45.2% (66/146) of the crossings could not be interpreted definitely as either of the three before677

(presenting more than one feature at the same time).678

It follows that more than a third of the selected crossings show linear features, emphasizing679

that the fundamental role FLR effects have on magnetopause structure is found in a significant680

number of crossings.681

It could be interesting to compare the above results with the several classifications that were682

previously published (see Liu et al. (2022) and references therein). These previous classifications683

were not based on the analysis of the rotational and compressional properties as done here, but684

on the normal component of the magnetic field and its magnitude (background and variation)685

(Smith 1973; Burlaga et al. 1977; Tsurutani & Smith 1979; Neugebauer et al. 2010). For such a686

comparison, however, one should take care that there are important differences in the definitions:687

in these previous classifications in particular, any discontinuity is named "tangential", whatever688

its other properties, as soon as the measured Bn is sufficiently smaller than B, the threshold for689

this ratio being for instance of the order of 0.3 (Liu et al. 2022; Smith 1973; Burlaga et al. 1977;690

Tsurutani & Smith 1979; Neugebauer et al. 2010). This is of course a very different approach691

from the one we use here since, even when Bn is small (and even if barely measurable), we692

consider that different kinds of discontinuities exist, with different properties.693

As done for the case study above, it was possible to study on a statistical basis i) the ratio694

between the width of the magnetopause and the ion Larmor radius and ii) the non-gyrotropy695

index. For both parameters, the case study appears rather typical. On average, the magnetopause696

was found to be approximately 6.5 times the ion Larmor radius, only slightly smaller (6.1) for697

linear hodograms. Similarly, the non-gyrotropy index Dng,⊥, has an average value of 0.07, only698

slightly higher (0.08) for linear hodograms. The Dng,Aunai index has even comparable averages for699

the four different classes. It therefore seems that, although non gyrotropy has been demonstrated700

above to play an important role, the non-gyrotropy index alone is not decisive for predicting701

unequivocally the shape of the hodograms. This question should be the subject of future works.702

11. A comparison between the magnetic and the particles normals703

For each crossing, both the magnetic and the particles normals were computed with the704

GF2 tool. Thanks to the high resolution of the MMS measurements, we can measure the local705

fluctuations of the normals inside the magnetopause around their mean values. However, in order706

to compare the magnetic and ion geometries, a single average normal was used for each case.707

The mean normal is obtained inside the same time interval as in the previous study.708

To study the differences between the two normals, we compared them via their departure from709

the Shue model’s normal (where the magnetopause is assumed to be a paraboloid, (Shue et al.710

1997)). This normal was obtained using the solar wind and IMF properties from the OMNI data711

set (King & Papitashvili 2005). The time delay between the crossing time and the measurement712

time of the solar wind relevant parameters is estimated by using the propagation method used713

in Michotte De Welle et al. (2022) (which was adapted from Šafránková et al. (2002)). The714

procedure for acquiring these parameters is as follows: i) the distance from the bow shock’s nose715

(where OMNI data are defined) to the crossing location, projected along the Earth-Sun axis,716

is estimated; ii) we estimate the solar wind’s propagation time (test) between these two points,717

assuming an average solar wind velocity of 400 km/s; iii) the solar wind velocity Vsw is then718

determined from the OMNI dataset, averaging over a 2-minute interval centered on the crossing719

time adjusted by the time delay test; and (IV) ultimately, a final time delay is computed based on720

Vsw, which is subsequently utilized to obtain final values of solar wind and IMF parameters. The721

crossings for which OMNI data computed with this procedure are missing (10 out of 146) were722

left out of this analysis.723
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Figure 12. (a) Comparison between the angle between the theoretical normal (Shue et al. 1997) and the
magnetic and ion normals, (b) Distribution of the angle between the magnetic and ion normals. Here the the
markers for each point is chosen depending on whether each crossing respects the criteria on dimensionality,
stationarity, and normal variance on the ions flux measurements (see Appendix C for further details). Colors
in the histograms are used accordingly. Blue, green and yellow points indicate the crossing with small
variance on the ions normal direction within the crossing, good one-dimensionality and good stationarity.
Black points indicate the crossings respecting all criteria, red points not any criteria.

In Figure 12.a, we plot the angle between the nominal normal and the magnetic and particles724

normals respectively. In this figure we observe that most of the crossings are along the diagonal,725

corresponding to cases where the two normals, ionic and magnetic, are similar (82 points out of726

146 are between the two thin lines, which indicate differences of ±10o).727

The cases are distributed throughout the plane, with many cases above 40o, although we728

observe a cluster at lower angles, between zero and 30o. The largest angles correspond to a729

magnetopause very far from the paraboloid shape assumed in Shue’s model, which relies on the730
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assumption of a magnetopause at (or near) equilibrium. The departures are likely to be related to731

surface waves on the boundary itself.732

Finally, the distribution of the angles between the two normals is shown in Fig. 12.b. Here we733

evidence again that most of the cases studied (82 out of 146) are below 20o, with the maximum734

of the distribution at 10o. However, we also observe again that several cases have much larger735

angles, up to 90o. The strongest departures are problematic and deserve further investigation.736

This appears to be due to the more complex ion structure with respect to the magnetic one. As the737

criteria used for the dataset selection were built from magnetic data, they are not as relevant when738

considering ion normals. This is evidenced in Figure 12, where the colors indicate how several739

ion criteria are satisfied. These criteria concern respectively the dimensionality, the stationarity,740

and the variance of the normal direction. All details are given in Appendix C. Focusing on points741

respecting all the criteria for the ions flux (black markers and hodogram), we observe that only a742

few crossings are outside the diagonal. Only two of these crossings have angles above 40o.743

12. Conclusions744

The study of the properties of the magnetopause is a very important issue for understanding745

the penetration of the solar wind plasma into the magnetosphere. In the theoretical part, we746

show that the notion of "quasi-tangential" discontinuity has to be introduced to complete the747

theory of discontinuities and understand the limit when the crossing fluxes tend to zero as in748

the magnetopause case. We emphasize that, in presence of anisotropy, the physical processes749

occurring inside the layer play a fundamental role because they are responsible for the conditions750

linking the downstream and upstream quantities. In particular, for thin current layers, the FLR751

corrections corresponding to the non-gyrotropic pressure tensor components must be taken into752

account.753

The tool GF2 presented in the paper and used for determining the normal direction to the754

boundary derives from the MDD method. It includes in addition a fitting procedure, which allows755

introducing a part of the temporal information via a 4-point filtering of the data and adding756

constraints such as ∇ · B = 0. It is shown here to provide results quite compatible with the757

original method (when used with smoothed data), which is enough for drawing reliable physical758

conclusions on the magnetopause equilibrium. We expect that this approach could bring more759

precise information concerning the magnetopause gradients. Unfortunately, investigating this760

point in more detail cannot be done using MMS data but requires testing the tool in fully 3D761

kinetic simulations with realistic turbulence. This point is the subject of future work. Here, we762

have applied this tool on a particular crossing case and compared with other state-of-the-art763

normals. We have shown that the local normal (at each time step during the crossing) differs by764

less than ten degrees from the one calculated by all the other models. When averaging over the765

whole crossing, the normal obtained with the GF2 is even less than one degree apart from the766

normals from Shi et al. (2005); Denton et al. (2018).767

Although we cannot claim to have achieved the ideal accuracy of about one degree, the reached768

accuracy is sufficient to evidence the correct physics at play, resumed as FLR effects. We have769

presented the results for a crossing observed by the four MMS spacecraft. For this crossing,770

the "linear" hodogram in the tangential plane shows that the boundary properties differ from771

those predicted by CTD. This discrepancy is explained by looking at the tangential components772

of the momentum equation, which highlights the role of the pressure tensor symmetries in the773

magnetopause equilibrium. This result agrees with the theoretical results of the first part and it is774

likely to hold more generally for all quasi-tangential discontinuities. The ion pressure tensor has775

been analyzed for this purpose. We have used two indices of non-gyrotropy, which both confirm776

the presence of a significant, even if small, non-gyrotropic part in this tensor. Furthermore,777

we have shown that the non-gyrotropy direction differs from the magnetic field one, aligning778
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approximately with the nmean × B direction. Finally, the analysis of the VDFs directly confirms779

the presence of non-gyrotropic distributions.780

To show that our methodology applies to cases that CTD cannot handle, we have selected a781

substantial number of magnetopause crossings with one-dimensional characteristics to have a782

proper statistical basis for our findings. For all these crossings, we have plotted the hodogram783

of the magnetic field in the tangential plane and classified them depending on their geometry.784

Our results show that 36.3% of the crossings evidence clear linear features, incompatible with785

the CTD description, while only 18.5% of the crossings show either circular or radial hodograms786

as predicted by CTD. In other words, a significant number of cases escapes the classic theory,787

proving that the relevance, even if not a predominance, of FLR effects at the magnetopause can788

be generalized and that the case crossing presented in the first section is rather typical. It is well-789

known that the linear version of the rotational discontinuity is the MHD shear Alfvén wave. Here790

it appears that the magnetopause-like "quasi-tangential" discontinuities correspond in the same791

way to the quasi-perpendicular "Kinetic Alfvén Waves" (Hasegawa & Uberoi 1982; Belmont &792

Rezeau 1987; Cramer 2001).793

Several papers have investigated the changes in rotational discontinuities when various non-794

ideal effects are introduced. These theoretical papers have addressed the problem as a Riemann795

problem using the methodology of a "piston" to study the formation of different discontinuities.796

Some introduced FLRs and gyroviscosity in the layer while assuming isotropy on both sides797

(Lyu & Kan 1989; Hau & Sonnerup 1991), and others introduced anisotropy everywhere while798

assuming gyrotropy in the layer (Hau & Wang 2016). These different papers lead to different799

conclusions; in particular concerning the role of electron inertia in the layer equilibrium.800

It is worth noticing that the hodograms of B obtained with these theoretical studies were never801

far from circular ones, contrary to the almost linear shapes shown in the present paper. Our802

methodology has been different here: without assuming pre-defined forms for the non-ideal803

terms, we look experimentally to the hodograms and the form of the P tensor and explain804

theoretically how the second can explain the first ones.805

Finally, we have used the same database of crossings to compare the geometric properties806

of the magnetic and ion structures. We have compared the normal obtained from the magnetic807

field and the ion flux measurements to the one expected from Shue et al. (1997) model. Many808

crossings differ by more than 40 degrees from the nominal equilibrium condition, underlining a809

very dynamical environment, but it is worth noticing that the two kinds of determination are most810

often in agreement with each other, and therefore confirm the result. Furthermore, an accurate811

study of the ion flux measurements have shown that crossings showing bigger discrepancies812

between the magnetic field and ion flux normals are generally due to non-stationarities, non-one-813

dimensionality, or variations in the ion flux normals. When excluding these cases from the study,814

the ion and magnetic flux normals are compatible with only two crossings (over 77) showing815

angles larger than forty degrees.816
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Figure 13. Terms of the momentum equation (units of 10−15kg m/s2), projected on the local tangential
direction (t1). Shaded regions are estimated uncertainties of the divergence of the pressure (red), the J × B
(blue) and the classic inertial term (green).
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Appendix A. Influence of averaging the t1 direction in the momentum equation827

balance828

In this section, we investigate the impact of using an averaged tangential direction along the829

crossing on the outcomes concerning the role of the pressure tensor in the momentum equation.830

In Fig. 13 we show the projection of the terms of the momentum equation along the local t1831

direction (i.e. without averaging). We observe here some reversals of the sign of the dominant832

terms, that were not observed in the averaged case. Nonetheless, it is still evident that the pressure833

tensor counterbalances the J × B term, hereby confirming our earlier findings.834

Appendix B. Analysis of the gyroviscous effects835

In this section, we use the magnetopause crossing analysed in detail above to study the validity836

of the gyroviscous interpretation. In particular, we employ the Braginskii gyroviscosity term837

(Braginskii 1965) as applied by Stasiewicz (1989) to the magnetopause, to analyze the pressure838

tensor. In this case, the pressure tensor is considered as the sum of an isotropic component, Piso839

and a viscosity term, σ:840

Pi = Piso − σ (B 1)

To investigate the viscosity term, we use the reference system where the normal direction is841

aligned with the z-axis (the x and y directions are chosen accordingly to form an orthogonal842

triad). By exploiting the definition of σ, we focus here on its projection along the normal yielding843

the following relation:844

−σ.n =

Pnx

Pny

Pnn

 = ρν
 0 bn by

−bn 0 −bx

by −bx 0

 .
u
′
x

u′y
u′n

 (B 2)

Here ν is the gyroviscosity coefficient, b̂ = (bx, by, bz) the normalized magnetic field, and u′ =845

(u′x, u
′
y, u
′
z) is the vector of the spatial derivatives of the velocity components along the normal.846

We now consider the first two components of this equation, yielding the following expressions847
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Figure 14. Left (blue) and right (red) hand sides for Equations B 3 (top) and B 4 (bottom). Thin-dotted lines
correspond to the real-time values while thick lines to an averaged window of 1 s. All terms are normalized.

that allow us to compare the non-diagonal terms with the velocity changes:848

Pnx

ρ
= ν(bnu′y + byu′n) (B 3)

849

Pny

ρ
= −ν(bnu′x + bxu′n) (B 4)

The terms of these equations are shown (normalized) in Figure 14. Here we observe a fairly good850

correlation between the non-diagonal terms of the pressure tensor and the spatial derivatives of851

the flow velocity.852

Appendix C. Quality indices for the ion normals853

In the absence of additional caution, Figure 12 shows that the angle between the normal854

obtained with the magnetic field and the one with the ion flux reaches very high values, up to 90855

degrees. This result requires a more accurate study, as the criteria used for the dataset selection856

are based on the magnetic field (except for the threshold imposed on the density values).857

To interpret the results accurately, the following parameters were considered:858

(i) Dimensionality of ion flux. For this purpose, we exploit the dimensionality index defined in859

Equation 5.11, computed from the ion flux measurements.860

(ii) Stationarity of the ion flux measurements. To evaluate stationarity, we exploit the GF2 tool.861

Specifically, we consider the quality of the fit of the gradient matrix as an index of stationarity.862
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Figure 15. Dimensionality (left), stationarity (center), and normal variance (right) averaged for each
crossing as a function of the angle between the magnetic field normal and the ion flux one. Green, blue, and
yellow indicate crossings respecting the DGF2,ions > 0.6, δnorm > 0.07, S > 0.22 criteria individually. Black
dots indicate the crossings for which all the criteria are met, and red dots (two cases) when no condition is
met.

By defining D = Gfit −G we can introduce the stationarity index:863

S =
Tr(D.DT )
Tr(G.GT )

(C 1)

Since for a truly stationary magnetopause, S should be equal to zero, deviations from zero864

suggest potential non-stationarity.865

(iii) Variance of the normal. In some crossings of the database, the normal associated with ion866

flux exhibits local differences with respect to the mean value, such as fluctuations or rotations867

within a plane, with one component varying within the crossing. In these cases, the ion flux is868

therefore characterized by more complex structures and the mean normal is not meaningful.869

To exclude such cases, we examined the variation of the normal around the mean value,870

defined as follows:871

δnorm =< |ni − nmean,i|
2 > (C 2)

Small values of δnorm indicate almost constant normals.872

The average values of these three parameters for each crossing are shown in Figure 15 as a873

function of the angles between the normal of the magnetic field and the ion flux. We observe874

here that crossings showing the largest angles occur when at least one of these conditions fails.875

To select the cases for which the ions are characterized by a stationary and one-dimensional876

structure, for which the normal has no variations around the mean value, we applied the following877

thresholds: DGF2,ions > 0.6, δnorm > 0.07, S > 0.22. Specifically, crossings individually meeting878

one of these criteria are shown in green, blue, and yellow, respectively. When all criteria are met,879

crossings are indicated by black dots. This Figure underlines a correlation between the difference880

between the two normals and the values of these three parameters, showing how cases with higher881

DGF2,ions and smaller δnorm and S are the ones with smaller differences between the two normals.882
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