

Impact des submersions marines sur les marais littoraux des Pertuis Charentais: une approche multidisciplinaire

Benjamin Amann, Eric Chaumillon, Pierre Polsenaere, Julien Pétillon, Jérémy Mayen, Marie Arnaud, Christine Dupuy, Lauriane Bergeon, Léa Lorrain-Soligon, François Brischoux, et al.

▶ To cite this version:

Benjamin Amann, Eric Chaumillon, Pierre Polsenaere, Julien Pétillon, Jérémy Mayen, et al.. Impact des submersions marines sur les marais littoraux des Pertuis Charentais: une approche multidisciplinaire. Colloque PAMPAS "Le patrimoine des marais littoraux face aux changements globaux", 2023, La Rochelle, France. hal-04679097

HAL Id: hal-04679097 https://hal.science/hal-04679097v1

Submitted on 27 Aug 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Impact des submersions marines sur les marais littoraux des Pertuis Charentais : une approche multidisciplinaire

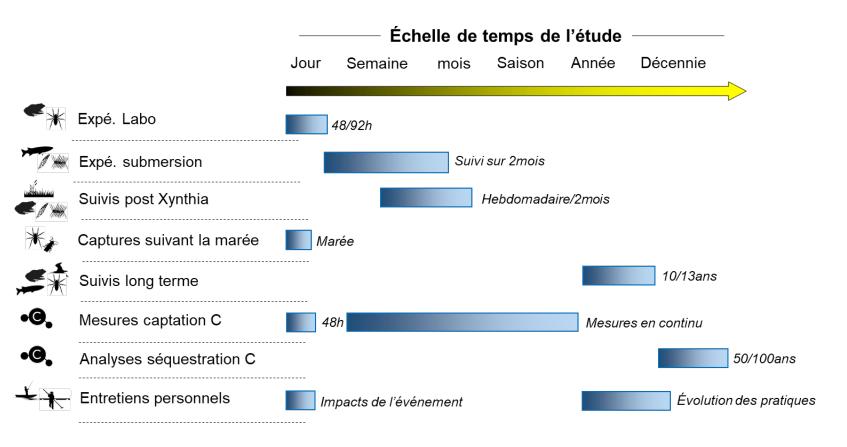
Benjamin Amann¹,

Chaumillon Eric¹, Polsenaere Pierre², Pétillon Julien³, Mayen Jérémy², Arnaud Marie⁴, Dupuy Christine¹, Bergeon Lauriane¹, Lorrain-Soligon Léa⁵, Brischoux François⁵, Dedinger Clémence⁶, Cazals Clarisse⁶, Pignon-Mussaud Cécilia¹, Bertin Xavier¹, Kohler Mireia¹, Réveillac Élodie¹, Agogué Hélène¹, Jourde Jérôme¹, Bécu Nicolas¹, Long Nathalie¹, Lacoue-Labarthe Thomas¹, Vagner Marie⁷.

¹ LIENSs, La Rochelle / ² IFREMER, La Tremblade / ³ ECOBIO, Rennes / ⁴ iEES, Paris Sorbonne / ⁵ CEBC, La Rochelle / ⁶ INRAE, ETTIS, Cestas / ⁷ LEMAR, Brest

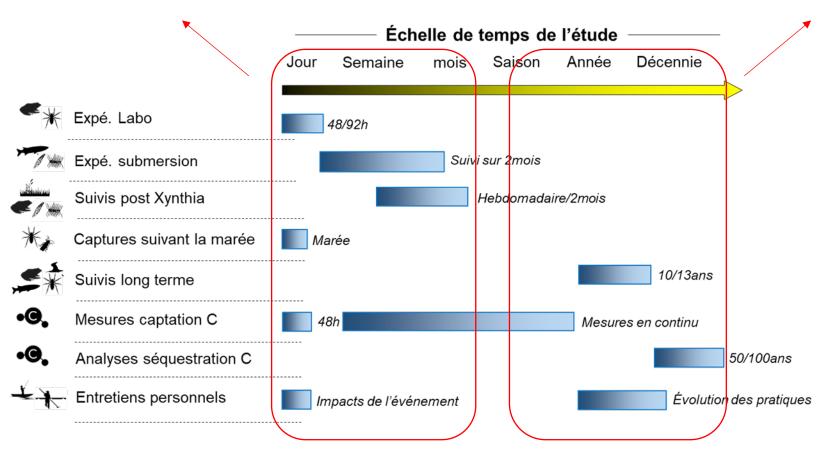
Introduction

<u>Objectifs</u>: Mieux comprendre les effets de la submersion marine sur l'écosystème du marais littoral, à travers une approche multidisciplinaire


- Aborder l'impact de la submersion marine au travers de métriques communes
- Synthétiser la compréhension actuelle des effets multi-échelles de la submersion marine sur le marais littoral
- Mettre en évidence les lacunes dans nos connaissances

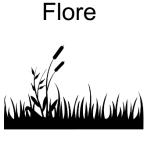
-culturelle

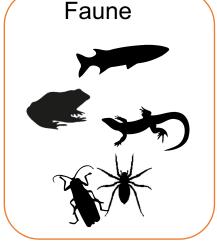
Quelle approche pour évaluer l'influence de la submersion marine sur chaque compartiment ?

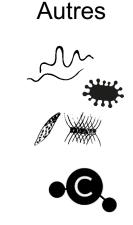


Échelle de l'événement Impact direct de la submersion (propriétés physico-chimiques)

Échelle long-terme
Impact indirect de la submersion
(modification d'habitat)





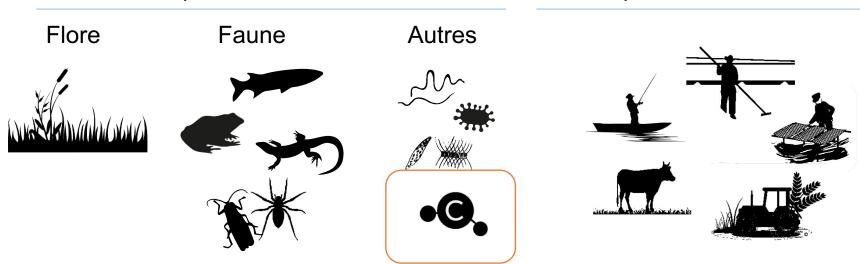


Composante naturelle

Composante socio-culturelle

Impacts sur les espèces

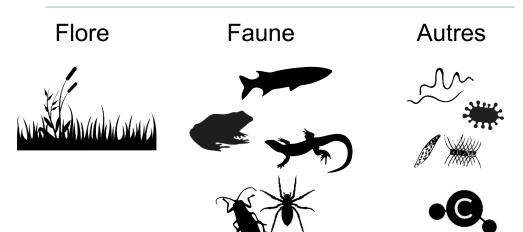
- Écologiques: densité de population & biomasse, sex-ratio, compétition/prédation
- Morphologiques: taille, masse, indice de condition corporelle
- Comportementaux: mobilité, migration, torpeur
- Physiologiques: capacité d'osmo-régulation, propriétés sanguines



Composante naturelle

Composante socio-culturelle

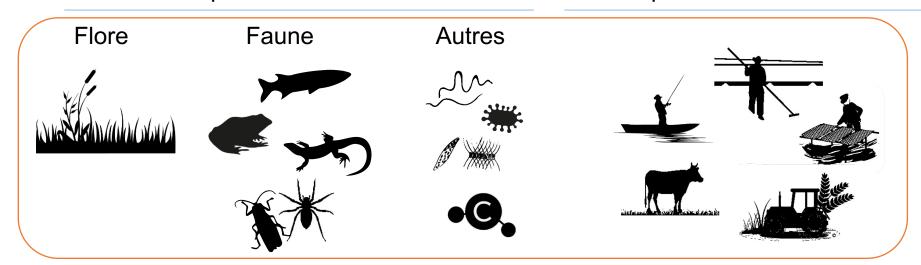
Impacts sur le carbone


- Effet sur l'activité photosynthétique et respiratoire de la végétation
- Effet sur les échanges horizontaux
- Effet sur la fonction puits/source de carbone

Composante naturelle

Composante socio-culturelle

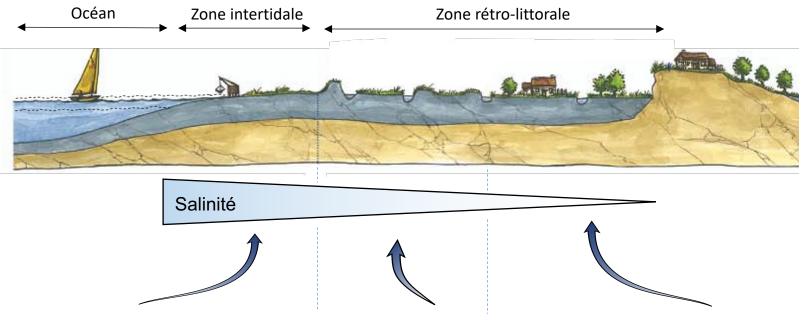
Impacts sur les activités humaines


- En milieu salé: dommages matériels, coûts de réparation, perte de l'activité (saliculture, ostréiculture)
- En milieu doux: cultures et prairies brûlées, salinisation d'eau d'abreuvage des troupeaux => Surcoûts céréaliculture (gypsage des sols) et élevage (complémenter en eau et en fourrage)

Composante naturelle

Composante socio-culturelle

Métriques communes: Abondance & Diversité


Paramètres sensibles : Hauteur d'eau & Durée de contact avec l'eau de mer

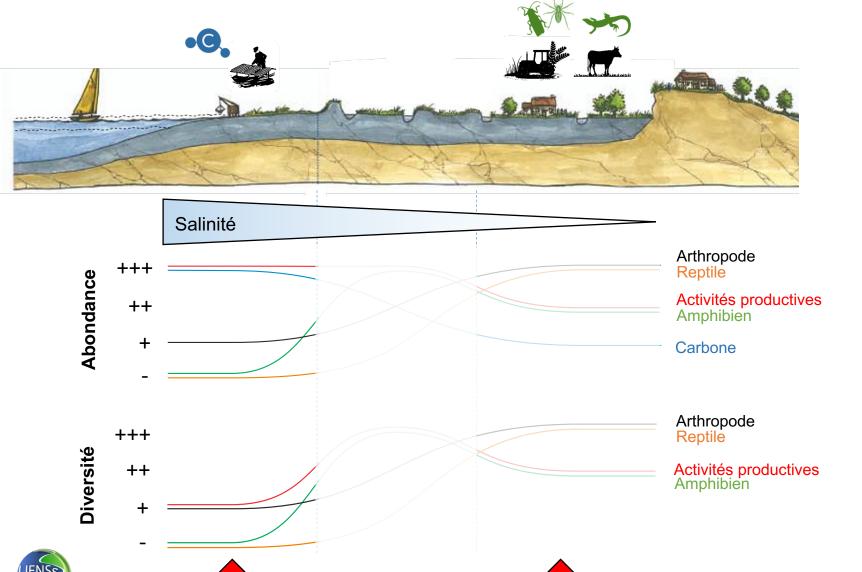
Métriques communes: Abondance & Diversité

l'importance de l'<u>habitat</u>

Typologie d'habitat selon un transect de salinité

Pré salé/vasière

Marais salé/saumâtre endigué

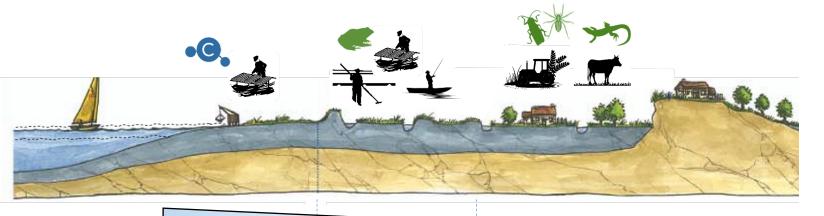


Marais doux rétro-littoral

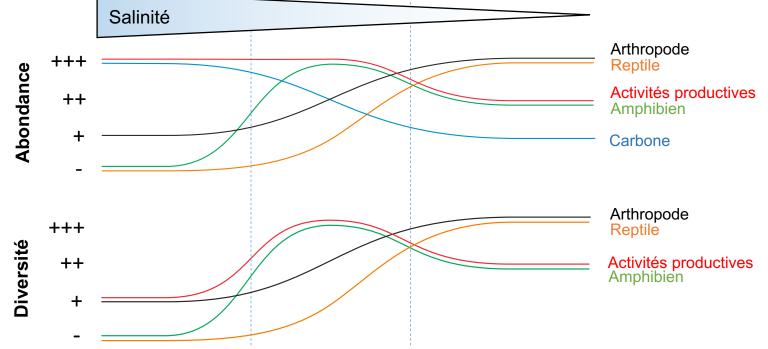
l'importance de l'habitat

Les milieux opposés engendrent des choix conflictuels

Marais côtiers


- Puits de carbone
- Biodiversité
- + Ostréiculture
- Saliculture, céréaliculture

Marais doux


- Arthropodes, reptiles, amphibiens
- Séquestration carbone
- Élevage, céréaliculture
- Ostréiculture, saliculture

l'importance de l'habitat

Le milieu transitoire offre une option à compromis

Marais salé/saumâtre endigué

- Biodiversité
- Puits de carbone préservés
- + Diversité des activités humaines

Paramètres sensibles : Hauteur d'eau & Durée de contact avec l'eau de mer

A/ <u>Définition des indices de sensibilité</u>

0 : état amélioré

1 : objet non impacté

2 : état dégradé

0,25m

2

3 : disparition de l'objet

0,5m

2

Hauteur d'eau

>1m

3

				
Sensibilité	IH1	IH2	IH3	IH4
IR1	1	1	2	2
IR2	1	2	2	(3)
IR3	2	2	3	3

1m

Temps ressuyage

0,5j

3j

IR2 IR3 IR4

Exemple: amphibiens

3

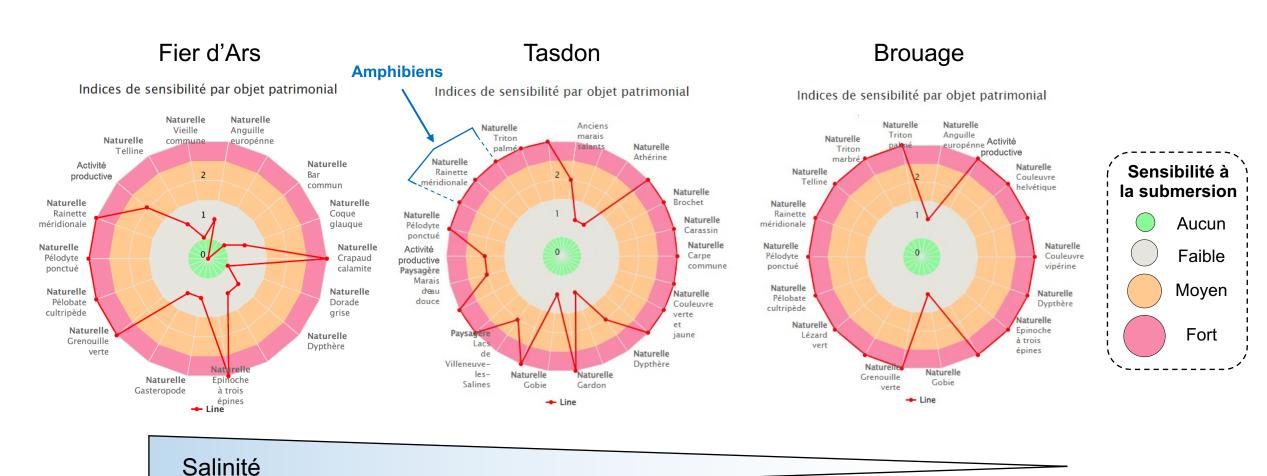
Sensibilité à la submersion, Tasdon Amphibiens = 3

B/ Spatialisation de l'objet

Présence avérée

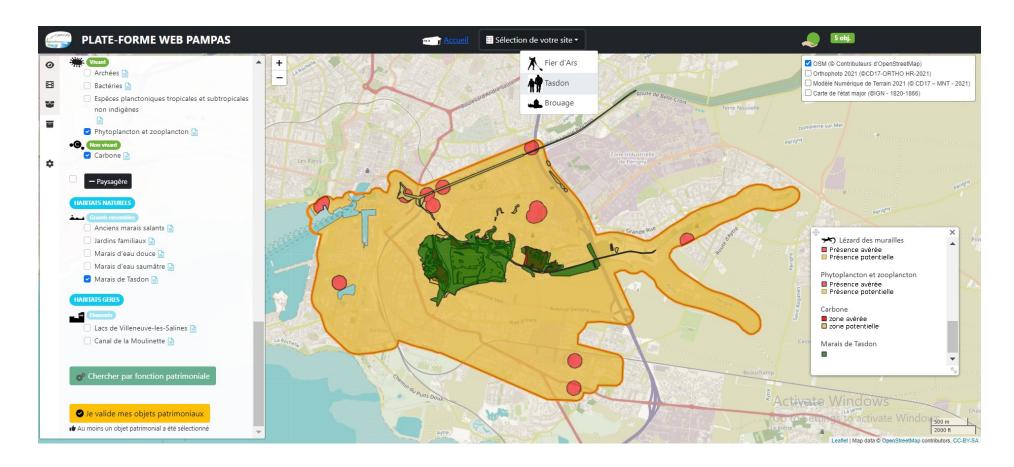
Présence potentielle

C/ <u>Scénario de submersion</u>



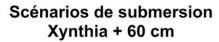
Indice de sensibilité: 3 sites d'étude

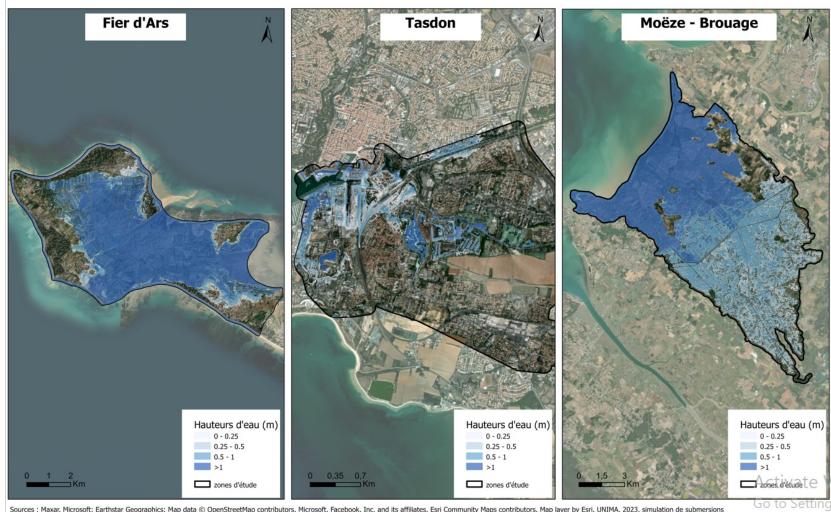
Indice de sensibilité par objet et par site



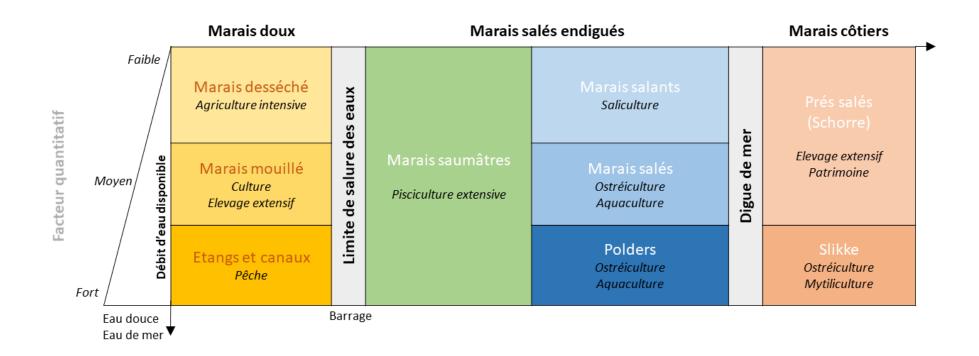
Une plateforme web pour aller plus loin...

Cette après-midi, 15h25 [Cécilia P-M, Julien H, Fabien B]


« Une plateforme web pour sensibiliser à l'évolution du patrimoine des marais littoraux face au risque de submersion marine »



Scenarii submersion



Typologie de milieu et activités humaines

Scenarii submersion

Groupe: reptiles

Sensibilité	IH1	IH2	IH3	IH4
IR1	2	2	3	3
IR2	2	3	3	3
IR3	3	3	3	3
IR4	3	3	3	3

Groupe: amphibiens

Sensibilité	IH1	IH2	IH3	IH4
IR1	1	1	2	2
IR2	1	2	2	3
IR3	2	2	3	3
IR4	2	2	3	3

Groupe: phytoplancton et zooplancton

		0,25m	0,5m	1m	>1m	Hauteur d'eau
	Sensibilité	IH1	IH2	IH3	IH4	
0,5j	IR1	1	1	1	1	
3j	IR2	1	1	2	2	
7j	IR3	2	2	2	2	
>7j ↓	IR4	2	2	2	2	

Temps ressuyage

Captation carbone pré salé

		0,25m	0,5m	1m	>1m	Hauteur d'eau
	Sensibilité	IH1	IH2	IH3	IH4]
0,5j	IR1	1	1	2	2	
3j	IR2	1	1	2	2	
7j	IR3	1	1	2	2	
>7j 🌡	IR4	1	1	3	3	

Temps ressuyage

