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Abstract Tropical wetlands account for ∼20% of the global total methane (CH4) emissions, but
uncertainties remain in emission estimation due to the inaccurate representation of wetland spatiotemporal
variations. Based on the latest satellite observational inundation data, we constructed a model to map the long‐
term time series of wetland extents over the Sudd floodplain, which has recently been identified as an important
source of wetland CH4 emissions. Our analysis reveals an annual, total wetland extent of 5.73± 2.05 × 10

4 km2

for 2003–2022, with a notable accelerated expansion rate of 1.19 × 104 km2 yr− 1 during 2019–2022 driven by
anomalous upstream precipitation patterns. We found that current wetland products generally report smaller
wetland areas, resulting in a systematic underestimation of wetland CH4 emissions from the Sudd wetland. Our
study highlights the pivotal role of comprehensively characterizing the seasonal and interannual dynamics of
wetland extent to accurately estimate CH4 emissions from tropical floodplains.

Plain Language Summary Methane (CH4) plays an important role in global warming. About one‐
fifth of global CH4 emissions come from tropical wetlands, with the Sudd wetland in tropical Africa presenting
as a hotspot for CH4 emissions. In this study, we generate a monthly wetland map series based on the latest
satellite observation for the Sudd wetland. Our results show that wetland area dynamics present large seasonal
and interannual variabilities. However, current widely used wetland products tend to indicate smaller sizes and
variations of wetlands, which might lead to the underestimation of wetland CH4 emissions. We point out that
refined maps of tropical wetlands can help reduce the uncertainties of CH4 emission estimations.

1. Introduction
Methane (CH4) is the second most important anthropogenic greenhouse gas after carbon dioxide, accounting for
15%–35% of the global radiative forcing from greenhouse gases (IPCC, 2021). The global atmospheric CH4
growth rate has been accelerating since 2014, reaching a record‐breaking level of 17.9 ppb yr− 1 in 2021 (Lan
et al., 2024). Accounting for ∼20% of the global total (natural and anthropogenic) sources, CH4 emissions from
tropical wetlands are thought to dominate the interannual variability in global atmospheric CH4 growth (Kirschke
et al., 2013; Parker et al., 2018; Poulter et al., 2017; Saunois et al., 2020a). In particular, tropical Africa, with its
extensive distribution of wetlands (e.g., the Sudd, the Congo, and the Nigeria), is dominant in determining the
variation of tropical emissions. These variations accounted for more than 80% of the observed global atmospheric
growth rate for 2010–2019 (Feng et al., 2022). The spatial and temporal distribution of wetlands represents one of
the most critical factors determining the location and timing of tropical wetland CH4 emissions, particularly in
tropical floodplains where wetland extents present substantial seasonal and interannual variabilities that depend
on variations in water balance and local topography (Parker et al., 2018; Z. Zhang et al., 2021a). Therefore,
precise mapping of wetland extent in tropical floodplains, especially in Africa, is crucial for improving our
understanding of the global CH4 budget and its potential changes under future climate scenarios.

Located in the central part of South Sudan, the Sudd wetland represents one of the largest floodplain wetlands in
the world (Figure 1a). It receives inflows primarily from the White Nile, which originates from Lake Victoria to
the south, and several seasonal streams originating from the west and east (Figure 1a). In 2006, the Sudd wetland
was officially recognized as a Ramsar Wetland of International Importance with a designated area of 57,000 km2.
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However, due to seasonal flooding, the extent of the Sudd wetland varies greatly within a year (Figures 1b and
1c). During flooding seasons, as the White Nile approaches South Sudan, the water levels overcome the
comparatively shallow riverbanks, resulting in overflows from the main channel into the adjacent swamps and
seasonally flooded areas (Sutcliffe & Parks, 1999). This gives rise to a complex network comprising river
channels, lagoons, and inundated areas (Figure 1c). In contrast, during dry seasons, water mainly flows through
meandering river channels without extensive overflow (Figure 1b). The extensively distributed floodplains make
South Sudan a hotspot for CH4 emissions in tropical Africa, with wetland emissions accounting for ∼60% of the
total emissions from the Sudd region (Lunt et al., 2019). However, recent studies pointed out that wetland CH4
emission models perform poorly at capturing the distributions and the seasonal cycles of wetland CH4 emissions
in South Sudan compared to satellite observation (Lunt et al., 2019, 2021; Pandey et al., 2021; Parker et al., 2022).
This poor performance is mainly attributed to the inadequate representation of wetland extent and its dynamics
(Bloom et al., 2017).

In this study, we developed a statistic model utilizing a robust observational inundation data set during the period
2018–2022 and associated satellite‐based water storage and precipitation data. We used this model to reconstruct
monthly maps for 2003–2022 across the Sudd wetland and then applied this new wetland extent data to improve
the estimation of wetland CH4 emissions. Following Gerlein‐Safdi et al. (2021), we defined the Sudd region
within the geographic bounds of 4–11°N, 27–35°E.

2. Materials and Methods
2.1. Satellite‐Based Wetland Extent Data

Optical satellite‐based maps tend to underestimate wetland extent in the tropics due to the obstruction of thick
clouds and dense vegetation (Martins et al., 2018). Producing a cloud‐freemap necessitates the aggregation of data
over several months, leading to a loss of temporal resolution (Hardy et al., 2023). Working at an L‐band frequency
of 1.575 GHz to avoid attenuation and scattering by clouds or vegetation canopies, the Cyclone Global Navigation
Satellite System (CYGNSS) constellation provides possibilities to monitor inland waterbody with high temporal
granularity (Ruf et al., 2018). The CYGNSS‐based approach has proved to be highly sensitive to seasonal vari-
ations in inland surfacewater (Gerlein‐Safdi&Ruf, 2019; Ruf et al., 2018; Zeiger et al., 2022), and has beenwidely
used for detecting wetland extent and flooding inundation (Chew et al., 2023; Gerlein‐Safdi et al., 2021).

Here, we used the UC Berkeley Random Walk Algorithm WaterMask from the CYGNSS (Berkeley‐RWAWC)
data set as the observed wetland extent for our model (Pu et al., 2024). This product provides monthly binary
surface water extent maps at a resolution of 0.01° × 0.01° since August 2018 and demonstrates high agreement
with other optical data in the Sudd wetland (Hardy et al., 2023; Pu et al., 2024). The spatial patterns of inundation

Figure 1. (a) Location of the Sudd region (red rectangle, 4°–11°N, 27°–35°E) and topographic map of the surrounding area. (b–c) Berkeley‐RWAWC inundation extents
in the Sudd region for April 2020 and October 2020. (d) Comparison of the variations of Berkeley‐RWAWC total inundation area, Gravity Recovery and Climate
Experiment (GRACE) liquid water equivalent (LWE) anomaly averaged across the Sudd region, and the water level of a virtual station of the White Nile (marked with
red triangles in (b) and (c)) from August 2018 to December 2022. The time series of river water level (based on satellite altimetry) is calculated by a 3‐month moving
average.
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regions for April and October 2020 are presented in Figures 1b and 1c. For our statistic model, we calculated the
wetland fraction at a resolution of 0.5° × 0.5° from the Berkeley‐RWAWC data set.

2.2. Input Data for Our Statistic Model

We used the Gravity Recovery and Climate Experiment (GRACE) and its follow‐on (GRACE‐FO) satellite
missions' monthly liquid water equivalent (LWE) anomaly (Landerer et al., 2020; Tapley et al., 2004) and the
Multi‐Source Weighted‐Ensemble Precipitation (MSWEP) v2.8 monthly precipitation (Beck et al., 2019) as
predictors for wetland extent. The variations of LWE are consistent with the seasonal cycle of observed wetland
extent (Figure 1d), and the precipitation data was used to improve the inadequate representation of LWE with a
coarse spatial resolution of about 3° × 3° (Gou & Soja, 2024). All LWE and precipitation data were resampled to
0.5° × 0.5° using the nearest sampling and spatial averaging, respectively.

The GRACE and GRACE‐FO (hereafter GRACE) missions provide opportunities for continuously monitoring
the changes in global terrestrial water storage by measuring gravity field variations (Tapley et al., 2019). Here we
used GRACE Level‐3 mascon products from January 2003 to January 2023. The 13‐month gap between the two
missions and 20 additional missing months were filled by the singular spectrum analysis gap‐filling technique
developed by Yi and Sneeuw (2021).

TheMSWEP product utilizes a combination of satellite, gauge, and reanalysis data to produce a consistent data set
at a 3‐hourly resolution on a 0.1° × 0.1° grid, covering the period from 1979 to the present (Beck et al., 2019). In
Africa, it has been reported that the MSWEP product performed best at the monthly and annual timescales among
eight widely used precipitation data sets (Mekonnen et al., 2023).

2.3. Construction of Wetland Extent Simulation Model

Following Shen et al. (2017), we constructed a multiple linear regression model to correlate monthly observa-
tional inundation fraction with LWE anomaly and both local and regional precipitation at a resolution on a
0.5° × 0.5° grid. The model form is as follows:

Fwet = α G +∑
3
i=0βi Pi +∑

2
j=1 γj Sj (1)

where Fwet is the simulated wetland fraction, G refers to GRACE LWE anomaly value; P0–P3 represent the local
precipitation for 0–3 months in advance; S1 and S2 represent regional precipitation patterns using the singular
value decomposition (SVD); α, β, and γ are the corresponding coefficients. For the LWE anomaly, we used data
with a 1‐month lag since the seasonal cycle of LWE is always 1 month later than that of the observed total wetland
extent (Figure 1d). This time‐lag phenomenon arises from the temporal delay in the conversion of land‐surface
water, which directly impacts wetland extent, into terrestrial water (Y. Zhang et al., 2019).

We optimized the simulated model through three steps. First, we tested local precipitation for 0–3 months in
advance without considering regional precipitation (imax = 0–3, γj = 0) since previous studies have reported a
1–3 months lag in the seasonality of inundation extent compared to precipitation in the Sudd region (Gerlein‐Safdi
et al., 2021; Prigent et al., 2020). We selected a maximum value of 3 months for the advance of precipitation
(imax = 3) because the corresponding result has the lowest regionally averaged root‐mean‐square‐error (RMSE)
and the highest regionally averaged R2 between simulated and observed wetland fractions when using only local
precipitation (Figure S1a in Supporting Information S1).

Second, considering that surface water can be produced by precipitation upstream or in adjacent areas on
floodplains, we incorporated regional precipitation impacts (including lag effects) into our simulation model
using SVD and determined the optimal value for the regional size (window size). Details of the SVD method can
be found in Text S1. To find the best window size for SVD, we tested the value for 1–10, which corresponds to
1.5° × 1.5°–10.5° × 10.5° of the surrounding area for each grid. We selected a window size of 3 since the
corresponding result has a lower regionally averaged RMSE and a higher regionally averaged R2 compared with
using only local precipitation, and there is less improvement with larger window sizes (Figure S1b in Supporting
Information S1).
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Finally, to avoid overfitting, the simulated maximum wetland fractions were constrained by the observed
maximum values, while any simulated wetland fractions below zero were adjusted to zero. For statistical analysis,
we employed the function “findchangepts” in MATLAB to find abrupt changes in the annually averaged time
series of total wetland extent.

2.4. Site‐Based CH4 Emissions Estimation

We estimated wetland CH4 emissions by multiplying wetland area with CH4 emission intensity on a grid scale.
For emission intensities, we used data from a random forest upscaling model trained on FLUXNET‐CH4 data
(UpCH4) since it can provide monthly gridded wetland CH4 emission estimations (McNicol et al., 2023b).
Considering the uncertainties of UpCH4 in the tropics due to limited site samples, we also calculated CH4
emissions using observational data from a specific FLUXNET‐CH4 site in Brazil's Pantanal wetland (BR‐Npw)
(Vourlitis et al., 2020). Although the Sudd and the Pantanal are located on two different continents, they are both
categorized into riverine seasonally flooded wetlands in the latest Global Lakes and Wetlands Database version 2
(Lehner et al., 2024), and their wetland dynamics are both highly sensitive to precipitation during wet seasons
(Gerlein‐Safdi et al., 2021). More information about the similarity between these two wetlands is provided in
Table S1 in Supporting Information S1.

Specifically, we found the CH4 fluxes are strongly dependent on the water table depth (WTD) rather than soil
temperature (Figure S2 in Supporting Information S1) based on daily observations at site BR‐Npw. Furthermore,
we observed that the grid‐scale (0.25° × 0.25°) root‐zone soil moisture from the Global Land Evaporation
AmsterdamModel (GLEAM) version 3.8a agrees well with the site‐scale WTD in seasonal cycles (Figure S3a in
Supporting Information S1) (Martens et al., 2017). Based on the two relationships, we formulated an exponential
function to characterize the correlation between GLEAM soil moisture and CH4 flux (R

2 = 0.63, Figure S3b in
Supporting Information S1), then applied this correlation to the Sudd region to estimate emission intensities. We
stress that this methodology is only applicable to tropical seasonally flooded regions since it emphasizes the
impact of soil water variations.

3. Results and Discussion
3.1. Evaluations of Our Reconstructed Wetland Area

We evaluated the estimated wetland extent on both grid and regional levels. For the grid level, our reconstructed
maps can reproduce the spatial patterns and temporal dynamics of observation‐based wetland extent well with
RMSE <6% and R2 > 0.5 in most (70%) grids (Figure S1c and S1d in Supporting Information S1), and the
regionally averaged RMSE and R2 are 3.6% and 0.61, respectively (Figure S1b in Supporting Information S1).
Considering that some areas in the Sudd region are devoid of seasonally flooded wetlands (e.g., grids in the
southwestern highland area of the Sudd region), we re‐evaluated the performance of our statistic model in
wetland‐dominated grids (averaged wetland fraction >20% in Berkeley‐RWAWC data). The modified averaged
R2 increases to 0.67, suggesting the effectiveness of our model to simulate wetland dynamics on the grid level.
Figure S4 in Supporting Information S1 compares the spatial patterns of reconstructed and observed wetland
extents in April and October for 2019–2022, which typically represent the periods of minimum and maximum
extent of wetland area in the Sudd region. Compared with the Berkeley‐RWAWC product, our reconstruction can
reproduce the spatial patterns of observation‐based wetland extent well in most (70%) grids with discrepancies of
<3% for April and <6% for October, suggesting that our model can reproduce the large variations of the inun-
dation area.

For the regional level, the total wetland area over the Sudd region of our reconstruction presents a good con-
sistency with the Berkeley‐RWAWC products (RMSE = 10% and R2 = 0.93, Figure 2a). Our reconstruction
shows an annual total wetland extent of 5.73 ± 2.05 × 104 km2 (mean ± 1σ) for 2003–2022, with an average
growth rate of 7.93 × 102 km2 yr− 1 (Figure 2a). The seasonal cycle of the total wetland area has a 2–3 months
delay compared to that of regional precipitation (Figure 2b), which is consistent with previous analysis using
ERA5 precipitation (Gerlein‐Safdi et al., 2021). Importantly, our reconstruction provides a 20‐year monthly
continuous wetland extent time series at a resolution of 0.5° × 0.5° across the Sudd region, which could help
wetland CH4 emission estimation there.

Geophysical Research Letters 10.1029/2024GL110690
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3.2. Comparison With Existing Wetland Extent Products

We compared our reconstructed wetland maps to four widely used wetland area data sets, includingWetland Area
and Dynamics for Methane Modeling (WAD2M) (Z. Zhang et al., 2021a), Global Inundation Estimate from
Multiple Satellites version 2 (GIEMS‐2) (Prigent et al., 2020), the Regularly Flooded Wetland map (RFW)
(Tootchi et al., 2018) and the pantropical wetland extent from an expert systemmodel (named G2017 according to
its reference) (Gumbricht et al., 2017). Among them, WAD2M and GIEMS‐2 include monthly time series, while
RFW and G2017 are static maps. Additionally, we also included a Global Wetland Dynamics Dataset (GWDD)
that provides an ensemble of monthly wetland extent simulations based on the Topography‐based Hydrological
Model (TOPMODEL) and calibrated with four satellite‐derived wetland data mentioned above (Xi et al., 2021).

Overall, our reconstructed wetland extent in the Sudd region shows larger annual areas and amplitude of seasonal
cycles compared with other wetland products (Figure 2a). The averaged total extent is 1.7, 5.3, and 1.7 times
larger than those for WAD2M, GIEMS‐2, and GWDD, respectively. These discrepancies are primarily evident in
the flooded season, where the average maximum areas for our results are 1.6–3.5 times larger than those for other
monthly integrated products, while the annual minimum area of different products is close. Compared with two
static wetland maps that represent the long‐term maximum area, from 2003 to 2022, the maximum values of most
years in our reconstructed time series are higher than those for RFW and G2017. This is due to the omission of
seasonally inundated areas on the eastern bank of the White Nile for RFW, while alongside the river channel for
G2017 (Figure S5 in Supporting Information S1). Despite the potential overestimation of the CYGNSS‐detected
surface water (Downs et al., 2023), the benchmark data (Berkeley‐RWAWC) of our estimation presents a high
degree of consistency with river water levels, LWE, and GIEMS‐2 product in terms of the seasonal cycle
(Figures 1d and 2a), indicating a capacity to better capture the temporal dynamics of wetland extent.

It is noteworthy that the seasonal cycle of WAD2M, which is an improved version of the Surface Water
Microwave Product Series (SWAMPS) product (Jensen & Mcdonald, 2019), usually indicates the maximum
wetland extent during dry seasons and the minimum wetland extent during flooding seasons, being out of
phase with other wetland data sets (Figure 2a). This mismatch may arise from the constrained capability of
products based on passive microwave bands (e.g., SWAMPS) to detect seasonal inundation outside river
floodplains, as well as from temporal inconsistencies among multiple data sources utilized for data fusion

Figure 2. (a) Comparison between the simulated wetland area and other wetland extent products. Shaded areas of the simulation of this study represent one standard
deviation of uncertainty. The time series of the Global Wetland Dynamics Dataset (GWDD) is the mean value of 28 simulations. (b) Monthly precipitation from Multi‐
Source Weighted‐Ensemble Precipitation (MSWEP) averaged across the Sudd region.
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(Z. Zhang et al., 2021a). Given the prevalent utilization of the WAD2M product for wetland CH4 emissions
estimations (Bloom et al., 2017; McNicol et al., 2023b; Saunois et al., 2020a), like the Sudd wetland, we
highlight its potential shortcoming over tropical floodplains.

3.3. Expansion of Wetland Area for 2019–2022 Driven by Upstream Precipitation

We detected an abrupt shift in the total wetland area time series around 2019, with no significant change from
2003 to 2018 (slope = − 69 km2 yr− 1, P = 0.80), but a significant increase from 2019 to 2022
(slope = 1.19 × 104 km2 yr− 1, P < 0.01) (Figure S6 in Supporting Information S1). This increase can mainly be
attributed to wetland‐dominated grids where the average increase rate of wetland fraction is ∼6% yr− 1 (Figure S7
in Supporting Information S1). The total wetland extent of the period 2019–2022 shows a 28% increase from the
pre‐2019 level, which is consistent with previous findings based on 3‐month Landsat composites, but for smaller
magnitudes (Hardy et al., 2023).

Normally, wetland extent tends to increase with rising water levels as expanded water bodies inundate sur-
rounding areas, promoting wetland formation and expansion. The increasing trend from 2019 to 2022 is also
detected in satellite‐derived water height anomalies (methods described by Normandin et al. (2018)) of the White
Nile from two virtual stations located at the central part (slope = 0.14 m yr− 1, P < 0.01) (Figure 3c) and
downstream outlet (slope = 0.53 m yr− 1, P < 0.01) of the Sudd wetland (Figure 1d), indicating an elevation of
total water inflow that could be attributed to the rise in regional precipitation or/and upstream discharge.

From 2018 to 2020, we observe a significant rise (slope = 0.48 m yr− 1, P < 0.01) in the water level of Lake
Victoria, characterized by two abrupt rises during early 2018 and late 2019 that aligned with positive precipitation

Figure 3. (a–b) Spatial patterns of precipitation anomalies in March–May 2018 and October 2019–April 2020. (c) Comparison of the water level of Lake Victoria
(marked with blue circles in (a) and (b)) and a virtual station of the White Nile (marked with red diamonds in (a) and (b)). The time series of river water level (based on
satellite altimetry) is calculated by a 3‐month moving average. Gray vertical bars represent two special periods highlighted in (a) and (b). Dashed lines indicate the linear
regression results for 2009–2018 and 2019–2022.
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anomalies in the surrounding region (Figure 3). The extreme precipitation elevated Lake Victoria's water levels
and increased the flow of other sources that feed the White Nile, which could amplify downstream flows toward
the Sudd region, thereby expanding the extent of wetlands. Although the water level of Lake Victoria dropped in
2021, its outflow remained at a relatively high level according to the relationship fitted by the Agreed Curve
(Sutcliffe & Petersen, 2007), leading to the continued expansion of the wetland area in 2021 and 2022.
Considering the fact that no evident change in regional precipitation (slope = 3.12 mm yr− 1, P = 0.66) was
detected during 2019–2022 (Figure 2b), we attribute the rapid growth of wetland extent to the precipitation
anomalies in the upstream area of the Sudd wetland. The strong precipitation anomalies in East Africa for 2019–
2020 could be associated with the extremely positive index of the Indian Ocean Dipole (Wainwright et al., 2021).
Present wetland process models mostly rely on local precipitation to drive wetland extent (Bloom et al., 2017),
and even the TOPMODEL could miss the wetlands and/or place wetlands in the wrong location due to complex
river network and topography (Parker et al., 2022). Here we highlight that the influence of upstream precipitation
is important for the Sudd wetland and the process of fluvial inundation is needed in future model developments.

3.4. CH4 Emissions in the Sudd Wetland

Figure 4 shows the comparison of the annual wetland CH4 emissions between our estimates and other bottom‐up
(BU) and top‐down (TD) estimates. Our site‐based estimation presents the largest averaged annual emissions
(4.7 ± 1.4 Tg yr− 1), followed by the estimation based on the combination of our reconstructed area and UpCH4
wetland emission intensity (3.8 ± 0.3 Tg yr− 1). This difference could be attributed to UpCH4 integrating pre-
dictions from other non‐floodplain sites, which might mitigate the impact of WTD fluctuations. The estimation of
CH4 emissions exhibits a high sensitivity to wetland extent, with the averaged annual emissions estimates for
WAD2M and GIEMS‐2 only amounting to 52%–64% and 5%–14% of that derived from our wetland extent,
respectively (Figure 4). In contrast, CH4 emissions are less sensitive to wetland emission intensities calculated by
different approaches, as the uncertainties of our site‐based estimation mostly overlap with those for UpCH4 when
using the same extent. This further underscores the dominant role of wetland area dynamics in CH4 emissions.
According to our site‐based estimation, during 2019–2022, the rapid growth of wetland extent resulted in a sharp
increase in wetland CH4 emissions (trend = 0.63 Tg yr− 2), with the annual emission amount reaching
7.8 ± 0.8 Tg yr− 1 in 2022. This could partly contribute to the recent rise in atmospheric CH4 growth rate from an
average of 5.5 ppb yr− 1 during 2003–2018 to 14.0 ppb yr− 1 during 2019–2022 (Lan et al., 2024).

For TD estimates, the global inversion from the Global Carbon Project (GCP) ensemble mean is 54%–63% lower
than our BU estimations (Figure 4). Although two regional inversions from the Tropospheric Monitoring In-
strument (TROPOMI) are close to our BU estimates during the period 2018–2021 (Lunt et al., 2021; Vanselow
et al., 2024), they encompass contributions from other emission sources (e.g., biomass burning, livestock, and rice
paddy), which suggest lower wetland emissions. The underestimation of both global and regional inversions
could be attributed to the underestimation from priori assumptions (e.g., WetCHARTs ensemble mean used in
regional inversions) and the sparse data coverage in the tropics when surface observations are used as constraints

Figure 4. Comparison between the simulated wetland CH4 emissions and other estimations. Shaded areas and error bars
represent one standard deviation of uncertainty. Bottom‐up and top‐down estimations are distinguished by solid lines and
dashed lines, respectively. Note that data from Pandey et al. (2021), Lunt et al. (2021), and Vanselow et al. (2024) are
calculated using different region definitions, but all cover the emission hotspot areas in the Sudd wetland.
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(Figure 4). Thus, we recommend priori derived from the wetland extent of Berkeley‐RWAWC or our recon-
struction for future TD inversions.

In this study, CH4 emission intensities are estimated by WTD proxy (soil moisture), and this method entails
considerable uncertainty due to the lack of observation on CH4 fluxes and WTD in the Sudd region. Until now,
due to data paucity, uncertainties in extrapolated CH4 fluxes based on machine learning in tropical regions are still
high (McNicol et al., 2023b). Moreover, generating a cohesive map of WTD and its temporal dynamics poses a
considerable challenge (Reinecke et al., 2023). Hence, augmenting the network of CH4 observation stations and
expanding field data collections are expected to improve the accuracy of estimated wetland CH4 emissions in the
Sudd region, as well as other tropical seasonally flooded regions.

4. Conclusions
We developed a robust method for mapping long‐termwetland extent across the Sudd wetland based on Berkeley‐
RWAWC inundation data, then utilized this data set to improve estimates of wetland CH4 emissions. Annual total
wetland areas are estimated to be 5.42 ± 1.76 × 104 km2 for 2003–2018 and increased to 6.95 ± 2.63 × 104 km2

for 2019–2022 driven by the anomalous precipitation in the upstream area. The shift in wetland extent leads to an
increase in wetland CH4 emissions from 4.1 ± 0.8 Tg yr− 1 for 2003–2018 to 5.7 ± 1.5 Tg yr− 1 for 2019–2022,
which are larger than other BU/TD estimates using products with smaller wetland area. Our results suggest the
important role of refined wetland extent products in estimating CH4 emissions across tropical flooded areas.
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