
HAL Id: hal-04678873
https://hal.science/hal-04678873

Submitted on 27 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolically Synthesized Motion Primitives for
Autonomous Navigation

Zhixin Zhao, Antoine Girard, Sorin Olaru

To cite this version:
Zhixin Zhao, Antoine Girard, Sorin Olaru. Symbolically Synthesized Motion Primitives for Au-
tonomous Navigation. 2024 Conference on Decision and Control, Dec 2024, Milan, Italy. �hal-
04678873�

https://hal.science/hal-04678873
https://hal.archives-ouvertes.fr

Symbolically Synthesized Motion Primitives for Autonomous Navigation

Zhixin Zhao1, Antoine Girard1, Sorin Olaru1

Abstract— This paper proposes a novel approach to navi-
gationfor autonomous vehicles that leverages symbolic control
methods and system translational and rotational invariance
properties. By decomposing in-plane motions into translations
and rotations, the approach constructs corresponding motion
primitives that enable efficient offline controller design and
avoid computationally expensive discretization of the whole
state space. The resulting controllers achieve complex trajecto-
ries through concatenation of motion primitives. At the same
time the safe corridor given by this method will provide safety
guarantee for the whole mission.

I. INTRODUCTION

In this paper, we address one of the fundamental prob-
lems in autonomous navigation: given a series of waypoint
regions, how to determine as simply as possible the required
control input to navigate the specified region. The problem
has received the attention of different authors with a wide
range of solutions from MPC [8], [12] to mixed integer
optimization [1], [9] or potential fields techniques [3], [6]
to mention just a few.

When discussing the simplicity, the motion primitives
[2], [4] are considered effective to address this problem as
they decompose the movement into atomic elements able
to be performed sequentially in order to achieve a global
mission. When pre-designed offline, the motion primitives
offer a library of control input sequences that can be utilized
by a path planner to produce feasible basic trajectories.
These feasible trajectories can be combined online with small
computational effort to generate more complicated trajecto-
ries. Based on this philosophy there are some applications
of motion primitive as in [5], [11]. These primitives are
designed to accommodate nonlinear dynamics and control
input constraints while ensuring computational efficiency.

The contribution of this paper resides in the redefinition
of the concept of motion primitives for planar motion by ex-
ploiting a certain invariance of the underlying dynamics and
subsequent offline design of a state feedback controller using
symbolic control techniques [14]. Symbolic control makes it
possible to synthesize controllers for nonlinear systems with
state and input constraints by solving an associated discrete
synthesis problem in a symbolic domain [7], [13], [14].
Specifically, we have designed two motion primitives, par-
ticularly suitable for planar dynamics: the rotation primitive
and the translation primitive. We represent them in the form
of set combinations, and by applying invariant properties
under specific coordinate transformations, the controllers

1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire
des signaux et systèmes, 91190, Gif-sur-Yvette, France.
firstname.lastname@centralesupelec.fr

corresponding to these two primitives can be reused. By
concatenating these motion primitives, we can realize the
online tracking of arbitrary waypoints in the 2D plane. At the
same time, the safe corridor under the action of the controller
will be given to ensure the safety of the control. Compared to
an approach fully relying on symbolic control (see e.g. [13]),
our approach does not require discretizing the full state
space, thus greatly reducing the computational complexity,
while providing the guarantees of formal correctness.

The paper is structured as follows. Section II formulates
the problem, specifies the class of systems under considera-
tion and delineates the control objective and methodology.
Section III introduces the motion primitive design. Sec-
tion IV outlines the methodology for online tracking using
designed motion primitives. Finally, Section V provides a
numerical example showing relevant results.

II. PROBLEM FORMULATION

Consider a forward complete nonlinear discrete-time sys-
tem of the form

z(t+ 1) = f(z(t), u(t)), t ∈ N (1)

where z(t) ∈ Rn denotes the state of the system, and
u(t) ∈ Rm represents the control input. In addition, the
system is subject to constraints on state and input variables
characterized by sets Z ⊆ Rn and U a compact subset of
Rm, respectively.

Within this framework we are interested in systems de-
scribing the evolution of a vehicle in a planar environment.
Hence, the state vector is assumed to be composed of
the following components z(t) = (x1(t), x2(t), θ(t), ω(t))
where x1(t), x2(t) ∈ R represent the planar coordinates and
θ(t) ∈ R is an angle representing the heading of the vehicle.
The additional vector ω(t) ∈ Rl consists of all other possible
states necessary to model the motion independent of coor-
dinates and heading (e.g. velocity, acceleration or actuator
dynamics). If l = 0, then z(t) = (x1(t), x2(t), θ(t)). The
simplest example of such nonlinear system is the unicycle
model expressed as:

x1(t+ 1) = x1(t) + u1(t) cos(x3(t))

x2(t+ 1) = x2(t) + u1(t) sin(x3(t))

θ(t+ 1) = θ(t) + u2(t)

(2)

We assume in the following that the state constraints for (1)
is of the form Z = X × R × Ω where X ⊆ R2 and Ω is a
compact subset of Rl.

A. Structural properties of the dynamics

It is assumed that the dynamics of (1) possess invari-
ance properties under specific coordinates transformations.
In continuous time, this notion has been explored according
to symmetry property [5]. In the present work, a discrete-time
framework will be considered and the system dynamics will
be assumed to exhibit rotational and translational invariance
as formally described next.

Assumption 1: Let us denote δf(z, u) = f(z, u)− z and

V (v1, v2, α) =

v1
v2
α
0l

 , M(α) =

R(α) 0 0
∗ 1 0
∗ ∗ Il

where R(α) is the rotation matrix of angle α:

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

Then, for all z ∈ Z, u ∈ U, and v1, v2, α ∈ R, it holds

δf
(
z + V (v1, v2, α), u

)
= M(α)δf

(
z, u

)
. (3)

Proposition 1: Under Assumption 1, consider initial states
z0, z

′
0 ∈ Z with z′0 = z0 + V (v1, v2, α). Consider an input

sequence u(·) and the associated trajectories z(·), z′(·) of
(1) starting from z0 and z′0, respectively. Then, for all t ∈ N,
it holds

z′(t)− z′0 = M(α)(z(t)− z0). (4)

Proof: We proceed by induction. Clearly, (4) holds at
t = 0. Let us assume that (4) holds at some t ∈ N, then it
follows that

z′(t)− z(t) = z′0 −M(α)z0 + (M(α)− In)z(t).

From the structure of M(α) and since z′0 = z0+V (v1, v2, α),
we can conclude that there exists v1(t), v2(t) ∈ R such that
z′(t) = z(t) + V (v1(t), v2(t), α). Then, from (3), we get

z′(t+ 1)− z′(t) = M(α)(z(t+ 1)− z(t)).

This equation, together with the induction hypothesis yields

z′(t+ 1)− z′0 = z′(t+ 1)− z′(t) + z′(t)− z′0
= M(α)(z(t+ 1)− z(t)) +M(α)(z(t)− z0)

= M(α)(z(t+ 1)− z0).

Hence, (4) holds for all t ∈ N.

B. Control objective and methodology

The objective is to design a methodology able to handle
autonomous navigation missions. We assume that we are
given a sequence of waypoints in X, characterized by regions
X0,X1, . . . ,XN ⊆ X. We aim at synthesizing a feedback
control strategy such that the vehicle starting from any
position of X0 reaches the regions X1, . . . ,XN , in that order.
This is formally stated in the following:

Problem 1: Given a system of the form (1) satisfying
Assumption 1, state and input constraints Z = X × R × Ω
and U, and a sequence of waypoint X0,X1, . . . ,XN ⊆ X,

synthesize a feedback control strategy such that for all initial
states z0 = (x1,0, x2,0, θ0, ω0) ∈ X0×R×Ω, the closed-loop
trajectory of (1) satisfies the following

∃0 ≤ t1 ≤ · · · ≤ tN , such that
z(ti) ∈ Xi × R× Ω and ∀t ≤ tN , z(t) ∈ Z. (5)

In this paper, we propose a methodology for solving
Problem 1 based on the following principles:

• The navigation problem is decomposed in a sequence
of motion primitives chosen carefully so as to ensure
sequencial feasibility and safety of the path;

• The motion primitives are designed to offer a rich
selection for navigation but in the same time they rep-
resent simple geometric transformations to a library of
elementary motion primitives (rotation or translation);

• For each elementary motion primitive, a “correct-by-
design” controller is synthesized using symbolic control
techniques.

III. PRIMITIVES FOR MOTION CONTROL

This section aims to introduce the concept of motion
primitives considered in this paper. The elementary ones will
be described first and then the associated controller synthesis
problem will be addressed. Once these elements are available
we will broaden the scope and discuss the design knobs.

A. Elementary motion primitive

Motion primitives are formally defined as follows:
Definition 1: A motion primitive P is given by triple of

sets:
• the starting set S0 ⊆ Rn,
• the target set Tf ⊆ Rn, and
• the safety corridor Ŝ ⊆ Rn, with S0, Tf ⊆ Ŝ.

and is denoted P = ⟨S0, Tf , Ŝ⟩. A motion primitive is said
to be feasible if there exists a controller CP : Ŝ → U and
a time bound p ∈ N such that all closed-loop trajectories of
(1) initialized in the starting set S0 reach the target set Tf

in at most p time steps, while staying in the safety corridor
Ŝ along the way.

We denote the set mapping representing the one-step con-
strained predecessor of a set T ⊆ Rn:

Pref (T, Ŝ) =
{
z ∈ Ŝ| ∃u ∈ U, f(z, u) ∈ T

}
.

Then, let us define iteratively the sequence of sets given by
Pre0f (Tf , Ŝ) = Tf and for all i ≥ 1:

Preif (Tf , Ŝ) = Pref (Prei−1
f (Tf , Ŝ), Ŝ).

Essentially, Preif (Tf , Ŝ) denotes the set of states from which
trajectories of (1) can reach the target Tf in exactly i steps
while staying in Ŝ along the way.

Proposition 2: A motion primitive P is feasible if and
only if there exists p ∈ N such that

S0 ⊆
p⋃

i=0

Preif (Tf , Ŝ). (6)

Proof: The proof is a direct consequence of the fact that
Tf∪Pre1f (Tf , Ŝ)∪· · ·∪Preif (Tf , Ŝ) is the set of states from
which one can control trajectories of (1) to reach the target
Tf in at most i steps while staying in Ŝ along the way. Then,
(6) ensures feasibility of motion primitive P . Moreover, one
can choose any controller CP : Ŝ → U such that for all
i = 1, . . . , p

∀z ∈ Preif (Tf , Ŝ), f(z, CP(z)) ∈
i−1⋃
j=0

Prejf (Tf , Ŝ).

Remark 1: Let us denote by p∗(P) the smallest p ∈ N
such that (6) holds. p∗(P) provides an upper-bound on the
time needed to execute the motion primitive P . We want to
emphasize that for two motion primitives P = ⟨S0, Tf , Ŝ⟩
and P ′ = ⟨S′

0, T
′
f , Ŝ

′⟩, with S0 ⊇ S′
0, Tf ⊆ T ′

f and Ŝ ⊆ Ŝ′

it holds that p∗(P) ≥ p∗(P ′).

By selecting the sets S0 and Tf , various movement pat-
terns can be derived, ensuring that the trajectory remains
within the pre-defined safe corridor Ŝ. In particular, there
are two movements that will be considered as elementary
primitives in the present work:

• The translation in a pre-defined direction (without loss
of generality we will consider this to be the positive
direction of x1):

Projθ(S0) ⊆ [−δθ, δθ],

Tf = {z(t) + V (v1, 0, 0)|z(t) ∈ S0, v1 ≥ 0}
where Projθ denotes the projection over the θ variable.

• The rotation from an arbitrary initial heading towards a
pre-defined direction (here, without loss of generality,
the positive direction of x1):

[−π, π] ⊆ Projθ(S0),

P rojx2(Tf) ⊆ [−δx, δx],

P rojθ(Tf) ⊆ [−δθ, δθ].

where δx, δθ are the admissible tolerance on the respec-
tive state components.

For convenience, we use the simplest geometries, rect-
angles (hyperrectangles in high dimensions), to specify the
motion primitives above as in Fig.1.

B. Synthesis

The objective of this section is to present the methodology
employed in constructing controllers for motion primitives
through the use of symbolic control techniques. Here we
briefly recall the symbolic control techniques (and rely on
e.g. [14], [13], [7] for further implementation details).

Symbolic control involves over-approximating the dynam-
ics of (1) by that of a transition system with finite sets of
states and inputs. The states and inputs of the transition
systems correspond to symbols, each of which represents a
subset of the states and inputs of (1), obtained by discretizing
both the state space and the control input (see e.g. [13] for

1
-3

-2

-1

-1

x2x1

0

0

0

1

2

1 -1

3

2 1
-3

x2

-2

0

-1

-1

x1

0

1

0 -1

2

1

3

Fig. 1: Examples of motion primitives in the 3-dimensional
state space, corresponding to (2): translation primitive (left);
rotation primitive (right). The initial set S0, the target set Tf

and the safe corridor Ŝ are represented in light blue, dark
blue, and gray, respectively.

implementation details). This approach allows us to represent
a continuous model as a transition system Σ = (Q,U ,F),
where Q denotes a set of symbolic states, U signifies the
set of symbolic inputs, and F : Q × U → 2Q represents
the set-valued transition map (symbolic counterpart of the
dynamics (1)). Then, a controller for a motion primitive of
(1) can be synthesized by solving the corresponding problem
in the symbolic domain, where Q0, Qf and Q̂ denote the
symbolic counterparts of the starting set S0, the target set
Tf and the safe corridor Ŝ.

This can be done in a similar way as described in
section III-A using the symbolic one-step constrained pre-
decessor of a set T ⊆ Q̂:

PreF (T , Q̂) =

{
q ∈ nbsF ∩ Q̂

∣∣∣∣∣∃u ∈ enabF (q)

F(q, u) ⊆ T

}
(7)

where enabF (q) = {u ∈ U|F(q, u) ̸= ∅} and nbsF (q,Q) =
{q ∈ Q|enabF (q) ̸= ∅}. Similarly we can compute the i-step
reachable sets of Qf and check the inclusion of Q0, similar
to Proposition 2.

Let us emphasize that since the transition system has
finite sets of states and inputs, the implementation of
the approach is straightforward. Moreover, the synthesized
controller comes with formal guarantees when applied to
(1) [13].

1) Specific construction methods: We begin by selecting
a discretized region along with the initial set and target set
within it. By progressively increasing the value of p until the
condition in (6) is verified, we can ascertain the feasibility
of the chosen motion primitive. Meanwhile the discretized
region can be validated as a safe corridor. More specifically,
we first choose a discrete region with a large area to ensure
that p exists and is finite. Then we gradually reduce the size
of discretized region until we reach a critical point where p
no longer exists. This process enables us to refine the safe
corridor and provide improved precision along the execution
of the motion primitive.

It is worth mentioning that for practical reasons, we use an

interval over-approximation F̂ of F , which guarantees that
F(q, u) ⊆ F̂(q, u). Such interval over-approximations can
be computed using interval reachability analysis (see [10]).
The design of controllers can be done for a set of initial
states due to the set-based design process. This fact, along
with the use of over-approximation in the actual construction
process, provides flexibility/robustness in the overall motion
control process. This aspect will not be further elaborated
on or quantified but is worth to be considered an additional
feature of the present approach.

2) Parameters related to symbolic control: When em-
ploying symbolic control, different parameter configurations
can significantly impact the effectiveness of the controller.
Smaller grid sizes in the state space and finer control input
intervals resulting in smoother trajectories. However, such
improvements come at the cost of increased computational
complexity. Also there exist multiple feasible control sym-
bols underlying the definition of the sets in (7). While the
reachable sets are the essential features for the definition
of the primitives, a control selection criteria should be
customized in order to allow control implementation and
the execution of the primitive in itself. For example, when
designing translation primitives, our goal may be to select
a control input that maximize speed while minimizing an-
gular change. When designing rotational primitives, we may
prioritize the feasible controller that minimizes velocity.

C. Design notes

By adjusting parameters of the motion primitives, we can
generate various motion patterns, forming what we refer
to as a library of motion primitives. We can customize
certain motion primitives as required, thereby enhancing the
flexibility of motion control.

Here, we introduce some particular parametric designs to
enrich the library of motion primitives.

• The length of a translation primitive in the translational
direction is related to the speed of movement, which is
usually set according to the maximum length that can be
moved in one time step. In Fig.2a a deceleration prim-
itive is depicted where the target set of the translation
primitive is shortened, it mandates the controlled object
to move at a slower speed. This can be applied to many
situations. For example, the deceleration before rotation
can result in a smaller steering radius, which means we
can choose a smaller safe corridor.

• The size of the target set is typically associated with the
smoothness of the trajectory. When we need smoother
rotation paths, the rotation primitives can be designed
as shown in Fig. 2b. The length of the target region
extends along the desired direction.

• We can also design rotational primitives tailored to spe-
cific ranges of rotation angles. For example, as depicted
in Fig. 2c, it rotates the states within the range of
[−π/2, π/2]. Although this design of rotation primitive
is no longer universal, a narrowed safe corridor can be
found.

• We can also design a stop primitive, as shown in Fig.
2d, where the starting set equals the target set, implying
that the trajectory is permanently confined to a certain
area. In this case the set inside the safe corridor can be
identified as a p-invariant set [15]

1
-3

x2

-2

0-1

-1

x1

0

0

1

-1

2

1

3

(a)

1
-3

x2

-2

0

-1

-1

x1

0

1

0 -1

2

1

3

(b)

1
-3

x2

-2

0

-1

-1

x1

0

1

0 -1

2

1

3

(c)

1
-3

-2

x2

0

-1

-1

x1

0

0

1

-1

2

1

3

(d)

Fig. 2: Customized motion primitives

IV. SUPERVISED TRACKING CONTROL

This section introduces the method for online tracking
of waypoints using offline designed motion primitives and
corresponding controllers.

A. Families of motion primitives

We employ a family of motion primitives to represent
all the transformed motion primitives obtained by applying
certain operation to the elementary ones. This transformation
is represented formally in terms of a bijective mapping,
denoted by pπ : Rn → Rn, parameterised by the vector
π = (v1, v2, α) ∈ R3, and defined as follows:

pπ(z) = M(α)z + V (v1, v2, α)

with its inverse p−1
π (z) = M(α)−1(z−V (v1, v2, α)). Using

this transformation, for any given set S ⊆ Rn,

pπ(S) = {pπ(z)|z ∈ S}.
Further, this can be extended to derive the family of motion
primitives as follows:

pπ(P) = ⟨pπ(S0), pπ(Tf), pπ(Ŝ)⟩

Proposition 3: If P is feasible, then for all π =
(v1, v2, α) ∈ R3, pπ(P) is also feasible.

Proof: Given the feasibility of a motion primitive, there
exists a controller CP such that for any state z0 ∈ S0, z(n) ∈
Tf , and z(k) ∈ Ŝ for all k ∈ [0, n]. At time 0, consider
z′0 = pπ(z0) ∈ pπ(S0) and we apply the following controller:

Cpπ(P)(z
′(k)) = CP(p

−1
π (z′(k)))

Let us assume that at time k ∈ [1, n− 1], we have:

z′(k) = pπ(z(k))

Then by applying the following control inputs we can
determine z′(k + 1).

u′(k) = Cpπ(P)(z
′(k)) = u(k)

From Proposition 1, we have:

z′(k + 1) = M(α)(z(k + 1)− z0) + pπ(z0)

z′(k + 1) = pπ(z(k + 1))

Then we can conclude that z′(k) = pπ(z(k)) for all k ∈
[0, n]. Thus pπ(P) is also feasible.

This basic result shows that a reduced set of elementary
primitives and the transformations enabled by the rotational
and translational invariance of the dynamics provide a rich
family of motion primitives which can be used next for
effective real-time motion control.

B. Concatenation

Each motion primitive represents a collection of trajecto-
ries, and our objective is to reach the target point by concate-
nating these motion primitives, which must follow certain
criteria. If Pk and Pk+1 are any two motion primitives
provided in sequential order and need to be concatenated,
then following rules need to be satisfied :

T k
f ⊆ Sk+1

0 (8)

The implementation of principle (8) should be manifested in
the design of motion primitives. We consider two main types
of concatenation in planar movement.

• Translation-Rotation-Translation: A translation primi-
tive is concatenated with a rotation primitive and then
another translation primitive. The rotational primitives
must be designed to accommodate the mismatch be-
tween two translation motions with different heading
angles. Technically, the starting set for the rotation
primitive includes the circumcircle of the rectangle from
the preceding translation primitive, as shown in Fig.3.

• Translation-Translation: Continuously concatenate
translation primitives in one direction until reaching
a region adjacent to the target waypoint as illustrated
in Fig.4. When the distance between the center of the
target set and the waypoint is less than length/2 of
the translation primitive, the target waypoint is reached
and the primitive is considered to be executed.

Remark 2: Given the degrees of freedom in designing
various motion primitives, one can adjust the size of the
target set. For instance, by adding a deceleration primitive,
as depicted in Fig. 2a, at the endpoint, we can obtain a
comparatively smaller target set. Since this is adjustable, in
this paper, we simplify the discussion by considering the
target set as depicted in Fig.4 to always be selected as a
subset of the given waypoint region Xi.

C. Primitives scheduler and real time tracking

To address the problem described in Problem 1, we divide
the tracking of waypoints into two parts. The real time
tracking part and the primitives scheduler module. As shown
in Fig.5. The real time tracking part is responsible for
updating the state using (1) and monitoring whether the
current state belongs to the target set of the current mo-
tion primitive denoted as pπ(T

k
f). The Primitives scheduler

𝑤

𝑙! + 𝑤!

Arrival area

Starting area

𝑙

Target area

Fig. 3: Concatenation between rotation and translation primi-
tives. Safe corridors(in gray), starting area (light blue), target
region(dark blue), the potential range of target set (yellow
region and red circle)

Target
Center of the rectangle

When d ≤ ½ length

Arrival area

d

…

Starting point

Fig. 4: Concatenation between translation primitives (in
blue). Safe corridors (in gray), the starting set (light blue),
the target set(dark blue), trajectory (in orange), target way-
point/region (in red)

module uses as inputs the target waypoint Xi and the result
of the event monitoring module. This event-based module is
activated if z(t) ∈ pπ(T

k
f) and the delivered output is the

information concerning the next motion primitive (including
its transformation parameters pπ and p−1

π), the associated
controller CPk+1 , the next safe corridor pπ(Ŝ

k+1) and the
next target set pπ(T

k+1
f), with k ∈ [0, n − 1] where n

represents the total number of required motion primitives
to be executed up to the next waypoint.

With all these elements we can resume the proposed
control method properties by the next result.

Proposition 4: The Problem 1 is feasible with proposed
control strategy if the union of the safe corridor obtained for
the whole path is a subset of Z.

Proof: For any initial state z0 =
(x1(0), x2(0), θ(0), ω(0)) ∈ X0×R×Ω, and the next target
waypoint (x̄1, x̄2) is characterized by region X1.

The desired direction is calculated as α =
arctan

(
x̄2−x2

x̄1−x1

)
. If |θ(0) − α| ≤ δ, then we should

employ a sequence of translation primitive (P0
t , . . . ,Pn

t).
If |θ(0) − α| > δ, the next primitive should be a rotation
primitive then concatenate with a sequence of translation
primitive : (P0

r ,P1
t , . . . ,Pn

t) where n determined in the
manner described in the previous section.

For each feasible motion primitive, states can reach the
target set in at most p time steps. Therefore there exists

ti ≤ p1 + p2 + · · ·+ pn

such that
z(ti) ∈ pπ(T

n
f) ⊆ X1 × R× Ω

and all the states in this trajectory

z(t) ∈ pπ(Ŝ0) ∪ pπ(Ŝ1) ∪ · · · ∪ pπ(Ŝn).

It is clear that the above argument still holds when the
different waypoints region Xi are given in order. If the
obtained union of safe corridor is a subset of Z, then problem
1 is feasible.

Primitives
Scheduler

pπ(T k
f)

CPk

z(t) ∈ pπ(T k
f)

pπ(Ŝk)

T k
f

z(t) ∈ pπ(Tf)

Ck

P

p−1
π

z(t)

P

p−1
π

z(t)

P

p−1
π

z(t)

Synchronous functioning

Xi

p−1
π (z(t))

Systems

Event-based functioning

Fig. 5: Real time tracking of waypoints

V. NUMERICAL MOTION CONTROL ILLUSTRATION

Let us revisit the dynamical system (2) within a numerical
example of complex motion control subject to additional
control input constraints:

U = [0.25, 1]× [−1, 1]. (9)

The size of the grid is selected as dx = [0.1, 0.1, 0.1]T ,
and we use 100 symbolic inputs. We aim for the controlled
object to move at maximum speed whenever possible. There-
fore, when designing the controller using symbolic control,
we prioritize selecting discrete controls where u1 = 1. Cor-
respondingly, the start and target regions of the translation
primitives are of length 1 in the x1 direction.

Fig.6a and Fig.6c illustrate the trajectories corresponding
to two different controllers along with their respective safety
corridors. Fig.6b and Fig.6d depict the evolution of the angle,
the distance to the waypoints (5 in total). Is worth to notice
the piecewise monotonic behaviour of this signal, the jumps
corresponding to a switch of waypoint. As show in the same
figure, u1 is selected as 1 in most cases, except when the state
is approaching the frontier of the safety corridor (t = 10s

and 17s in Fig.6d). In these particular situations, the speed
is constrained to a decrease to ensure safety.

For 6a we chose a relatively wide starting and target set,
which also corresponds to a wider safe corridor, the resulting
trajectories are smoother. We use 56700 symbolic states to
construct the rotation primitive and 20160 for the translation
primitive. The computation time is about 2 minutes in total
with a PC 1.4 GHz Intel Core i5. For Fig. 6c, we chose a
narrower range of start and target sets, resulting in a narrower
safety corridor, We use 42588 symbolic states to construct
the rotation primitive and 10080 for the translation primitive.
The computation time is about 1 minutes.

The results show that these off-line designed controllers
can cope with arbitrary motions in the two-dimensional
plane, while we can flexibly adjust the parameters according
to the control objectives.

VI. CONCLUSION

In this paper, we propose a method for synthesizing
motion primitives using symbolic control techniques and for
creating more intricate motions by stitching together these
primitives. Our approach is applicable to a range of planar
motion scenarios, including systems with translational and
rotational invariance such as robots or autonomous vehicles.
By employing this method, we significantly reduce the
computational burden associated with symbolic control while
still preserving some of its robustness and safety benefits.

In future work, we plan to extend the application of
this method to more complex models and explore potential
combination with other online control techniques to enhance
control performance.

REFERENCES

[1] Rubens JM Afonso, Marcos ROA Maximo, and Roberto KH Galvao.
Task allocation and trajectory planning for multiple agents in the
presence of obstacle and connectivity constraints with mixed-integer
linear programming. International Journal of Robust and Nonlinear
Control, 30(14):5464–5491, 2020.

[2] Calin Belta, Antonio Bicci, Magnus Egerstedt, Emilio Frazzoli, Eric
Klavins, and George J Pappas. Symbolic control and planning of
robotic motion [grand challenges of robotics]. Departmental Papers
(ESE), page 232, 2007.

[3] Omer Cetin, Sefer Kurnaz, Okyay Kaynak, and Hakan Temeltas.
Potential field-based navigation task for autonomous flight control of
unmanned aerial vehicles. International Journal of Automation and
Control, 5(1):1–21, 2011.

[4] Emilio Frazzoli and Francesco Bullo. On quantization and optimal
control of dynamical systems with symmetries. Proceedings of the
41st IEEE Conference on Decision and Control, 2002., 1:817–823
vol.1, 2002.

[5] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Maneuver-
based motion planning for nonlinear systems with symmetries. IEEE
transactions on robotics, 21(6):1077–1091, 2005.

[6] Shuzhi Sam Ge and Yun J Cui. Dynamic motion planning for mobile
robots using potential field method. Autonomous robots, 13:207–222,
2002.

[7] Antoine Girard and Alina Eqtami. Least-violating symbolic controller
synthesis for safety, reachability and attractivity specifications. Auto-
matica, 127:109543, 2021.

[8] Thomas M Howard, Colin J Green, and Alonzo Kelly. Receding hori-
zon model-predictive control for mobile robot navigation of intricate
paths. In Field and Service Robotics: Results of the 7th International
Conference, pages 69–78. Springer, 2010.

-10 -5 0 5 10

x1

-10

-8

-6

-4

-2

0

2

4

6

8

10

x2

Starting
waypoints
way-points-region
trajectory
SafeCorridor

(a)

0 10 20 30 40 50 60 70 80
t (s)

0
5

10
System's states and control inputs

0 10 20 30 40 50 60 70 80
t (s)

0
100
200

0 10 20 30 40 50 60 70 80
t (s)

0.5

1

u1

0 10 20 30 40 50 60 70 80
t (s)

-1
0
1

u2

(b)

-10 -5 0 5 10

x1

-10

-8

-6

-4

-2

0

2

4

6

8

10

x2

Starting
waypoints
way-points-region
trajectory
SafeCorridor

(c)

0 10 20 30 40 50 60 70 80
t (s)

-5

0
System's states and control inputs

0 10 20 30 40 50 60 70 80
t (s)

0
100
200

0 10 20 30 40 50 60 70 80
t (s)

0.5

1

u1

0 10 20 30 40 50 60 70 80
t (s)

-1
0
1

u2

(d)

Fig. 6: The left figures illustrate the trajectory of the system alongside the corresponding safety corridor (depicted in gray),
whereas the right figures display the system’s state alongside the control inputs.

[9] Daniel Ioan, Ionela Prodan, Sorin Olaru, Florin Stoican, and Silviu-
Iulian Niculescu. Mixed-integer programming in motion planning.
Annual Reviews in Control, 51:65–87, 2021.

[10] Pierre-Jean Meyer, Alex Devonport, and Murat Arcak. Interval
reachability analysis: Bounding trajectories of uncertain systems with
boxes for control and verification. Springer Nature, 2021.

[11] Aditya A Paranjape, Kevin C Meier, Xichen Shi, Soon-Jo Chung,
and Seth Hutchinson. Motion primitives and 3d path planning for
fast flight through a forest. The International Journal of Robotics
Research, 34(3):357–377, 2015.

[12] Ionela Prodan, Sorin Olaru, Ricardo Bencatel, Joao Borges de Sousa,
Cristina Stoica, and Silviu-Iulian Niculescu. Receding horizon flight
control for trajectory tracking of autonomous aerial vehicles. Control
Engineering Practice, 21(10):1334–1349, 2013.

[13] Gunther Reissig, Alexander Weber, and Matthias Rungger. Feedback
refinement relations for the synthesis of symbolic controllers. IEEE
Transactions on Automatic Control, 62(4):1781–1796, 2016.

[14] Paulo Tabuada. Verification and control of hybrid systems: a symbolic
approach. Springer Science & Business Media, 2009.

[15] Zhao Zhixin, Antoine Girard, and Sorin Olaru. Nonlinear model

predictive control based on k-step control invariant sets. In European
control conference - Stockholm, 2024.

