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ABSTRACT

Methods based on class activation maps (CAM) provide a simple mechanism to interpret predictions
of convolutional neural networks by using linear combinations of feature maps as saliency maps. By
contrast, masking-based methods optimize a saliency map directly in the image space or learn it by
training another network on additional data. In this work we introduce Opti-CAM, combining ideas
from CAM-based and masking-based approaches. Our saliency map is a linear combination of feature
maps, where weights are optimized per image such that the logit of the masked image for a given class
is maximized. We also fix a fundamental flaw in two of the most common evaluation metrics of at-
tribution methods. On several datasets, Opti-CAM largely outperforms other CAM-based approaches
according to the most relevant classification metrics. We provide empirical evidence supporting that
localization and classifier interpretability are not necessarily aligned.

© 2024 Elsevier Ltd. All rights reserved.

1. Introduction

The success of deep neural networks (DNN) and their in-
creasing penetration into most sectors of human activity have
led to a growing interest in understanding how these models
make their predictions. Unlike shallow methods, DNN have a
high complexity and it is not possible to directly explain their
inference process in a human understandable manner. This
challenge has opened up an entire research field [1, 2, 3, 4, 5].

In this work, we are interested in the interpretability of deep
neural networks through the generation of saliency maps, high-
lighting regions of an image that are responsible for the pre-
diction. This originates in gradient-based methods [6, 7], in-
cluding variants of backpropagation [8, 9, 10]. CAM [11]
introduced class-specific linear combinations of feature maps,
and led to several alternative weighting schemes [12, 13, 14],
including the use of gradients [15, 16]. On the other hand,
occlusion- or masking-based methods [17, 18, 19, 20] remove
regions in the image space while improving classification per-
formance.

Score-CAM [13] is a CAM-based method where the weight
of each feature map is defined by using that feature map as a
mask and measuring the resulting increase of class score; hence,
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it is both CAM-based and masking-based but does not use gra-
dients. It resembles the numerical gradient approximation, in
that it needs one forward pass per weight. Instead, the analyt-
ical approach would be to use a linear combination of feature
maps as a mask, express the class score as a function of the
weights and measure the gradient analytically, in a single back-
ward pass. Then, why not use gradient descent to maximize the
class score? Like Score-CAM, the optimal mask should high-
light regions for which the network is most confident. But, as a
result of the optimization process, this mask should be obtained
in a more principled and efficient way.

Masking-based methods, such as extremal perturbations [19]
or IBA [20], introduce a mask as a variable in the input or fea-
ture space, express the class score as a function of this mask and
use gradient descent to maximize the class score. Because the
variable being optimized is a high-dimensional image or ten-
sor, additional constraints or regularizers are needed to control
e.g. the smoothness and the salient area. This translates to more
hyperparameters or more expensive optimization.

Motivated by the above, we introduce Opti-CAM, illustrated
in Figure 1. We form a linear combination of feature maps,
where the weights are a variable. Treating it as a saliency map,
we form a masked version of the input image that is fed again
to the network. Then, the logit of a given class for the masked
version of the input is maximized to obtain the optimal weights.
Thus, Opti-CAM can be seen as an analytical counterpart of
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Score-CAM, where weights of the linear combination are up-
dated by a single backward pass, thus can be optimized itera-
tively. It can also be seen as a masking-based method, where
the mask to be optimized lies in the linear span of the feature
maps, like CAM-based methods.

The evaluation metrics most relevant to using a saliency
map as a mask are average drop (AD) and average increase
(AI) [16]. The problem is that the two metrics are not defined
in a symmetric way. As a result, there exists a trivial attribution
method called Fake-CAM [21] that outperforms the state of the
art in both metrics. To address this, we introduce the symmet-
ric counterpart of AD, which we call average gain (AG), to be
paired with AD as a replacement of AI. As expected, Fake-
CAM fails AG.

In summary, we make the following contributions:

1. We introduce Opti-CAM, a simple model for saliency
map generation that combines ideas from CAM-based and
masking-based approaches. Opti-CAM does not need any
extra data, network or training.

2. Compared with gradient-free methods [13, 22, 12], it finds
the optimal feature map weights and is on par or faster, as-
suming that the number of iterations is less than the num-
ber of channels.

3. We introduce a new evaluation metric, average gain (AG),
to be paired with average drop (AD) as a replacement of
average increase (AI) [16].

4. On several datasets, we improve the state of the art by a
large margin, reaching near-perfect performance accord-
ing to the most relevant classification metrics.

5. We shed more light into how a classifier may exploit back-
ground context.

2. Related Work

A large number of works study explainability, interpretabil-
ity or attribution of machine learning models, especially
DNN [1, 2, 3, 4, 5]. These works can be categorized into
transparency and post-hoc interpretability [23, 1]. The former
addresses how to design an internally understandable model.
Here we are interested in the latter, which keeps the studied
network fixed and interprets its inner processing [24, 25, 26].
Among post-hoc methods, LIME [24] and SHAP [25] are
well-known model-agnostic methods that rate feature impor-
tance. More specifically, we are interested in the generation of
saliency maps. These methods are mostly based on gradients,
CAM [11], occlusion, or a combination.

Gradient-based methods. Gradient-based methods [27, 9, 28]
use the gradient of a target class score with respect to the in-
put to measure the effect of different image regions on the pre-
diction. In [6], the gradient is directly treated as a saliency
map. Inspired by DeconvNet [8], guided backpropagation [9]
improves the explanation by setting negative gradients to zero
using ReLU units. Other methods [29, 30, 31] are inspired
by Layer-wise Relevance Propagation (LRP) [10]. Smooth-
Grad [32] and integrated gradients [33] accumulate gradients

into saliency maps, while NormGrad [34] attempts to unify
gradient-based methods.

A different approach is to use adversarial attacks [35, 36].
These search along the gradient to identify pixels that, when
modified, lead to changes in the model prediction. The
identified pixels are considered significant for the prediction.
Gradient-based methods do not always satisfy the fundamental
property of implementation invariance; for example, DeepLift
and LRP are not always identical for two functionally equiva-
lent networks [33].

CAM-based methods. Class activation maps (CAM) [11] is a
visualization method that highlights the image regions most
relevant to a target class by a linear combination of fea-
ture maps. A number of variants use different definitions of
weights. Many rely on gradients, including GradCAM [15],
GradCAM++ [16], and XGradCAM [37]. Gradient-free meth-
ods, including Ablation-CAM [12] and Score-CAM [13], rather
measure the effect on the target class score of each feature map
acting as a mask on the input. Additional methods can be found
in the survey conducted by He et al. (2022) [38]. We inherit
the idea of masking but for linear combinations of feature maps
and we iteratively optimize the coefficients by analytical gradi-
ent computation. Our method is thus faster when the number of
iterations is less than the number of channels.

Occlusion (masking)-based methods. These methods use a
number of candidate masks, measure their effect on the predic-
tion, then combine them in a single saliency map. LIME [24]
approximates the behavior of complex models through the cre-
ation of local surrogate models based on perturbations of inputs.
LIME relies on superpixels to define the fundamental elements
for perturbation and masking. This approach proves either too
computationally intensive or too coarse for high-resolution im-
ages. Based on game theory, SHAP [25] provides a unified
framework to estimate the importance of inputs through SHAP
values. SHAP-based methods also face the challenge of balanc-
ing performance with computational complexity.

RISE [22] randomly masks input images and uses the class
score as a weight to define a linear combination. Some
occlusion-based methods are combined with gradients. Mean-
ingful perturbations [18] and extremal perturbations [19] di-
rectly optimize the mask in the image space by using gradients.
They require a large number of parameters as well as regular-
izers, e.g. for smoothness. Information bottleneck attribution
(IBA) [20] optimizes the mask in the feature space as a tensor
instead. Score-CAM [13] is also an occlusion-based method,
using individual feature maps as candidate masks. The same
holds for our Opti-CAM, but for candidate masks constrained
in the linear span of the feature maps. Compared with [19, 20],
we have fewer parameters and do not require a regularizer.

Learning-based methods. While occlusion-based methods
compute or optimize a mask for a particular image at inference,
learning-based methods use an additional network or branch
and they train it on extra data and image-level labels to pre-
dict a saliency map given an input image. This includes for
example generators [39] or auto-encoders [17, 40, 41]. This
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Fig. 1. Overview of Opti-CAM. We are given an input image x, a fixed network f , a target layer ℓ and a class of interest c. We extract the feature maps
from layer ℓ and obtain a saliency map S ℓ(x; u) by forming a convex combination of the feature maps (×) with weights determined by a variable vector
u (8). After upsampling and normalizing, we element-wise multiply (⊙) the saliency map with the input image to form a “masked” version of the input,
which is fed to f . The objective function Fc

ℓ
(x; u) measures the logit of class c for the masked image (10). We find the value of u∗ that maximizes this logit

by optimizing along the path highlighted in blue (9), as well as the corresponding optimal saliency map S ℓ(x; u∗) (11).

approach may be compared with weakly-supervised object de-
tection [42], segmentation [43] or instance segmentation [44].
IBA [20] includes a learning-based approach in the feature
space. Apart from requiring extra data, it is not satisfying in the
sense that the learned decoder would need to be explained too.
Our method does not need any extra data, network, or training.

Evaluation of attribution methods. Evaluating saliency maps
is challenging because no ground truth attributions exist. Some
studies utilize object segment masks as attribution ground truth,
as noted by [45], yet this approach primarily concerns localiza-
tion. Other studies use gaze density fixation maps as a refer-
ence for ground truth [45]. We contend that these ground truth
methods solely provide information about images. While com-
paring saliency maps to these references aids in understanding
the degree of alignment between network cognition and human
perception, it overlooks crucial network information. We ad-
vocate that the ground truth should incorporate both image and
network information. Such ground truth does not exist.

In the evaluation of attribution methods, metrics are cate-
gorized according to several key properties, including faith-
fulness, robustness, localization, complexity and randomiza-
tion [46]. Each property carries distinct assumptions regarding
the saliency maps generated by these methods. Faithfulness,
in particular, stands out as it directly correlates with the accu-
racy of the classification score. Given its direct relationship to
model performance, we prioritize this category as it provides
crucial insights into how faithfully the attribution method rep-
resents the model’s decision-making process. By focusing on
faithfulness, we aim to ensure that the attribution method accu-
rately captures the reasoning of the model.

Average drop (AD) and average increase (AI), also known as
increase in confidence [16] are well-established metrics. They
consider the effect on the predicted class probabilities by mask-
ing the input image with the saliency map. There is a funda-
mental flaw in using AD, AI as a pair of metrics, which we fix
by replacing AI by a new metric, average gain (AG).

Insertion (I) and deletion (D) sequentially insert or delete
pixels by decreasing order of saliency and observe the effect
on the prediction. The resulting images are out-of-distribution
(OOD) [47] and the metrics favor small and compact re-
gions. Localization metrics measure how the saliency maps

are aligned with object bounding boxes, which ignores the im-
portance of background context [48, 49]. We demonstrate that
localization and attribution are not well-aligned as tasks.

3. Opti-CAM

3.1. Preliminaries

Notation. Consider a classifier network f : X → RC that maps
an input image x ∈ X to a logit vector y = f (x) ∈ RC , where X
is the image space and C is the number of classes. We denote
by yc = f (x)c the predicted logit and by pc = softmax(y)c :=
eyc/
∑

j ey j the predicted probability for class c. For layer ℓ with
Kℓ channels, we denote by Ak

ℓ = f k
ℓ (x) ∈ Rhℓ×wℓ the feature

map for channel k ∈ {1, . . . ,Kℓ}, with spatial resolution hℓ ×wℓ.
Because of relu non-linearities, we assume that feature maps
are non-negative. Similarly, we denote by S ℓ ∈ Rhℓ×wℓ a 2D
saliency map.

Background: CAM-based saliency maps. Given a layer ℓ and
a class of interest c, we consider saliency maps given by the
general formula

S c
ℓ(x) := h

∑
k

wc
kAk
ℓ

 , (1)

where wc
k are weights defining a linear combination over chan-

nels and h is an activation function. CAM [11] is defined for the
last layer L only with h being the identity mapping and wc

k be-
ing the classifier weight connecting the k-th channel with class
c. Grad-CAM [15] is defined for any layer ℓ with h = relu and
weights

wc
k := GAP

 ∂yc

∂Ak
ℓ

 , (2)

where GAP is global average pooling. The motivation for relu
is that we are only interested in features that have a positive
effect on the class of interest, i.e. pixels whose intensity should
be increased in order to increase yc.

Score-CAM [13] is also defined for any layer ℓ with h =
relu and weights wc

k := softmax(uc)k. Softmax normalization
considers positive channel contributions only and attends to few
feature maps. Here, vector uc ∈ RKℓ measures the increase in
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confidence for class c that compares a known baseline image xb

with the input image x masked according to feature map Ak
ℓ , for

all channels k:

uc
k := f

(
x ⊙ n

(
up(Ak

ℓ)
))

c
− f (xb)c, (3)

where ⊙ is the Hadamard product. For this to work, the fea-
ture map Ak

ℓ is adapted to x first: up denotes upsampling to the
spatial resolution of x and

n(A) :=
A −min A

max A −min A
(4)

is a normalization of matrix A into [0, 1]. While Score-CAM
does not need gradients, it requires as many forward passes
through the network as the number of channels in the chosen
layer, which is computationally expensive.

Motivation. Score-CAM considers each feature map as a mask
in isolation. How about linear combinations? Given a vector
w ∈ RKℓ with wk its k-th element, let

F(w) := f

x ⊙ n

up

∑
k

wkAk
ℓ


c

. (5)

If we assume that xb = 0 in (3) and define n(0) := 0 in (4), then
we can rewrite the right-hand side of (3) as

F(w0 + δek) − F(w0)
δ

, (6)

where w0 = 0, δ = 1 and ek is the k-th standard basis vec-
tor of RKℓ . This resembles the numerical approximation of the
derivative ∂F

∂wk
(w0), except that δ is not small as usual. One

could compute derivatives efficiently by standard backpropaga-
tion instead. It is then possible to iteratively optimize F with
respect to w, starting at any w0.

As an alternative, consider masking-based methods relying
on optimization in the input space, like meaningful perturba-
tions (MP) [18] or extremal perturbations [19]. In general, op-
timization takes the form

S c(x) := arg max
m∈M

f (x ⊙ n(up(m)))c + λR(m). (7)

Here, a mask m is directly optimized and does not rely on fea-
ture maps, hence the saliency map S x(x) is not connected to
any layer ℓ. The mask is at the same or lower resolution than
the input image. In the latter case, upsampling is still necessary.

In this approach, one indeed computes derivatives by back-
propagation and indeed iteratively optimizes m. However, be-
cause m is high-dimensional, there are constraints expressed by
m ∈ M, e.g. m has a certain norm, and regularizers like R(m),
e.g. m is smooth in a certain way. This makes optimization
harder or more expensive and introduces more hyperparame-
ters like λ. One could simply constrain m to lie in the linear
span of {Ak

ℓ}
Kℓ
k=1 instead, like all CAM-based methods.

3.2. Method
Saliency maps. As motivated by section 3.1, we obtain a
saliency map as a convex combination of feature maps by op-
timizing a given objective function with respect to the weights.

In particular, following [13], we use channel weights wk :=
softmax(u)k, where u ∈ RKℓ is a variable. We then consider
saliency map S ℓ in layer ℓ as a function of both the input image
x and variable u:

S ℓ(x; u) := h

∑
k

softmax(u)kAk
ℓ

 . (8)

Comparing with (1), h can be any function including the iden-
tity function or the activation function used by the network, be-
cause we normalize S ℓ to make it non-negative.

Optimization. Now, given a layer ℓ and a class of interest c, we
find the vector u∗ that maximizes the classifier confidence for
class c, when the input image x is masked according to saliency
map S ℓ(x; u∗):

u∗ := arg max
u

Fc
ℓ (x; u), (9)

where we define the objective function

Fc
ℓ (x; u) := gc

(
f
(
x ⊙ n

(
up (S ℓ(x; u))

)))
. (10)

Here, the saliency map S ℓ(x; u) is adapted to x exactly as in (3)
in terms of resolution and normalization. For normalization
function n, the default is (4). The selector function gc operates
on the logit vector y; the default is to select the logit of class c,
i.e. gc(y) := yc. Other choices, including the definition of Fc

ℓ it-
self, are investigated in subsection 5.5 and in the supplementary
material.

Opti-CAM. Putting everything together, we define

S c
ℓ(x) := S ℓ(x; u∗) = S ℓ

(
x; arg max

u
Fc
ℓ (x; u)

)
, (11)

where S ℓ and Fc
ℓ are defined by (8) and (10) respectively. The

objective function Fc
ℓ (10) depends on variable u through S ℓ (8),

where the feature maps Ak
ℓ = f k

ℓ (x) are fixed. Then, (10) in-
volves masking and a forward pass through the network f ,
which is also fixed.

Figure 1 is an abstract illustration of our method, called Opti-
CAM, without details like upsampling and normalization (10).
Optimization takes place along the highlighted path from vari-
able u to objective function Fc

ℓ . The saliency map is real-valued
and the entire objective function is differentiable in u. We use
Adam optimizer [50] to solve the optimization problem (9).

Discussion. By maximizing (10), the saliency map focuses on
the regions contributing to class c, while masked regions con-
tribute less. This way, the influence of background in the aver-
age pooling process is reduced.

The saliency map is expressed as a linear combination of fea-
ture maps (8), with normalized weights. Hence, the saliency
map is discouraged from taking up the entire image, both by
the softmax competition (8) and by the fact that feature maps
only respond to particular locations.

In case gc(y) := yc, (11) takes the form of direct masking (7)
with R(m) = 0 and

M :=
{
S ℓ(x; u) : u ∈ RKℓ

}
. (12)
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This constraint makes ours a CAM-based method. It dispenses
the need for regularizers, because we only optimize one vector
over the feature dimensions (up to 2,048 for ResNet50), which
is small compared with the dimensions of input images (50k for
ImageNet). In addition, it does not complicate the optimization
process in any way. It is only a different parametrization.

4. Average Gain (AG)

Average drop (AD) and average increase (AI) [16] are well-
established classification metrics. They measure the effect on
the predicted class probabilities by masking the input image
with the saliency map. Let pc

i and oc
i be the predicted prob-

ability for class c given as input the i-th test image xi and its
masked version respectively. Masking refers to element-wise
multiplication with the saliency map, which is at the same res-
olution as the original image with values in [0, 1]. Let N be the
number of test images. Class c is taken as the ground truth.

Average drop (AD) quantifies how much predictive power,
measured as class probability, is lost when we only mask the
image; lower is better:

AD(%) :=
1
N

N∑
i=1

[
pc

i − oc
i

]
+

pc
i

· 100. (13)

Average increase (AI), also known as increase in confidence,
measures the percentage of images where the masked image
yields a higher class probability than the original; higher is bet-
ter:

AI(%) :=
1
N

N∑
i

1pc
i<oc

i
· 100. (14)

AD and AI are not defined in a symmetric way. AD mea-
sures changes in class probability whereas AI measures a per-
centage of images. It is possible that the percentage is high
while the actual increase is small. Hence, it is possible that an
attribution method improves both. Indeed, [21] observes that
a trivial method called Fake-CAM outperforms state-of-the-art
methods, including Score-CAM, by a large margin. Fake-CAM
simply defines a saliency map where the top-left pixel is set to
zero and is uniform elsewhere. This questions the purpose of
AD and AI.

Although the authors of [21] make this impressive observa-
tion, they use it to motivate the definition of a number of met-
rics that are orthogonal to the task at hand, i.e. measuring the
effect of masking to the classifier. By contrast, we address the
problem by introducing a new metric to be paired with AD as a
replacement of AI. We define the new metric as follows.

Average gain (AG) quantifies how much predictive power,
measured as class probability, is gained when we mask the im-
age; higher is better:

AG(%) :=
1
N

N∑
i=1

[
oc

i − pc
i

]
+

1 − pc
i
· 100. (15)

This definition is symmetric to the definition of average drop,
in the sense that in absolute value, the numerator in the sum of

AD,AG is the positive and negative part of pc
i − oc

i respectively
and the denominator is the maximum value that the numerator
can get as a function of oc

i , given that 0 < oc
i < pc

i and pc
i <

oc
i < 1 respectively. The two metrics thus compete each other,

in the sense that changing oc
i to improve one leaves the other

unchanged or harms it. As we shall see, an extreme example is
Fake-CAM, which yields near-perfect AD but fails completely
on AG.

5. Experiments

We evaluate Opti-CAM and compare it quantitatively and
qualitatively against other state-of-the-art methods on a num-
ber of datasets and networks. We report classification metrics
with execution times and we provide visualizations, an abla-
tion study and a study on the suitability of localization ground
truth. A sanity check, additional classification results, localiza-
tion metrics, more ablations, more visualizations and code are
given in supplementary material.

5.1. Datasets and Networks

ImageNet. We use the validation set of ImageNet ILSVRC
2012 [51, 52], which contains 50, 000 images evenly distributed
over the 1, 000 categories. For the ablation study and for tim-
ing, we sample 1, 000 images from this set. Concerning the
localization experiments, bounding boxes from the localization
task of ILSVRC1 are used on the same validation set.

Medical data. We use two medical image datasets, namely
Chest X-ray [53] and Kvasir [54]. Complete qualitative and
quantitative results are given in the supplementary. Here we
only provide visualizations.

Networks. For all datasets, we use the pretrained
ResNet50 [55] and VGG16 [56] networks with batch
normalization [57] from the Pytorch model zoo2. For Ima-
geNet, we further use the pretrained ViT-B (16-224) [58] and
DeiT-B (16-224) [59] from Pytorch image models (timm)3.
We set h as the identify mapping. For ResNet50 and VGG16,
all the values of S ℓ(x; u) are non-negative due to ReLU. For
ViT-B and DeiT-B, there are negative values. In either case,
S ℓ is subsequently normalized to [0, 1]. On medical datasets,
we fine-tune the networks as discussed in the supplementary
material, where we also provide the setting details.

5.2. Evaluation

Metrics. We use average drop (AD) and average increase
(AI) [16] metrics, as well as the proposed average gain (AG), to
measure the effect on classification performance of masking the
input image by a saliency map. In the supplementary, we also
report insertion (I) and deletion (D) [22] and highlight their lim-
itations. Using classification metrics, we show the limitations

1https://www.image-net.org/challenges/LSVRC/2012/
index.php

2https://pytorch.org/vision/0.8/models.html
3https://github.com/rwightman/pytorch-image-models

https://www.image-net.org/challenges/LSVRC/2012/index.php
https://www.image-net.org/challenges/LSVRC/2012/index.php
https://pytorch.org/vision/0.8/models.html
https://github.com/rwightman/pytorch-image-models


6

METHOD
RESNET50 VGG16

AD↓ AG↑ AI↑ T AD↓ AG↑ AI↑ T

Fake-CAM [21] 0.8 1.6 46.0 0.00 0.5 0.6 42.6 0.00

Grad-CAM [15] 12.2 17.6 44.4 0.03 14.2 14.7 40.6 0.02
Grad-CAM++ [16] 12.9 16.0 42.1 0.03 17.1 10.2 33.4 0.02
Score-CAM [13] 8.6 26.6 56.7 15.22 13.5 15.6 41.7 3.11
Ablation-CAM [12] 12.5 16.4 42.8 18.26 15.5 12.6 36.9 2.98
XGrad-CAM [37] 12.2 17.6 44.4 0.03 13.8 14.8 41.2 0.02
Layer-CAM [60] 15.6 15.0 38.8 0.08 48.9 3.1 13.5 0.07
ExPerturbation [19] 38.1 9.5 22.5 152.96 43.0 7.1 20.5 83.20
HiRes-CAM [61] 12.2 17.6 44.4 0.03 15.8 13.2 37.8 0.02
LIME [24] 66.7 3.1 10.2 0.63 62.7 2.9 11.1 0.67
GradientShap [25] 96.8 0.1 1.3 0.87 94.0 0.1 2.9 0.60
Opti-CAM (ours) 1.5 68.8 92.8 4.15 1.3 71.2 92.7 3.94

Table 1. Classification metrics on ImageNet validation set, using CNNs.
AD/AI: average drop/increase [16]; AG: average gain (ours); ↓ / ↑: lower
/ higher is better; T: Average time (sec) per batch of 8 images. Bold: best,
excluding Fake-CAM.

of using the localization ground truth for the evaluation of at-
tribution methods. In the supplementary, we provide a number
of localization metrics from the weakly-supervised object local-
ization (WSOL) task of ILSVRC20144.

Methods. We compare against the following state-of-the-
art methods: Grad-CAM [15], Grad-CAM++ [16], Score-
CAM [13], Ablation-CAM [12], XGrad-CAM [37], Layer-
CAM [60], ExtremalPerturbation [19], HiRes-CAM [61],
LIME [24] and GradientSHAP [25]. Implementations are ob-
tained from the PyTorch CAM library5 or TorchRay6. We use
the official code of LIME7 and the package Captum 8. For trans-
former models, we also compare against raw attention [58],
rollout [62] and TIBAV [63]9.

Image normalization. It is standard that images are normalized
before feeding them to a network. By doing so however, we
cannot reproduce the results published for the baseline meth-
ods; rather, all results are improved dramatically. We can ob-
tain results similar to published ones by not normalizing. We
believe normalization is important and we include it in all our
experiments. In the supplementary, we provide more details
and results without normalization, as well as code that allows
for reproduction and verification of our results.

5.3. Image classification

Opti-CAM is evaluated quantitatively using classification
metrics and qualitatively by visualizing saliency maps.

5.3.1. AD/AI/AG
CNN. Table 1 shows ImageNet classification metrics using
VGG16 and RESNET50. Our Opti-CAM brings impressive

4https://www.image-net.org/challenges/LSVRC/2014/
index#

5https://github.com/jacobgil/pytorch-grad-cam
6https://github.com/facebookresearch/TorchRay
7https://github.com/marcotcr/lime/tree/master
8https://github.com/pytorch/captum/tree/master
9https://github.com/hila-chefer/Transformer-

Explainability

METHOD
VIT-B DEIT-B

AD↓ AG↑ AI↑ T AD↓ AG↑ AI↑ T

Fake-CAM [21] 0.3 0.4 48.3 0.00 0.6 0.3 44.6 0.00

Grad-CAM [15] 69.4 2.5 12.4 0.14 33.5 1.7 12.5 0.11
Grad-CAM++ [16] 86.3 1.5 1.0 0.15 50.7 0.9 7.2 0.13
Score-CAM [13] 32.0 6.2 33.0 23.69 53.6 2.2 12.2 22.47
XGrad-CAM [37] 88.1 0.4 4.3 0.13 80.5 0.3 4.1 0.12
Layer-CAM [60] 82.0 0.2 2.9 0.24 88.9 0.4 2.6 0.24
ExPerturbation [19] 28.8 6.2 24.4 133.52 60.9 2.0 8.5 129.12
RawAtt [58] 92.6 0.2 2.8 0.02 95.3 0.0 1.8 0.02
Rollout [62] 42.1 5.6 20.9 0.02 55.2 0.8 7.9 0.02
TIBAV [63] 81.7 0.8 5.8 0.16 62.3 0.7 7.1 0.16
HiRes-CAM [61] 98.4 0.0 0.7 0.03 97.2 0.0 1.2 0.03
LIME [24] 71.5 1.7 7.1 0.43 55.6 1.7 9.7 0.42
GradientShap [25] 98.1 0.0 0.8 1.36 95.8 0.1 1.5 0.71
Opti-CAM (ours) 0.6 18.0 90.1 16.05 0.9 26.0 83.5 15.17

Table 2. Classification metrics on ImageNet validation set, using transform-
ers. AD/AI: average drop/increase [16]; AG: average gain (ours); ↓ / ↑:
lower / higher is better. T: Average time (sec) per batch of 8 images. Bold:
best, excluding Fake-CAM.

performance in terms of average drop (AD) and Average In-
crease (AI) metrics. That is, not only impressive improvement
over baselines, but near-perfect: near-zero AD and above 90%
AI. Our new metric AG is lower, around 70% for Opti-CAM,
but this is still several times higher than for all the other meth-
ods.

Interestingly, Fake-CAM [21] is the winner in terms of AD
and second or third best in AI after Opti-CAM and Score-CAM,
but fails completely AG. This is expected and makes Fake-
CAM uninteresting as it should be: By only masking one pixel,
the classification score can hardly drop (0.8% on ResNet50) and
while it increases very often (on 46% of images), the gain is as
little as the drop (0.7%). This makes the pair (AD, AG) suffi-
cient as primary metrics and AI can be thought of as secondary,
if important at all.

Due to computation limits, LIME fails because the super-
pixels are too coarse compared to other methods. We choose
GradientSHAP as a representative of SHAP methods, which is
more suitable for high-resolution images. Nonetheless, Gradi-
entSHAP treats individual pixels as the basic unit, which does
not yield satisfactory results for classification metrics, namely
AI/AG/AD/I/D.

Table 1 also includes average execution time per image over
the 1000-image ImageNet subset for all methods. Opti-CAM
is slower than gradient-based methods that require only one
pass through the network, but on par or faster than gradient-free
methods. Indeed, we use a maximum of 100 iterations with one
forward/backward pass per iteration, while Score-CAM and
Ablation-CAM perform as many forward passes as channels.
Hence they are much slower on ResNet50 than VGG16. Ex-
tremalPerturbation does not depend on the number of channels
but is very slow by performing a complex optimization in the
image space.

Transformers. Table 2 shows ImageNet classification metrics
using ViT and DeiT. Unlike CAM-based methods that rely on
a class-specific linear combination of feature maps, raw atten-
tion [58] and rollout [62] use the attention map of the [CLS]
token from the last attention block and from all blocks respec-
tively. This attention map depends only on the particular image

https://www.image-net.org/challenges/LSVRC/2014/index#
https://www.image-net.org/challenges/LSVRC/2014/index#
https://github.com/jacobgil/pytorch-grad-cam
https://github.com/facebookresearch/TorchRay
https://github.com/marcotcr/lime/tree/master
https://github.com/pytorch/captum/tree/master
https://github.com/hila-chefer/Transformer-Explainability
https://github.com/hila-chefer/Transformer-Explainability
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and not on the target class, hence it is not really comparable.
TIBAV [63] uses both instance-specific and class-specific in-
formation.

Opti-CAM outperforms all other methods dramatically,
reaching near-zero AD and AI above 80 or 90%. According
to our new AG metric, Opti-CAM still works while all other
methods fail, but AG is much more conservative than AI. On
ViT-B for example, the classification score increases for 90.1%
of the images by masking with Opti-CAM, but the gain is only
18.0% on average.

Visualization. Figure 2 illustrates saliency map examples from
ImageNet, Chest X-ray and Kvasir datasets. Opti-CAM
saliency map is in general more spread out. This better high-
lights full objects, multiple instances or background context,
which may be taken into account by the model. On Chest X-ray,
Opti-CAM and Score-CAM are the only methods that capture
the chest, while all others focus on image corners. More exam-
ples on datasets and networks as well as quantitative evaluation
on medical data are given in the supplementary material.

5.3.2. Insertion/Deletion
Definition. Insertion/Deletion [22] are based on the probabil-
ity pcp

i for the predicted class cp as pixels are “inserted” or
“deleted” from image xi, averaged over the number of pixels
and over all images in the test set.

Deletion measures the decrease in the probability of class
cp when removing pixels one by one in decreasing order of
saliency, where removal is taken as setting the value to zero;
lower is better.

Insertion, by contrast, measures the increase in the probabil-
ity of class cp when adding pixels, again by decreasing order
of saliency. In this case, we begin with a version of the image
that is distorted by Gaussian blur and then addition is taken as
setting the value of the pixel according to the original image.
Higher is better.

Results. The experimental results are shown in Table 3 for
CNNs and transformers. ExPerturbation [19] is expected to
perform best in insertion because its optimization objective is
very similar to this evaluation metric, using blurring for masked
regions. However, ExPerturbation [19] only performs best on
ResNet50. TIBAV [63], which is designed for transformers,
outperforms the other methods on DeiT and ViT. According
to the results of Insertion/Deletion, Opti-CAM has low perfor-
mance but there is no clear winner on either CNNs or trans-
formers.

To further understand the behavior of Opti-CAM, we inves-
tigate in Figure 3 examples where Score-CAM succeeds (in-
sertion score greater than 90 and deletion score less than 10)
and Opti-CAM fails (insertion score less than 70 and dele-
tion score greater than 15). Compared with Score-CAM, the
saliency maps obtained by Opti-CAM are more spread out and
highlight several parts of the object and background context. In
most of the cases, Opti-CAM fails I/D because it not only finds
the object but also attaches importance to the background.

We argue that this is not a failure. As our localization exper-
iment in Table 5 indicates, the background is useful in discrim-

METHOD
RESNET50 VGG16 VIT-B DEIT-B

I↑ D↓ I↑ D↓ I↑ D↓ I↑ D↓

Fake-CAM [21] 50.7 28.1 46.1 26.9 57.4 33.3 57.5 34.2

Grad-CAM [15] 66.3 14.7 64.1 11.6 62.9 19.8 61.8 17.5
Grad-CAM++ [16] 66.0 14.7 62.9 12.2 56.7 29.3 60.5 21.9
Score-CAM [13] 65.7 16.3 62.5 12.1 66.5 15.1 60.6 24.4
XGrad-CAM [37] 66.3 14.7 64.1 11.7 55.6 26.5 55.2 31.1
Layer-CAM [60] 67.0 14.2 58.3 6.4 62.9 14.6 61.6 21.2
ExPerturbation [19] 70.7 15.0 61.1 15.0 64.4 18.4 62.1 27.0
Ablation-CAM [12] 65.9 14.6 63.8 11.4 - - - -
RawAtt [58] - - - - 62.2 17.9 56.3 29.3
Rollout [62] - - - - 64.8 15.2 56.7 32.8
TIBAV [63] - - - - 66.1 14.1 63.7 16.3
LIME [24] 60.0 15.3 56.6 14.8 61.4 22.9 62.1 27.8
GradientShap [25] 58.5 6.3 43.4 5.2 59.2 16.6 57.6 22.3
Opti-CAM (ours) 62.0 19.7 59.2 11.0 60.5 22.0 59.2 22.8

Table 3. I/D: insertion/deletion [22] scores on ImageNet validation set; ↓ /
↑: lower / higher is better.

inating a class. Often, the network recognizes the background
better than the object itself. For example, a gas pump is likely to
be seen with a truck, and a hare is often seen on grass. Several
parts of the object are highlighted by Opti-CAM for the worm
fence, terrier dog, hare, and manhole cover. Finally, several
instances of spaniel dog are found by Opti-CAM.

Insertion/Deletion include 224 steps of binarization, with a
set of 224 pixels being inserted/deleted at each step. If these
pixels are all inserted over a single small area, the effect on the
classifier is more immediate than when sparsely inserting pixels
over multiple areas. The same observation holds for deletion.
By contrast, Opti-CAM attempts to find regions that contribute
to the classification as a whole. There is no guarantee that those
regions are effective when used in isolation.

5.3.3. More metrics
In this section, we show additional metrics including

AOPC [64], Max-Sensitivity [65] and ADCC [21].
We use the code and suggested parameters of package Quan-

tus10 to measure AOPC and MS. In particular, patch size 14
and number of evaluation regions 10 for AOPC; lower bound
0.2 and number of samples 10 for MS. For ADCC, we use the
official code11. We evaluate these metrics on ImageNet valida-
tion set using ResNet50 and VGG16. The results are reported
in Table 4. Since AOPC shares the same philosophy as I/D, it is
not a surprise that Opti-CAM has poor performance on AOPC.
Opti-CAM achieves the best performance on MS.

5.4. Object localization

Localization metrics are used to measure the precision of
saliency maps relative to ground truth bounding boxes of the
foreground object of interest. These metrics originate from
weakly supervised localization (WSOL). However, the objec-
tives of WSOL and explaining the decision of a DNN are not
necessarily aligned, since context may play an important role in
the decision [48, 49].

10https://github.com/understandable-machine-
intelligence-lab/Quantus

11https://github.com/aimagelab/ADCC?fbclid=IwAR0YK_
93lxp4pZQnt34SlA9aeNCLRX8m0u8yTZPxbTXi80qiyhTiqxWaQ7o

https://github.com/understandable-machine-intelligence-lab/Quantus
https://github.com/understandable-machine-intelligence-lab/Quantus
https://github.com/aimagelab/ADCC?fbclid=IwAR0YK_93lxp4pZQnt34SlA9aeNCLRX8m0u8yTZPxbTXi80qiyhTiqxWaQ7o
https://github.com/aimagelab/ADCC?fbclid=IwAR0YK_93lxp4pZQnt34SlA9aeNCLRX8m0u8yTZPxbTXi80qiyhTiqxWaQ7o
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Fig. 2. Saliency maps obtained by different methods for ImageNet (top two rows), Chest X-ray (row 3) and Kvasir (row 4) with VGG. Ground truth class
shown on the left of the input image.

Original Opti-CAM Score-CAM Original Opti-CAM Score-CAM

gas pump I↑:66.3, D↓:19.4 I↑:94.2, D↓:9.4 worm fence I↑:69.7, D↓:16.8 I↑:91.9, D↓:4.4
AG↑:100.0, AD↓:0.0 AG↑:0.0, AD↓:0.0 AG↑:73.2, AD↓:0.0 AG↑:0.0, AD↓:28.8

staffordshire terrier I↑:62.1, D↓:32.2 I↑:93.4, D↓:8.2 jacamar I↑:66.3, D↓:17.3 I↑:94.6, D↓:9.9
AG↑:41.3, AD↓:0.0 AG↑:0.0, AD↓:0.3 AG↑:91.4, AD↓:0.0 AG↑:56.5, AD↓:0.0

Irish water spaniel I↑:52.6, D↓:18.8 I↑:90.5, D↓:8.6 manhole cover I↑:65.8, D↓:29.6 I↑92.7, D↓:9.1
AG↑:86.4, AD↓:0.0 AG↑:65.1, AD↓:0.0 AG↑:24.0, AD↓:0.0 AG↑:0.0, AD↓:59.9

Fig. 3. Failure examples of Opti-CAM regarding insertion/deletion.

METHOD
RESNET50 VGG16

AOPC ↑ MS ↓ ADCC ↓ AOPC ↑ MS ↓ ADCC ↓

Grad-CAM [15] 11.7 1.05 74.3 13.1 1.10 73.7
Grad-CAM++ [16] 11.6 1.04 73.6 11.6 1.09 74.6
Score-CAM [13] 10.2 1.04 61.0 11.0 1.09 73.9
XGrad-CAM [37] 11.9 1.05 74.3 13.1 1.10 73.9
Ablation-CAM [12] 11.1 1.04 71.5 12.5 1.10 75.5
Layer-CAM [60] 13.0 1.22 61.1 13.3 1.25 51.7
ExPerturbation [19] 12.0 1.07 26.0 11.2 1.09 42.8
Opti-CAM (ours) 6.3 1.03 65.5 8.9 1.06 70.0

Table 4. AOPC/MS/ADCC scores on ImageNet validation set; ↓ / ↑: lower /
higher is better.

To investigate the relative importance of the object and its
context, we measure classification metrics when using the
bounding box B itself as a saliency map as well as its com-
plement I \ B, where I is the image. We also evaluate the inter-
section B∩ S of the saliency map S with the bounding box and
with its complement (S \ B).

As shown in Table 5, the ground truth region of the object is
not the only one responsible for the network decision. For ex-
ample, the bounding box fails both when used as a saliency map
itself and when combined with any saliency map, by harming
all classification metrics. Even the complement is more effec-
tive than the bounding box itself, either alone or when com-
bined. These findings support the hypothesis that localization
metrics based on the ground truth bounding box are not nec-
essarily appropriate for evaluating explanations of network de-
cisions. Classification metrics are clearly more appropriate in
this sense.

Nevertheless, we report localization metrics in the supple-
mentary material. In summary, although its saliency maps are
more spread out, Opti-CAM outperforms other methods on a
number of metrics.

5.5. Ablation study

We perform an ablation study of different choices of the ob-
jective function (10) and normalization (4) of the saliency map.
More choices of (10), layer ℓ, number of iterations and learning
rates, selector function gc and initialization of w are studied in
the supplementary material.
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METHOD
AD↓ AG↑ AI↑

S B∩S S \B S B∩S S \B S B∩S S \B

S := B 67.2 – – 2.3 – – 9.2 – –
S := I \ B 44.0 – – 2.8 – – 16.3 – –

Fake-CAM [21] 0.5 67.2 44.1 0.7 2.3 2.8 42.0 9.2 18.9

Grad-CAM [15] 15.0 72.6 52.1 15.3 1.8 6.0 40.4 8.4 19.4
Grad-CAM++ [16] 16.5 72.9 53.1 10.6 1.6 4.1 35.2 7.3 17.1
Score-CAM [13] 12.5 71.5 50.5 16.1 2.2 6.3 42.5 8.6 20.8
Ablation-CAM [12] 15.1 72.8 52.1 13.5 1.7 5.6 39.9 7.8 19.0
XGrad-CAM [37] 14.3 72.6 51.4 15.1 1.8 6.0 42.1 8.0 20.1
Layer-CAM [60] 49.2 84.2 74.4 2.7 0.4 1.2 12.7 4.4 7.3
ExPerturbation [19] 43.8 81.6 71.0 7.1 1.4 3.2 18.9 5.6 11.1
Opti-CAM (ours) 1.4 62.5 34.8 66.3 8.7 25.8 92.5 18.6 47.1

Table 5. Bounding box study. Classification metrics on ImageNet validation
set using VGG16. B: ground-truth box used by localization metrics; I:
entire image; S : saliency map. AD/AI: average drop/increase [16]; AG:
average gain (ours); ↓ / ↑: lower / higher is better; bold: best, excluding
Fake-CAM.

Normalization function. For normalization function n (10), we
investigate three choices:

range : n(A) := A−min A
max A−min A (16)

maximum : n(A) := A
max A (17)

sigmoid : n(ai j) :=
1

1 + e−ai j
, (18)

where ai j is element (i, j) of matrix A. The default is (16),
normalizing by the range of values in the saliency map, as in
Score-CAM (4); while (17) normalizes by the maximum value
and (18) by the sigmoid function element-wise.

Objective function. We refer to the default definition of Fc
ℓ (10)

as Mask because it maximizes the logit for the masked image.
We also consider an alternative definition of objective function
Fc
ℓ , which encourages the masked version to preserve the pre-

diction of original image:

Fc
ℓ (x; u) := −

∣∣∣gc( f (x)) − gc( f (x ⊙ n(up(S ℓ(x; u)))))
∣∣∣ . (19)

This function is named Diff as it minimizes the difference of
logits between the masked and the original image.

Results. Table 6 shows classification metrics for the different
choices of Opti-CAM, as well as comparison to other methods
for reference, for the small subset of ImageNet validation set.

We observe that the choice of normalization function has lit-
tle effect overall and Sigmoid offers lower performance. Note
that the minimum value of saliency maps is often zero or close
to zero: Saliency maps are non-negative as convex combina-
tions of non-negative feature maps (8). By contrast, the choice
of loss function has more impact on performance and we ob-
serve that Mask (10) is superior on all cases.

6. Discussion and conclusions

Opti-CAM combines ideas of different saliency map genera-
tion methods, which are masking-based and CAM-based. Our
method optimizes the saliency map at inference given a single
input image. It does not require any additional data or training
any other network, which would need interpretation too.

METHOD Fc
ℓ

n AD↓ AG↑ AI↑

Fake-CAM [21] 0.5 0.7 42.1

Grad-CAM [15] 15.0 15.3 40.4
Grad-CAM++ [16] 16.5 10.6 35.2
Score-CAM [13] 12.5 16.1 42.6
Ablation-CAM [12] 15.1 13.5 39.9
XGrad-CAM [37] 14.3 15.1 42.1
Layer-CAM [60] 49.2 2.7 12.7
ExPerturbation [19] 43.8 7.1 18.9

Opti-CAM (ours) Mask (10) Range (16) 1.4 66.3 92.5
Diff (19) Range (16) 7.1 18.5 54.9

Opti-CAM (ours) Mask (10) Max (17) 1.6 66.2 90.3
Diff (19) Max (17) 6.8 17.8 54.5

Opti-CAM (ours) Mask (10) Sigmoid (18) 5.0 18.3 57.5
Diff (19) Sigmoid (18) 6.5 10.0 45.3

Table 6. Ablation study using VGG16 on 1000 images of ImageNet valida-
tion set. AD/AI: average drop/increase [16]; AG: average gain (ours); ↓ /
↑: lower / higher is better; bold: best, excluding Fake-CAM.

While Opti-CAM crafts a saliency map in the image space, it
does not need any regularization. This is because the saliency
map is expressed as a convex combination of feature maps and
we only optimize one vector over the feature dimensions. The
underlying assumption is that of all CAM-based methods: fea-
ture maps contain activations at all regions that are of interest
for the classes that are present. Opti-CAM is more expensive
than non-iterative gradient-based methods but as fast or faster
than gradient-free methods that require as many forward passes
as channels.

We find that Opti-CAM brings impressive performance im-
provement over the state of the art according to the most im-
portant classification metrics on several datasets. The saliency
maps are more spread out compared with those of the compe-
tition, attending to larger parts of the object, multiple instances
and background context, which may be helpful in classification.

Our new classification metric AG aims to be paired AD as
a replacement of AI and resolves a long-standing problem in
evaluating attribution methods, without further increasing the
number of metrics. We provide strong evidence supporting that
the use of ground-truth object bounding boxes for localization
is not necessarily optimal in evaluating the quality of a saliency
map, because the primary objective is to explain how a classifier
works.
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Appendices

Implementation details are provided in Appendix A. In Ap-
pendix B, we define localization metrics and provide corre-
sponding results. We provide results on saliency maps of other
classes in Appendix C and subjective evaluation in Appendix
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D. We provide results on medical data in Appendix E. We then
provide more ablation results in Appendix F, sanity check in
Appendix G, and results without input image normalization in
Appendix H.

Appendix A. Implementation details

All input images are resized to 224 × 224 × 3. To optimize
the saliency map with Opti-CAM (9), we use the Adam [50]
optimizer with learning rate 0.1 by default, setting the maxi-
mum number of iterations to 100 and stopping early when the
change in loss is less than 10−10. For VGG16, we generate the
saliency map (8) from the feature maps of the last convolutional
layer before max pooling by default, i.e. convolutional layer 3
of block 5. For ResNet50, we choose the last convolutional
layer by default, i.e. convolutional layer 3 of bottleneck 2 of
block 4. For ViT and DeiT, we choose the last self-attention
block by default, i.e. layer normalization of self-attention block
12. Ablations concerning the layer ℓ and the convergence of
Opti-CAM are included in Appendix F.

Appendix B. Localization metrics

Several works measure the localization ability of saliency
maps, using metrics from the weakly-supervised object local-
ization (WSOL) task. While we show in the main paper that
localization of the object and classifier interpretability are not
well aligned as tasks, we still provide localization results here.
We use the official metric (OM), localization error (LE), pixel-
wise F1 score, box accuracy (BoxAcc) [66], standard pointing
game (SP) [30], energy pointing game (EP) [13] and saliency
metric (SM) [17] on the ILSVRC201412 dataset. The goal of
these metrics is to compare the saliency maps with bounding
boxes around the object of interest. For simplicity, we define
these metrics for a single image; the reported results are aver-
aged over all images of the test set.

Appendix B.1. Definitions

We are given the saliency map S c obtained from test image
x for ground truth class c. We denote by S c

p its value at pixel
p. We binarize the saliency map by thresholding at its average
value and we take the bounding box of the largest connected
component of the resulting mask as the predicted bounding box
Bp, represented as a set of pixels. We compare this box against
the set of ground truth bounding boxes B, which typically con-
tains 1 or 2 boxes of the same class c, or with their union
U = ∪B, again represented as a set of pixels. We also compare
the predicted class label cp with the ground truth label c. All
metrics take values in [0, 1] and are expressed as percentages,
except SM (A7), which is unbounded.

12https://www.image-net.org/challenges/LSVRC/2014/
index#

Official Metric (OM). measures the maximum overlap of the
predicted bounding box with any ground truth bounding box,
requiring that the predicted class label is correct:

OM := 1 −
(
max
B∈B

IoU(B, Bp)
)
1cp=c, (A1)

where IoU is intersection over union.

Localization Error (LE). is similar but ignores the predicted
class label:

LE := 1 −max
B∈B

IoU(B, Bp). (A2)

Pixel-wise F1 score (F1). is defined as F1 = 2 PR
P+R , where pre-

cision P is the fraction of mass of the saliency map that is within
the ground truth union

P :=

∑
p∈U S c

p∑
p S c

p
(A3)

and recall R is the fraction of the ground truth union that is
covered by the saliency map

R :=

∑
p∈U S c

p

|U |
. (A4)

Box Accuracy (BA) [66]. Given threshold values η and δ, we
find the bounding box Bηp of the largest connected component
of the binary mask

{
p : S p > η

}
and require that it overlaps by

δ with at least one ground truth box:

BoxAcc(η, δ) := max
B∈B

1IoU(Bηp,B)≥δ. (A5)

After averaging over the test images, we take the maximum of
this measure over a set of values η and then the average over a
set of values δ.

Standard Pointing game (SP) [30]. We find the pixel p∗ :=
arg maxp S c

p having the maximum saliency value and require
that it lands in any of the ground truth bounding boxes:

SP := 1p∗∈U . (A6)

Energy Pointing game (EP) [13]. is equivalent to preci-
sion (A3).

Saliency Metric (SM) [17]. penalizes the size of the predicted
bounding box Bp relative to the image and the cross-entropy
loss:

SM := log max

0.05,

∣∣∣Bp

∣∣∣
hw

 − log pc, (A7)

where h×w is the input image resolution and pc is the precicted
probability for ground truth class label c.

https://www.image-net.org/challenges/LSVRC/2014/index#
https://www.image-net.org/challenges/LSVRC/2014/index#
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METHOD OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓

RESNET50

Fake-CAM [21] 63.6 54.0 57.7 47.9 99.8 28.5 0.98

Grad-CAM [15] 72.9 65.8 49.8 56.2 69.8 33.3 1.30
Grad-CAM++ [16] 73.1 66.1 50.4 56.2 69.9 33.1 1.29
Score-CAM [13] 72.2 64.9 49.6 54.5 68.7 32.4 1.25
Ablation-CAM [12] 72.8 65.7 50.2 56.1 69.9 33.1 1.26
XGrad-CAM [37] 72.9 65.8 49.8 56.2 69.8 33.3 1.30
Layer-CAM [60] 73.1 66.0 50.1 55.5 70.0 33.0 1.29
ExPerturbation [19] 73.6 66.6 37.5 44.2 64.8 38.2 1.59
Opti-CAM (ours) 72.2 64.8 47.3 49.2 59.4 30.5 1.34

VGG16

Fake-CAM [21] 64.7 54.0 57.7 47.9 99.8 28.5 1.07

Grad-CAM [15] 71.1 62.3 42.0 54.2 64.8 32.0 1.39
Grad-CAM++ [16] 70.8 61.9 44.3 55.2 66.2 32.3 1.38
Score-CAM [13] 71.2 62.5 45.3 58.5 68.2 33.4 1.40
Ablation-CAM [12] 71.3 62.6 43.2 56.2 65.7 32.7 1.39
XGrad-CAM [37] 70.8 62.0 41.9 53.5 64.4 31.6 1.41
Layer-CAM [60] 70.5 61.5 28.0 54.7 65.0 32.4 1.45
ExPerturbation [19] 74.1 66.4 37.8 43.3 62.7 36.1 1.74
Opti-CAM (ours) 69.1 59.9 44.1 51.2 61.4 30.7 1.34

Table A7. Localization metrics on ImageNet validation set. OM: official
metric; LE: localization error; F1: pixel-wise F1 score; BA: box accuracy;
SP: standard pointing game; EP: energy pointing game; SM: saliency met-
ric. ↓ / ↑: lower / higher is better. Bold: best, excluding Fake-CAM.

Appendix B.2. Results

We evaluate the localization ability of saliency maps ob-
tained by our Opti-CAM and we compare with other attribution
methods quantitatively. Table A7 and Table A8 report local-
ization metrics on ImageNet. We observe different behavior in
different metrics. In particular, Opti-CAM on ResNet and VGG
performs best on OM and LE but poorly on the remaining met-
rics. On transformers, Opti-CAM performs best on OM, LE,
F1, and SM.

Metrics, where Opti-CAM does not perform well, are mostly
the ones that penalize saliency maps that are more spread out.
For example, SP and EP penalize saliency outside the ground
truth bounding box of an object. This is not necessarily a weak-
ness of Opti-CAM, because rather than weakly supervised ob-
ject localization, the objective here is to explain how the classi-
fier works.

Appendix C. Saliency Map of Other Class.

We generate saliency maps for the most probable, second
most probable, and least probable classes across the entire
dataset using our method and baseline methods such as Grad-
CAM, Grad-CAM++, and Score-CAM. These saliency maps
are evaluated using the metrics AG, AI, and AD relative to the
ground truth. Additionally, we specifically present the results
for the most probable classes only on misclassified images in
the validation set.

As shown in Table A9, when replacing the ground truth
with the predicted (most probable) class, the performance of all
methods slightly drops. The results for the second most proba-
ble and the least probable class are even lower and similar with
each other. In each case, the performance of Opti-CAM suf-
fers more than the others. This result is positive for Opti-CAM
because most examples are correctly classified so that the most
probable class is the ground truth (e.g. accuracy 76.1%) and

METHOD OM↓ LE↓ F1↑ BA↑ SP↑ EP↑ SM↓

ViT-B

Fake-CAM [21] 62.8 54.0 57.7 47.9 99.8 28.6 0.87

Grad-CAM [15] 79.6 74.3 29.4 45.0 58.1 31.0 3.27
Grad-CAM++ [16] 84.2 80.6 14.8 23.8 51.4 27.3 4.15
Score-CAM [13] 77.6 71.6 46.0 54.3 66.1 33.1 3.14
XGrad-CAM [37] 82.0 76.9 19.6 41.3 52.8 28.5 3.31
Layer-CAM [60] 70.7 63.9 20.6 50.5 60.7 32.6 1.44
ExPerturbation [19] 71.5 64.9 35.9 44.6 62.3 35.3 1.34
RawAtt [58] 72.4 64.8 18.5 50.4 55.4 31.6 1.68
Rollout [62] 67.6 58.8 36.9 50.7 57.8 30.0 1.16
TIBAV [63] 70.1 63.1 26.6 58.8 66.1 35.0 1.23
Opti-CAM (ours) 64.4 54.6 54.5 48.0 58.2 28.7 0.98

DeiT-B

Fake-CAM [21] 61.4 54.0 57.7 47.9 99.8 28.7 0.83

Grad-CAM [15] 65.5 60.3 44.3 47.2 62.8 30.2 1.20
Grad-CAM++ [16] 70.6 67.2 34.3 43.6 57.7 30.3 2.14
Score-CAM [13] 79.9 76.2 31.9 43.8 63.4 32.2 3.14
XGrad-CAM [37] 82.0 78.4 19.5 44.1 53.4 28.8 3.03
Layer-CAM [60] 80.2 77.3 17.6 50.8 62.7 35.1 3.15
ExPerturbation [19] 69.9 64.3 36.2 44.2 63.1 35.5 1.16
RawAtt [58] 73.5 68.2 5.9 48.1 46.5 27.3 1.91
Rollout [62] 63.9 57.0 27.8 47.9 36.5 27.2 0.94
TIBAV [63] 68.2 62.2 28.1 59.6 64.1 33.5 1.08
Opti-CAM 62.3 55.1 53.9 48.0 55.1 28.8 0.84

Table A8. Localization metrics with ViT and DeiT on ImageNet validation
set. OM: official metric; LE: localization error; F1: pixel-wise F1 score; BA:
box accuracy; SP: standard pointing game; EP: energy pointing game;
SM: saliency metric. ↓ / ↑: lower / higher is better. Bold: best, excluding
Fake-CAM.

Opti-CAM obtains a saliency map explaining the background
(any class other than the ground truth); so when we mask the
input image with this saliency map, the foreground is hidden
and its performance should drop.

For misclassified images, the performance of Opti-CAM suf-
fers even more than the others. Again, this is positive for Opti-
CAM because it obtains a saliency map explaining the back-
ground (again, different than the ground truth), so the perfor-
mance for the foreground should drop for the same reason as
above. This drop is even higher because the probability for the
predicted class is higher than for the second or least probable
class.

Appendix D. Subjective Evaluation

As discussed in section 2, the question is not how aligned
a network is with human behavior, but to find how the net-
work actually behaves. Nevertheless, for completeness, we
perform one experiment as requested. In particular, we now
conduct a small survey to explore the ability of humans to
compare networks based on the saliency maps generated by
Opti-CAM. We randomly select 20 correctly classified images
from the validation set of ImageNet and generate correspond-
ing saliency maps using Opti-CAM for both ResNet50 and
VGG16. We then conceal information about the network and
present the saliency maps along with original images to 38 par-
ticipants, asking them to determine which network performed
better, solely based on the saliency maps. The results indicate
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Methods Ground Truth Most Second Least Most (Mis.)

AD↓ AG↑ AI↑ AD↓ AG↑ AI↑ AD↓ AG↑ AI↑ AD↓ AG↑ AI↑ AD↓ AG↑ AI↑

Grad-CAM [15] 12.2 17.6 44.4 16.54 16.2 39.1 96.26 0.0 2.2 96.28 0.0 2.2 37.84 5.4 40.1
Grad-CAM++ [16] 12.9 16.0 42.1 15.81 15.2 38.8 17.08 11.9 34.8 17.18 11.8 34.5 34.49 5.5 42.4
Score-CAM [13] 8.6 26.6 56.7 10.07 26.9 52.3 26.16 8.4 23.3 28.29 7.4 22.1 36.82 5.1 38.8
Opti-CAM 1.5 68.8 92.8 12.01 60.1 78.3 28.45 5.8 18.8 29.17 5.5 18.1 64.45 2.2 16.2

Table A9. Classification metrics on ImageNet validation set, using ResNet50. AD/AI: average drop/increase [16]; AG: average gain (ours); ↓ / ↑: lower /
higher is better; Ground Truth: ground truth class; Most: most probable class; Second: second probable class; Least: least probable class; Most (Mis.):
most probable class on misclassifed images.

that in 58.15% of cases, participants perceived VGG16 as more
accurate than ResNet50. Upon querying the participants about
their decision-making process, we find a preference for saliency
maps containing larger regions of the object.

Appendix E. Medical data

Medical image recognition is a high-stakes task that crucially
needs interpretable models. We thus evaluate our method on
two standard medical image classification datasets.

Appendix E.1. Datasets

Chest X-ray. [53] aims at recognizing chest images of patients
with pneumonia from healthy ones with 5, 216 training images,
16 for validation and 624 for testing. Images are resized to
224 × 224 × 3 to adapt to the pretrained models.

Kvasir. [54] contains 8 classes and aims at recognizing
anatomical landmarks, pathological findings and endoscopic
procedures inside the gastrointestinal tract. The 8, 000 images
are split into 6, 000 images for training, 1, 000 for validation and
1, 000 for testing. Images are resized as for the other datasets

Appendix E.2. Network fine-tuning

To train our models on the medical data, we first train the last
fully-connected layer according to the classes in each dataset,
while keeping the backbone frozen. On Chest X-ray, we use
learning rate 10−3 for both networks. On Kvasir, we use learn-
ing rate 10−4 for ResNet50 and 5 × 10−3 for VGG16. We then
fine-tune the entire network with a learning rate 10−5 for 50
epochs, using SGD with momentum 0.9 for both networks on
both datasets. On Chest X-ray data, we obtain accuracies of
83.2% for VGG16 and 82.0% for ResNet50; on Kvasir, 89.5%
for VGG16 and 89.8% for ResNet50.

Appendix E.3. Results

Table A10 reports metrics AD/AG/AI and Table A11 reports
metrics I/D on Chest X-ray and Kvasir using RESNET50 and
VGG16 networks. The conclusions remain the same as for Im-
ageNet. Opti-CAM achieves an average performance on I/D
and performs best D on VGG16 of KVASIR. More than that,
AD and AI are near perfect in most cases and AG is also ex-
tremely high. Additional visualizations are presented in sup-
plementary material.

METHOD
RESNET50 VGG16

AD↓ AG↑ AI↑ AD↓ AG↑ AI↑

CHEST X-RAY

Fake-CAM [21] 0.1 0.9 49.7 0.1 0.4 29.8

Grad-CAM [15] 20.4 29.7 48.7 36.8 39.8 42.3
Grad-CAM++ [16] 24.7 24.1 41.2 36.9 43.4 45.8
Score-CAM [13] 21.6 27.7 44.2 35.3 47.4 48.9
Ablation-CAM [12] 26.2 27.9 42.9 36.9 46.9 47.8
XGrad-CAM [37] 20.4 29.7 48.7 34.7 47.3 50.2
Layer-CAM [60] 24.5 23.4 39.1 36.6 45.9 47.6
ExPerturbation [19] 21.4 5.5 17.9 29.7 21.8 28.7
Opti-CAM (ours) 0.1 91.2 98.4 0.0 85.9 86.2

KVASIR

Fake-CAM [21] 0.1 0.4 48.3 0.0 0.3 45.0

Grad-CAM [15] 10.0 23.2 39.8 33.8 6.3 14.6
Grad-CAM++ [16] 11.2 18.7 32.9 20.7 9.3 20.4
Score-CAM [13] 9.1 26.7 40.8 8.4 24.0 39.4
Ablation-CAM [12] 10.7 21.6 35.4 10.6 20.9 36.9
XGrad-CAM [37] 10.0 23.2 39.8 12.1 21.6 35.2
Layer-CAM [60] 11.7 18.2 32.5 12.9 17.1 30.8
ExPerturbation [19] 48.4 13.8 21.0 34.8 19.0 27.7
Opti-CAM (ours) 0.2 91.1 99.0 0.0 93.5 98.1

Table A10. Classification metrics on Chest X-ray and KVASIR datasets.
AD/AI: average drop/increase [16]; AG: average gain (ours); ↓ / ↑: lower /
higher is better; Bold: best, excluding Fake-CAM.

METHOD
CHEST X-RAY KVASIR

RESNET50 VGG16 RESNET50 VGG16

I↑ D↓ I↑ D↓ I↑ D↓ I↑ D↓

Grad-CAM [15] 83.0 75.7 85.0 81.9 81.3 32.2 72.1 48.9
Grad-CAM++ [16] 82.2 79.1 85.1 81.8 80.2 33.8 72.1 48.7
Score-CAM [13] 82.9 77.0 87.6 79.0 80.6 33.4 79.3 34.9
Ablation-CAM [12] 83.5 75.1 92.0 73.1 80.3 32.6 79.4 36.2
XGrad-CAM [37] 82.9 75.6 88.7 75.6 81.3 32.2 79.2 36.6
Opti-CAM (ours) 82.0 78.4 86.8 79.5 80.2 37.7 77.0 24.8

Table A11. I/D: insertion/deletion [22] on Chest X-ray and KVASIR dataset
using both RESNET50 and VGG16. ↓ / ↑: lower / higher is better.

Appendix F. More ablations

Appendix F.1. Selectivity
We investigate the effect of the selectivity of saliency maps

on classification performance. In particular, before evaluation,
we raise saliency maps element-wise to an exponent α that
takes values in {0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 3, 5, 10}. When α
is small, the saliency maps become more uniform, so that more
information about the original image is revealed to the network.
Respectively, when α is large, the saliency maps become more
selective, so that the network sees fewer parts of the input. The
order of pixels is maintained.

Results in terms of AD,AG,AI are shown in Figure A4, av-
eraged over 1, 000 ImageNet images. We observe that AD stays
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Fig. A4. Effect of selectivity (raising element-wise to exponent α) of saliency
maps on classification performance. AD/AI: average drop/increase [16];
AG: average gain (ours); ↓ / ↑: lower / higher is better.

near zero for Opti-CAM for α < 2, while it increases linearly
with α for the other methods. The AG and AI of Opti-CAM has
a strong peak at α = 1, i.e. for the original saliency maps. The
other methods are less sensitive and their AI performance is not
optimal at α = 1.

Appendix F.2. Opti-CAM components

Objective function. We consider more alternative definitions of
the objective function Fc

ℓ , taking into account not only the re-
gions inside the saliency maps (In) but also their complement,
outside (Out). In particular, relative to Mask, we define IOMask
as

Fc
ℓ (x; u) := gc( f (x ⊙ s)) − gc( f (x ⊙ (1 − s))), (A1)

where s := n(up(S ℓ(x; u))) for brevity. Similarly, relative to
Diff, we define IODiff as

Fc
ℓ (x; u) := − |gc( f (x)) − gc( f (x ⊙ s))|
+ |gc( f (x)) − gc( f (x ⊙ (1 − s)))| .

(A2)

According to Table A12, IOMask performs great on AD and
AI but worse on AG, while IODiff is worse on all metrics.
Therefore, including the complementary of the saliency map
is not beneficial.

Layers. Table A13 shows how the performance of Opti-CAM,
in terms of AD/AI/AG, depends on the layer ℓ of the VGG16
network used to compute the saliency map S c

ℓ (8). We can see
that the layers 26, 29, and 42 are all competitive. We choose
the last convolutional layer (42) to be compatible with the other
CAM methods [11, 15, 16, 13].

Convergence. Finally, Figure A5 shows the classification per-
formance of Opti-CAM vs. number of iterations for different
learning rates. Optimal performance can be obtained at 100 it-
erations with learning rate η = 0.1. We use these settings by

METHOD Fc
ℓ

AD↓ AG↑ AI↑

Fake-CAM [21] 0.5 0.7 42.1

Grad-CAM [15] 15.0 15.3 40.4
Grad-CAM++ [16] 16.5 10.6 35.2
Score-CAM [13] 12.5 16.1 42.6
Ablation-CAM [12] 15.1 13.5 39.9
XGrad-CAM [37] 14.3 15.1 42.1
Layer-CAM [60] 49.2 2.7 12.7
ExPerturbation [19] 43.8 7.1 18.9

Opti-CAM
Mask (10) 1.4 66.3 92.5
Diff (19) 7.1 18.5 54.9

IOMask (A1) 0.2 5.5 99.7
IODiff (A2) 25.9 7.6 42.6

Table A12. Ablation study on objective function using VGG16 on 1000
images of ImageNet validation set. Choices for objective function Fc

ℓ
:

Mask: (10); Diff: (19); IOMask: (A1); IODiff: (A2). Choice for nor-
malization function n: Range (16). Iterations: 50. AD/AI: average
drop/increase [16]; AG: average gain (ours); ↓ / ↑: lower / higher is better.

LAYER AD↓ AG↑ AI↑ LAYER AD↓ AG↑ AI↑

42 1.4 66.0 92.5 36 1.7 66.1 90.3
32 2.8 61.3 81.6 29 1.6 78.0 93.9
26 1.7 80.1 93.7 22 3.3 68.8 84.8
19 2.9 67.3 84.9 16 2.3 72.4 89.1
12 4.1 61.9 82.4 9 4.3 44.2 71.9
6 13.5 23.5 50.2

Table A13. Layer ablation on 1, 000 images from ImageNet validation
set, using various layers of VGG16. The last convolutional layer before
max pooling is chosen as our default layer (layer 42). AD/AI: average
drop/increase [16]; AG: average gain (ours); ↓ / ↑: lower / higher is better.

default. We note that by using 50 iterations allows us to double
the speed at the cost of a 6% drop of AG and very small drop of
AI and AD.

Appendix G. Sanity check

We use the model parameter randomization test proposed
by [67]. This test compares the saliency maps generated by a
trained model with the ones generated by a partially randomly
initialized network of the same architecture. In particular, we
choose 5 layers of ResNet50 and we progressively replace them
by random ones so that we have 6 different models with differ-
ent amount of random parameters. The saliency maps are gen-
erated for the small subset of ImageNet validation set, as in the
ablation study.

Following [67], we compute a number of similarity metrics
between these saliency maps generated by the original and the
randomized network, including Rank Correlation with/without
absolute values, HOGs similarity, and SSIM. The results are
shown in Figure A6 (saliency map similarity measurements)
and Figure A7 (saliency map visualizations). Our method
passes the sanity check, as it is very sensitive to changes in the
model parameters. We also use model parameter randomiza-
tion test and train a ResNet50 with randomly permuted labels
following the training recipes from the pytorch models13. The
SSIM similarity is 0.013, which shows that Opti-CAM is sen-
sitive to the relationship between instances and labels.

13https://github.com/pytorch/vision/tree/main/
references/classification

https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/pytorch/vision/tree/main/references/classification
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Fig. A5. Classification metrics vs. number of iterations for different learn-
ing rates, using VGG-16 on 1000 images of ImageNet. AD/AI: average
drop/increase [16]; AG: average gain (ours); ↓ / ↑: lower / higher is better.
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Fig. A6. Sanity check of Opti-CAM on 1, 000 images of ImageNet valida-
tion set using ResNet50. Similarity between saliency maps by original and
randomized network, where layers are progressively replaced by random
ones.
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Fig. A7. Sanity check visualization of Opti-CAM on two images of ImageNet
validation set using ResNet50. First column: Opti-CAM saliency maps for
the original network; remaining columns: Opti-CAM saliency maps where
layers are progressively replaced by random ones.

METHOD
RESNET50 VGG16

AD↓ AG↑ AI↑ T AD↓ AG↑ AI↑ T

Fake-CAM [21] 0.9 0.7 47.4 0.00 0.5 0.3 47.7 0.00

Grad-CAM [15] 36.4 5.5 27.0 0.03 41.6 3.3 25.2 0.02
Grad-CAM++ [16] 37.6 4.9 24.0 0.04 46.3 2.0 19.0 0.02
Score-CAM [13] 28.8 8.8 33.6 20.47 39.3 3.5 24.6 3.08
Ablation-CAM [12] 36.6 5.1 25.6 18.49 41.8 2.9 24.0 2.95
XGrad-CAM [37] 36.4 5.5 27.0 0.03 40.6 3.4 25.8 0.02
Layer-CAM [60] 42.6 4.2 19.2 0.02 82.1 0.3 6.9 0.01
ExPerturbation [19] 51.2 6.9 26.1 15.67 50.1 4.4 24.5 9.10
Opti-CAM (ours) 2.0 49.4 91.2 3.94 1.5 52.7 92.1 3.95

Table A14. Classification metrics on ImageNet validation set, without in-
put normalization. AD/AI: average drop/increase [16]; AG: average gain
(ours); ↓ / ↑: lower / higher is better. T: Average time (sec) per batch of 8
images. Bold: best, excluding Fake-CAM.

Appendix H. Results without input normalization

It is standard that images are normalized to zero mean
and unit standard deviation before feeding them to a net-
work, because this is how networks are trained. For ex-
ample, for ImageNet images, we subtract the mean vector
[0.485, 0.456, 0.406] and divide channel-wise by standard de-
viation [0.229, 0.224, 0.225]. By doing so however, we cannot
reproduce the results published for several baseline methods;
rather, all results are improved dramatically. We can obtain
results similar to published ones by not normalizing, thus we
speculate that authors of related work do not normalize images.
This is also suggested by our attempts to communicate with the
authors.

We believe normalization is important and we include it in
all our experiments. For reference and to allow for comparison
with published results, we provide results without normaliza-
tion in Table A14 that correspond to Table 1. Finally, code is
provided to allow for the reproduction and verification of our
results.
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