





Effects of Dietary DHA Deficiency on Metabolic and Swimming Performance of Juvenile European Seabass (Dicentrarchus labrax) from the wild

## Mickaël Peron

F. Le Grand, P. Soudant, D. Mazurais, C. Lefrançois, V. Simon, M. Vagner





### Lipids

Source & reserve of energy  $\longrightarrow$  Triglycerides  $\longrightarrow$  Neutral lipids (NL) / reserve lipids Strong dietary influence Structure and function of cell  $\longrightarrow$  Phospholipids  $\longrightarrow$  Polar lipids (PL) / membrane lipids membranes

Fatty acids



### Lipids

Source & reserve of energy ----- Triglycerides ----- Neutral lipids (NL) / reserve lipids Strong dietary influence

Structure and function of cell — Phospholipids — Polar lipids (PL) / membrane lipids membranes

Fatty acids





Saturated 1 (*e.g* Palmitic acid ; 16:0)

Mono unsaturated (*e.g* Oleic acid ; 18:1 n-9) Poly unsaturated (*e.g* EPA ; 20:5 n-3)

### Lipids













Projected declines in global DHA availability for human consumption as a result of global warming Stefanie M. Colombo <sup>®</sup>, Timothy F. M. Rodgers <sup>®</sup>, Miriam L. Diamond <sup>®</sup>, Richard P. Bazinet, Michael T. Arts <sup>®</sup>

Projected declines in global DHA availability for human consumption as a result of global warming Stefanie M. Colombo <sup>®</sup>, Timothy F. M. Rodgers <sup>®</sup>, Miriam L. Diamond <sup>®</sup>, Richard P. Bazinet, Michael T. Arts <sup>®</sup>



















Low levels of very-long-chain *n*-3 PUFA in Atlantic salmon (Salmo salar) diet reduce fish robustness under challenging conditions in sea cages Marta Bou<sup>1,2</sup>\*, Gerd M. Berge<sup>3</sup>, Grete Baeverfjord<sup>3</sup>, Trygve Sigholt<sup>4</sup>, Tone-Kari Østbye<sup>1</sup> and

Ocean warming combined with lower omega-3 nutritional availability impairs the cardio-respiratory function of a marine fish Marie Vagner<sup>1,\*,§</sup>, Eric Pante<sup>1</sup>, Amelia Viricel<sup>1</sup>, Thomas Lacoue-Labarthe<sup>1</sup>, Jose-Luis Zambonino-Infante<sup>2</sup>, Patrick Quazuguel<sup>2</sup>, Emmanuel Dubillot<sup>1</sup>, Valerie Huet<sup>1</sup>, Herve Le Delliou<sup>2</sup>, Christel Lefrançois<sup>1,‡</sup> and



Is the natural FA composition of juvenile sea bass impacted by its habitat and ontogenetic stage ?





а

G1





а

G1

bc

G3







G3

G2 Seine

N =12 – G1



G2 Seine

N= 10 – G2



Proportion de DHA (%)

35

30

25

20

What are the physiological adjustments of juvenile European seabass from the Seine estuary when subjected to a DHA-depleted diet ?

• Considering the importance of DHA in fish development, the DHA depleted fish will have **reduced growth** and **metabolic performance**.

• Fish will try to compensate the lack of DHA by enhancing their biosynthesis availability





### One target life stage : G1



Fishing and transportation to rearing facilities



# Fishing and transportation



### Quarantaine

8



# Fishing and transportation



### Quarantaine



#### 18,7 ± 1,5 cm 81,2 ± 18,9 g

# 5/6 months conditioning



### Control pellet / 2-0,5% BM/day (T° dependant)







# Fishing and transportation

21,1 ± 1,4 cm 111,6 ± 24,5 g







### Quarantaine



Respirometry & swimming challenge



5/6 months conditioning









15.5



Time







#### Weight evolution



### **Specific Growth Rate**







## Specific Growth Rate & DHA



Significant relation in depleted group

The more DHA, the less growth

????

### DHA & ALA



Diet ALA Δ6 18:4 n-3 Elovl 20:4 n-3 Δ5 **EPA** Elovl 22:5 n-3 Δ4 DHA







### MO<sub>2</sub> as a function of swimming speed (~19°C)







Negative correlation of Muscle DHA with EPOC



**DHA & EPOC** 



When separating the treatments, the trend is not significant (but p= 0,053...)

> Implications of DHA depletion ??



No other metabolic variable with a Muscle DHA correlation

Need for deeper investigation

# Take home message

### Implications in a changing natural environment context :

- Reduced SGR in depleted group -> Energy trade off?
- Prey/predator interactions ? EPOC and **ability to catch preys**
- -> Locomotion frequency

# Take home message

### Implications in a changing natural environment context :

- Reduced SGR in depleted group -> Energy trade off?
- Prey/predator interactions ? EPOC and ability to catch preys
  -> Locomotion frequency



• DHA is also important in **behavior and vision**.

# Take home message

### Implications in a changing natural environment context :

- Reduced SGR in depleted group -> Energy trade off?
- Prey/predator interactions ? EPOC and ability to catch preys
  -> Locomotion frequency



• DHA is also important in **behavior and vision**.

One of the first studies with **wild caught** sea bass studying DHA deficiency

Careful when working with wild fish !

Mickaël Peron @MickalPeron1 · Oct 13, 2022 Setting up (more like trying to) our new experiment about fish escape response at @LemarLab ! ? Really excited to start learning about ? behavior !!



## **STAY TUNED !**

Mickaël Peron @MickalPeron1 · Oct 13, 2022 Setting up (more like trying to) our new experiment about fish escape response at @LemarLab ! Really excited to start learning about w behavior !!

## **STAY TUNED !**



Mickaël Peron @MickalPeron1 · Oct 13, 2022 Setting up (more like trying to) our new experiment about fish escape response at @LemarLab ! Really excited to start learning about **(markov)** behavior !!

## **STAY TUNED !**





# Acknowledgments

Fishing, transportion and help with the fish :

M. Drogou; S. Martin, L. Le Ru, C. Le Bigre **NourDem PHYTNESS Unit** 



#### Helpful discussions and experiment setup :

E. Dubillot; T. Milinkovitch



Feed manufacturing :

F. Terrier



## **Research &** supervising team



